
Response to reviewer 1 

This paper adds to an ongoing discussion of the importance of aerosol acidity on gas- particle 

partitioning, and how errors in modeled aerosol pH adversely affect model predictions. The subject is 

certainly of interest to readers of ACP. 

However, the authors’ arguments are not always stated clearly, particularly in the introduction. 

There are so many citations to prior literature throughout the paper that it is often unclear as to which 

aspects are new in the present manuscript. In some cases, studies are cited in support of a point that was 

not the conclusion (or even the subject) of the paper. The authors need to do a better job placing this 

work in the context of prior literature. In particular, one of the principal conclusions echoes the title of 

another paper currently under review for ACP by the same research group: Guo et al. (2017), The 

underappreciated role of non-volatile cations on aerosol ammonium-sulfate molar ratios.  

We thank the reviewer for his/her comments and we hope that, after the suggested changes to the paper, 

it has been scientifically strengthened while also exhibiting greater clarity. 

Specific Comments by line number 

 8 Suggest deleting "exacerbated by reductions in SO2 emissions." These reductions do not exacerbate 

the bias. The bias in pH leads to a bias in predicted response to SO2 emissions reductions.  

The reviewer is correct – we removed the statement. 

10-11 This is the first of many sentences in this paper that overuse semicolons. More importantly, the 

authors do not have available direct observations of PM2.5 pH for either 2001 or 2011 and should not 

imply they do. Instead I recommend something like "modeled PM2.5 pH using 2001 emissions compare 

favorably with pH inferred from observed species concentrations. Using 2011 emissions, however, leads 

to simulated pH increases of one unit, which is inconsistent with observations from that year." 

The sentence has now been revised according to the reviewer’s comment. 

12-13 Instead of saying NVC are responsible for the (nonexistent) trend, clarify that overestimated NVC 

lead to this erroneous predicted increase in pH. 

The statement has been changed and now reads “Non-volatile cations (K+, Na+, Ca+2, and Mg+2) in the fine 

mode are found responsible for the erroneous predicted increase in aerosol pH of about 1 unit on average 

over the US” 

13-15 This sentence is unclear. Please rephrase or delete. 

Rephrased from “pH biases of 1 unit can induce a nitrate bias of 1-2 μg m-3 which may further increase in 

future projections, reaffirming an otherwise incorrect expectation of “nitrate substitution”” 

to 

“Such an increase can induce a nitrate bias of 1-2 μg m-3 which may further increase in future projections, 

reaffirming an otherwise incorrect expectation of a significant “nitrate substitution”” 

 



20-26 Consider breaking this sentence up. Also, it should not be necessary to cite two papers twice in the 

same sentence. 

The sentence has been revised to: 

Aerosol acidity is a driver of many important atmospheric processes (Guo et al. 2015, Weber et al. 2016), 

catalyzing the conversion of isoprene oxidation products to form secondary organic aerosol (SOA) (Xu et 

al. 2015, Pye et al. 2013, Surratt et al. 2010, Eddingsaas et al. 2010), driving the semi-volatile partitioning 

of key aerosol species processes (Guo et al. 2015, Weber et al. 2016). High acidity can also lead to the 

solubilization of iron, copper and other trace metals in aerosol which may serve as nutrients for 

ecosystems (Meskhidze et al. 2003), but also prove toxic for humans (Ghio et al. 2012, Fang et al. 2017). 

We feel that keeping the citations is appropriate in this case, since the literature for aerosol acidity is still 

developing in addition to each point referring to a different process. This way, the reader can more readily 

access the pertinent material if he/she so desires. 

30 It is inappropriate to cite West et al. (1999) in support of an observed negative trend over 2001-2011 

and beyond. 

The reference has been removed, since as the reviewer pointed out, it is not appropriate here. 

32 "ammonia ... is either constant or increasing." It is now mid-2018. Does this statement still hold, as 

implied by the use of present tense? Then please provide a more recent reference. Alternatively, if the 

authors intend to limit their statement to the 2001-2011 period, then use an appropriate tense to convey 

that meaning. 

We updated the statement to reflect that it’s intended for the 2001-2011 period. 

35 "will become increasingly neutralized." I believe one of the points the authors are making is that the 

conceptual model of "neutral" aerosol is inapt. If so, I suggest deleting this unhelpful phrase, so that the 

sentence reads "have created the expectation that ammonium sulfate will be replaced, at least in part, by 

ammonium nitrate." Alternatively, please explain further what "neutralization" means in this context 

Again, we thank the reviewer for identifying how the wording was less precise than desired.  We replaced 

neutralized with “will become less acidic” for increased clarity, since this statement refers to an expected 

increase of aerosol pH. 

38-48 I realize that the authors are criticizing the adequacy of the conceptual model regarding molar 

ratios, but even so the arguments should be stated clearly. If, in this conceptual model, the molar ratio of 

ammonium to sulfate is what is salient, then how are NVCs at all relevant?  

NVCs are mentioned in line 40 with regards to their role in nitrate substitution and not molar ratios – they 

are not related to molar ratios as defined in the next sentences of the text. 

 

 

 



In stating that modeling studies have corroborated this (mistaken) view, have these studies misapplied 

thermodynamic models? Or were those incorrect conclusions (that ammonium sulfate would be replaced 

by ammonium nitrate) based on the incomplete conceptual model rather than the full thermodymamic 

model?  

The crux of the paper is that models - even if the thermodynamics are rigorous – can be predisposed to 

incorrect predictions/conclusions if the simulated pH is sufficiently different from that of the ambient 

aerosol. For the case shown in this work, CMAQ’s inherent pH bias is related to a high bias in the 

concentrations of NVCs in the fine mode. Therefore, the conclusions of the previous studies were 

consistent with the emissions used in the model, but because of the pH bias – not consistent with the 

ambient aerosol behavior. 

ISORROPIA itself uses the critical molar ratio in its calculations. Can the authors elaborate on when or to 

what extent this is appropriate? 

This is a great question. ISORROPIA does indeed use molar ratios to define the major salts that can form 

(and deliquesce) in the aerosol. In this sense, molar ratios are useful because they define the 

stoichiometry. After that step, the thermodynamic equilibrium relationships in the aqueous, solid and gas 

phases determine the relative concentrations of the ions in solution and, together with electroneutrality 

and mass conservation arguments, determine the aerosol pH.  

112-120 The stated aim of this study is to address the underlying reasons for the nitrate subsitution 

paradox. However, it seems that the resolution to this paradox has already been published in several 

papers by this research group, as summarized in lines 65-82, with further discussion in the subsequent 

paragraphs. Please clarify how this study represents an advance over that previous work. "The role of 

internally-mixed nonvolatile cations in PM2.5 as a source of the pH bias is then assessed." Again, to what 

extent is this new, and distinct from the Guo et al. (2017) manuscript under review? 

