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Abstract  

SO2 emission controls, combined with modestly increasing ammonia, have been thought 3 

to generate aerosol of significantly reduced acidity where sulfate is partially substituted by nitrate. 4 

However, neither expectation agrees with decadal observations in the Southeastern US, suggesting 5 

that a fundamentally different response of aerosol pH to emissions changes is occurring. We 6 

postulate this “nitrate substitution paradox” arises from a positive bias in aerosol pH in model 7 

simulations. This bias can elevate pH to where nitrate partitioning is readily promoted, leading to 8 

behavior consistent with “nitrate substitution”. CMAQ simulations are used to investigate this 9 

hypothesis; modeled PM2.5 pH using 2001 emissions compare favorably with pH inferred from 10 

observed species concentrations. Using 2011 emissions, however, leads to simulated pH increases 11 

of one unit, which is inconsistent with observations from that year. Non-volatile cations (K+, Na+, 12 

Ca+2, and Mg+2) in the fine mode are found responsible for the erroneous predicted increase in 13 

aerosol pH of about 1 unit on average over the US. Such an increase can induce a nitrate bias of 14 

1-2 μg m-3 which may further increase in future projections, reaffirming an otherwise incorrect 15 

expectation of a significant “nitrate substitution. Evaluation of predicted aerosol pH against 16 

thermodynamic analysis of observations is therefore a critically important, but overlooked, aspect 17 

of model evaluation for robust emissions policy. 18 

  19 
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Introduction 20 

 Aerosol acidity is a driver of many important atmospheric processes (Guo et al. 2015, 21 

Weber et al. 2016), catalyzing the conversion of isoprene oxidation products to form secondary 22 

organic aerosol (SOA) (Xu et al. 2015, Pye et al. 2013, Surratt et al. 2010, Eddingsaas et al. 2010), 23 

driving the semi-volatile partitioning of key aerosol species processes (Guo et al. 2015, Weber et 24 

al. 2016). High acidity can also lead to the solubilization of iron, copper and other trace metals in 25 

aerosol which may serve as nutrients for ecosystems (Meskhidze et al. 2003), but also prove toxic 26 

for humans (Ghio et al. 2012, Fang et al. 2017). Significant reductions in primary pollutant 27 

emissions over the last decades has greatly improved air quality in the developed world, and is 28 

also thought to fundamentally affect aerosol acidity. SO2, an important aerosol precursor and a 29 

major driver of its acidity, has seen decreases of about 6% yr-1 over the 2001-2011 period alone 30 

in the US, with a continued anticipated downward trend (Pinder et al. 2007, 2008). Emissions of 31 

NOx and the resulting acidic HNO3, are also declining. In contrast, ammonia, the primary alkaline 32 

fine mode aerosol precursor, was either constant or increasing during this period (Pinder et al. 33 

2007, 2008, Heald et al. 2012), owing to intensified agricultural activity and livestock farming 34 

from the demands of population growth. These trends have created the expectation that the aerosol 35 

has and will become increasingly less acidic (West et al. 1999, Pinder et al. 2007, 2008, Heald et 36 

al. 2012, Tsimpidi et al. 2007, Saylor et al. 2015), with ammonium sulfate being replaced, at least 37 

in part, by ammonium nitrate (West et al. 1999, Bauer et al. 2007, Bellouin et al. 2007, Li et al. 38 

2014, Goto et al. 2016). 39 

The concept of “nitrate substitution” of sulfate has largely been based on the notion that 40 

nitrate is volatile when the aerosol is acidic, and in turn aerosol is acidic when insufficient amounts 41 

of total ammonia (i.e., gas+aerosol) or dust non-volatile cations (NVCs) exist to neutralize aerosol 42 

sulfate. Based on this conceptual model, aerosol ionic molar ratios have largely been used as 43 

proxies of aerosol acidity (pH), so that when the aerosol ammonium to sulfate molar ratio 44 

approaches 2 (the composition of ammonium sulfate), aerosol is assumed “neutral” and only then 45 

nitrate aerosol can form (Fisher et al. 2011, Hennigan et al. 2015, Wang et al. 2016, Silvern et al. 46 

2017). Modeling studies have corroborated this view, predicting that nitrate substitution may be 47 

prevalent in the future, including the Southeastern US (SE US) (Heald et al. 2014, Baeur et al. 48 

2007, Bellouin et al. 2011, Li et al. 2014, Goto et al. 2016, Vayenas et al. 2005, Karydis et al. 49 

