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Abstract  

SO2 emission controls, combined with modestly increasing ammonia, have been thought 3 

to generate aerosol of significantly reduced acidity where sulfate is partially substituted by nitrate. 4 

However, neither expectation agrees with decadal observations in the Southeastern US, suggesting 5 

that a fundamentally different response of aerosol pH to emissions changes is occurring. We 6 

postulate this “nitrate substitution paradox” arises from a positive bias in aerosol pH in model 7 

simulations, exacerbated by reductions in SO2 emissions. This bias can elevate pH to where nitrate 8 

partitioning is readily promoted, leading to behavior consistent with “nitrate substitution”. CMAQ 9 

simulations are used to investigate this hypothesis; predictions of PM2.5 pH for 2001 emissions 10 

compare favorably with observations; for 2011 emissions however, predicted pH increases by 1 11 

unit, presenting a positive trend not seen in the observations. Non-volatile cations (K+, Na+, Ca+2 12 

and Mg+2) in the fine mode are found responsible for most of this trend. pH biases of 1 unit can 13 

induce a nitrate bias of 1-2 μg m-3 which may further increase in future projections, reaffirming 14 

an otherwise incorrect expectation of “nitrate substitution”. Evaluation of predicted aerosol pH 15 

against thermodynamic analysis of observations is therefore a critically important, but overlooked, 16 

aspect of model evaluation for robust emissions policy. 17 

  18 
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Introduction 19 

 Aerosol acidity is a driver of many important atmospheric processes (Guo et al. 2015, 20 

Weber et al. 2016), catalyzing the conversion of isoprene oxidation products to form secondary 21 

organic aerosol (SOA) (Xu et al. 2015, Pye et al. 2013, Surrat et al. 2010, Eddingsaas et al. 2010), 22 

driving the semi-volatile partitioning of key aerosol species processes (Guo et al. 2015, Weber et 23 

al. 2016), as well as the solubilization of iron, copper and other trace metals in aerosol which may 24 

serve as nutrients for ecosystems (Meskhidze et al. 2003), but also prove toxic for humans (Ghio 25 

et al. 2012, Fang et al. 2017). Significant reductions in primary pollutant emissions over the last 26 

decades has greatly improved air quality in the developed world, and is also thought to 27 

fundamentally affect aerosol acidity. SO2, an important aerosol precursor and a major driver of its 28 

acidity, has seen decreases of about 6% yr-1 over the 2001-2011 period alone in the US, with a 29 

continued anticipated downward trend (West et al. 1999, Pinder et al. 2007, 2008). Emissions of 30 

NOx and the resulting acidic HNO3, are also declining. In contrast, ammonia, the primary alkaline 31 

fine mode aerosol precursor, is either constant or increasing (Pinder et al. 2007, 2008, Heald et al. 32 

2012), owing to intensified agricultural activity and livestock farming from the demands of 33 

population growth. These trends have created the expectation that the aerosol has and will become 34 

increasingly neutralized (West et al. 1999, Pinder et al. 2007, 2008, Heald et al. 2012, Tsimpidi et 35 

al. 2007, Saylor et al. 2015), with ammonium sulfate being replaced, at least in part, by ammonium 36 

nitrate (West et al. 1999, Bauer et al. 2007, Bellouin et al. 2007, Li et al. 2014, Goto et al. 2016). 37 

The concept of “nitrate substitution” of sulfate has largely been based on the notion that 38 

nitrate is volatile when the aerosol is acidic, and in turn aerosol is acidic when insufficient amounts 39 

of total ammonia (i.e., gas+aerosol) or dust non-volatile cations (NVCs) exist to neutralize aerosol 40 

sulfate. Based on this conceptual model, aerosol ionic molar ratios have largely been used as 41 

proxies of aerosol acidity (pH), so that when the aerosol ammonium to sulfate molar ratio 42 

approaches 2 (the composition of ammonium sulfate), aerosol is assumed “neutral” and only then 43 

nitrate aerosol can form (Fisher et al. 2011, Hennigan et al. 2015, Wang et al. 2016, Silvern et al. 44 

2017). Modeling studies have corroborated this view, predicting that nitrate substitution may be 45 

prevalent in the future, including the Southeastern US (SE US) (Heald et al. 2014, Baeur et al. 46 

2007, Bellouin et al. 2011, Li et al. 2014, Goto et al. 2016, Vayenas et al. 2005, Karydis et al. 47 