The work presented in Guo et al. (2017) investigates the role of NVCs in ambient measurements and how 

they can impact ammonia partitioning to address the Silvern et al. (2017) postulation that organics inhibit 

uptake of ammonia by aerosol, and that thermodynamic equilibrium for submicron aerosol simulations 

does not apply. The current manuscript, although focused on NVC, has a much different subject matter: 

it assumes thermodynamic equilibrium applies, but examines whether pH biases from having too much 

NVC in the fine mode biases the model response to nitrate aerosol. We show that although models, can 

provide predictions consistent with historically observed aerosol observations, will still incorrectly predict 

nitrate substitution for future sulfate reductions – and this is related to the simulated aerosol having too 

high of a pH (from too much NVC in the aerosol). The historical conditions were very high in 

sulfate/ammonium/nitrate such that a small bias in NVCs had relatively less impact on the simulations.   

135 Please provide a reference for the Air Pollutant Emissions Trends Data. If these are constant scaling 

factors, consider providing them in a table in the article Supplement. 

These data are directly provided by the EPA and the provided link serves as the reference – the constant 

scaling factors are now referenced in the manuscript (lines 151-153). 

 



138 Please clarify whether this is the same version of ISORROPIA as used in the release version of CMAQ 

v5.0.2. 

CMAQv5.0.2 uses ISORROPIA 2.1 while our study uses ISORROPIA 2.3 that includes the most recent bug-

fixes. The changes between model versions do not affect the behavior in the model, and the conclusions 

of the study. This information has been added to the text. 

143-148 Were these offline calculations computed separately for each of the three modes in CMAQ, or 

were the calculations done once by summing just the i and j modes? Given that CMAQ itself uses 

ISORROPIA, and HPLUS is one of the variables output by CMAQ, why was it necessary to run ISORROPIA 

again offline for each grid cell and hour of each year?  

The offline calculations were done by summing the i and j modes in order to better approximate PM2.5. As 

the reviewer correctly identifies, HPLUS is output by CMAQ, but only for the j mode, and by comparing 

just the j mode results with the measurements would render the comparison less accurate than the 

current approach. In addition, it would not be possible to calculate the impact of NVCs on aerosol pH or 

conduct sensitivity tests for nitrate substitution without offline tests.    

In presenting seasonal and annual average pH and nitrate partitioning ratios, are these calculated from 

hourly values? 

The seasonal values and nitrate partitioning ratios are calculated using hourly values. The annual average 

pH (Figure 1) is calculated using the annual average values of the CMAQ output. 

160-171 The first sentence of this paragraph states that CMAQ captures the observed decreasing trends 

in SO4, NO3, and NH4. However, a few lines later the text states that ammonium levels "remain rather 

constant", and later in the same paragraph "aerosol nitrate concentrations remain relatively constant ... 

with small increases over the Eastern US." It is unnecessarily difficult to understand exactly what message 

the authors wish to convey. 

We modified the paragraph for clarity, since it was indeed difficult to convey the appropriate message: 

“For the main inorganic aerosol species (SO42-, NO3- and NH4+), CMAQ captures the observed trends, as 

seen in the literature (Park et al. 2006, Hand et al. 2012, Blanchard et al. 2013a, b, Kim et al. 2015, Saylor 

et al. 2015) over the CONUS over the course of the decade (Figure S1). As expected, sulfate over the entire 

US drops significantly between 2001 and 2011 (~ 30%), with major decreases in the Eastern US (~2 μg m-

3). Areas impacted the most by these reductions are places of significant industrial activity or coal-fired 

electricity generating units (EGUs), such as the Ohio River Valley, Baton Rouge in Louisiana and South 

Carolina. Ammonium levels only experience small reductions which are a buffered response to the 

decrease in sulfate levels, and minimal changes in emissions. Local reductions (~20%) in ammonia are 

seen over North Carolina and Louisiana. Aerosol nitrate concentrations remain constant on average over 

the domain, with small increases over the Eastern US. The highest levels of ammonium are observed in 

areas with significant livestock, such as North Carolina and the Midwest; sulfate concentrations are the 

highest around the Ohio River Valley, due to SOx emissions, and so is nitrate due to significant NOx and 

ammonia emissions.” 

 



161 Here and throughout the Results and Discussion section there are many references cited, but it is 

often not clear why they are being cited. In some instances, the authors mean that their current results 

are in agreement with results reported previously. However, the distinction between "Results" (of the 

current manuscript) and "Discussion" (including comparison with prior literature) should be stated 

explicitly. In this particular example, "CMAQ captures the observed downwards trends (six references 

cited) over the CONUS during the course of the decade," are those references supporting the assertion 

that inorganic species have been declining? Or that CMAQ generally represents species concentrations? 

This is especially confusing given the comment above, that ammonium and nitrate are largely unchanged 

between 2001 and 2011 in the current manuscript. 

This is an excellent point. The references were added as an evaluation step for our results, in order to 

show that the model behavior of inorganic species is consistent with what has been observed. The 

statement has been clarified (see previous comment). 

176 The methods section states that ISORROPIA is called offline using hourly CMAQ outputs, but the 

caption to Figure 1 indicates the calculation is performed using annual averaged CMAQ concentration 

fields (and presumably also annual average temperature and relative humidity). Given the strongly 

nonlinear dependence of aerosol partitioning on T and RH, I am skeptical of the value of a calculation 

based on annual average inputs to ISORROPIA. 

All the plots in the paper are generated using hourly data or are the result from averaging that data (e.g. 

Figure 5 & 6 the fields resulting from averaging the hourly values of additional nitrate and nitrate 

substitution respectively), apart from Figure 1. The reviewer is correct in pointing out that there is a 

nonlinear dependence of partitioning on T and RH, and that is why we used the same meteorology 

between both years, so that the only thing that changes is the emissions of key species. Therefore Figure 

1 still presents a useful qualitative plot in order to show the average increase of aerosol pH over the 

decade. We now mention this in this section to avoid confusion. 

183-187 "This trend suggests that pH will keep increasing... [four more references]." This discussion of the 

implications is repetitive and out of place here, especially since the authors later argue that the modeled 

increase is in disagreement with WINTER observations and is erroneous, at least partially due to 

overestimated NVCs 

This part of the text has been removed to avoid repetition.  

201-202 What is the meaning of citing Guo et al. (2015) and Xu et al. (2015) here? Those papers do not 

document the SEARCH data. Is the analysis performed here repeating work done in those papers? 

We used the data and analysis of these studies in order to compare our results and therefore it is 

appropriate that we reference them at this point. 

205 The caption to Figure 2 states "Blue and red lines are the CMAQ predicted pH for 2001 and 2011 

respectively," but the methods section states that ISORROPIA was called offline using CMAQ inputs, and 

the y-axis label indicates ISORROPIA. Which is it? Also, the caption appears to have been truncated 

All the pH values provided in Figure 2 come from offline ISORROPIA runs. We now clarify that the CMAQ 

predicted pH refers to the pH calculated using CMAQ outputs and ISORROPIA. The caption has also been 

fixed. 