2016). A more careful analysis however (Guo et al. 2015, Weber et al. 2016, Hennigan et al. 2015, 50 
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Guo et al. 2016) reveals that this conceptual model of aerosol acidity and conditions for nitrate 51 

substitution fail; thermodynamic analysis of SE US aerosol observations instead show that fine 52 

mode aerosol remains strongly acidic, despite a 70% reduction in sulfates, and more than sufficient 53 

total ammonia to neutralize it. The strong acidity is maintained by the large difference in volatility 54 

between sulfate and ammonia (Guo et al. 2015, Weber et al. 2016), so large changes in total 55 

ammonia concentrations are required for a notable change in aerosol acidity, about one order of 56 

magnitude increase in NH3 concentration per unit increase in aerosol pH (Guo et al. 2015 & 57 

2017a). However, ammonia gas deposits relatively rapidly, limiting its build up except in high 58 

emissions regions. Throughout the decade, the levels of aerosol nitrate have remained relatively 59 

constant throughout the US (Guo et al. 2015, Weber et al. 2016, Pye et al. 2009). The persistent 60 

strong aerosol acidity in turn explains why nitrate aerosol has not considerably increased over the 61 

last decades, and is unlikely to appear in the immediate future in the SE US. These findings 62 

constitute a “paradox”, as the same thermodynamic models (e.g., ISORROPIA-II Fountoukis & 63 

Nenes 2007) used to demonstrate the aerosol tendency for strong acidity in the SE US (Guo et al. 64 

2015, Weber et al. 2016) using ambient data, is also used in 3D modeling studies (Pye et al. 2009, 65 

Heald et al. 2012) for the region that predict nitrate substitution as a possible aerosol response.  66 

Reconciling the “nitrate substitution paradox” requires a careful examination of aerosol 67 

thermodynamics and the conditions under which nitrate partitioning to the aerosol is favored. 68 

Meskhidze et al. (2003) and later Guo et al. (2016) showed that for aerosol nitrate formation to 69 

occur, aerosol pH needs to exceed a certain characteristic value (that depending on the temperature 70 

and the amount of liquid water, ranges between a pH of 1.5 and 3; Guo et al., 2017). If aerosol pH 71 

is therefore high enough (typically above a pH of 2.5 to 3), a behavior consistent with “nitrate 72 

substitution” emerges, because any inorganic nitrate forming from NOx chemistry mostly resides 73 

in the aerosol phase. When pH is low enough (typically below 1.5 to 2), nitrate remains exclusively 74 

in the gas phase (as HNO3), regardless of the amount produced, and “nitrate substitution” is not 75 

observed. Between these “high” and “low” pH values, a “sensitivity window” emerges (of 76 

typically 1-1.5 pH units), where partitioning shifts from nitrate being predominantly found as gas 77 

to where it is mostly found as an aerosol. Therefore, if a model is for any reason biased in its 78 

prediction of aerosol pH, it may be preconditioned towards nitrate prediction biases. The 79 

sensitivity to pH biases is strongest when the aerosol lies in the pH “sensitivity window”, which 80 

is often the case for atmospheric aerosol (Guo et al. 2015, 2016 & 2017, Bougiatioti et al. 2016). 81 
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When below this “pH sensitivity window”, aerosol nitrate is almost nonexistent and relatively 82 

insensitive to emissions (and pH biases); when above the window, almost all nitrate resides in the 83 

aerosol phase, and directly responds to NOx emission controls.  84 

If aerosol were composed only of non-volatile sulfate and semi-volatile nitrate and 85 

ammonium, prediction biases in pH could result only from errors in RH, and large errors (e.g., 86 

order of magnitude) of NH3, NOx and SO2 because pH is relatively insensitive to changes in these 87 

aerosol precursors (Hennigan et al. 2015). Acidity however can also by modulated by other soluble 88 

inorganic cations from seasalt and mineral dust, such as K+, Na+, Ca+2 and Mg+2. The low volatility 89 

of these cations allows them to preferentially neutralize sulfates over NH3, and, even in small 90 

amounts elevate particle pH to levels that can promote the partitioning of nitrates to the aerosol 91 

phase (Fountoukis & Nenes 2007, Guo et al. 2017). NVCs tend to reside in the coarse mode 92 

aerosol, with a fraction found in smaller particles, while sulfate tends to reside in the fine mode 93 