2016). A more careful analysis however (Guo et al. 2015, Weber et al. 2016, Hennigan et al. 2015, 48 

Guo et al. 2016) reveals that this conceptual model of aerosol acidity and conditions for nitrate 49 
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substitution fail; thermodynamic analysis of SE US aerosol observations instead show that fine 50 

mode aerosol remains strongly acidic, despite a 70% reduction in sulfates, and more than sufficient 51 

total ammonia to neutralize it. The strong acidity is maintained by the large difference in volatility 52 

between sulfate and ammonia (Guo et al. 2015, Weber et al. 2016), so large changes in total 53 

ammonia concentrations are required for a notable change in aerosol acidity, about one order of 54 

magnitude increase in NH3 concentration per unit increase in aerosol pH (Guo et al. 2015 & 55 

2017a). However, ammonia gas deposits relatively rapidly, limiting its build up except in high 56 

emissions regions. Throughout the decade, the levels of aerosol nitrate have remained relatively 57 

constant throughout the US (Guo et al. 2015, Weber et al. 2016, Pye et al. 2009). The persistent 58 

strong aerosol acidity in turn explains why nitrate aerosol has not considerably increased over the 59 

last decades, and is unlikely to appear in the immediate future in the SE US. These findings 60 

constitute a “paradox”, as the same thermodynamic models (e.g., ISORROPIA-II Fountoukis & 61 

Nenes 2007) used to demonstrate the aerosol tendency for strong acidity in the SE US (Guo et al. 62 

2015, Weber et al. 2016) using ambient data, is also used in 3D modeling studies (Pye et al. 2009, 63 

Heald et al. 2012) for the region that predict nitrate substitution as a possible aerosol response.  64 

Reconciling the “nitrate substitution paradox” requires a careful examination of aerosol 65 

thermodynamics and the conditions under which nitrate partitioning to the aerosol is favored. 66 

Meskhidze et al. (2003) and later Guo et al. (2016) showed that for aerosol nitrate formation to 67 

occur, aerosol pH needs to exceed a certain characteristic value (that depending on the temperature 68 

and the amount of liquid water, ranges between a pH of 1.5 and 3; Guo et al., 2017). If aerosol pH 69 

is therefore high enough (typically above a pH of 2.5 to 3), a behavior consistent with “nitrate 70 

substitution” emerges, because any inorganic nitrate forming from NOx chemistry mostly resides 71 

in the aerosol phase. When pH is low enough (typically below 1.5 to 2), nitrate remains exclusively 72 

in the gas phase (as HNO3), regardless of the amount produced, and “nitrate substitution” is not 73 

observed. Between these “high” and “low” pH values, a “sensitivity window” emerges (of 74 

typically 1-1.5 pH units), where partitioning shifts from nitrate being predominantly found as gas 75 

to where it is mostly found as an aerosol. Therefore, if a model is for any reason biased in its 76 

prediction of aerosol pH, it may be preconditioned towards nitrate prediction biases. The 77 

sensitivity to pH biases is strongest when the aerosol lies in the pH “sensitivity window”, which 78 

is often the case for atmospheric aerosol (Guo et al. 2015, 2016 & 2017, Bougiatioti et al. 2016). 79 

When below this “pH sensitivity window”, aerosol nitrate is almost nonexistent and relatively 80 
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insensitive to emissions (and pH biases); when above the window, almost all nitrate resides in the 81 

aerosol phase, and directly responds to NOx emission controls.  82 

If aerosol were composed only of non-volatile sulfate and semi-volatile nitrate and 83 

ammonium, prediction biases in pH could result only from errors in RH, and large errors (e.g., 84 

order of magnitude) of NH3, NOx and SO2 because pH is relatively insensitive to changes in these 85 

aerosol precursors (Hennigan et al. 2015). Acidity however can also by modulated by other soluble 86 

inorganic cations from seasalt and mineral dust, such as K+, Na+, Ca+2 and Mg+2. The low volatility 87 

of these cations allows them to preferentially neutralize sulfates over NH3, and, even in small 88 

amounts elevate particle pH to levels that can promote the partitioning of nitrates to the aerosol 89 

phase (Fountoukis & Nenes 2007, Guo et al. 2017). NVCs tend to reside in the coarse mode aerosol 90 