207 Why is Guo et al. (2015) being cited here, along with Figure 2? Are the same data presented in Guo 

et al. (2015)? Or is the current result consistent with that previous study? 

The green trendlines in Figure 2 are the same data from Guo et al. 2015. This is now clarified in the figure 

caption. 

215 "due to the increased relative effect of NVCs (Weber et al. 2016)". Is the conclusion that NVCs are 

relatively more important made by Weber et al. (2016)? Again, please clarify what findings are new in the 

present manuscript.  

This is a statement made to explain the increase between the two simulation years. While this conclusion 

was made in Weber et al. (2016), it was not observed behavior in their dataset and it did not pertain to 

model results as in our study. In that light it constitutes a new finding.  

215-217 Comparing Figure S5 to Figure 2, it is not at all obvious that the CMAQ values in S5 "better track" 

the observations by time of day than those in Figure 2. If this is an important point, it should be 

straightforward to substantiate it, such as via temporal correlations.  

The reviewer is correct – the intent was to show that removal of NVCs from the calculations reduces the 

pH differences between years, while at the same time removing some of the additional variability 

introduced by NVCs. The statement has been revised to “Removal of all NVCs from the thermodynamic 

calculations (Figure S5), significantly reduces the pH differences between the 2001 and 2011 while 

removing some of the increased variability introduced by NVCs.” 

219 Of course the increase in pH is not proportional to the reduction in sulfate, since pH is logarithmic. 

The fact that aerosol responds non-linearly through volatilization of ammonia was stated previously.  

Τhe sentence that follows the sentence quantifies the reduction in sulfate versus the reduction in pH in 

the model results; we found this important to mention. 

224-225 It is strange to relate the pattern of the bias (difference between CMAQ predictions and SOAS 

measurements) to the pattern of the NVC concentrations. Moreover, I do not see the pattern referred to: 

the green line is between the red and blue lines up to about 8 in Fig. 2g, after which the model is negatively 

biased. 

The positive bias in the early morning hours for SOAS coincides with the increased presence of NVCs. We 

rewrote the statement to clarify “The biases follow the pattern of NVCs present, by being negatively 

biased until noon and positively biased for the rest of the day (Figure 2 and Figure S4). The bias is 

particularly evident in the early morning hours where NVC concentrations reach a maximum (Figure S4).” 

242-244 Foroutan et al. (2017) do not discuss pH at all.  

The reference has been removed. 

293-294 If psi depends on the effective Henry’s law constant for HNO3, which depends on H+, then psi is 

not a constant.  

Indeed! We now clarify that for the needs of the paper we use it as a fitting parameter. 

 



565 Figure 3 caption: are the Weber et al. (2016) mesasurements from the Centerville site? Do the CMAQ 

lines correspond to averages over the Eastern US domain or results at a single grid cell?  

Yes the measurements are from the Centreville site. The CMAQ lines correspond to results from the 

gridcell where Centreville is located. We now clarify this in the caption. 

Technical Corrections by line number  

22, 186 Surratt is misspelled.  

We apologize for the typo – it has been corrected. 

90-93 Again, there is no need to cite the same three papers twice in the same sentence.  

Indeed! We have reduced the references. 

97 "find only minimal differences between predicted pH" is awkward. Perhaps "differences in predicted 

pH" or "differences in pH predictions."  

Revised to “differences in pH predictions”. 

130-131 "to eliminate potential biases of temperature and relative humidity on pH predictions." It would 

be clearer to state "to eliminate the effect of differences due to temperature and relative humidity on pH 

predictions."  

Updated statement to the one suggested by the reviewer. 

149-153 This is a run-on sentence.  

The sentence has been revised to “The thermodynamic calculations online and offline were carried out in 

forward mode, meaning that the temperature, relative humidity, as well as all aerosol and gas phase 

concentrations were known and used as input, while at the same time assuming that the aerosol is in a 

metastable state, where only one aqueous phase is allowed to exist (Fountoukis & Nenes 2007).” 

200 Clarify that these urban sites are in Atlanta, Georgia and the rural sites are also in Georgia.  

Location added for all the sites. 

202 sites is misspelled.  

Changed “cites” to “sites”. 

285 "out" should be "our"  

Corrected. 

287-289 The authors should be consistent as to whether this is "sulfate substitution" or "nitrate 

substitution."  

The title of the section has been changed for consistency to “The impact of pH biases on nitrate 

partitioning and “sulfate nitrate substitution””. 

 



303 Should this also be "nitrate substitution" rather than "nitrate partitioning"?  

Changed from “nitrate partitioning” to “nitrate substitution”. 

581 Caption is missing the word "change". The caption says "winter" and "summer but the figure titles 

say "January" and "July." 

Caption has been updated and now also reads January and July (the mid-month of the season were picked 

for this plot). 

424-431 The same paper is listed twice, with differing author lists 

Thank you for pointing this out! The duplicate has now been removed. 

  



Response to reviewer 2 

The MS could be published without revision 

We would like to sincerely thank the reviewer for his/her recommendation to publish the paper. All the 

changes suggested by the first reviewer have been implement and it is our hope that the quality of the 

manuscript has further been improved. 
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Abstract  

SO2 emission controls, combined with modestly increasing ammonia, have been thought 

to generate aerosol of significantly reduced acidity where sulfate is partially substituted by nitrate. 

However, neither expectation agrees with decadal observations in the Southeastern US, suggesting 

that a fundamentally different response of aerosol pH to emissions changes is occurring. We 

postulate this “nitrate substitution paradox” arises from a positive bias in aerosol pH in model 

simulations, exacerbated by reductions in SO2 emissions. This bias can elevate pH to where nitrate 

partitioning is readily promoted, leading to behavior consistent with “nitrate substitution”. CMAQ 

simulations are used to investigate this hypothesis; modeled PM2.5 pH using 2001 emissions 

compare favorably with pH inferred from observed species concentrations. Using 2011 emissions, 

however, leads to simulated pH increases of one unit, which is inconsistent with observations from 

that yearpredictions of PM2.5 pH for 2001 emissions compare favorably with observations; for 

2011 emissions however, predicted pH increases by 1 unit, presenting a positive trend not seen in 

the observations. Non-volatile cations (K+, Na+, Ca+2, and Mg+2) in the fine mode are found 

responsible for the erroneous predicted increase in aerosol pH of about 1 unit on average over the 

US.Non-volatile cations (K+, Na+, Ca+2 and Mg+2) in the fine mode are found responsible for most 

of this trend Such an increase can induce a nitrate bias of 1-2 μg m-3 which may further increase 

in future projections, reaffirming an otherwise incorrect expectation of a significant “nitrate 

substitution. pH biases of 1 unit can induce a nitrate bias of 1-2 μg m-3 which may further increase 

in future projections, reaffirming an otherwise incorrect expectation of “nitrate substitution”. 

