We thank the reviewers for the valuable time and comments. Below, we respond to the
 reviewers' comments in detail and attach a marked-up manuscript (from page 8 to page
 44) which highlights the changes made. Referee comments are in black, italic text. Our
 response to referees is in black, plain text.

5

6 Referee #1

7 Comment 1:

8 Current application of stable isotopes in atmospheric particulate nitrate to partition 9 NOx source contributions generally presupposes that nitrogen isotopic fractionation 10 during the conversion of NOx to NO3- is minor. Here Chang et al. present a comprehensive evaluation of the nitrogen isotope fractionation during gas-to-particle 11 12 conversion of NOx to NO3-. The computational quantum chemistry is applied to calculate the net N isotope effect ($\hat{O}SN$) associated with the conversion between NOx 13 and NO3 ' -, and validated through a source-specific monitoring campaign. The 14 applicability of this method to atmospheric aerosol samples from a megacity shows 15 16 satisfactory results, which are in line to atmospheric chemistry modeling and to what one can expect in terms of source impact in a traffic-intensive environment. The source 17 18 apportionment model to calculate nitrate fractions of different NOx sources is presented 19 in a clear and concise way and is easily applicable by other researchers for similar studies. Great benefit with the method compared to other $\delta 15N$ -based source 20 apportionment studies of atmospheric nitrate is the fact that coal combustion may be 21 substantively overestimated in previous studies when the N isotope fractionation during 22 atmospheric nitrate formation is neglected. This makes the study with more profound 23 implications. I recommend this manuscript to be published in ACP with minor revision. 24 25 Reply: We appreciate the reviewer for the recognition of this work, which give us a sense of accomplishment. Below please see our point-by-point reply. 26

27

28 Comment 2:

29 *Title: replace "gas-particle" by "gas-to-particle"*

30 Reply: We think that it is generally appropriate to use "gas-particle" here. In the revised

- 31 MS, we've replaced "gas-particle" by "gas-to-particle".
- 32
- 33 Comment 3:
- 34 L54: delete "nationwide,"
- 35 Reply: Revised accordingly.
- 36
- 37 Comment 4:
- 38 *L103: add relevant reference*
- 39 Reply: We added Morin et al. (2008) in the revised MS.
- 40 Morin, S., Savarino, J., Frey, M. M., Yan, N., Bekki, S., Bottenheim, J. W., and Martins,
- 41 J. M.: Tracing the origin and fate of NO_x in the Arctic atmosphere using stable isotopes
- 42 in nitrate, Science, 322, 730-732, doi: 10.1126/science.1161910, 2008.
- 43
- 44 Comment 5:
- 45 L154-155: to my understanding, the source apportionment study of pNO3- was only
- 46 performed in Nanjing
- 47 Reply: Sorry for our mistake. We change "in order to elucidate ambient NO_x sources in
- 48 two distinct areas of China" to "in order to elucidate ambient NO_x sources in Nanjing
- 49 City of Eastern China".
- 50
- 51 Comment 6:
- 52 *L190: it is a bit awkward to use "heartland" here*
- 53 Reply: We deleted "the heartland of" in the revised MS.
- 54
- 55 Comment 7:
- 56 L203-207: I didn't find the data of dicarboxylic acids and related compounds. No need
- 57 to mention the method here
- 58 Reply: We deleted the description of this method in the revised MS.
- 59
- 60 Comment 8:

- 61 L317: enough credits should be given to previous researchers. L319-321: although
- 62 *described in the SI, relevant references should be added 9.*
- 63 Reply: Agree. Several relevant references have been added in the revised MS:
- 64 Parnell, A. C., Phillips, D. L., Bearhop, S., Semmens, B. X., Ward, E. J., Moore, J. W.,
- Jackson, A. L., Grey, J., Kelly, D. J., and Inger, R.: Bayesian stable isotope mixing
 models, Environmetrics, 24, 387-399, doi: 10.1002/env.2221, 2013.
- 67 Phillips, D. L., Inger, R., Bearhop, S., Jackson, A. L., Moore, J. W., Parnell, A. C.,
- 68 Semmens, B. X., and Ward, E. J.: Best practices for use of stable isotope mixing
- 69 models in food-web studies, Can. J. Zool., 92, 823-835, doi: 10.1139/cjz-2014-0127,
- 70 2014.
- 71 Zong, Z., Wang, X., Tian, C., Chen, Y., Fang, Y., Zhang, F., Li, C., Sun, J., Li, J., and
- 72 Zhang, G.: First assessment of NO_x sources at a regional background site in North
- 73 China using isotopic analysis linked with modeling, Environ. Sci. Technol., 51, 5923-
- 74 5931, doi: 10.1021/acs.est.6b06316, 2017.
- 75
- 76 Comment 9:
- 77 Figure 2b: what "MSA" stands for 10.
- 78 Reply: "MSA-" stands for "methyl sulphonate". We've added in the revised MS.
- 79
- 80 Comment 10
- 81 Figure 6: replace "ÔSN"
- 82 Reply: We guess " $\hat{O}SN$ " stands for " ϵN ", and the reviewer want us to replace " ϵN " by
- 83 " ϵ_N ". We revised Fig. 6 as follow:

84 85

86

87 Referee #2

88 Comment 1:

Chang et al. propose a novel method to qualitatively determine the nitrogen isotope 89 fractionation factor associated with NOx oxidation to form nitrate aerosols. The 90 91 authors argue that the nitrogen isotope fractionation is a fundamentally important but overlooked factor in terms of influencing the source apportionment of particulate 92 93 nitrate, particularly in urban polluted atmosphere. The explanations given are supported by strong observations, theory, and modeling. Overall, this work contributes 94 a potentially powerful new tool for the investigation of atmospheric nitrate sources, and 95 96 the isotopic fractionation that occurs during chemical processing. I have no major 97 concerns regarding this manuscript. As mentioned by the first reviewer, it is well written, well presented and it makes sound. Beyond the remarks given by the first reviewer upon 98 which I agree, I would appreciate if the authors can also consider the following points: 99 100 Reply: We are thankful for the favorable comments. Below please see our point-by-101 point reply.

102

103 Comment 2:

104 I assume that the authors have wrote a program that incorporated all of the equations

in the MS to calculate the nitrogen isotope fractionation factor and estimate nitrate
source attribution. I believe it will be a valuable asset if the authors could make such

107 program publicly available;

Reply: This work was financially supported by the National Key Research and Development Program of China, which require the submission of relevant software. We have the plan to make such program publicly available. However, we prefer not to publish the software at the present stage in order to avoid compromising the future of ongoing software registration. We are willing to share the software with the reviewer for reviewing purpose.
In "Data availability", we will remind readers to download the software through our

115 group website (atmosgeochem.com) after the finish of software registration.

116

117 Comment 3:

118 compiled from previous studies, it is surprising to see no significant difference of $\delta 15N$

119 values among different phases of nitrate. How the authors explain my doubt;

120 Reply: We agree with the reviewer that different phases of nitrate generally have different variation range of δ^{15} N values. We only compiled the δ^{15} N data of particulate 121 122 nitrate and precipitation nitrate from previous publications in this study. As a compromise, below we show the variation range of δ^{15} N values of NH_x in all phases 123 (paper in preparation). Firstly, gaseous NO_x is as soluble as NH₃ in rainwater, and the 124 ambient concentrations of HONO and HNO3 are much lower than that of particulate 125 nitrate. Thus, nitrate in precipitation is largely derived from particulate nitrate. In this 126 regard, the difference of δ^{15} N values between particulate nitrate and precipitation nitrate 127 can be expected to lower than the difference of $\delta^{15}N$ values between particulate 128 129 ammonium and precipitation ammonium. Secondarily, in this study, we have no intention to accurately the determine the location-specific values for ε_N in previous 130 studies. Instead, the ε_N was assigned by a large range of $\delta^{15}N$ values (from 0% to 20%), 131 which could significantly diminish the potential effects of the $\delta^{15}N$ gap between 132

133 particulate nitrate and precipitation nitrate on the results of nitrate source apportionment.