(Guo et al. 2015, West et al. 1999, Vayenas et al. 2005), with a fraction found in smaller particles, 91 

while sulfate tends to reside in the fine mode (e.g., West et al. 1999, Vayenas et al. 2005, Guo et 92 

al. 2015); the degree to which NVCs can affect fine mode pH therefore lies in the degree to which 93 

the two types of species mix across different particle sizes. Potential interactions between 94 

inorganics-organics can also affect aerosol acidity.  However, recent studies driving 95 

thermodynamic models utilizing water associated with organics find only minimal differences 96 

between predicted pH (Guo et al. 2015, Bougiatioti et al. 2016, Liu et al. 2017, Pye et al., 2018, 97 

Song et al. 2018). In the presence of very high NVCs (for example in sea-spray aerosol), where 98 

the aerosol has much higher pH, the pH can approach the pKa of organic acids, leading to 99 

conditions where their dissociation can contribute to aerosol acidity (Laskin et al. 2012). 100 

Although aerosol models are evaluated in terms of their ability to predict the concentration 101 

of aerosol species (including across size), no studies to date focus on their ability to predict aerosol 102 

pH across size, even though it is known to potentially vary up to 6 units (Fang et al. 2017, 103 

Bougiatioti et al. 2016, Li et al. 2017). Evaluation of models in this context is challenging, since 104 

there is no established dataset of aerosol acidity - although that is rapidly changing, with pH 105 

estimates derived from a combination of observations and models (e.g., Guo et al., 2015; 106 

Bougiatioti et al., 2016; Guo et al., 2017; Liu et al., 2017; Song et al., 2018) -. Furthermore, given 107 

that most of this pH variability occurs in the PM1 to PM2.5 range (Fang et al. 2017), it is quite 108 

likely that model assumptions on how aerosol species interact within a mode (degree of internal 109 

mixture), especially for particles in the 1-2.5 μm range, may lead to pH prediction biases that drive 110 

model behavior. 111 
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This aim of this study is to address the underlying reasons for the “nitrate substitution” 112 

paradox, and in the process, provide a conceptual framework for quantifying and understanding 113 

the importance of aerosol pH biases. The guiding hypothesis of this work is that aerosol pH 114 

prediction bias fundamentally changes predicted aerosol behavior and the underlying cause of the 115 

paradox. The approach is demonstrated with the Community Multiscale Air Quality (CMAQ) 116 

model (Byun & Schere 2006) and is based on predictions of pH over the 2001-2011 period in the 117 

Southeastern/Eastern US, being the region for which aerosol pH trends are constrained by 118 

observations. The role of internally-mixed nonvolatile cations in PM2.5 as a source of the pH bias 119 

is then assessed.  120 

 121 

Methods  122 

Predicting aerosol pH and composition 123 

CMAQ is a three-dimensional, Eulerian, atmospheric chemistry and transport model, that 124 

simulates the processes atmospherically relevant compounds undergo, such as emission, diffusion, 125 

chemical reactions and deposition (Byun & Schere 2006). CMAQ version 5.0.2 was used in this 126 

study, and simulations were carried out using a 36-km horizontal resolution grid, with 13 vertical 127 

layers, over the continental US (CONUS) for the entire years of 2001 & 2011. Meteorological 128 

data were obtained offline from the Weather Research Forecasting (WRF) model. The same 129 

meteorology was used between the two years to eliminate potential biases of temperature and 130 

relative humidity on pH predictions. Model-ready emissions for 2011 were obtained using the 131 

National Emissions Inventory 2011 inventory (NEI 2011) for the Carbon Bond 05 (CB05) 132 

chemical mechanism. To estimate the 2001 emissions, the 2011 emissions for SO2, NOx, NH3, 133 

CO, VOCs and primary PM from anthropogenic sources were scaled on a per-species basis using 134 

the Air Pollutant Emissions Trends Data; emissions for other species were kept constant. 135 

Emissions of biogenic species were calculated online using the Biogenic Emission Inventory 136 

System (BEIS). 137 

The aerosol thermodynamic model ISORROPIA-II (subversion 2.2 - dated 2012 – 138 

Fountoukis & Nenes 2007) was used online in CMAQ to drive the semivolatile partitioning of 139 

inorganic species, as well as offline to analyze the predicted PM2.5 pH, nitrate partitioning 140 

tendency and sensitivities thereof to nonvolatile cations. It should be noted that ISORROPIA and 141 