Evaluation of predicted aerosol pH against thermodynamic analysis of observations is therefore a 

critically important, but overlooked, aspect of model evaluation for robust emissions policy. 
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Introduction 

 Aerosol acidity is a driver of many important atmospheric processes (Guo et al. 2015, 

Weber et al. 2016), catalyzing the conversion of isoprene oxidation products to form secondary 

organic aerosol (SOA) (Xu et al. 2015, Pye et al. 2013, Surratt et al. 2010, Eddingsaas et al. 2010), 

driving the semi-volatile partitioning of key aerosol species processes (Guo et al. 2015, Weber et 

al. 2016). High acidity can also lead to the solubilization of iron, copper and other trace metals in 

aerosol which may serve as nutrients for ecosystems (Meskhidze et al. 2003), but also prove toxic 

for humans (Ghio et al. 2012, Fang et al. 2017). Aerosol acidity is a driver of many important 

atmospheric processes (Guo et al. 2015, Weber et al. 2016), catalyzing the conversion of isoprene 

oxidation products to form secondary organic aerosol (SOA) (Xu et al. 2015, Pye et al. 2013, Surrat 

et al. 2010, Eddingsaas et al. 2010), driving the semi-volatile partitioning of key aerosol species 

processes (Guo et al. 2015, Weber et al. 2016), as well as the solubilization of iron, copper and 

other trace metals in aerosol which may serve as nutrients for ecosystems (Meskhidze et al. 2003), 

but also prove toxic for humans (Ghio et al. 2012, Fang et al. 2017). Significant reductions in 

primary pollutant emissions over the last decades has greatly improved air quality in the developed 

world, and is also thought to fundamentally affect aerosol acidity. SO2, an important aerosol 

precursor and a major driver of its acidity, has seen decreases of about 6% yr-1 over the 2001-2011 

period alone in the US, with a continued anticipated downward trend (West et al. 1999, Pinder et 

al. 2007, 2008). Emissions of NOx and the resulting acidic HNO3, are also declining. In contrast, 

ammonia, the primary alkaline fine mode aerosol precursor, is was either constant or increasing 

during this period (Pinder et al. 2007, 2008, Heald et al. 2012), owing to intensified agricultural 

activity and livestock farming from the demands of population growth. These trends have created 

the expectation that the aerosol has and will become increasingly neutralized less acidic (West et 

al. 1999, Pinder et al. 2007, 2008, Heald et al. 2012, Tsimpidi et al. 2007, Saylor et al. 2015), with 

ammonium sulfate being replaced, at least in part, by ammonium nitrate (West et al. 1999, Bauer 

et al. 2007, Bellouin et al. 2007, Li et al. 2014, Goto et al. 2016). 

The concept of “nitrate substitution” of sulfate has largely been based on the notion that 

nitrate is volatile when the aerosol is acidic, and in turn aerosol is acidic when insufficient amounts 

of total ammonia (i.e., gas+aerosol) or dust non-volatile cations (NVCs) exist to neutralize aerosol 

sulfate. Based on this conceptual model, aerosol ionic molar ratios have largely been used as 

proxies of aerosol acidity (pH), so that when the aerosol ammonium to sulfate molar ratio 



approaches 2 (the composition of ammonium sulfate), aerosol is assumed “neutral” and only then 

nitrate aerosol can form (Fisher et al. 2011, Hennigan et al. 2015, Wang et al. 2016, Silvern et al. 

2017). Modeling studies have corroborated this view, predicting that nitrate substitution may be 

prevalent in the future, including the Southeastern US (SE US) (Heald et al. 2014, Baeur et al. 

2007, Bellouin et al. 2011, Li et al. 2014, Goto et al. 2016, Vayenas et al. 2005, Karydis et al. 

2016). A more careful analysis however (Guo et al. 2015, Weber et al. 2016, Hennigan et al. 2015, 

Guo et al. 2016) reveals that this conceptual model of aerosol acidity and conditions for nitrate 

substitution fail; thermodynamic analysis of SE US aerosol observations instead show that fine 

mode aerosol remains strongly acidic, despite a 70% reduction in sulfates, and more than sufficient 

total ammonia to neutralize it. The strong acidity is maintained by the large difference in volatility 

between sulfate and ammonia (Guo et al. 2015, Weber et al. 2016), so large changes in total 

ammonia concentrations are required for a notable change in aerosol acidity, about one order of 

magnitude increase in NH3 concentration per unit increase in aerosol pH (Guo et al. 2015 & 

2017a). However, ammonia gas deposits relatively rapidly, limiting its build up except in high 

emissions regions. Throughout the decade, the levels of aerosol nitrate have remained relatively 

constant throughout the US (Guo et al. 2015, Weber et al. 2016, Pye et al. 2009). The persistent 

strong aerosol acidity in turn explains why nitrate aerosol has not considerably increased over the 

last decades, and is unlikely to appear in the immediate future in the SE US. These findings 

constitute a “paradox”, as the same thermodynamic models (e.g., ISORROPIA-II Fountoukis & 

Nenes 2007) used to demonstrate the aerosol tendency for strong acidity in the SE US (Guo et al. 

2015, Weber et al. 2016) using ambient data, is also used in 3D modeling studies (Pye et al. 2009, 

Heald et al. 2012) for the region that predict nitrate substitution as a possible aerosol response.  

Reconciling the “nitrate substitution paradox” requires a careful examination of aerosol 

thermodynamics and the conditions under which nitrate partitioning to the aerosol is favored. 

Meskhidze et al. (2003) and later Guo et al. (2016) showed that for aerosol nitrate formation to 

occur, aerosol pH needs to exceed a certain characteristic value (that depending on the temperature 

and the amount of liquid water, ranges between a pH of 1.5 and 3; Guo et al., 2017). If aerosol pH 

is therefore high enough (typically above a pH of 2.5 to 3), a behavior consistent with “nitrate 

substitution” emerges, because any inorganic nitrate forming from NOx chemistry mostly resides 

in the aerosol phase. When pH is low enough (typically below 1.5 to 2), nitrate remains exclusively 

in the gas phase (as HNO3), regardless of the amount produced, and “nitrate substitution” is not 



observed. Between these “high” and “low” pH values, a “sensitivity window” emerges (of 

typically 1-1.5 pH units), where partitioning shifts from nitrate being predominantly found as gas 

to where it is mostly found as an aerosol. Therefore, if a model is for any reason biased in its 

prediction of aerosol pH, it may be preconditioned towards nitrate prediction biases. The 

sensitivity to pH biases is strongest when the aerosol lies in the pH “sensitivity window”, which is 

often the case for atmospheric aerosol (Guo et al. 2015, 2016 & 2017, Bougiatioti et al. 2016). 

When below this “pH sensitivity window”, aerosol nitrate is almost nonexistent and relatively 

insensitive to emissions (and pH biases); when above the window, almost all nitrate resides in the 

aerosol phase, and directly responds to NOx emission controls.  