(e.g., West et al. 1999, Vayenas et al. 2005, Guo et al. 2015); the degree to which NVCs can affect 94 

fine mode pH therefore lies in the degree to which the two types of species mix across different 95 

particle sizes. Potential interactions between inorganics-organics can also affect aerosol acidity.  96 

However, recent studies driving thermodynamic models utilizing water associated with organics 97 

find only minimal differences in pH predictions (Guo et al. 2015, Bougiatioti et al. 2016, Liu et 98 

al. 2017, Pye et al., 2018, Song et al. 2018). In the presence of very high NVCs (for example in 99 

sea-spray aerosol), where the aerosol has much higher pH, the pH can approach the pKa of organic 100 

acids, leading to conditions where their dissociation can contribute to aerosol acidity (Laskin et 101 

al. 2012). 102 

Although aerosol models are evaluated in terms of their ability to predict the concentration 103 

of aerosol species (including across size), no studies to date focus on their ability to predict aerosol 104 

pH across size, even though it is known to potentially vary up to 6 units (Fang et al. 2017, 105 

Bougiatioti et al. 2016, Li et al. 2017). Evaluation of models in this context is challenging, since 106 

there is no established dataset of aerosol acidity - although that is rapidly changing, with pH 107 

estimates derived from a combination of observations and models (e.g., Guo et al., 2015; 108 

Bougiatioti et al., 2016; Guo et al., 2017; Liu et al., 2017; Song et al., 2018) -. Furthermore, given 109 

that most of this pH variability occurs in the PM1 to PM2.5 range (Fang et al. 2017), it is quite 110 

likely that model assumptions on how aerosol species interact within a mode (degree of internal 111 
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mixture), especially for particles in the 1-2.5 μm range, may lead to pH prediction biases that drive 112 

model behavior. 113 

This aim of this study is to address the underlying reasons for the “nitrate substitution” 114 

paradox, and in the process, provide a conceptual framework for quantifying and understanding 115 

the importance of aerosol pH biases. The guiding hypothesis of this work is that aerosol pH 116 

prediction bias fundamentally changes predicted aerosol behavior and the underlying cause of the 117 

paradox. The approach is demonstrated with the Community Multiscale Air Quality (CMAQ) 118 

model (Byun & Schere 2006) and is based on predictions of pH over the 2001-2011 period in the 119 

Southeastern/Eastern US, being the region for which aerosol pH trends are constrained by 120 

observations. The role of internally-mixed nonvolatile cations in PM2.5 as a source of the pH bias 121 

is then assessed.  122 

 123 

Methods  124 

Predicting aerosol pH and composition 125 

CMAQ is a three-dimensional, Eulerian, atmospheric chemistry and transport model, that 126 

simulates the processes atmospherically relevant compounds undergo, such as emission, diffusion, 127 

chemical reactions and deposition (Byun & Schere 2006). CMAQ version 5.0.2 was used in this 128 

study, and simulations were carried out using a 36-km horizontal resolution grid, with 13 vertical 129 

layers, over the continental US (CONUS) for the entire years of 2001 & 2011. Meteorological 130 

data were obtained offline from the Weather Research Forecasting (WRF) model. The same 131 

meteorology was used between the two years to eliminate the effect of differences due to 132 

temperature and relative humidity on pH predictions.. Model-ready emissions for 2011 were 133 

obtained using the National Emissions Inventory 2011 inventory (NEI 2011) for the Carbon Bond 134 

05 (CB05) chemical mechanism. To estimate the 2001 emissions, the 2011 emissions for SO2, 135 

NOx, NH3, CO, VOCs and primary PM from anthropogenic sources were scaled on a per-species 136 

basis using the Air Pollutant Emissions Trends Data; emissions for other species were kept 137 

constant. Specifically anthropogenic CO, NOx, primary PM and SO2 emissions were increased by 138 

44%, 45%, 15% and 246% respectively,  while VOC and NH3 emissions were reduced by 6% and 139 

14% respectively. Emissions of biogenic species were calculated online using the Biogenic 140 

Emission Inventory System (BEIS). 141 
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The aerosol thermodynamic model ISORROPIA-II (subversion 2.1 - dated 2008 – 142 

Fountoukis & Nenes 2007) was used online in CMAQ to drive the semivolatile partitioning of 143 

inorganic species, as well as offline to analyze the predicted PM2.5 pH, nitrate partitioning 144 

tendency and sensitivities thereof to nonvolatile cations. It should be noted that ISORROPIA and 145 