CMAQ only account for the thermodynamic interactions between inorganic species and do not 142 
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treat organics. Offline calculations were conducted using the hourly gas and particle phase 143 

concentrations output from CMAQ for the 2001 and 2011 simulations, which includes NVCs, and 144 

using them as input to ISORROPIA-II. The thermodynamic calculations online and offline were 145 

carried out in forward mode, meaning that the temperature, relative humidity, as well as all aerosol 146 

and gas phase concentrations were known and used as input, assuming that the aerosol is in a 147 

metastable state, where only one aqueous phase is allowed to exist (Fountoukis & Nenes 2007). 148 

This assumption is not always necessarily true, especially under conditions of low relative 149 

humidity (RH<30%) where the aerosol can crystalize or exist in glassy, amorphous state (where 150 

in this case thermodynamic equilibrium is not reached), observational data of liquid water content 151 

shows that it is most often a valid assumption (Guo et al. 2015, Bougiatioti et al. 2016), and other 152 

studies suggest that the phase state may not strongly affect predicted pH (Song et al., 2018).  We 153 

run the model under a variety of conditions to determine the impact of NVCs from dust and sea 154 

salt (Ca, Mg, K, Na) on pH, its seasonal variability, as well as the effect of pH and temperature on 155 

nitrate partitioning. 156 

 157 

Results and discussion 158 

Predicted Sulfate, ammonium & nitrate  159 

 For the main inorganic aerosol species (SO4
2-, NO3

- and NH4
+), CMAQ captures the 160 

observed downwards trends (Park et al. 2006, Hand et al. 2012, Blanchard et al. 2013a, b, Kim et 161 

al. 2015, Saylor et al. 2015) over the CONUS during the course of the decade (Figure S1). As 162 

expected, sulfate over the entire US drops significantly between 2001 and 2011, by about 30%, 163 

with major decreases in the Eastern US of about 2 μg m-3. Areas impacted the most by these 164 

reductions, are places of significant industrial activity or with significant coal-fired electricity 165 

generating units (EGUs), such as the Ohio River Valley, Baton Rouge in Louisiana and South 166 

Carolina. Ammonium levels remain rather constant, since ammonia saw minimal emission 167 

changes over the decade, and only experience small reductions which are a buffered response to 168 

the decrease in sulfate levels. Local reductions (~20%) in ammonia are seen over North Carolina 169 

and Louisiana. Aerosol nitrate concentrations remain relatively constant on average over the 170 

domain, with small increases over the Eastern US. The highest levels of ammonium are observed 171 

in areas with significant livestock, such as North Carolina; sulfate concentrations are the highest 172 
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around the area of the Ohio River Valley, and so is nitrate due to significant NOx and SOx 173 

emissions.  174 

 Predicted Annual & seasonal pH  175 

 Figure 1 depicts the annual average pH fields over the US for 2001 and 2011 for PM2.5, 176 

with the study domain of the Eastern US outlined. Simulations show that there are noticeable 177 

differences between the two years, localized mainly in desert regions along the US-Mexico border, 178 

Southern Texas and the Eastern US. The sulfate reductions in the Eastern US, appear to have a 179 

major impact on model results, leading to significant increases of aerosol pH in the area. For 2001, 180 

the average yearly pH for the Eastern US is 1.6, consistent with recent literature and observations 181 

from the WINTER campaign (Guo et al. 2015 & 2016, Weber et al. 2016) (Figure 1a). For 2011, 182 

however, predicted pH increases to about 2.5 – almost a unit higher (Figure 1b). This trend 183 

suggests that pH will keep increasing with future sulfate reductions, something that can lead to 184 

significant increases in predicted nitrate, as well as changes in SOA chemistry which heavily 185 

depends on aerosols (Xu et al. 2015, Pye et al. 2013, Surrat et al. 2010, Eddingsaas et al. 2010), 186 

especially in the SE US. 187 

Seasonal pH trends are also positive over the Eastern US, with the summertime (Figure 188 

S2f) experiencing stronger increases than in the winter (Figure S2c), being 0.5-1.5 for winter and 189 

0.5-2 for summer. Much of the seasonal variability is driven by changes in temperature and relative 190 

humidity; increased relative humidity (RH) leads to less acidic aerosol, since liquid water content 191 

and pH are inversely related (Guo et al. 2015 & 2016), while increased temperatures promote low 192 

RH and therefore more acidic aerosol. The desert areas of the Western US, Southern Texas, 193 

Florida, SW Alabama and Mississippi are the most sensitive in the wintertime (Figure S2a, b), 194 

while the Central US is mostly unaffected. During the summer, the entire Central US is much 195 

more strongly impacted, while the wintertime sensitive areas exhibit only minor pH increases 196 