134

135

136 Comment 4:

the use of two pathways to explain the nitrogen isotope fractionation is classic and
maybe correct to a large extent. I was wondering if other pathways to influence the
nitrogen isotope fractionation and subsequently contribute to nitrate formation need to
be mentioned at least;

141 Reply: We've enriched the discussion regarding the pathways of nitrate formation in 142 the introduction section. Indeed, the co-editor also pointed out that the direct reactive uptake of NO3 radicals by aerosol particles also contribute to particulate nitrate. Knopf 143 et al. (2006, 2011) and Shiraiwa et al. (2012) have shown that NO₃ can be taken up 144 efficiently by organic (e.g., levoglucosan) aerosol and may dominate oxidation of 145 aerosol in the polluted urban nighttime (Kaiser et al., 2011). Globally, theoretical 146 modeling results show that nearly 76%, 18%, and 4% of annual inorganic nitrate are 147 148 formed via pathways/reactions involving OH, N2O5, and DMS or HC (NO3 reacts with dimethylsulfide (DMS) or hydrocarbons (HC) predominantly at night) (e.g., Alexander 149 150 et al., 2009). The stable O isotopic composition of atmospheric nitrate is a powerful proxy for assessing which oxidation pathways are important for converting NOx into 151 nitrate under changing environmental conditions (e.g., polluted, volcanic events, 152 climate change). In the same line, in this study, the average δ^{18} O value of pNO₃⁻ in 153 Nanjing City was $83.0 \pm 11.2\%$ (see discussion later), suggesting that pNO_3^- formation 154 is dominated by the pathways of "OH + NO2" and the heterogeneous hydrolysis of 155

 $156 N_2O_5.$

157 Reference

- 158 Alexander, B., Hastings, M. G., Allman, D. J., Dachs, J., Thornton, J. A., and Kunasek,
- 159 S. A.: Quantifying atmospheric nitrate formation pathways based on a global model
- 160 of the oxygen isotopic composition ($\Delta^{17}O$) of atmospheric nitrate, Atmos. Chem.
- 161 Phys., 9, 5043-5056, doi: 10.5194/acp-9-5043-2009, 2009.
- 162 Kaiser, J. C., Riemer, N., and Knopf, D. A.: Detailed heterogeneous oxidation of soot
- surfaces in a particle-resolved aerosol model, Atmos. Chem. Phys., 11, 4505-4520,
 doi: 10.5194/acp-11-4505-2011, 2011.
- Knopf, D. A., Forrester, S. M., and Slade, J. H.: Heterogeneous oxidation kinetics of
 organic biomass burning aerosol surrogates by O₃, NO₂, N₂O₅, and NO₃, Phys. Chem.
- 167 Chem. Phys., 13, 21050-21062, doi: 10.1039/C1CP22478F, 2011.
- Knopf, D. A., Mak, J., Gross, S., and Bertram, A. K.: Does atmospheric processing of
 saturated hydrocarbon surfaces by NO₃ lead to volatilization?, Geophys. Res. Lett.,
- saturated hydrocarbon surfaces by NO₃ lead to volatilization?, Geophys. Res. Let
 33, doi:10.1029/2006GL026884, 2006.
- Shiraiwa, M., Pöschl, U., and Knopf, D. A.: Multiphase chemical kinetics of NO₃
 radicals reacting with organic aerosol components from biomass burning, Environ.
- 173 Sci. Technol., 46, 6630-6636, doi: 10.1021/es300677a, 2012.
- 174

175 Comment 5:

- 176 The references in the Reference list are not always in the appropriate order: "Chang,
- 177 Deng. .., 2017" should come before "Chang, Liu. .., 2016a". "Felix, J. D., and Elliott,
- 178 E. M., 2014" should come before "Felix, J. D., Elliott, E. M., Gish, T. J. . .., 2013".
- 179 "Felix, J. D., Elliott, E. M., and Shaw, S. L., 2012" should come after "Felix, J. D.,

- 180 Elliott, E. M., Gish, T. J. . .., 2013".
- 181 Reply: Revised accordingly.
- 182
- 183
- 184

- 185 Nitrogen isotope fractionation during gas-particle conversion of NO_x to
- 186 NO₃⁻ in the atmosphere implications for isotope-based NO_x source

187 apportionment

- 188 Yunhua Chang¹, Yanlin Zhang^{1*}, Chongguo Tian², Shichun Zhang³, Xiaoyan Ma⁴, Fang
- 189 Cao¹, Xiaoyan Liu¹, Wenqi Zhang¹, Thomas Kuhn⁵, and Moritz F. Lehmann⁵
- 190 ¹Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information
- 191 Science and Technology, Nanjing 10044, China
- 192 ²Key Laboratory of Coastal Environmental Processes and Ecological Remediation,
- 193 Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai194 264003, China
- 195 ³Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences,
- 196 4888 Shengbei Road, Changchun 130102, China
- ⁴Key Laboratory for Aerosol Cloud-Precipitation of China Meteorological
 Administration, Earth System Modeling Center, Nanjing University of Information
 Science and Technology, Nanjing 10044, China
- 200 ⁵Aquatic and Isotope Biogeochemistry, Department of Environmental Sciences,
- 201 University of Basel, Basel 4056, Switzerland
- 202 * Corresponding author: Yanlin Zhang
- 203 E-mail address: dryanlinzhang@outlook.com
- 204
- 205
- 206

207 Abstract

208 Atmospheric fine-particle (PM_{2.5}) pollution is frequently associated with the formation of particulate nitrate (pNO_3) , the end product of the oxidation of NO_x gases (=NO+NO₂) 209 210 in the upper troposphere. The application of stable nitrogen (N) (and oxygen) isotope 211 analyses of pNO₃⁻ to constrain NO_x source partitioning in the atmosphere requires the 212 knowledge of the isotope fractionation during the reactions leading to nitrate formation. Here we determined the δ^{15} N values of fresh pNO₃⁻ (δ^{15} N-pNO₃⁻) in PM_{2.5} at a rural site 213 214 in Northern China, where atmospheric pNO_3^- can be attributed exclusively to biomass 215 burning. The observed δ^{15} N-pNO₃⁻ (12.17±1.55‰; n=8) was much higher than the N 216 isotopic source signature of NO_x from biomass burning (1.04±4.13‰). The large difference between δ^{15} N-*p*NO₃⁻ and δ^{15} N-NO_x ($\Delta(\delta^{15}$ N)) can be reconciled by the net N 217 isotope effect (ϵ_N) associated with the gas-particle conversion from NO_x to NO₃⁻. For 218 the biomass-burning site, a mean $\varepsilon_N (\approx \Delta(\delta^{15}N))$ of 10.99±0.74‰ was assessed through 219 220 a newly-developed computational quantum chemistry (CQC) module. ε_N depends on 221 the relative importance of the two dominant N isotope exchange reactions involved 222 (NO₂ reaction with OH versus hydrolysis of dinitrogen pentoxide (N₂O₅) with H₂O), and varies between regions, and on a diurnal basis. A second, slightly higher CQC-223 based mean value for ε_N (15.33±4.90‰) was estimated for an urban site with intense 224 225 traffic in Eastern China, and integrated in a Bayesian isotope mixing model to make isotope-based source apportionment estimates for NO_x at this site. Based on the δ^{15} N 226 227 values (10.93±3.32‰, n=43) of ambient pNO3⁻ determined for the urban site, and 228 considering the location-specific estimate for ε_N , our results reveal that the relative contribution of coal combustion and road traffic to urban NO_x are $32\pm11\%$ and $68\pm11\%$, 229 230 respectively. This finding agrees well with a regional bottom-up emission inventory of NO_x. Moreover, the variation pattern of OH contribution to ambient *p*NO₃⁻ formation 231 calculated by the CQC module is consistent with that simulated by the Weather 232 Research and Forecasting model coupled with Chemistry (WRF-Chem), further 233 confirming the robustness of our estimates. Our investigations also show that, without 234 235 the consideration of the N isotope effect during pNO₃⁻ formation, the observed δ^{15} N-

 pNO_3^{-} at the study site would erroneously imply that NO_x is derived almost entirely from coal combustion. Similarly, reanalysis of reported $\delta^{15}N-NO_3^{-}$ data throughout China and its neighboring areas suggests that, nationwide, NO_x emissions from coal combustion may be substantively overestimated (by >30%) when the N isotope fractionation during atmospheric pNO_3^{-} formation is neglected.