CMAQ only account for the thermodynamic interactions between inorganic species and do not 146 

treat organics. Offline calculations were conducted using the hourly gas and particle phase 147 

concentrations output from CMAQ for the 2001 and 2011 simulations, which includes NVCs, and 148 

using them as input to ISORROPIA-II (subversion 2.3 - dated 2012). The thermodynamic 149 

calculations online and offline were carried out in forward mode, meaning that the temperature, 150 

relative humidity, as well as all aerosol and gas phase concentrations were known and used as 151 

input, while at the same time assuming that the aerosol is in a metastable state, where only one 152 

aqueous phase is allowed to exist (Fountoukis & Nenes 2007). This assumption is not always 153 

necessarily true, especially under conditions of low relative humidity (RH<30%) where the aerosol 154 

can crystalize or exist in glassy, amorphous state (where in this case thermodynamic equilibrium 155 

is not reached), observational data of liquid water content shows that it is most often a valid 156 

assumption (Guo et al. 2015, Bougiatioti et al. 2016), and other studies suggest that the phase state 157 

may not strongly affect predicted pH (Song et al., 2018).  We run the model under a variety of 158 

conditions to determine the impact of NVCs from dust and sea salt (Ca, Mg, K, Na) on pH, its 159 

seasonal variability, as well as the effect of pH and temperature on nitrate partitioning. 160 

 161 

Results and discussion 162 

Predicted Sulfate, ammonium & nitrate  163 

 For the main inorganic aerosol species (SO42-, NO3- and NH4+), CMAQ captures the 164 

observed trends, as seen in the literature (Park et al. 2006, Hand et al. 2012, Blanchard et al. 2013a, 165 

b, Kim et al. 2015, Saylor et al. 2015) over the CONUS over the course of the decade (Figure S1). 166 

As expected, sulfate over the entire US drops significantly between 2001 and 2011 (~ 30%), with 167 

major decreases in the Eastern US (~2 μg m-3). Areas impacted the most by these reductions are 168 

places of significant industrial activity or coal-fired electricity generating units (EGUs), such as 169 

the Ohio River Valley, Baton Rouge in Louisiana and South Carolina. Ammonium levels only 170 

experience small reductions which are a buffered response to the decrease in sulfate levels, and 171 

minimal changes in emissions. Local reductions (~20%) in ammonia are seen over North Carolina 172 
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and Louisiana. Aerosol nitrate concentrations remain constant on average over the domain, with 173 

small increases over the Eastern US. The highest levels of ammonium are observed in areas with 174 

significant livestock, such as North Carolina and the Midwest; sulfate concentrations are the 175 

highest around the Ohio River Valley, due to SOx emissions, and so is nitrate due to significant 176 

NOx and ammonia emissions. 177 

 178 

 Predicted Annual & seasonal pH  179 

 Figure 1 depicts the annual average pH fields over the US for 2001 and 2011, calculated 180 

using the annual averagePM2.5 concentrations, with the study domain of the Eastern US outlined. 181 

Simulations show that there are noticeable differences between the two years, localized mainly in 182 

desert regions along the US-Mexico border, Southern Texas and the Eastern US. The sulfate 183 

reductions in the Eastern US, appear to have a major impact on model results, leading to significant 184 

increases of aerosol pH in the area. For 2001, the average yearly pH for the Eastern US is 1.6, 185 

consistent with recent literature and observations from the WINTER campaign (Guo et al. 2015 186 

& 2016, Weber et al. 2016) (Figure 1a). For 2011, however, predicted pH increases to about 2.5 – 187 

almost a unit higher (Figure 1b).  188 

Seasonal pH trends are also positive over the Eastern US, with the summertime (Figure 189 

S2f) experiencing stronger increases than in the winter (Figure S2c), being 0.5-1.5 for winter and 190 

0.5-2 for summer. Much of the seasonal variability is driven by changes in temperature and relative 191 

humidity; increased relative humidity (RH) leads to less acidic aerosol, since liquid water content 192 

and pH are inversely related (Guo et al. 2015 & 2016), while increased temperatures promote low 193 

RH and therefore more acidic aerosol. The desert areas of the Western US, Southern Texas, 194 

Florida, SW Alabama and Mississippi are the most sensitive in the wintertime (Figure S2a, b), 195 

while the Central US is mostly unaffected. During the summer, the entire Central US is much 196 

more strongly impacted, while the wintertime sensitive areas exhibit only minor pH increases 197 

(Figure S2d, e).  198 

Model evaluation of pH 199 

Model results for both simulation years were compared to thermodynamic analysis of 200 

measurements from three urban sites in Atlanta, Georgia (Jefferson Street, JST; Georgia Tech, 201 