(Figure S2d, e).  197 

Model evaluation of pH 198 

Model results for both simulation years were compared to thermodynamic analysis of 199 

measurements from three urban sites (Jefferson Street, JST; Georgia Tech, GT; Atlanta Road-200 

Side, RS) and two rural (Yorkville, YRK; and Centerville CTR) SEARCH network sites (Guo et 201 

al. 2015, Xu et al. 2015). Measurements for the urban cites and the YRK site, were taken between 202 

May and December 2012 for the SCAPE study, while measurements from the CTR site were for 203 
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the SOAS campaign period (June 1st to July 15th 2013)  (Guo et al. 2015, Xu et al. 2015). The three 204 

urban sites are contained within the same CMAQ grid cell. All urban sites (Figure 2a, b, c, d), 205 

exhibit an early morning/late night pH maximum, and an afternoon minimum throughout the year 206 

(Guo et al. 2015). This a combination of two factors; RH being highest during the early 207 

morning/late night, which increases water uptake and hence decreases acidity (Guo et al. 2015) 208 

(Figure S3), and the presence of crustal elements in significant quantities during that time (Figure 209 

S4). The model pH closely tracks the diurnal profile of predicted cations (Figure S4), indicating 210 

that they have an important impact on predicted pH, which, however, is not seen in the 211 

measurements (Figure 2), since they make up a much smaller percentage of observed PM2.5. 212 

Despite the presence of NVCs, the pH remains low for both simulation years but it tends to be 213 

higher in 2011, because of sulfate levels that are approximately half of those in 2001 across all 214 

sites, leading to the increased relative effect of NVCs (Weber et al. 2016). Removal of all NVCs 215 

from the thermodynamic calculations (Figure S5), allows the simulated diurnal profiles to better 216 

track the measurements. At the same time, a negative bias is introduced to the simulated pH, which 217 

is more prominent for the urban sites even after the sulfate reductions. 218 

The increase in pH is not proportional to the reduction in sulfate, since aerosol responds 219 

non-linearly to such reductions, through the volatilization of ammonia (Weber et al. 2016). 220 

Depending on location, sulfate reductions range from 38 to 55%, while the corresponding pH 221 

increase is much lower, pointing to the fact that cations, although small in amount, tend to have a 222 

disproportionately strong impact on acidity. For the SOAS campaign period (Figure 2g), pH is 223 

underestimated especially for 2001. The biases follow the pattern of NVCs present, by being 224 

negatively biased until noon and positively biased for the rest of the day (Figure 2 and Figure S4). 225 

For the YRK site (Figure 2b, e), pH is overall underestimated during the winter and overestimated 226 

during the summer. Similarly to the urban sites, the predicted RH agrees well with the 227 

measurements (Figure S3), albeit with a positive afternoon bias during the summer. The diurnal 228 

profile of pH closely tracks the one of cations, further suggesting they may be directly related to 229 

the bias. 230 

When evaluating the predicted pH trend for CTR, the model results exhibit a clear, 231 

increasing trend of 0.6 pH units per decade (Figure 3). This trend is inconsistent with recent 232 

thermodynamic analysis of observations suggesting a slight decrease in pH over the same time 233 

period for the SE US (Guo et al. 2015 & 2016, Weber et al. 2016). If this bias in predicted pH 234 
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trend continues, it can have profound implications for future regulatory modeling, since the 235 

increased pH can lead to elevated levels of model nitrate, reproducing nitrate substitution (Bauer 236 

et al. 2007, Bellouin et al. 2011, Li et al. 2014, Goto et al. 2016). Possible reasons behind this pH 237 

bias could be overestimated ammonia emissions, underestimated sulfate, or, the presence of NVCs 238 

in PM2.5. The first two possibilities are unlikely, given the agreement of predicted ammonium and 239 

sulfate with previous studies (Park et al. 2006, Hand et al. 2012, Blanchard et al. 2013a, b, Kim et 240 

al. 2015, Saylor et al. 2015), and, the relative insensitivity of pH to ammonia and sulfate (Weber 241 

et al. 2016, Silvern et al. 2017). However, NVCs, if inappropriately distributed in PM2.5, can exert 242 

important biases on pH (Meskhidze et al. 2003, Karydis et al. 2016, Guo et al. 2017a, Foroutan et 243 

al. 2017). Indeed, offline calculations of aerosol pH excluding the influence of NVCs mitigates 244 