241 1 Introduction

Nitrogen oxides $(NO_x = NO + NO_2)$ are among the most important molecules in 242 tropospheric chemistry. They are involved in the formation of secondary aerosols and 243 atmospheric oxidants, such as ozone (O₃) and hydroxyl radicals (OH), which controls 244 245 the self-cleansing capacity of the atmosphere (Galloway et al., 2003; Seinfeld and Pandis, 2012; Solomon et al., 2007). The sources of NO_x include both anthropogenic 246 and natural origins, with more than half of the global burden (\sim 40 Tg N yr⁻¹) currently 247 attributed to fossil fuel burning (22.4-26.1 Tg N yr⁻¹) and the rest primarily derived 248 from nitrification/denitrification in soils (including wetlands; 8.9 ± 1.9 Tg N yr⁻¹), 249 250 biomass burning (5.8 \pm 1.8 Tg N yr⁻¹), lightning (2-6 Tg N yr⁻¹), and oxidation of N₂O in the stratosphere (0.1-0.6 Tg N yr⁻¹) (Jaegle et al., 2005; Richter et al., 2005; Lamsal 251 et al., 2011; Price et al., 1997; Yienger and Levy, 1995; Miyazaki et al., 2017; Duncan 252 et al., 2016; Anenberg et al., 2017; Levy et al., 1996). The main/ultimate sinks for 253 NOx in the troposphere are the oxidation to nitric acid (HNO3(g)) and the formation of 254 aerosol-phase particulate nitrate (pNO₃⁻) (Seinfeld and Pandis, 2012), the partitioning 255 256 of which may vary on diurnal and seasonal time scales (Morino et al., 2006).

 $\label{eq:expectation} 257 \qquad \text{Emissions of NO}_x \text{ occur mostly in the form of NO} (\text{Seinfeld and Pandis}, 2012; \text{Leighton},$

 $258 \quad$ 1961). During daytime, transformation from NO to NO_2 is rapid (few minutes) and

259 $\,$ $\,$ proceeds in a photochemical steady state, controlled by the oxidation of NO by O_3 to

260 NO₂, and the photolysis of NO₂ back to NO (Leighton, 1961):

261 (R1)
$$NO + O_3 \longrightarrow NO_2 + O_2$$

262 (R2) $NO_2 + hv \longrightarrow NO + O$

263 (R3)
$$O + O_2 \xrightarrow{M} O_3$$
,

264 where M is any non-reactive species that can take up the energy released to stabilize

265 O. NO_x oxidation to HNO₃ is governed by the following equations. During daytime:

266 (R4) $NO_2 + OH \xrightarrow{M} HNO_3$,

- 267 and during nighttime:
- 268 (R5) $NO_2 + O_3 \longrightarrow NO_3 + O_2$

269 (R6)
$$NO_3 + NO_2 \xrightarrow{M} N_2O_5$$

270 (R7)
$$N_2O_5 + H_2O_{(surface)} \xrightarrow{aerosol} 2HNO_3$$
.

HNO₃ then reacts with gas-phase NH₃ to form ammonium nitrate (NH₄NO₃) aerosols.
If the ambient relative humidity (RH) is lower than the efflorescence relative humidity
(ERH) or crystallization relative humidity (CRH), solid-phase NH₄NO₃(s) is formed
(Smith et al., 2012; Ling and Chan, 2007):

275 (R8a) $\operatorname{NH}_4\operatorname{NO}_3 \rightleftharpoons \operatorname{HNO}_3(g) + \operatorname{NH}_3(g).$

276 If ambient RH exceeds the ERH or CRH, HNO3 and NH3 dissolve into the aqueous

- 277 phase (aq) (Smith et al., 2012; Ling and Chan, 2007):
- 278 (R8b) $\operatorname{HNO}_3(g) + \operatorname{NH}_3(g) \rightleftharpoons \operatorname{NO}_3^-(aq) + \operatorname{NH}_4^+(aq).$

Whilst global NO_x emissions are well constrained, individual source attribution and their local or regional role in particulate nitrate formation are difficult to assess due to the short lifetime of NO_x (typically less than 24 hr), and the high degree of spatiotemporal heterogeneity with regards to the ratio between gas-phase HNO₃ and particulate NO₃⁻ (pNO₃⁻) (Duncan et al., 2016; Lu et al., 2015; Zong et al., 2017; Zhang et al., 2003). Given the conservation of the nitrogen (N) atom between NO_x sources and sinks, the N isotopic composition of pNO₃⁻ can be related to the different origins of the emitted NO_x, and thus provides valuable information on the partitioning of the NO_x sources (Morin et al., 2008). Such N isotope balance approach works best if the N isotopic composition of various NO_x sources display distinct ¹⁵N/¹⁴N ratios (reported as $\delta^{15}N = \frac{\binom{15}{N} N^{14}}{\binom{15}{N} N^{14}} \times 1000$). The $\delta^{15}N$ -NO_x of coal-fired power

plant (+10‰ to +25‰) (Felix et al., 2012; Heaton, 1990; Felix et al., 2013), vehicle 290 291 (+3.7‰ to +5.7‰) (Heaton, 1990; Walters et al., 2015; Felix and Elliott, 2014; Felix et 292 al., 2013; Wojtal et al., 2016), and biomass burning (-7‰ to +12‰) emissions (Fibiger and Hastings, 2016), for example, are generally higher than that of lightning (-0.5‰ to 293 +1.4‰) (Hoering, 1957) and biogenic soil (-48.9‰ to -19.9‰) emissions (Li and Wang, 294 295 2008; Felix and Elliott, 2014; Felix et al., 2013), allowing the use of isotope mixing models to gain insight on the NO_x source apportionment for gases, aerosols, as well as 296 297 the resulting nitrate deposition (-15‰ to +15‰) (Elliott et al., 2007; Zong et al., 2017; Savarino et al., 2007; Morin et al., 2008; Elliott et al., 2009; Park et al., 2018; Altieri et 298 299 al., 2013; Gobel et al., 2013). In addition, because of mass-independent fractionation during its formation (Thiemens, 1999; Thiemens and Heidenreich, 1983), ozone 300 possesses a strong isotope anomaly (Δ^{17} O $\approx \delta^{17}$ O - 0.52* δ^{18} O), which is propagated into 301 302 the most short-lived oxygen-bearing species, including NOx and nitrate. Therefore, the oxygen isotopic composition of nitrate (δ^{18} O, Δ^{17} O) can provide information on the 303 oxidants involved in the conversion of NOx to nitrate (Michalski et al., 2003; Geng et 304 305 al., 2017). Knopf et al. (2006, 2011) and Shiraiwa et al. (2012) have shown that NO3 306 can be taken up efficiently by organic (e.g., levoglucosan) aerosol and may dominate oxidation of aerosol in the polluted urban nighttime (Kaiser et al., 2011). Globally, 307 theoretical modeling results show that nearly 76%, 18%, and 4% of annual inorganic 308 309 nitrate are formed via pathways/reactions involving OH, N2O5, and DMS or HC (NO3 reacts with dimethylsulfide (DMS) or hydrocarbons (HC) predominantly at night) (e.g., 310 Alexander et al., 2009). The stable O isotopic composition of atmospheric nitrate is a 311 312 powerful proxy for assessing which oxidation pathways are important for converting 313 NOx into nitrate under changing environmental conditions (e.g., polluted, volcanic events, climate change). In the same line, in this study, the average δ^{18} O value of pNO₃-314

315 in Nanjing City was 83.0 ± 11.2% (see discussion later), suggesting that pNO3=

316 formation is dominated by the pathways of "OH + NO2" and the heterogeneous

317 <u>hydrolysis of N₂O₅</u>.