GT; Atlanta Road-Side, RS) and two rural (Yorkville, Georgia - YRK; and Centerville, Alabama 202 

- CTR) SEARCH network sites (Guo et al. 2015, Xu et al. 2015). Measurements for the urban sites 203 
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and the YRK site, were taken between May and December 2012 for the SCAPE study, while 204 

measurements from the CTR site were for the SOAS campaign period (June 1st to July 15th 2013)  205 

(Guo et al. 2015, Xu et al. 2015). The three urban sites are contained within the same CMAQ grid 206 

cell. All urban sites (Figure 2a, b, c, d), exhibit an early morning/late night pH maximum, and an 207 

afternoon minimum throughout the year (Guo et al. 2015). This a combination of two factors; RH 208 

being highest during the early morning/late night, which increases water uptake and hence 209 

decreases acidity (Guo et al. 2015) (Figure S3), and the presence of crustal elements in significant 210 

quantities during that time (Figure S4). The model pH closely tracks the diurnal profile of 211 

predicted cations (Figure S4), indicating that they have an important impact on predicted pH, 212 

which, however, is not seen in the measurements (Figure 2), since they make up a much smaller 213 

percentage of observed PM2.5. Despite the presence of NVCs, the pH remains low for both 214 

simulation years but it tends to be higher in 2011, because of sulfate levels that are approximately 215 

half of those in 2001 across all sites, leading to the increased relative effect of NVCs (Weber et al. 216 

2016). Removal of all NVCs from the thermodynamic calculations (Figure S5),significantly 217 

reduces the pH differences between 2001 and 2011 while removing some of the increased 218 

variability introduced by NVCs. At the same time, a negative bias is introduced to the simulated 219 

pH, which is more prominent for the urban sites even after the sulfate reductions. 220 

The increase in pH is not proportional to the reduction in sulfate, since aerosol responds 221 

non-linearly to such reductions, through the volatilization of ammonia (Weber et al. 2016). 222 

Depending on location, sulfate reductions range from 38 to 55%, while the corresponding pH 223 

increase is much lower, pointing to the fact that cations, although small in amount, tend to have a 224 

disproportionately strong impact on acidity. For the SOAS campaign period (Figure 2g), pH is 225 

underestimated especially for 2001. The biases follow the pattern of NVCs present, by being 226 

negatively biased until noon and positively biased for the rest of the day (Figure 2 and Figure S4). 227 

The bias is particularly evident in the early morning hours where NVC concentrations reach a 228 

maximum (Figure S4).For the YRK site (Figure 2b, e), pH is overall underestimated during the 229 

winter and overestimated during the summer. Similarly to the urban sites, the predicted RH agrees 230 

well with the measurements (Figure S3), albeit with a positive afternoon bias during the summer. 231 

The diurnal profile of pH closely tracks the one of cations, further suggesting they may be directly 232 

related to the bias. 233 
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When evaluating the predicted pH trend for CTR, the model results exhibit a clear, 234 

increasing trend of 0.6 pH units per decade (Figure 3). This trend is inconsistent with recent 235 

thermodynamic analysis of observations suggesting a slight decrease in pH over the same time 236 

period for the SE US (Guo et al. 2015 & 2016, Weber et al. 2016). If this bias in predicted pH 237 

trend continues, it can have profound implications for future regulatory modeling, since the 238 

increased pH can lead to elevated levels of model nitrate, reproducing nitrate substitution (Bauer 239 

et al. 2007, Bellouin et al. 2011, Li et al. 2014, Goto et al. 2016). Possible reasons behind this pH 240 

bias could be overestimated ammonia emissions, underestimated sulfate, or, the presence of NVCs 241 

in PM2.5. The first two possibilities are unlikely, given the agreement of predicted ammonium and 242 

sulfate with previous studies (Park et al. 2006, Hand et al. 2012, Blanchard et al. 2013a, b, Kim et 243 

al. 2015, Saylor et al. 2015), and, the relative insensitivity of pH to ammonia and sulfate (Weber 244 

et al. 2016, Silvern et al. 2017). However, NVCs, if inappropriately distributed in PM2.5, can exert 245 

important biases on pH (Meskhidze et al. 2003, Karydis et al. 2016, Guo et al. 2017a). Indeed, 246 

offline calculations of aerosol pH excluding the influence of NVCs mitigates most of the predicted 247 

positive trend of 0.6 pH units per decade when all the aerosol species are considered (Figure 3), 248 

while also reducing standard error. The remaining bias may arise from errors in model RH, given 249 

that it controls water uptake and drives much of the diurnal variability in pH (Guo et al. 2015). 250 