most of the predicted positive trend of 0.6 pH units per decade when all the aerosol species are 245 

considered (Figure 3), while also reducing standard error. The remaining bias may arise from 246 

errors in model RH, given that it controls water uptake and drives much of the diurnal variability 247 

in pH (Guo et al. 2015). Usage of observed (instead of predicted) RH in the thermodynamic 248 

calculations, did not impact the predicted pH more than 0.1 units (Figure S6). A more thorough 249 

evaluation of the remainder of the pH bias, as well as the impact of NVCs when included in 250 

appropriate quantities, requires a far more extensive analysis of the emissions profiles – especially 251 

regarding its diurnal variability - and observational dataset than the one available for this study 252 

(Henneman et al. 2017, Guo et al. 2017). 253 

The pH bias becomes negative for most of the CMAQ Eastern US when removing all 254 

NVCs from the calculations (Figure S5). This, combined with the considerable model skill for 255 

sulfate, nitrate and ammonium when compared to literature (Henneman et al. 2017) implies that 256 

pH biases are not related to errors in the major inorganic ions or biases in meteorological 257 

parameters (humidity and temperature), but rather in the NVCs which are minor contributors to 258 

PM2.5, hence poorly constrained. For the SEARCH sites NVCs comprise 5 to 10% of the total 259 

inorganic PM2.5 (Guo et al. 2015), which is significantly less than what the model predicted values 260 

that are a factor of 4 higher than the measurements. The most important result therefore is that 261 

NVCs are a considerable source of pH prediction uncertainty when not accounted for correctly 262 

(Supplementary material: The role of NVCs in PM2.5 pH). It should be noted that for the 263 

summertime at the CTR location, the ammonium and sulfate values are biased low in CMAQ by 264 
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a factor of 3 using the Weber et al. 2016 data. These biases however are consistent with literature 265 

and typical of CTMs (Henneman et al 2017). 266 

The SEARCH sites have been thoroughly studied in previous literature (Guo et al, 2015 & 267 

2017a, Xu et al. 2015, Weber et al. 2016) and given the high concentrations of organic mass 268 

observed throughout the year, they present an excellent case study for the potential impact of 269 

organics on pH. Recent studies indicate that organic aerosol can have a secondary, but still 270 

quantifiable impact on aerosol pH, especially when allowed to interact with inorganics (Pye et al. 271 

2018). Most 3D models do not account for potential, non-ideal interactions between the two, in 272 

addition to not including organics in thermodynamic calculations, which, if the above statement 273 

is true, can lead to significant predictive pH errors.  To investigate the role of organics on pH we 274 

used the E-AIM model (Wexler & Clegg 2002, Friese & Ebel 2010, Clegg et al. 1992) 275 

(http://www.aim.env.uea.ac.uk/aim/aim.php) on our model results for the SEARCH sites, to 276 

calculate partitioning with organics/inorganic interactions considered. We tested a variety of 277 

organic compounds under different scenarios to determine the potential of organics to influence 278 

pH (see SI: Organic acids and pH).  279 

We find that addition of organic compounds to the model, did not have a significant impact 280 

on acidity (≤2% pH deviation from the baseline value) compared to the baseline run, apart from 281 

the cases where RH was higher than 80% and the mole fraction of organic acids in the aqueous 282 

phase is greater than 25% (SI: Organic acids and pH). We conclude that the maximum impact of 283 

organics on aerosol pH can likely result from the effects of liquid-liquid phase separation (Pye et 284 

al. 2018), but of insufficient magnitude to sustain a positive aerosol pH trend as observed in out 285 

basecase simulation.  286 

The impact of pH biases on nitrate partitioning and “sulfate substitution” 287 

 To understand the importance of pH biases on nitrate partitioning and the potential for 288 

predicting a behavior consistent with “nitrate substitution”, we express the CMAQ output in each 289 

grid cell in terms of the nitrate partitioning ratio, 𝜀𝛮𝛰3 =
[𝑁𝑂3

−]

[𝐻𝑁𝑂3]+[𝑁𝑂3
−]

. It can be shown that 𝜀𝛮𝛰3 290 

follows a simple sigmoidal curve (Meskhidze et al. 2013, Guo et al. 2016), 𝜀𝛮𝛰3 = 1 −
[𝐻+]

[𝐻+]+𝐿∙𝑇∙𝛹
, 291 

where L is the liquid water content, T is ambient temperature , [H+] is the concentration of H+ in 292 

the aerosol aqueous phase, and 𝛹 =
𝑅∙[Η𝛮𝛰3]

