Influence of the vapor wall loss on the degradation rate constants in chamber experiments of levoglucosan and other biomass burning markers

Amelie Bertrand^{1,2,*}, Giulia Stefenelli³, Simone M. Pieber³, Emily A. Bruns³, Brice Temime-Roussel¹, Jay G. Slowik³, Henri Wortham¹, André S.H. Prévôt³, Imad El Haddad³ and Nicolas Marchand¹

¹Aix Marseille Univ, CNRS, LCE, Marseille France

²Agence de l'environnement et de la Maîtrise de l'Energie, 20, avenue du Grésillé – BP 90406 49004 Angers cedex 01 France

³Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232, Villigen, Switzerland

*Now at Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, 5232, Villigen, Switzerland

Correspondence to: Nicolas Marchand (nicolas.marchand@univ-amu.fr)

Figure S1: Calculate condensation sink k_{sink} (s⁻¹) with an accommodation coefficient α of 0.1.Talo indicates the time after lights on.

Figure S2: Influence of the factors on the model in the case of levoglucosan – mean effect plots for RMSE.

Figure S3: Comparison of our results for the saturation vapor concentration C^* and vapor wall loss rate $k_{wall/g}$ to those by Ye et al. (2015).

Figure S4: Observed and modeled evolution during aging of the particulate-phase concentration corrected for wall loss (and normalized to the initial concentration) of several BBOA markers. The colored markers are the TAG-AMS measurements, the solid black line represents the best fit, and the grey area is all the individual solutions with a RMSE < 15 %. Only one replicate is shown for each compounds (exp. 5 for 3-guaiacyl propanol, exp.6 for acetosyringone and mannosan, and exp.2 for conyferyl aldehyde.)