Usage of observed (instead of predicted) RH in the thermodynamic calculations, did not impact 251 

the predicted pH more than 0.1 units (Figure S6). A more thorough evaluation of the remainder of 252 

the pH bias, as well as the impact of NVCs when included in appropriate quantities, requires a far 253 

more extensive analysis of the emissions profiles – especially regarding its diurnal variability - 254 

and observational dataset than the one available for this study (Henneman et al. 2017, Guo et al. 255 

2017). 256 

The pH bias becomes negative for most of the CMAQ Eastern US when removing all 257 

NVCs from the calculations (Figure S5). This, combined with the considerable model skill for 258 

sulfate, nitrate and ammonium when compared to literature (Henneman et al. 2017) implies that 259 

pH biases are not related to errors in the major inorganic ions or biases in meteorological 260 

parameters (humidity and temperature), but rather in the NVCs which are minor contributors to 261 

PM2.5, hence poorly constrained. For the SEARCH sites NVCs comprise 5 to 10% of the total 262 

inorganic PM2.5 (Guo et al. 2015), which is significantly less than what the model predicted values 263 

that are a factor of 4 higher than the measurements. The most important result therefore is that 264 
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NVCs are a considerable source of pH prediction uncertainty when not accounted for correctly 265 

(Supplementary material: The role of NVCs in PM2.5 pH). It should be noted that for the 266 

summertime at the CTR location, the ammonium and sulfate values are biased low in CMAQ by 267 

a factor of 3 using the Weber et al. 2016 data. These biases however are consistent with literature 268 

and typical of CTMs (Henneman et al 2017). 269 

The SEARCH sites have been thoroughly studied in previous literature (Guo et al, 2015 & 270 

2017a, Xu et al. 2015, Weber et al. 2016) and given the high concentrations of organic mass 271 

observed throughout the year, they present an excellent case study for the potential impact of 272 

organics on pH. Recent studies indicate that organic aerosol can have a secondary, but still 273 

quantifiable impact on aerosol pH, especially when allowed to interact with inorganics (Pye et al. 274 

2018). Most 3D models do not account for potential, non-ideal interactions between the two, in 275 

addition to not including organics in thermodynamic calculations, which, if the above statement 276 

is true, can lead to significant predictive pH errors.  To investigate the role of organics on pH we 277 

used the E-AIM model (Wexler & Clegg 2002, Friese & Ebel 2010, Clegg et al. 1992) 278 

(http://www.aim.env.uea.ac.uk/aim/aim.php) on our model results for the SEARCH sites, to 279 

calculate partitioning with organics/inorganic interactions considered. We tested a variety of 280 

organic compounds under different scenarios to determine the potential of organics to influence 281 

pH (see SI: Organic acids and pH).  282 

We find that addition of organic compounds to the model, did not have a significant impact 283 

on acidity (≤2% pH deviation from the baseline value) compared to the baseline run, apart from 284 

the cases where RH was higher than 80% and the mole fraction of organic acids in the aqueous 285 

phase is greater than 25% (SI: Organic acids and pH). We conclude that the maximum impact of 286 

organics on aerosol pH can likely result from the effects of liquid-liquid phase separation (Pye et 287 

al. 2018), but of insufficient magnitude to sustain a positive aerosol pH trend as observed in our 288 

basecase simulation.  289 

The impact of pH biases on nitrate partitioning and “sulfate-nitrate substitution” 290 

 To understand the importance of pH biases on nitrate partitioning and the potential for 291 

predicting a behavior consistent with “nitrate substitution”, we express the CMAQ output in each 292 

grid cell in terms of the nitrate partitioning ratio, 𝜀𝛮𝛰3 =
[𝑁𝑂3

−]

[𝐻𝑁𝑂3]+[𝑁𝑂3
−]

. It can be shown that 𝜀𝛮𝛰3 293 

follows a simple sigmoidal curve (Meskhidze et al. 2013, Guo et al. 2016), 𝜀𝛮𝛰3 = 1 −
[𝐻+]

[𝐻+]+𝐿∙𝑇∙𝛹
, 294 
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where L is the liquid water content, T is ambient temperature , [H+] is the concentration of H+ in 295 

the aerosol aqueous phase, and 𝛹 =
𝑅∙[Η𝛮𝛰3]