318 δ^{15} N-based source apportionment of NO_x requires knowledge of how kinetic and equilibrium isotope fractionation may impact δ^{15} N values during the conversion of NO_x 319 320 to nitrate (Freyer, 1978; Walters et al., 2016). If these isotope effects are considerable, they may greatly limit the use of δ^{15} N values of pNO_3^- for NO_x source partition (Walters 321 322 et al., 2016). Previous studies didn't take into account the potentially biasing effect of 323 N isotope fractionation, because they assumed that changes in the δ^{15} N values during 324 the conversion of NOx to nitrate are minor (without detailed explanation) (Kendall et al., 2007; Morin et al., 2008; Elliott et al., 2007) or relatively small (e.g., +3‰) (Felix 325 and Elliott, 2014; Freyer, 2017). However, a field study by Freyer et al. (1993) has 326 327 indicated that N isotope exchange may have a strong influence on the observed δ^{15} N values in atmospheric NO and NO₂, implying that isotope equilibrium fractionation 328 329 may play a significant role in shaping the δ^{15} N of NO_v species (the family of oxidized 330 nitrogen molecules in the atmosphere, including NO_x, NO₃, NO₃, peroxyacetyl nitrate etc.). The transformation of NO_x to nitrate is a complex process that involves several 331 different reaction pathways (Walters et al., 2016). To date, few fractionation factors for 332 333 this conversion have been determined. Recently, Walters and Michalski (2015) and Walters et al. (2016) used computational quantum chemistry methods to calculate N 334 335 isotope equilibrium fractionation factors for the exchange between major NO_v 336 molecules and confirmed theoretical predictions that ¹⁵N isotopes enrich in the more oxidized form of NO_y, and that the transformation of NO_x to atmospheric nitrate (HNO₃, 337 NO₃ (aq), NO₃ (g)) continuously increases the δ^{15} N in the residual NO_x pool. 338

339 As a consequence of its severe atmospheric particle pollution during the cold season,

340 China has made great efforts toward reducing NO_x emissions from on-road traffic (e.g.,

341 improving emission standards, higher gasoline quality, vehicle travel restrictions) (Li

342 et al., 2017). Moreover, China has continuously implemented denitrogenation

343 technologies (e.g., selective catalytic reduction or SCR) in the coal-fired power plants

sector since the mid-2000s, and has been phasing out small inefficient units (Liu et al., 344 345 2015). Monitoring and assessing the efficiency of such mitigation measures, and optimizing policy efforts to further reduce NOx emissions, requires knowledge of the 346 vehicle- and power plant-emitted NOx to particulate nitrate in urban China (Ji et al., 347 2015; Fu et al., 2013; Zong et al., 2017). In this study, the chemical components of 348 ambient fine particles (PM2.5) were quantified, and the isotopic composition of 349 350 particulate nitrate (δ^{15} N-NO₃⁻, δ^{18} O-NO₃⁻) was assessed in order to elucidate ambient 351 NO_x sources in Nanjing City of Eastern Chinatwo distinct areas of China. We also 352 investigated the potential isotope effect during the formation of nitrate aerosols from 353 NO_x, and evaluated how disregard of such N isotope fractionation can bias N-isotope mixing model-based estimates on the NOx source apportionment for nitrate deposition. 354

355 2 Methods

356 2.1 Field sampling

357 In this study, PM_{2.5} aerosol samples were collected on precombusted (450 °C for 6 hr) 358 quartz filters (25 × 20 cm) on a day/night basis, using high-volume air samplers at a flow rate of 1.05 m³ min⁻¹ in Sanjiang and Nanjing (Fig. 1). After sampling, the filters 359 360 were wrapped in aluminum foil, packed in air-tight polyethylene bags and stored at -361 20 °C prior to further processing and analysis. Four blank filters were also collected. They were exposed for 10 min to ambient air (i.e., without active sampling). PM_{2.5} mass 362 363 concentration was analyzed gravimetrically (Sartorius MC5 electronic microbalance) 364 with a \pm 1 µg precision before and after sampling (at 25°C and 45 \pm 5% during weighing). 365

366

367

Figure 1.

368

369 The Sanjiang campaign was performed during a period of intensive burning of

agricultural residues between October 8 and 18, 2013, to examine if there is any 370 371 significant difference between the δ^{15} N values of pNO₃⁻ and NO_x emitted from biomass burning. The Sanjiang site (in the following abbreviated as SJ; 47.35°N, 133.31°E) is 372 located at an ecological experimental station affiliated with the Chinese Academy of 373 Sciences located in the Sanjiang Plain, a major agricultural area predominantly run by 374 state farms in Northeastern China (Fig. 1). Surrounded by vast farm fields and bordering 375 376 Far-Eastern Russia, SJ is situated in a remote and sparsely populated region, with a 377 harsh climate and rather poorly industrialized economy. The annual mean temperature 378 at SJ is close to the freezing point, with daily minima ranging between -31 and -15°C in the coldest month January. As a consequence of the relatively low temperatures (also 379 during summer), biogenic production of NOx through soil microbial processes is rather 380 weak. SJ is therefore an excellent environment where to collect biomass burning-381 382 emitted aerosols with only minor influence from other sources.

The Nanjing campaign was conducted between 17 December 2014 and 8 January 2015 383 384 with the main objective to examine whether N isotope measurements can be used as a 385 tool to elucidate NO_x source contributions to ambient pNO₃⁻ during times of severe 386 haze. Situated in the heartland of the lower Yangtze River region, Nanjing is, after Shanghai, the second largest city in Eastern China. The aerosol sampler was placed at 387 the rooftop of a building on the Nanjing University of Information Science and 388 Technology campus (in the following abbreviated as NJ; 18 m a.g.l.; 32.21° N, 118.72° 389 E; Fig. 1), where NO_x emissions derive from both industrial and transportation sources. 390

391 2.2 Laboratory analysis

The mass concentrations of inorganic ions (including SO₄²⁻, NO₃⁻, Cl⁻, NH₄⁺, K⁺, Ca²⁺, Mg²⁺, and Na⁺), carbonaceous components (organic carbon or OC, elemental carbon or EC), and water-soluble organic carbon or WSOC were determined using an ion chromatograph (761 Compact IC, Metrohm, Switzerland), a thermal/optical OC/EC analyzer (RT-4 model, Sunset Lab. Inc., USA), and a TOC analyzer (Shimadzu, TOC-VCSH, Japan), respectively. Importantly, levoglucosan, a molecular marker for the

biomass combustion aerosols was detected using a DionexTM ICS-5000⁺ system 398 399 (Thermo Fisher Scientific, Sunnyvale, USA). In addition, a homologous series of 400 dicarboxylic acids (C2-C11) and related compounds (oxoacids, a dicarbonyls and fatty acids) were analyzed using an Agilent 7890 gas chromatography and GC-MS detection 401 (Agilent Technologies, Wilmington, USA), employing a dibutyl ester derivatization 402 403 technique. Chemical aerosol analyses, including sample pre-treatment, analytical 404 procedures, protocol adaption, detection limits, and experimental uncertainty were 405 described in detail in our previous work (Cao et al., 2016; Cao et al., 2017).