If aerosol were composed only of non-volatile sulfate and semi-volatile nitrate and 

ammonium, prediction biases in pH could result only from errors in RH, and large errors (e.g., 

order of magnitude) of NH3, NOx and SO2 because pH is relatively insensitive to changes in these 

aerosol precursors (Hennigan et al. 2015). Acidity however can also by modulated by other soluble 

inorganic cations from seasalt and mineral dust, such as K+, Na+, Ca+2 and Mg+2. The low volatility 

of these cations allows them to preferentially neutralize sulfates over NH3, and, even in small 

amounts elevate particle pH to levels that can promote the partitioning of nitrates to the aerosol 

phase (Fountoukis & Nenes 2007, Guo et al. 2017). NVCs tend to reside in the coarse mode aerosol 

(Guo et al. 2015, West et al. 1999, Vayenas et al. 2005), with a fraction found in smaller particles, 

while sulfate tends to reside in the fine mode (e.g., West et al. 1999, Vayenas et al. 2005, Guo et 

al. 2015); the degree to which NVCs can affect fine mode pH therefore lies in the degree to which 

the two types of species mix across different particle sizes. Potential interactions between 

inorganics-organics can also affect aerosol acidity.  However, recent studies driving 

thermodynamic models utilizing water associated with organics find only minimal differences in 

pH predictionsdifferences between predicted pH (Guo et al. 2015, Bougiatioti et al. 2016, Liu et 

al. 2017, Pye et al., 2018, Song et al. 2018). In the presence of very high NVCs (for example in 

sea-spray aerosol), where the aerosol has much higher pH, the pH can approach the pKa of organic 

acids, leading to conditions where their dissociation can contribute to aerosol acidity (Laskin et al. 

2012). 

Although aerosol models are evaluated in terms of their ability to predict the concentration 

of aerosol species (including across size), no studies to date focus on their ability to predict aerosol 

pH across size, even though it is known to potentially vary up to 6 units (Fang et al. 2017, 



Bougiatioti et al. 2016, Li et al. 2017). Evaluation of models in this context is challenging, since 

there is no established dataset of aerosol acidity - although that is rapidly changing, with pH 

estimates derived from a combination of observations and models (e.g., Guo et al., 2015; 

Bougiatioti et al., 2016; Guo et al., 2017; Liu et al., 2017; Song et al., 2018) -. Furthermore, given 

that most of this pH variability occurs in the PM1 to PM2.5 range (Fang et al. 2017), it is quite likely 

that model assumptions on how aerosol species interact within a mode (degree of internal mixture), 

especially for particles in the 1-2.5 μm range, may lead to pH prediction biases that drive model 

behavior. 

This aim of this study is to address the underlying reasons for the “nitrate substitution” 

paradox, and in the process, provide a conceptual framework for quantifying and understanding 

the importance of aerosol pH biases. The guiding hypothesis of this work is that aerosol pH 

prediction bias fundamentally changes predicted aerosol behavior and the underlying cause of the 

paradox. The approach is demonstrated with the Community Multiscale Air Quality (CMAQ) 

model (Byun & Schere 2006) and is based on predictions of pH over the 2001-2011 period in the 

Southeastern/Eastern US, being the region for which aerosol pH trends are constrained by 

observations. The role of internally-mixed nonvolatile cations in PM2.5 as a source of the pH bias 

is then assessed.  

 

Methods  

Predicting aerosol pH and composition 

CMAQ is a three-dimensional, Eulerian, atmospheric chemistry and transport model, that 

simulates the processes atmospherically relevant compounds undergo, such as emission, diffusion, 

chemical reactions and deposition (Byun & Schere 2006). CMAQ version 5.0.2 was used in this 

study, and simulations were carried out using a 36-km horizontal resolution grid, with 13 vertical 

layers, over the continental US (CONUS) for the entire years of 2001 & 2011. Meteorological data 

were obtained offline from the Weather Research Forecasting (WRF) model. The same 

meteorology was used between the two years to eliminate the effect of differences due to 

temperature and relative humidity on pH predictions.years to eliminate potential biases of 

temperature and relative humidity on pH predictions. Model-ready emissions for 2011 were 

obtained using the National Emissions Inventory 2011 inventory (NEI 2011) for the Carbon Bond 

05 (CB05) chemical mechanism. To estimate the 2001 emissions, the 2011 emissions for SO2, 



NOx, NH3, CO, VOCs and primary PM from anthropogenic sources were scaled on a per-species 

basis using the Air Pollutant Emissions Trends Data; emissions for other species were kept 

constant. Specifically anthropogenic CO, NOx, primary PM and SO2 emissions were increased by 

44%, 45%, 15% and 246% respectively,  while VOC and NH3 emissions were reduced by 6% and 

14% respectively. Emissions of biogenic species were calculated online using the Biogenic 

Emission Inventory System (BEIS). 

The aerosol thermodynamic model ISORROPIA-II (subversion 2.12 - dated 2012 2008 – 

Fountoukis & Nenes 2007) was used online in CMAQ to drive the semivolatile partitioning of 

inorganic species, as well as offline to analyze the predicted PM2.5 pH, nitrate partitioning tendency 

and sensitivities thereof to nonvolatile cations. It should be noted that ISORROPIA and CMAQ 

only account for the thermodynamic interactions between inorganic species and do not treat 

organics. Offline calculations were conducted using the hourly gas and particle phase 

concentrations output from CMAQ for the 2001 and 2011 simulations, which includes NVCs, and 

using them as input to ISORROPIA-II (subversion 2.3 - dated 2012). The thermodynamic 

calculations online and offline were carried out in forward mode, meaning that the temperature, 

relative humidity, as well as all aerosol and gas phase concentrations were known and used as 

input, while at the same time assuming that the aerosol is in a metastable state, where only one 

aqueous phase is allowed to exist (Fountoukis & Nenes 2007). This assumption is not always 

necessarily true, especially under conditions of low relative humidity (RH<30%) where the aerosol 

can crystalize or exist in glassy, amorphous state (where in this case thermodynamic equilibrium 

is not reached), observational data of liquid water content shows that it is most often a valid 

assumption (Guo et al. 2015, Bougiatioti et al. 2016), and other studies suggest that the phase state 

may not strongly affect predicted pH (Song et al., 2018).  We run the model under a variety of 

conditions to determine the impact of NVCs from dust and sea salt (Ca, Mg, K, Na) on pH, its 

seasonal variability, as well as the effect of pH and temperature on nitrate partitioning. 

 

Results and discussion 

Predicted Sulfate, ammonium & nitrate  

 For the main inorganic aerosol species (SO42-, NO3- and NH4+), CMAQ captures the 

observed trends, as seen in the literature (Park et al. 2006, Hand et al. 2012, Blanchard et al. 2013a, 

b, Kim et al. 2015, Saylor et al. 2015) over the CONUS over the course of the decade (Figure S1). 
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As expected, sulfate over the entire US drops significantly between 2001 and 2011 (~ 30%), with 

major decreases in the Eastern US (~2 μg m-3). Areas impacted the most by these reductions are 

places of significant industrial activity or coal-fired electricity generating units (EGUs), such as 

the Ohio River Valley, Baton Rouge in Louisiana and South Carolina. Ammonium levels only 

experience small reductions which are a buffered response to the decrease in sulfate levels, and 

minimal changes in emissions. Local reductions (~20%) in ammonia are seen over North Carolina 

and Louisiana. Aerosol nitrate concentrations remain constant on average over the domain, with 

small increases over the Eastern US. The highest levels of ammonium are observed in areas with 

significant livestock, such as North Carolina and the Midwest; sulfate concentrations are the 

highest around the Ohio River Valley, due to SOx emissions, and so is nitrate due to significant 

NOx and ammonia emissions. 