1000∙𝑃0
 is a fitting parameter that depends on the universal 296 

gas constant (R), the effective Henry's law constant for nitric acid in the aerosol aqueous phase 297 

(HNO3) and  the ambient pressure (P0). Depending on the value of pH, nitrate partitioning in CMAQ 298 

can either be insensitive (
𝜕𝜀𝛮𝛰3

𝜕𝑝𝐻
~0) or sensitive (

𝜕𝜀𝛮𝛰3

𝜕𝑝𝐻
~0.5) to pH biases, depending on the 299 

month of the year considered (Figure 4). We generally find that nitrate partitioning is insensitive 300 

(
𝜕𝜀𝛮𝛰3

𝜕𝑝𝐻
~0) and heavily shifted to the gas phase (𝜀𝛮𝛰3 

~0) during the summer and spring (Figure 301 

4), while it becomes quite sensitive to pH errors (
𝜕𝜀𝛮𝛰3

𝜕𝑝𝐻
~0.5) in the winter and fall. For the latter 302 

case, this means that small pH perturbations in either direction can strongly affect the amount of 303 

nitrate that partitions in the aerosol phase; if the weather is sufficiently cold and NOx emissions 304 

and pH predictions are biased sufficiently high, 𝜀𝛮𝛰3 
~1, meaning that all nitrates are partitioned 305 

to the aerosol phase and the emergence of “nitrate substitution” behavior. 306 

 To exemplify the above, we determine the amount of excess nitrate from pH prediction 307 

biases as follows. Perturbing the acidity by ΔpH from the monthly mean value along the 𝜀𝛮𝛰3 308 

curves (Figure 4) gives the corresponding change in the partitioning ratio (ΔεΝΟ3). Multiplying 309 

ΔεΝΟ3 with the total nitrate (HNO3(g)+NO3) predicted in CMAQ in each grid cell gives the total 310 

nitrate response (ΔΝΟ3) to ΔpH. When applied to the Eastern US for ΔpH=+1 (the average pH 311 

impact of including NVCs in the PM2.5 calculations over the entire Eastern US) gives the ΔΝΟ3 312 

distributions shown in Figure 5 for the winter (Figure 5a) and the summer (Figure 5b). The 313 

predicted wintertime nitrate bias tends to be higher than in the summer, owing to the lower 314 

temperatures and higher aerosol pH levels present (which shift 𝜀𝛮𝛰3 towards higher values; Figure 315 

4) and the higher values of total available nitrate in the wintertime. The combination of both factors 316 

(available nitrate and high pH) is necessary for appreciable quantities of nitrate to partition, but in 317 

general the locations with a pH of between 0.5 and 1 are the most susceptible to positive pH biases, 318 

since a unit increase places nitrate partitioning into the ascending part of the S-curve (Figure 4), 319 

rapidly increasing the amount of aerosol nitrate that can form. During both seasons, areas rich in 320 

total nitrate, and a pH between 0.5 and 1.5, such as the Ohio River Valley, New York, New Jersey 321 

and South Louisiana (Figure 1, S1e, f), exhibit the largest increases in aerosol nitrate. Other 322 

locations that have low pH, and low total nitrate such as West Virginia see minimal changes. A 323 
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notable exception is North Carolina which has a higher pH than the aforementioned locations - 324 

mainly due to the high NH3 emissions from livestock - which pushes the partitioning beyond the 325 

sensitive regime, where increases in pH do not drive additional nitrate in the particle phase. 326 

 To investigate the potential of NVCs and sulfate reductions to induce nitrate substitution, 327 

the sensitivity of the nitrate increase ΔNO3, to the corresponding sulfate reduction ΔSO4, was 328 

quantified for the Eastern US, both when NVCs are included in the calculations and when they 329 

were not (Figure 6). Over the decade, nitrate has seen increases in the Eastern US (Figure S11) 330 

ranging from 0.5 to 2.5 μg m-3, and NVCs can have a profound impact on how these increases are 331 

distributed across the domain (Figure S11a, b).  In the presence of NVCs (Figure 6a), there is a 1 332 

μg m-3 increase of nitrate for a sulfate reduction of the same value over the Eastern US. For this 333 

case, substitution is predicted across the entire Eastern US, with only a few gridcells in South 334 