406 For isotopic analyses of aerosol nitrate, aerosol subsamples were generated by punching 407 1.4-cm disks out of the filters. In order to extract the NO3⁻, sample discs were placed in acid-washed glass vials with 10 ml deionized water and placed in an ultra-sonic water 408 bath for 30 min. Between one and four disks were used for NOx extraction, dependent 409 on the aerosol NO3⁻ content on the filters, which was determined independently. The 410 extracts were then filtered (0.22 µm) and analyzed the next day. N and O isotope 411 412 analyses of the extracted/dissolved aerosol nitrate (15N/14N, 18O/16O) were performed 413 using the denitrifier method (Sigman et al., 2001; Casciotti et al., 2002). Briefly, sample NO3⁻ is converted to nitrous oxide (N2O) by denitrifying bacteria that lack N2O 414 reductase activity (Pseudomonas chlororaphis ATCC# 13985; formerly Pseudomonas 415 416 aureofaciens, referred to below as such). N₂O is extracted, purified, and analyzed for its N and O isotopic composition using a continuous-flow isotope ratio mass 417 spectrometer (Thermo Finnigan Delta⁺, Bremen, German). Nitrate N and O isotope 418 419 ratios are reported in the conventional δ -notation with respect to atmospheric N₂ and standard mean ocean water (V-SMOW) respectively. Analyses are calibrated using the 420 international nitrate isotope standard IAEA-N3, with a δ^{15} N value of 4.7‰ and a δ^{18} O 421 value of 25.6‰ (Böhlke et al., 2003). The blank contribution was generally lower than 422 0.2 nmol (as compared to 20 nmol of sample N). Based on replicate measurements of 423 standards and samples, the analytical precision for δ^{15} N and δ^{18} O was generally better 424 than $\pm 0.2\%$ and $\pm 0.3\%$ (1 σ), respectively. 425

426 The denitrifier method generates δ^{15} N and δ^{18} O values of the combined pool of NO₃⁻

427 and NO₂⁻. The presence of substantial amounts of NO₂⁻ in NO₃⁻ samples may lead to 428 errors with regards to the analysis of δ^{18} O (Wankel et al., 2010). We refrained from 429 including a nitrite-removal step, because nitrite concentrations in our samples were 430 always < 1% of the NO₃⁻ concentrations. In the following δ^{15} N_{NOx} and δ^{18} O_{NOx} are thus 431 referred to as nitrate δ^{15} N and δ^{18} O (or δ^{15} N_{NO3} and δ^{18} O_{NO3}).

432 In the case of atmospheric/aerosol nitrate samples with comparatively high δ^{18} O values, δ^{15} N values tend to be overestimated by 1-2‰ (Hastings et al., 2003), if the contribution 433 of ¹⁴N¹⁴N¹⁷O to the N₂O mass 45 signal is not accounted for during isotope ratio 434 analysis. For most natural samples, the mass-dependent relationship can be 435 approximated as δ^{17} O $\approx 0.52 \times \delta^{18}$ O, and the δ^{18} O can be used for the ¹⁷O correction. 436 Atmospheric NO3⁻ does not follow this relationship but inhabits a mass-independent 437 438 component. Thus, we adopted a correction factor of 0.8 instead of 0.52 for the ¹⁷O to 439 ¹⁸O linearity (Hastings et al., 2003).

440 **2.3** Calculation of N isotope fractionation value (ε_N)

As we described above, the transformation process of NO_x to HNO₃/NO₃⁻ involves 441 multiple reaction pathways (see also Fig. S1) and is likely to undergo isotope 442 equilibrium exchange reactions. The measured δ^{15} N-NO₃⁻ values of aerosol samples are 443 thus reflective of the combined N isotope signatures of various NO_x sources (δ^{15} N-NO_x) 444 plus any given N isotope fractionation. Recently, Walter and Michalski (2015) used a 445 446 computational quantum chemistry approach to calculate isotope exchange fractionation 447 factors for atmospherically relevant NO_y molecules, and based on this approach, Zong et al. (2017) estimated the N isotope fractionation during the transformation of NO_x to 448 pNO3⁻ at a regional background site in China. Here we adopt, and slightly modify, the 449 approach by Walter and Michalski (2015) and Zong et al. (2017), and assumed that the 450 net N isotope effect ε_N (for equilibrium processes A \leftrightarrow B: $\varepsilon_{A\leftrightarrow B}$ = 451 $\left(\frac{(\text{heavy isotope/light isotope})_A}{(\text{heavy isotope/light isotope})_R} - 1\right) \cdot 1000\%$; ε_N refers to $\varepsilon_{N_{(NO_x \leftrightarrow pNO_y^-)}}$ in this 452 study unless otherwise specified) during the gas-to-particle conversion from NOx to 453

454 pNO_3^- formation $(\Delta(\delta^{15}N)_{pNO_3^-NO_x} = \delta^{15}N \cdot pNO_3^- \cdot \delta^{15}N \cdot NO_x \approx \varepsilon_N)$ can be considered 455 a hybrid of the isotope effects of two dominant N isotopic exchange reactions:

457 where γ represents the contribution from isotope fractionation by the reaction of NO_x 458 and photo-chemically produced OH to form HNO₃ (and pNO_3^{-}), as shown by 459 $\varepsilon_{N(NO_x \leftrightarrow HNO_3)_{OH}}$ ($\varepsilon_{N(NO_x \leftrightarrow pNO_3^{-})_{OH}}$). The remainder is formed by the hydrolysis of N₂O₅ 460 with aerosol water to generate HNO₃ (and pNO_3^{-}), namely, $\varepsilon_{N(NO_x \leftrightarrow HNO_3)_{H_2O}}$ 461 ($\varepsilon_{N(NO_x \leftrightarrow pNO_3^{-})_{H_2O}}$). Assuming that kinetic N isotope fractionation associated with the 462 reaction between NO_x and OH is negligible, $\varepsilon_{N(NO_x \leftrightarrow pNO_3^{-})_{OH}}$ can be calculated based on 463 mass-balance considerations:

$$\begin{split} & \epsilon_{N_{\left(NO_{x}\leftrightarrow pNO_{3}^{-}\right)_{OH}}} = \epsilon_{N_{\left(NO_{x}\leftrightarrow HNO_{3}\right)_{OH}}} = \epsilon_{N_{\left(NO_{2}\leftrightarrow HNO_{3}\right)_{OH}}} \\ & = 1000 \times \left[\frac{\left({}^{15}\alpha_{NO_{2}/NO} - 1\right)\left(1 - f_{NO_{2}}\right)}{\left(1 - f_{NO_{2}}\right) + \left({}^{15}\alpha_{NO_{2}/NO} \times f_{NO_{2}}\right)} \right] \end{split}$$
(2)

where ${}^{15}\alpha_{NO_2/NO}$ is the temperature-dependent (see equation 7 and Table S1) equilibrium N isotope fractionation factor between NO₂ and NO, and f_{NO_2} is the fraction of NO₂ in the total NO_x. f_{NO_2} ranges from 0.2 to 0.95 (Walters and Michalski, 2015). Similarly, assuming a negligible kinetic isotope fractionation associated with the reaction N₂O₅ + H₂O + aerosol \rightarrow 2HNO₃, $\varepsilon_{N(NO_x \leftrightarrow pNO_3^-)_{H_2O}}$ can be computed from the following equation:

472 where ${}^{_{15}}\alpha_{N_2O_5/NO_2}$ is the equilibrium isotope fractionation factor between N_2O_5 and

473 NO₂, which also is temperature-dependent (see equation 7 and Table S1).

Following Walter and Michalski (2015) and Zhong et al. (2017), γ can then be approximated based on the O isotope fractionation during the conversion of NO_x to pNO₃:

477
$$\begin{aligned} & \varepsilon_{O(NO_{x}\leftrightarrow pNO_{3}^{-})} = \gamma \times \varepsilon_{O(NO_{x}\leftrightarrow pNO_{3}^{-})_{OH}} + (1-\gamma) \times \varepsilon_{O(NO_{x}\leftrightarrow pNO_{3}^{-})_{H_{2}O}} \\ & = \gamma \times \varepsilon_{O(NO_{x}\leftrightarrow HNO_{3})_{OH}} + (1-\gamma) \times \varepsilon_{O(NO_{x}\leftrightarrow HNO_{3})_{H_{2}O}} \end{aligned} \tag{4}$$