For the main inorganic aerosol species (SO4
2-, NO3

- and NH4
+), CMAQ captures the observed 

downwards trends, as seen in the literature (Park et al. 2006, Hand et al. 2012, Blanchard et al. 

2013a, b, Kim et al. 2015, Saylor et al. 2015) over the CONUS during the course of the decade 

(Figure S1). As expected, sulfate over the entire US drops significantly between 2001 and 2011, 

by about 30%, with major decreases in the Eastern US of about 2 μg m-3. Areas impacted the most 

by these reductions, are places of significant industrial activity or with significant coal-fired 

electricity generating units (EGUs), such as the Ohio River Valley, Baton Rouge in Louisiana and 

South Carolina. Ammonium levels remain rather constant, since ammonia saw minimal emission 

changes over the decade, and only experience small reductions which are a buffered response to 

the decrease in sulfate levels. Local reductions (~20%) in ammonia are seen over North Carolina 

and Louisiana. Aerosol nitrate concentrations remain relatively constant on average over the 

domain, with small increases over the Eastern US. The highest levels of ammonium are observed 

in areas with significant livestock, such as North Carolina; sulfate concentrations are the highest 

around the area of the Ohio River Valley, and so is nitrate due to significant NOx and SOx 

emissions.  

 

 Predicted Annual & seasonal pH  

 Figure 1 depicts the annual average pH fields over the US for 2001 and 2011, calculated 

using the annual average for PM2.5 concentrations, with the study domain of the Eastern US 

outlined. Simulations show that there are noticeable differences between the two years, localized 
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mainly in desert regions along the US-Mexico border, Southern Texas and the Eastern US. The 

sulfate reductions in the Eastern US, appear to have a major impact on model results, leading to 

significant increases of aerosol pH in the area. For 2001, the average yearly pH for the Eastern US 

is 1.6, consistent with recent literature and observations from the WINTER campaign (Guo et al. 

2015 & 2016, Weber et al. 2016) (Figure 1a). For 2011, however, predicted pH increases to about 

2.5 – almost a unit higher (Figure 1b). This trend suggests that pH will keep increasing with future 

sulfate reductions, something that can lead to significant increases in predicted nitrate, as well as 

changes in SOA chemistry which heavily depends on aerosols (Xu et al. 2015, Pye et al. 2013, 

Surrat et al. 2010, Eddingsaas et al. 2010), especially in the SE US. 

Seasonal pH trends are also positive over the Eastern US, with the summertime (Figure 

S2f) experiencing stronger increases than in the winter (Figure S2c), being 0.5-1.5 for winter and 

0.5-2 for summer. Much of the seasonal variability is driven by changes in temperature and relative 

humidity; increased relative humidity (RH) leads to less acidic aerosol, since liquid water content 

and pH are inversely related (Guo et al. 2015 & 2016), while increased temperatures promote low 

RH and therefore more acidic aerosol. The desert areas of the Western US, Southern Texas, 

Florida, SW Alabama and Mississippi are the most sensitive in the wintertime (Figure S2a, b), 

while the Central US is mostly unaffected. During the summer, the entire Central US is much more 

strongly impacted, while the wintertime sensitive areas exhibit only minor pH increases (Figure 

S2d, e).  

Model evaluation of pH 

Model results for both simulation years were compared to thermodynamic analysis of 

measurements from three urban sites in Atlanta, Georgia (Jefferson Street, JST; Georgia Tech, GT; 

Atlanta Road-Side, RS) and two rural (Yorkville, Georgia - YRK; and Centerville, Alabama - 

CTR) SEARCH network sites (Guo et al. 2015, Xu et al. 2015). Measurements for the urban csites 

and the YRK site, were taken between May and December 2012 for the SCAPE study, while 

measurements from the CTR site were for the SOAS campaign period (June 1st to July 15th 2013)  

(Guo et al. 2015, Xu et al. 2015). The three urban sites are contained within the same CMAQ grid 

cell. All urban sites (Figure 2a, b, c, d), exhibit an early morning/late night pH maximum, and an 

afternoon minimum throughout the year (Guo et al. 2015). This a combination of two factors; RH 

being highest during the early morning/late night, which increases water uptake and hence 

decreases acidity (Guo et al. 2015) (Figure S3), and the presence of crustal elements in significant 



quantities during that time (Figure S4). The model pH closely tracks the diurnal profile of predicted 

cations (Figure S4), indicating that they have an important impact on predicted pH, which, 

however, is not seen in the measurements (Figure 2), since they make up a much smaller 

percentage of observed PM2.5. Despite the presence of NVCs, the pH remains low for both 

simulation years but it tends to be higher in 2011, because of sulfate levels that are approximately 

half of those in 2001 across all sites, leading to the increased relative effect of NVCs (Weber et al. 

2016). Removal of all NVCs from the thermodynamic calculations (Figure S5), allows the 

simulated diurnal profiles to better track the measurementssignificantly reduces the pH differences 

between 2001 and 2011 while removing some of the increased variability introduced by NVCs. At 

the same time, a negative bias is introduced to the simulated pH, which is more prominent for the 

urban sites even after the sulfate reductions. 

The increase in pH is not proportional to the reduction in sulfate, since aerosol responds 

non-linearly to such reductions, through the volatilization of ammonia (Weber et al. 2016). 

Depending on location, sulfate reductions range from 38 to 55%, while the corresponding pH 

increase is much lower, pointing to the fact that cations, although small in amount, tend to have a 

disproportionately strong impact on acidity. For the SOAS campaign period (Figure 2g), pH is 

underestimated especially for 2001. The biases follow the pattern of NVCs present, by being 

negatively biased until noon and positively biased for the rest of the day (Figure 2 and Figure S4). 

The bias is particularly evident in the early morning hours where NVC concentrations reach a 

maximum (Figure S4)., especially in the early morning hours where NVC concentrations reach a 

maximum (Figure S4). For the YRK site (Figure 2b, e), pH is overall underestimated during the 

winter and overestimated during the summer. Similarly to the urban sites, the predicted RH agrees 

well with the measurements (Figure S3), albeit with a positive afternoon bias during the summer. 

The diurnal profile of pH closely tracks the one of cations, further suggesting they may be directly 

related to the bias. 