Georgia, Mississippi and North Carolina exhibiting the opposite trend (nitrate reduction), 335 

attributed to the formation of insoluble CaSO4, which reduces the availability of aerosol water, 336 

and in turn inhibits the formation of NO3 with the co-condensation of NH3. When NVCs are 337 

removed (Figure 6b), the corresponding nitrate increase is much less (0-0.2 μg m-3 per 1 μg m-3 of 338 

sulfate), especially in the Eastern US, while substitution is still predicted in the Northern parts of 339 

the domain such as Ohio, Indiana and Michigan. The aforementioned areas, tend to have higher 340 

seasonal pH values than the SE US (Figure 1), and the removal of NVCs reduces the pH to values 341 

where nitrate partitioning is more sensitive to small pH perturbations (Figure 4), leading to a higher 342 

predicted sensitivity to sulfate reductions. This analysis suggests that nitrate substitution is of a 343 

much smaller magnitude than expected (West et al. 1999, Heald et al. 2012, Bauer et al. 2007, 344 

Bellouin et al. 2011, Li et al. 2011, Goto et al. 2016, Vayenas et al. 2005, Karydis et al. 2016), and 345 

heavily impacted by pH biases introduced from NVCs.  346 

Given the importance of aerosol acidity for almost any aerosol-related process and impact, 347 

it is imperative that aerosol studies evaluate acidity inferred from thermodynamic analysis of 348 

ambient data as presented here. We demonstrate that in the case of nitrate substitution, the 349 

distribution of nonvolatile cations over particle size can have a profound impact on model 350 

behavior, and requires better constraints from emissions to observations (or at least appropriate 351 

sensitivity studies, such as those carried out here, to unravel the potential impact of nonvolatile 352 

cations). Understanding aerosol pH and the drivers thereof, is a powerful tool for evaluating model 353 

performance that has never been used before. Usage of molar ratios, ion balances and other 354 
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conceptual models of aerosol acidity (Hennigan et al. 2015, Wang et al. 2016, Silvern et al. 2017) 355 

provide limited insights in aerosol pH and should be strongly avoided to limit incorrect 356 

conclusions. 357 
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 543 

Figure 1 - Annual averaged PM2.5 pH over CONUS for (a) 2001 and (b) 2011, calculated offline 544 

using ISORROPIA, using the annual averaged CMAQ concentration fields. The white outline 545 

specifies the Eastern US domain used for further analysis. 546 

  547 
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 548 

Figure 2 - pH diurnal profiles for May (a), August (b), September (c) and November (d) at 549 

JST/RS/GT, July (e) and December (f) at YRK and for the SOAS campaign period (g). Blue and 550 

red lines are the offline ISORROPIA simulated pH using CMAQ concentrations for 2001 and 551 

2011 respectively, while the shaded areas are one model standard deviation. The green line 552 

represents the pH calculated through the thermodynamic analysis of the measurements (found in 553 

Guo et al., 2015) and the shaded area is standard standard error 554 
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 555 

Figure 3 – Decadal pH trends from the thermodynamic analysis of the measurements from Weber 556 

et al. 2016 (blue line), default CMAQ (black line) and CMAQ results at the Centreville gridcell 557 

without crustal elements (green line). Also shown, is the pH for the SOAS campaign, and for the 558 

CMAQ predicted pH for June 1st-July 15th 2001 and 2011. CMAQ exhibits a clear positive trend, 559 

with pH increasing throughout the decade, both due to sulfate reductions and the increasingly 560 

important role of NVCs. Standard error is also plotted for all data points. 561 

 562 
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 564 

Figure 4 - CMAQ-derived nitrate partitioning ratio for the E.US and select months of 2001. The 565 

black squares denote the average pH values for each month. Note the insensitivity of nitrate 566 

partitioning to pH biases in the summer for pH values of less than 1 (𝜕𝜀𝛮𝛰3

𝜕𝑝𝐻
~0), which is not the case 567 

for colder months. 568 
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                 570 

 571 

Figure 5 - Increase in aerosol nitrate corresponding to a one-unit positive change in pH for a) 572 

January and b) July. Emissions for 2011 are assumed, but to account for pH prediction biases from 573 

NVCs, they are removed from the thermodynamic calculations. Plots are on different scales due 574 

to the large differences in predicted nitrate increases. 575 

 576 

Figure 6 – CMAQ predicted nitrate substitution (
𝑁𝑂3

2011−𝑁𝑂3
2001

𝑆𝑂4
2001−𝑆𝑂4

2011 ) over the decade, when NVCs 577 

are accounted for (a), and when they are removed from the thermodynamic calculations (b). 578 