478 where $\varepsilon_{O_{(NO_x \leftrightarrow pNO_3^-)_{OH}}}$ and $\varepsilon_{O_{(NO_x \leftrightarrow pNO_3^-)_{H_2O}}}$ represent the O isotope effects associated 479 with pNO_3^- generation through the reaction of NO_x and OH to form HNO₃, and the 480 hydrolysis of N₂O₅ on a wetted surface to form HNO₃, respectively. $\varepsilon_{O_{(NO_x \leftrightarrow pNO_3^-)_{OH}}}$ can 481 be further expressed as:

$$\epsilon_{O_{(NO_{x}\leftrightarrow PNO_{3}^{-})_{OH}}} = \epsilon_{O_{(NO_{x}\leftrightarrow HNO_{3})_{OH}}} = \frac{2}{3} \epsilon_{O_{(NO_{2}\leftrightarrow HNO_{3})_{OH}}} + \frac{1}{3} \epsilon_{O_{(NO\leftrightarrow HNO_{3})_{OH}}}$$

$$482 = \frac{2}{3} \left[\frac{1000 \left({^{18}\alpha_{NO_{2}/NO} - 1} \right) \left(1 - f_{NO_{2}} \right)}{\left(1 - f_{NO_{2}} \right) + \left({^{18}\alpha_{NO_{2}/NO} \times f_{NO_{2}}} \right)} + \left(\delta^{18} O - NO_{x} \right) \right] + \frac{1}{3} \left[\left(\delta^{18} O - H_{2} O \right) + 1000 \left({^{18}\alpha_{OH/H_{2}O} - 1} \right) \right]$$

$$(5)$$

483 and $\epsilon_{O(NO_x \leftrightarrow pNO_3^-)_{H_2O}}$ can be determined as follows:

484
$$\epsilon_{O(NO_x \leftrightarrow pNO_3^-)_{H_2O}} = \epsilon_{O(NO_x \leftrightarrow HNO_3)_{H_2O}} = \frac{5}{6} \left(\delta^{18} O \cdot N_2 O_5 \right) + \frac{1}{6} \left(\delta^{18} O \cdot H_2 O \right)$$
 (6)

485 where ${}^{18}\alpha_{NO_2/NO}$ and ${}^{18}\alpha_{OH/H_2O}$ represent the equilibrium O isotope fractionation 486 factors between NO₂ and NO, and OH and H₂O, respectively. The range of $\delta^{18}O$ -H₂O 487 can be approximated using an estimated tropospheric water vapor $\delta^{18}O$ range of -25‰-488 0‰. The $\delta^{18}O$ values for NO₂ and N₂O₅ range from 90‰ to 122‰ (Zong et al. 2017). 489 ${}^{15}\alpha_{NO_2/NO}$ and ${}^{15}\alpha_{N_2O_5/NO_2}$, ${}^{18}\alpha_{NO_2/NO}$ and ${}^{18}\alpha_{OH/H_2O}$ in these equations, are dependent 490 on the temperature, which can be expressed as:

491
$$1000({}^{m}\alpha_{_{X/Y}}-1)=\frac{A}{T^{^{4}}}\times10^{10}+\frac{B}{T^{^{3}}}\times10^{8}+\frac{C}{T^{^{2}}}\times10^{6}+\frac{D}{T}\times10^{4}$$
 (7)

where A, B, C, and D are experimental constants (Table S1) over the temperature range
of 150-450 K (Walters and Michalski, 2015; Walters et al., 2016; Walters and Michalski,
2016; Zong et al., 2017).

Based on Equations 4-7 and measured values for $\delta^{18}\text{O}-p\text{NO}_3^-$ of ambient PM_{2.5}, a Monte Carlo simulation was performed to generate 10000 feasible solutions. The error between predicted and measured $\delta^{18}\text{O}$ was less than 0.5‰. The range (maximum and minimum) of computed contribution ratios (γ) were then integrated in Equation 1 to generate an estimate range for the nitrogen isotope effect ε_N (using Equations 2-3). $\delta^{15}\text{N}$ -pNO₃⁻ values can be calculated based on ε_N and the estimated $\delta^{15}\text{N}$ range for atmospheric NO_x, (see section 2.4).

502 2.4 Bayesian isotope mixing model

Isotopic mixing models allow estimating the relative contribution of multiple sources 503 504 (e.g., emission sources of NO_x) within a mixed pool (e.g., ambient pNO_3^{-}). By explicitly considering the uncertainty associated with the isotopic signatures of any given source, 505 as well as isotope fractionation during the formation of various components of a mixture, 506 the application of Bayesian methods to stable isotope mixing models generates robust 507 probability estimates of source proportions, and are often more appropriate when 508 509 targeting natural systems than simple linear mixing models (Chang et al., 2016a). Here the Bayesian model MixSIR (a stable isotope mixing model using sampling-510 511 importance-resampling) was used to disentangle multiple NOx sources by generating 512 potential solutions of source apportionment as true probability distributions, which has 513 been widely applied in a number of fields (e.g., Parnell et al., 2013; Phillips et al., 2014; 514 Zong et al., 2017). Details on the model frame and computing methods are given in SI

515 Text S1.

Here, coal combustion (13.72 \pm 4.57‰), transportation (-3.71 \pm 10.40‰), biomass 516 burning $(1.04 \pm 4.13\%)$, and biogenic emissions from soils $(-33.77 \pm 12.16\%)$ were 517 518 considered to be the most relevant contributors of NOx (Table S2 and Text S2). The 519 δ^{15} N of atmospheric NO_x is unknown. However, it can be assumed that its range in the atmosphere is constrained by the δ^{15} N of the NO_x sources and the δ^{15} N of pNO₃⁻ after 520 521 equilibrium fractionation conditions have been reached. Following Zong et al. (2017), δ^{15} N-NO_x in the atmosphere was determined performing iterative model simulations, 522 523 with a simulation step of 0.01 times the equilibrium fractionation value based on the 524 δ^{15} N-NO_x values of the emission sources (mean and standard deviation) and the measured δ^{15} N-pNO₃⁻ of ambient PM_{2.5} (Fig. S2). 525

526 3 Results

527 3.1 Sanjiang in Northern China

The δ^{15} N-pNO₃⁻ and δ^{18} O-pNO₃⁻ values of the eight samples collected from the 528 Sanjiang biomass burning field experiment, ranged from 9.54 to 13.77‰ (mean: 529 12.17‰) and 57.17 to 75.09‰ (mean: 63.57‰), respectively. In this study, atmospheric 530 531 concentrations of levoglucosan quantified from PM2.5 samples collected near the sites 532 of biomass burning in Sanjiang vary between 4.0 and 20.5 µg m⁻³, two to five orders of magnitude higher than those measured during non-biomass burning season (Cao et al., 533 534 2017; Cao et al., 2016). Levoglucosan is an anhydrosugar formed during pyrolysis of cellulose at temperatures above 300 °C (Simoneit, 2002). Due to its specificity for 535 cellulose combustion, it has been widely used as a molecular tracer for biomass burning 536 (Simoneit et al., 1999; Liu et al., 2013a; Jedynska et al., 2014; Liu et al., 2014). Indeed, 537 the concentrations of levoglucosan and aerosol nitrate in Sanjiang were highly 538 correlated ($R^2 = 0.64$; Fig. 2a), providing compelling evidence that particulate nitrate 539 measured during our study period was predominately derived from biomass burning 540 541 emissions.

542 3.2 Nanjing in Eastern China

The mass concentrations (mean_{min}^{max} $\pm 1\sigma$, n = 43) of PM_{2.5} and pNO₃⁻ measured in Nanjing 543 City were $122.1_{39.0}^{227.8} \pm 47.9$ and $17.8_{4.0}^{45.2} \pm 10.3$ µg m⁻³, respectively. All PM_{2.5} 544 concentrations exceeded the Chinese Air Quality Standard for daily PM2.5 (35 µg m⁻³), 545 suggesting severe haze pollution during the sampling period. The corresponding δ^{15} N-546 pNO₃⁻ values (raw data without correction) ranged between 5.39‰ and 17.99‰, 547 indicating significant enrichment in ¹⁵N relative to rural and coastal marine atmospheric 548 NO₃⁻ sources (Table S4). This may be due to the prominent contribution of fossil fuel-549 related NO_x emissions with higher δ^{15} N values in urban areas (Elliott et al., 2007; Park 550 551 et al., 2018).