When evaluating the predicted pH trend for CTR, the model results exhibit a clear, 

increasing trend of 0.6 pH units per decade (Figure 3). This trend is inconsistent with recent 

thermodynamic analysis of observations suggesting a slight decrease in pH over the same time 

period for the SE US (Guo et al. 2015 & 2016, Weber et al. 2016). If this bias in predicted pH trend 

continues, it can have profound implications for future regulatory modeling, since the increased 

pH can lead to elevated levels of model nitrate, reproducing nitrate substitution (Bauer et al. 2007, 



Bellouin et al. 2011, Li et al. 2014, Goto et al. 2016). Possible reasons behind this pH bias could 

be overestimated ammonia emissions, underestimated sulfate, or, the presence of NVCs in PM2.5. 

The first two possibilities are unlikely, given the agreement of predicted ammonium and sulfate 

with previous studies (Park et al. 2006, Hand et al. 2012, Blanchard et al. 2013a, b, Kim et al. 2015, 

Saylor et al. 2015), and, the relative insensitivity of pH to ammonia and sulfate (Weber et al. 2016, 

Silvern et al. 2017). However, NVCs, if inappropriately distributed in PM2.5, can exert important 

biases on pH (Meskhidze et al. 2003, Karydis et al. 2016, Guo et al. 2017a, Foroutan et al. 2017). 

Indeed, offline calculations of aerosol pH excluding the influence of NVCs mitigates most of the 

predicted positive trend of 0.6 pH units per decade when all the aerosol species are considered 

(Figure 3), while also reducing standard error. The remaining bias may arise from errors in model 

RH, given that it controls water uptake and drives much of the diurnal variability in pH (Guo et al. 

2015). Usage of observed (instead of predicted) RH in the thermodynamic calculations, did not 

impact the predicted pH more than 0.1 units (Figure S6). A more thorough evaluation of the 

remainder of the pH bias, as well as the impact of NVCs when included in appropriate quantities, 

requires a far more extensive analysis of the emissions profiles – especially regarding its diurnal 

variability - and observational dataset than the one available for this study (Henneman et al. 2017, 

Guo et al. 2017). 

The pH bias becomes negative for most of the CMAQ Eastern US when removing all 

NVCs from the calculations (Figure S5). This, combined with the considerable model skill for 

sulfate, nitrate and ammonium when compared to literature (Henneman et al. 2017) implies that 

pH biases are not related to errors in the major inorganic ions or biases in meteorological 

parameters (humidity and temperature), but rather in the NVCs which are minor contributors to 

PM2.5, hence poorly constrained. For the SEARCH sites NVCs comprise 5 to 10% of the total 

inorganic PM2.5 (Guo et al. 2015), which is significantly less than what the model predicted values 

that are a factor of 4 higher than the measurements. The most important result therefore is that 

NVCs are a considerable source of pH prediction uncertainty when not accounted for correctly 

(Supplementary material: The role of NVCs in PM2.5 pH). It should be noted that for the 

summertime at the CTR location, the ammonium and sulfate values are biased low in CMAQ by 

a factor of 3 using the Weber et al. 2016 data. These biases however are consistent with literature 

and typical of CTMs (Henneman et al 2017). 



The SEARCH sites have been thoroughly studied in previous literature (Guo et al, 2015 & 

2017a, Xu et al. 2015, Weber et al. 2016) and given the high concentrations of organic mass 

observed throughout the year, they present an excellent case study for the potential impact of 

organics on pH. Recent studies indicate that organic aerosol can have a secondary, but still 

quantifiable impact on aerosol pH, especially when allowed to interact with inorganics (Pye et al. 

2018). Most 3D models do not account for potential, non-ideal interactions between the two, in 

addition to not including organics in thermodynamic calculations, which, if the above statement is 

true, can lead to significant predictive pH errors.  To investigate the role of organics on pH we 

used the E-AIM model (Wexler & Clegg 2002, Friese & Ebel 2010, Clegg et al. 1992) 

(http://www.aim.env.uea.ac.uk/aim/aim.php) on our model results for the SEARCH sites, to 

calculate partitioning with organics/inorganic interactions considered. We tested a variety of 

organic compounds under different scenarios to determine the potential of organics to influence 

pH (see SI: Organic acids and pH).  

We find that addition of organic compounds to the model, did not have a significant impact 

on acidity (≤2% pH deviation from the baseline value) compared to the baseline run, apart from 

the cases where RH was higher than 80% and the mole fraction of organic acids in the aqueous 

phase is greater than 25% (SI: Organic acids and pH). We conclude that the maximum impact of 

organics on aerosol pH can likely result from the effects of liquid-liquid phase separation (Pye et 

al. 2018), but of insufficient magnitude to sustain a positive aerosol pH trend as observed in ourt 

basecase simulation.  

The impact of pH biases on nitrate partitioning and “sulfate- nitrate substitution” 

 To understand the importance of pH biases on nitrate partitioning and the potential for 

predicting a behavior consistent with “nitrate substitution”, we express the CMAQ output in each 

grid cell in terms of the nitrate partitioning ratio, 𝜀𝛮𝛰3 =
[𝑁𝑂3

−]

[𝐻𝑁𝑂3]+[𝑁𝑂3
−]

. It can be shown that 𝜀𝛮𝛰3 

follows a simple sigmoidal curve (Meskhidze et al. 2013, Guo et al. 2016), 𝜀𝛮𝛰3 = 1 −
[𝐻+]

[𝐻+]+𝐿∙𝑇∙𝛹
, 

where L is the liquid water content, T is ambient temperature , [H+] is the concentration of H+ in 

the aerosol aqueous phase, and 𝛹 =
𝑅∙[Η𝛮𝛰3]

1000∙𝑃0
 is a constant fitting parameter that depends on the 

universal gas constant (R), the effective Henry's law constant for nitric acid in the aerosol aqueous 

phase (HNO3) and  the ambient pressure (P0). Depending on the value of pH, nitrate partitioning in 



CMAQ can either be insensitive (
𝜕𝜀𝛮𝛰3

𝜕𝑝𝐻
~0) or sensitive (

𝜕𝜀𝛮𝛰3

𝜕𝑝𝐻
~0.5) to pH biases, depending on 

the month of the year considered (Figure 4). We generally find that nitrate partitioning is 

insensitive (
𝜕𝜀𝛮𝛰3

𝜕𝑝𝐻
~0) and heavily shifted to the gas phase (𝜀𝛮𝛰3 

~0) during the summer and spring 

(Figure 4), while it becomes quite sensitive to pH errors (
𝜕𝜀𝛮𝛰3

𝜕𝑝𝐻
~0.5) in the winter and fall. For 

the latter case, this means that small pH perturbations in either direction can strongly affect the 

amount of nitrate that partitions in the aerosol phase; if the weather is sufficiently cold and NOx 

emissions and pH predictions are biased sufficiently high, 𝜀𝛮𝛰3 
~1, meaning that all nitrates are 

partitioned to the aerosol phase and the emergence of “nitrate partitioningsubstitution” behavior. 