1000∙𝑃0
 is a constant that depends on the universal gas 293 
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constant (R), the effective Henry's law constant for nitric acid in the aerosol aqueous phase (HNO3) 294 

and  the ambient pressure (P0). Depending on the value of pH, nitrate partitioning in CMAQ can 295 

either be insensitive (
𝜕𝜀𝛮𝛰3

𝜕𝑝𝐻
~0) or sensitive (

𝜕𝜀𝛮𝛰3

𝜕𝑝𝐻
~0.5) to pH biases, depending on the month of 296 

the year considered (Figure 4). We generally find that nitrate partitioning is insensitive 297 

(
𝜕𝜀𝛮𝛰3

𝜕𝑝𝐻
~0) and heavily shifted to the gas phase (𝜀𝛮𝛰3 

~0) during the summer and spring (Figure 298 

4), while it becomes quite sensitive to pH errors (
𝜕𝜀𝛮𝛰3

𝜕𝑝𝐻
~0.5) in the winter and fall. For the latter 299 

case, this means that small pH perturbations in either direction can strongly affect the amount of 300 

nitrate that partitions in the aerosol phase; if the weather is sufficiently cold and NOx emissions 301 

and pH predictions are biased sufficiently high, 𝜀𝛮𝛰3 
~1, meaning that all nitrates are partitioned 302 

to the aerosol phase and the emergence of “nitrate partitioning” behavior. 303 

 To exemplify the above, we determine the amount of excess nitrate from pH prediction 304 

biases as follows. Perturbing the acidity by ΔpH from the monthly mean value along the 𝜀𝛮𝛰3 305 

curves (Figure 4) gives the corresponding change in the partitioning ratio (ΔεΝΟ3). Multiplying 306 

ΔεΝΟ3 with the total nitrate (HNO3(g)+NO3) predicted in CMAQ in each grid cell gives the total 307 

nitrate response (ΔΝΟ3) to ΔpH. When applied to the Eastern US for ΔpH=+1 (the average pH 308 

impact of including NVCs in the PM2.5 calculations over the entire Eastern US) gives the ΔΝΟ3 309 

distributions shown in Figure 5 for the winter (Figure 5a) and the summer (Figure 5b). The 310 

predicted wintertime nitrate bias tends to be higher than in the summer, owing to the lower 311 

temperatures and higher aerosol pH levels present (which shift 𝜀𝛮𝛰3 towards higher values; Figure 312 

4) and the higher values of total available nitrate in the wintertime. The combination of both factors 313 

(available nitrate and high pH) is necessary for appreciable quantities of nitrate to partition, but in 314 

general the locations with a pH of between 0.5 and 1 are the most susceptible to positive pH biases, 315 

since a unit increase places nitrate partitioning into the ascending part of the S-curve (Figure 4), 316 

rapidly increasing the amount of aerosol nitrate that can form. During both seasons, areas rich in 317 

total nitrate, and a pH between 0.5 and 1.5, such as the Ohio River Valley, New York, New Jersey 318 

and South Louisiana (Figure 1, S1e, f), exhibit the largest increases in aerosol nitrate. Other 319 

locations that have low pH, and low total nitrate such as West Virginia see minimal changes. A 320 

notable exception is North Carolina which has a higher pH than the aforementioned locations - 321 

mainly due to the high NH3 emissions from livestock - which pushes the partitioning beyond the 322 

sensitive regime, where increases in pH do not drive additional nitrate in the particle phase. 323 
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 To investigate the potential of NVCs and sulfate reductions to induce nitrate substitution, 324 

the sensitivity of the nitrate increase ΔNO3, to the corresponding sulfate reduction ΔSO4, was 325 

quantified for the Eastern US, both when NVCs are included in the calculations and when they 326 

were not (Figure 6). Over the decade, nitrate has seen increases in the Eastern US (Figure S11) 327 

ranging from 0.5 to 2.5 μg m-3, and NVCs can have a profound impact on how these increases are 328 

distributed across the domain (Figure S11a, b).  In the presence of NVCs (Figure 6a), there is a 1 329 

μg m-3 increase of nitrate for a sulfate reduction of the same value over the Eastern US. For this 330 

case, substitution is predicted across the entire Eastern US, with only a few gridcells in South 331 