552 4 Discussion

4.1 Sanjiang campaign: theoretical calculation and field validation of N isotope fractionation during *p*NO³⁻ formation

To be used as a quantitative tracer of biomass-combustion-generated aerosols, 555 556 levoglucosan must be conserved during its transport from its source, without partial removal by reactions in the atmosphere (Hennigan et al., 2010). The mass 557 concentrations of non-sea-salt potassium (nss- $K^+ = K^+ - 0.0355*Na^+$) is considered as 558 an independent/additional indicator of biomass burning (Fig. 2b). The association of 559 elevated levels of levoglucosan with high nss-K⁺ concentrations underscores that the 560 two compounds derived from the same proximate sources, and that thus aerosol 561 levoglucosan in Sanjiang was indeed pristine and represented a reliable source indicator 562 that is unbiased by altering processes in the atmosphere. Moreover, in our previous 563 564 work (Cao et al., 2017), we observed that there was a much greater enhancement of atmospheric NO₃⁻ compared to SO₄²⁻ (a typical coal-related pollutant). This additionally 565 points to biomass burning, and not coal-combustion, as the dominant pNO3- source in 566 the study area, making SJ and ideal "quasi single source" environment for calibrating 567

568 the N isotope effect during pNO_3^- formation.

_	~ ~	
5	hy	
	00	

571

Figure 2.

572 Our δ^{18} O-pNO₃⁻ values are well within the broad range of values in previous reports (Zong et al., 2017; Geng et al., 2017; Walters and Michalski, 2016). However, as 573 depicted in Fig. 3, the δ^{15} N values of biomass burning-emitted NO₃⁻ fall within the 574 range of δ^{15} N-NO_x values typically reported for emissions from coal combustion, 575 whereas they are significantly higher than the well-established values for δ^{15} N-NO_x 576 emitted from the burning of various types of biomass (mean: $1.04 \pm 4.13\%$, ranging 577 578 from -7 to +12‰) (Fibiger and Hastings, 2016). Turekian et al. (1998) conducted laboratory tests involving the burning of eucalyptus and African grasses, and 579 determined that the δ^{15} N of pNO₃⁻ (around 23‰) was 6.6‰ higher than the δ^{15} N of the 580 burned biomass. This implies significant N isotope partitioning during biomass burning. 581 In the case of complete biomass combustion, by mass balance, the first gaseous 582 583 products (i.e., NO_x) have the same δ^{15} N as the biomass. Hence any discrepancy between the pNO₃ and the δ^{15} N of the biomass can be attributed to the N isotope fractionation 584 associated with the partial conversion of gaseous NOx to aerosol NO3-. Based on the 585 computational quantum chemistry (CQC) module calculations, the N isotope 586 $(mean_{min}^{max} \pm 1\sigma)$ determined from the Sanjiang data was 587 fractionation ϵ_N $10.99^{_{12.54}}_{_{10.30}}\pm0.74\,\%$. After correcting the primary $\delta^{15}\mathrm{N}$ -pNO3⁻ values under the 588 consideration of ϵ_N , the resulting mean $\delta^{15}N$ of $1.17^{2.98}_{-1.89} \pm 1.95\%$ is very close to the 589 N isotopic signature expected for biomass burning-emitted NO_x (1.04 \pm 4.13‰) (Fig. 590 3) (Fibiger and Hastings, 2016). The much higher $\delta^{15}N$ -pNO₃ values in our study 591 compared to reported δ^{15} N-NO_x values for biomass burning can easily be reconciled 592 when including N isotope fractionation during the conversion of NO_x to NO₃⁻. Put 593 another way, given that Sanjiang is an environment where we can essentially exclude 594

595	NO _x sources other than biomass burning at the time of sampling, the data nicely validate	
596	our CQC module-based approach to estimate ε_N .	
597		
001		
598	Figure 3.	
599		
600	4.2 Source apportionment of NO_x in an urban setting using a Bayesian isotopic	
601	mixing model	
602	Due to its high population density and intensive industrial production, the Nanjing	
603	atmosphere was expected to have high NOx concentrations derived from road traffic	
604	and coal combustion (Zhao et al., 2015). However, the raw δ^{15} N-pNO ₃ - values (10.93 ±	
605	3.32‰) fell well within the variation range of coal-emitted δ^{15} N-NO _x (Fig. 3). It is	
606	tempting to conclude that coal combustion is the main, or even sole, $p NO_3^-$ source	
607	(given the equivalent δ^{15} N values), yet, this is very unlikely. The data rather confirm	
608	that significant isotope fractionation occurred during the conversion of NO_x to $\mathrm{NO}_3^{\text{-}}$	
609	and that, without consideration of the N isotope effect, traffic-related $\ensuremath{\text{NO}}_x$ emissions	
610	will be markedly underestimated.	
611	In the atmosphere, the oxygen atoms of NO ₂ , rapidly exchanged with Ω_2 in the NO/NO ₂	
011	in the unit-sphere, are onlygen using of 100_{1} uptary extending of the Sigo r_{100} and r_{100} r_{100}	
612	cycle (see equations R_1 - R_3) (Hastings et al., 2003), and the $\partial^{10}O$ - pNO_3 values are	
613	determined by its production pathways (R ₄ -R ₇), rather than the sources of NO_x	
614	(Hastings et al., 2003). Thus, $\delta^{18}\text{O-}p\text{NO}_3^-$ can be used to gain information on the	
615	pathway of conversion of NO _x to nitrate in the atmosphere (Fang et al., 2011). In the	

computational quantum chemistry module used here to calculate isotope fractionation, 616

we assumed that two-thirds of the oxygen atoms in NO3⁻ derive from O3 and one-third 617

from •OH in the •OH generation pathway (R4) (Hastings et al., 2003); correspondingly, 618

five sixths of the oxygen atoms then derived from O3 and one sixth from •OH in the 619

O₃/H₂O pathway (R₅-R₇). The assumed range for δ^{18} O-O₃ and δ^{18} O-H₂O values were 620

621 90%-122‰ and -25‰-0‰, respectively (Zong et al., 2017). The partitioning between 622 the two possible pathways was then assessed through Monte Carlo simulation (Zong et al., 2017). The estimated range was rather broad, given the wide range of δ^{18} O-O₃ and 623 δ^{18} O-H₂O values used. Nevertheless, the theoretical calculation of the average 624 contribution ratio (γ) for nitrate formation in Nanjing via the reaction of NO₂ and •OH 625 is consistent with the results from simulations using the Weather Research and 626 627 Forecasting model coupled with Chemistry (WRF-Chem) (Fig. 4; see Text S3 for 628 details). A clear diurnal cycle of the mass concentration of nitrate formed through •OH oxidation of NO₂ can be observed (Fig. S3), with much higher concentrations between 629 12:00 and 18:00, This indicates the importance of photochemically produced •OH 630 during daytime. Yet, throughout our sampling period in Nanjing, the average pNO3-631 formation by the heterogeneous hydrolysis of N₂O₅ (12.6 µg m⁻³) exceeded pNO₃⁻ 632 formation by the reaction of NO_2 and •OH (4.8 µg m⁻³), even during daytime, consistent 633 with recent observations during peak pollution periods in Beijing (Wang et al., 2017). 634 Given that the production rates of N2O5 in the atmosphere is governed by ambient O3 635 636 concentrations, reducing atmospheric O3 levels appears to be one of the utmost important measures to take for mitigating pNO3⁻ pollution in China's urban 637 638 atmospheres.

- 639
- 640

641

Figure 4.