 To exemplify the above, we determine the amount of excess nitrate from pH prediction 

biases as follows. Perturbing the acidity by ΔpH from the monthly mean value along the 𝜀𝛮𝛰3 

curves (Figure 4) gives the corresponding change in the partitioning ratio (ΔεΝΟ3). Multiplying 

ΔεΝΟ3 with the total nitrate (HNO3(g)+NO3) predicted in CMAQ in each grid cell gives the total 

nitrate response (ΔΝΟ3) to ΔpH. When applied to the Eastern US for ΔpH=+1 (the average pH 

impact of including NVCs in the PM2.5 calculations over the entire Eastern US) gives the ΔΝΟ3 

distributions shown in Figure 5 for the winter (Figure 5a) and the summer (Figure 5b). The 

predicted wintertime nitrate bias tends to be higher than in the summer, owing to the lower 

temperatures and higher aerosol pH levels present (which shift 𝜀𝛮𝛰3 towards higher values; Figure 

4) and the higher values of total available nitrate in the wintertime. The combination of both factors 

(available nitrate and high pH) is necessary for appreciable quantities of nitrate to partition, but in 

general the locations with a pH of between 0.5 and 1 are the most susceptible to positive pH biases, 

since a unit increase places nitrate partitioning into the ascending part of the S-curve (Figure 4), 

rapidly increasing the amount of aerosol nitrate that can form. During both seasons, areas rich in 

total nitrate, and a pH between 0.5 and 1.5, such as the Ohio River Valley, New York, New Jersey 

and South Louisiana (Figure 1, S1e, f), exhibit the largest increases in aerosol nitrate. Other 

locations that have low pH, and low total nitrate such as West Virginia see minimal changes. A 

notable exception is North Carolina which has a higher pH than the aforementioned locations - 

mainly due to the high NH3 emissions from livestock - which pushes the partitioning beyond the 

sensitive regime, where increases in pH do not drive additional nitrate in the particle phase. 

 To investigate the potential of NVCs and sulfate reductions to induce nitrate substitution, 

the sensitivity of the nitrate increase ΔNO3, to the corresponding sulfate reduction ΔSO4, was 



quantified for the Eastern US, both when NVCs are included in the calculations and when they 

were not (Figure 6). Over the decade, nitrate has seen increases in the Eastern US (Figure S11) 

ranging from 0.5 to 2.5 μg m-3, and NVCs can have a profound impact on how these increases are 

distributed across the domain (Figure S11a, b).  In the presence of NVCs (Figure 6a), there is a 1 

μg m-3 increase of nitrate for a sulfate reduction of the same value over the Eastern US. For this 

case, substitution is predicted across the entire Eastern US, with only a few gridcells in South 

Georgia, Mississippi and North Carolina exhibiting the opposite trend (nitrate reduction), 

attributed to the formation of insoluble CaSO4, which reduces the availability of aerosol water, 

and in turn inhibits the formation of NO3 with the co-condensation of NH3. When NVCs are 

removed (Figure 6b), the corresponding nitrate increase is much less (0-0.2 μg m-3 per 1 μg m-3 of 

sulfate), especially in the Eastern US, while substitution is still predicted in the Northern parts of 

the domain such as Ohio, Indiana and Michigan. The aforementioned areas, tend to have higher 

seasonal pH values than the SE US (Figure 1), and the removal of NVCs reduces the pH to values 

where nitrate partitioning is more sensitive to small pH perturbations (Figure 4), leading to a higher 

predicted sensitivity to sulfate reductions. This analysis suggests that nitrate substitution is of a 

much smaller magnitude than expected (West et al. 1999, Heald et al. 2012, Bauer et al. 2007, 

Bellouin et al. 2011, Li et al. 2011, Goto et al. 2016, Vayenas et al. 2005, Karydis et al. 2016), and 

heavily impacted by pH biases introduced from NVCs.  

Given the importance of aerosol acidity for almost any aerosol-related process and impact, 

it is imperative that aerosol studies evaluate acidity inferred from thermodynamic analysis of 

ambient data as presented here. We demonstrate that in the case of nitrate substitution, the 

distribution of nonvolatile cations over particle size can have a profound impact on model 

behavior, and requires better constraints from emissions to observations (or at least appropriate 

sensitivity studies, such as those carried out here, to unravel the potential impact of nonvolatile 

cations). Understanding aerosol pH and the drivers thereof, is a powerful tool for evaluating model 

performance that has never been used before. Usage of molar ratios, ion balances and other 

conceptual models of aerosol acidity (Hennigan et al. 2015, Wang et al. 2016, Silvern et al. 2017) 

provide limited insights in aerosol pH and should be strongly avoided to limit incorrect 

conclusions. 
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Figure 1 - Annual averaged PM2.5 pH over CONUS for (a) 2001 and (b) 2011, calculated offline 

using ISORROPIA, using the annual averaged CMAQ concentration fields. The white outline 

specifies the Eastern US domain used for further analysis. 

  



 

 

Figure 2 - pH diurnal profiles for May (a), August (b), September (c) and November (d) at 

JST/RS/GT, July (e) and December (f) at YRK and for the SOAS campaign period (g). Blue and 

red lines are the offline ISORROPIA predictedsimulated pH using CMAQ predicted 

pHconcentrations for 2001 and 2011 respectively, while the shaded areas are one model standard 

deviation. The green line represents the pH calculated through the thermodynamic analysis of the 

measurements (found in Guo et al., 2015) and the shaded area is standard standard error  
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Figure 3 – Decadal pH trends from the thermodynamic analysis of the measurements from Weber 

et al. 2016 (blue line), default CMAQ (black line) and CMAQ results at the Centreville gridcell 

without crustal elements (green line). Also shown, is the pH for the SOAS campaign, and for the 

CMAQ predicted pH for June 1st-July 15th 2001 and 2011. CMAQ exhibits a clear positive trend, 

with pH increasing throughout the decade, both due to sulfate reductions and the increasingly 

important role of NVCs. Standard error is also plotted for all data points. 

 

  



 

Figure 4 - CMAQ-derived nitrate partitioning ratio for the E.US and select months of 2001. The 

black squares denote the average pH values for each month. Note the insensitivity of nitrate 

partitioning to pH biases in the summer for pH values of less than 1 (𝜕𝜀𝛮𝛰3

𝜕𝑝𝐻
~0), which is not the case 

for colder months. 

  



                 

 

Figure 5 - Increase in aerosol nitrate corresponding to a one-unit positive change in pH for a) 

winter January and b) summerJuly. Emissions for 2011 are assumed, but to account for pH 

prediction biases from NVCs, they are removed from the thermodynamic calculations. Plots are 

on different scales due to the large differences in predicted nitrate increases. 

 

Figure 6 – CMAQ predicted nitrate substitution (
𝑁𝑂3

2011−𝑁𝑂3
2001

𝑆𝑂4
2001−𝑆𝑂4

2011 ) over the decade, when NVCs 

are accounted for (a), and when they are removed from the thermodynamic calculations (b). 