Georgia, Mississippi and North Carolina exhibiting the opposite trend (nitrate reduction), 332 

attributed to the formation of insoluble CaSO4, which reduces the availability of aerosol water, 333 

and in turn inhibits the formation of NO3 with the co-condensation of NH3. When NVCs are 334 

removed (Figure 6b), the corresponding nitrate increase is much less (0-0.2 μg m-3 per 1 μg m-3 of 335 

sulfate), especially in the Eastern US, while substitution is still predicted in the Northern parts of 336 

the domain such as Ohio, Indiana and Michigan. The aforementioned areas, tend to have higher 337 

seasonal pH values than the SE US (Figure 1), and the removal of NVCs reduces the pH to values 338 

where nitrate partitioning is more sensitive to small pH perturbations (Figure 4), leading to a higher 339 

predicted sensitivity to sulfate reductions. This analysis suggests that nitrate substitution is of a 340 

much smaller magnitude than expected (West et al. 1999, Heald et al. 2012, Bauer et al. 2007, 341 

Bellouin et al. 2011, Li et al. 2011, Goto et al. 2016, Vayenas et al. 2005, Karydis et al. 2016), and 342 

heavily impacted by pH biases introduced from NVCs.  343 

Given the importance of aerosol acidity for almost any aerosol-related process and impact, 344 

it is imperative that aerosol studies evaluate acidity inferred from thermodynamic analysis of 345 

ambient data as presented here. We demonstrate that in the case of nitrate substitution, the 346 

distribution of nonvolatile cations over particle size can have a profound impact on model 347 

behavior, and requires better constraints from emissions to observations (or at least appropriate 348 

sensitivity studies, such as those carried out here, to unravel the potential impact of nonvolatile 349 

cations). Understanding aerosol pH and the drivers thereof, is a powerful tool for evaluating model 350 

performance that has never been used before. Usage of molar ratios, ion balances and other 351 

conceptual models of aerosol acidity (Hennigan et al. 2015, Wang et al. 2016, Silvern et al. 2017) 352 

provide limited insights in aerosol pH and should be strongly avoided to limit incorrect 353 

conclusions. 354 
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 553 

Figure 1 - Annual averaged PM2.5 pH over CONUS for (a) 2001 and (b) 2011, calculated offline 554 

using ISORROPIA, using the annual averaged CMAQ concentration fields. The white outline 555 

specifies the Eastern US domain used for further analysis. 556 
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 558 

Figure 2 - pH diurnal profiles for May (a), August (b), September (c) and November (d) at 559 

JST/RS/GT, July (e) and December (f) at YRK and for the SOAS campaign period (g). Blue and 560 

red lines are the CMAQ predicted pH for 2001 and 2011 respectively, while the shaded areas are 561 

one model standard deviation. The green line represents the pH calculated through the 562 
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thermodynamic analysis of the measurements and the shaded area is standard563 

 564 

Figure 3 – Decadal pH trends from the thermodynamic analysis of the measurements from Weber 565 

et al. 2016 (blue line), default CMAQ (black line) and CMAQ results without crustal elements 566 

(green line). Also shown, is the pH for the SOAS campaign, and for the CMAQ predicted pH for 567 

June 1st-July 15th 2001 and 2011. CMAQ exhibits a clear positive trend, with pH increasing 568 

throughout the decade, both due to sulfate reductions and the increasingly important role of NVCs. 569 

Standard error is also plotted for all data points. 570 

 571 
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 573 

Figure 4 - CMAQ-derived nitrate partitioning ratio for the E.US and select months of 2001. The 574 

black squares denote the average pH values for each month. Note the insensitivity of nitrate 575 

partitioning to pH biases in the summer for pH values of less than 1 (𝜕𝜀𝛮𝛰3

𝜕𝑝𝐻
~0), which is not the case 576 

for colder months. 577 
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                 579 

 580 

Figure 5 - Increase in aerosol nitrate corresponding to a one-unit positive in pH for a) winter and 581 

b) summer. Emissions for 2011 are assumed, but to account for pH prediction biases from NVCs, 582 

they are removed from the thermodynamic calculations. Plots are on different scales due to the 583 

large differences in predicted nitrate increases. 584 

 585 

Figure 6 – CMAQ predicted nitrate substitution (
𝑁𝑂3

2011−𝑁𝑂3
2001

𝑆𝑂4
2001−𝑆𝑂4

2011 ) over the decade, when NVCs 586 

are accounted for (a), and when they are removed from the thermodynamic calculations (b). 587 
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