In Nanjing, dependent on the time-dependent, dominant pNO_3^- formation pathway, the average N isotope fractionation value calculated using the computational quantum chemistry module varied between 10.77‰ and 19.34‰ (15.33‰ on average). Using the Bayesian model MixSIR, the contribution of each source can be estimated, based on the mixed-source isotope data under the consideration of prior information on the site (see Text S1 for detailed information regarding model frame and computing method). As described above, theoretically, there are four major sources, i.e., road

traffic, coal combustion, biomass burning, and biogenic soil, potentially contributing to 649 650 ambient NO_x. As a start, we tentatively integrated all four sources into MixSIR (data not shown). The relative contribution of biomass burning to the ambient NO_x (median 651 value) ranged from 28% to 70% (average 42%), representing the most important source. 652 The primary reason for such apparently high contribution by biomass burning is that 653 the corrected δ^{15} N-pNO₃⁻ values of $-4.29^{0.42}_{-10.32} \pm 3.66\%$ are relatively close to the N 654 isotopic signature of biomass burning-emitted NO_x ($1.04 \pm 4.13\%$) compared to the 655 other possible sources. Based on δ^{15} N alone, the isotope approach can be ambiguous if 656 there are more than two sources. The N isotope signature of NO_x from biomass burning 657 falls right in between the spectrum of plausible values, with highest δ^{15} N for emissions 658 659 from coal combustion on the one end, and much lower values for automotive and soil emissions on the other, and will be similar to a mixed signature from coal combustion 660 and NO_x emissions from traffic. 661

We can make several evidence-based pre-assumption to better constrain the emission 662 sources in the mixing model analysis: (1) sampling at a typical urban site in a major 663 industrial city in China, we can assume that the sources of road traffic and coal 664 665 combustion are dominant, while the contribution of biogenic soil to ambient NO_x should have minimal impact, or can be largely neglected (Zhao et al., 2015); (2) there 666 667 is no crop harvest activity in Eastern China during the winter season. Furthermore, deforestation and combustion of fuelwood has been discontinued in China's major 668 cities (Chang et al., 2016a). Therefore, the contribution of biomass burning-emitted 669 NO_x during the sampling period should also be minor. Indeed, Fig. S4 shows that the 670 mass concentration of biomass burning-related pNO3⁻ is not correlated with the fraction 671 of levoglucosan that contributes to OC, confirming a weak impact of biomass burning 672 on the variation of pNO_3 - concentration during our study period. 673

In a second, alternative, and more realistic scenario, we excluded biomass burning and soil as potential source of NO_x in MixSIR (see above). As illustrated in Fig. 5a, assuming that NO_x emissions in urban Nanjing during our study period originated

solely from road traffic and coal combustion, their relative contribution to the mass 677 678 concentration of pNO₃⁻ is $12.5 \pm 9.1 \ \mu g \ m^{-3}$ (or $68 \pm 11\%$) and $4.9 \pm 2.5 \ \mu g \ m^{-3}$ (or 32 \pm 11%), respectively. These numbers agree well with a city-scale NO_x emission 679 inventory established for Nanjing recently (Zhao et al., 2015). Nevertheless, on a 680 nation-wide level, relatively large uncertainties with regards to the overall fossil fuel 681 consumption and fuel types propagate into large uncertainties of NO_x concentration 682 683 estimates and predictions of longer-term emission trends (Li et al., 2017). Current 684 emission-inventory estimates (Jaegle et al., 2005; Zhang et al., 2012; Liu et al., 2015; Zhao et al., 2013) suggest that in 2010 NO_x emissions from coal-fired power plants in 685 China were about 30% higher than those from transportation. However, our isotope-686 based source apportionment of NOx clearly shows that in 2014 the contribution from 687 road traffic to NOx emissions, at least in Nanjing (a city that can be considered 688 689 representative for most densely populated areas in China) is twice that of coal combustion. In fact, due to changing economic activities, emission sources of air 690 pollutants in China are changing rapidly. For example, over the past several years, 691 China has implemented an extended portfolio of plans to phase out its old-fashioned 692 and small power plants, and to raise the standards for reducing industrial pollutant 693 694 emissions (Chang, 2012). On the other hand, China continuously experienced doubledigit annual growth in terms of auto sales during the 2000s, and in 2009 it became the 695 world's largest automobile market (Liu et al., 2013b; Chang et al., 2017; Chang et al., 696 2016b). Recent satellite-based studies successfully analyzed the NOx vertical column 697 concentration ratios for megacities in Eastern China and highlighted the importance of 698 transportation-related NOx emissions (Reuter et al., 2014; Gu et al., 2014; Duncan et 699 al., 2016; Jin et al., 2017). Moreover, long-term measurements of the ratio of NO3⁻ 700 701 versus non-sea-salt SO42- in precipitation and aerosol jointly revealed a continuously increasing trend in Eastern China throughout the latest decade, suggesting decreasing 702 emissions from coal combustion (Liu et al., 2013b; Itahashi et al., 2017). Both coal 703 combustion- and road traffic-related pNO3⁻ concentrations are highly correlated with 704 their corresponding tracers (i.e., SO₂ and CO, respectively), confirming the validity of 705 our MixSIR modelling results. With justified confidence in our Bayesian isotopic model 706

707 results, we conclude that previous estimates of NO_x emissions from 708 automotive/transportation sources in China based on bottom-up emission inventories 709 may be too low.

710	
711	Figure 5.
712	
713	3.3 Previous δ^{15} N-NO ₃ ⁻ based estimates on NO _x sources

714 Stable nitrogen isotope ratios of nitrate have been used to identify nitrogen sources in various environments in China, often without large differences in $\delta^{15}N$ between 715 rainwater and aerosol NO3⁻ (Kojima et al., 2011). In previous work, no consideration 716 was given to potential N isotope fractionation during atmospheric pNO3⁻ formation. 717 Here, we reevaluated 700 data points of δ^{15} N-NO₃⁻ in aerosol (-0.77 ± 4.52‰, n = 308) 718 and rainwater $(3.79 \pm 6.14\%, n = 392)$ from 13 sites that are located in the area of 719 720 mainland China and the Yellow and East and South China Seas (Fig. 1), extracted from 721 the literature (see SI Table S4 for details). To verify the potentially biasing effects of neglecting N isotope fractionation (i.e. testing the sensitivity of ambient NOx source 722 723 contribution estimates to the effect of N isotope fractionation), the Bayesian isotopic mixing model was applied a) to the original NO3⁻ isotope data set and b) to the corrected 724 nitrate isotope data set, accounting for the N isotope fractionation during NO_x 725 726 transformation. All 13 sampling sites are located in non-urban areas; therefore, apart 727 from coal combustion and on-road traffic, the contributions of biomass burning and biogenic soil to nitrate needs to be taken into account. 728

Although most of the sites are located in rural and coastal environments, using the original data set without the consideration of N isotope fractionation in the Bayesian isotopic mixing model, fossil fuel-related NO_x emissions (coal combustion and on-road traffic) appear as the largest contributor at all the sites (data are not shown). This is

particularly true for coal combustion: Everywhere, except for the sites of Dongshan 733 734 Islands and Mt. Lumin, NOx emissions seem to be dominated by coal combustion. Very high contribution from coal combustion (on the order of 40-60%) particularly in 735 Northern China may be plausible, and can be attributed to a much larger consumption 736 of coal. Yet, rather unlikely, the highest estimated contribution of coal combustion (83%) 737 was calculated for Beihuang Island (a full-year sampling at a costal island that is 65 km 738 739 north of Shandong Peninsula and 185 km east of the Beijing-Tianjin-Hebei region) and 740 not for mainland China. While Beihuang may be an extreme example, we argue that, 741 collectively, the contribution of coal combustion to ambient NOx in China as calculated on the basis of isotopic analyses in previous studies without the consideration of N 742 743 isotope fractionation represent overestimates.

As a first step towards a more realistic assessment of the actual partitioning of NO_x 744 sources in China in general (and coal combustion-emitted NOx in particular), it is 745 imperative to determine the location-specific values for ε_N . Unfortunately, without 746 747 δ^{18} O-NO₃⁻ data in hand, as well as data on meteorological parameters that correspond 748 to the 700 δ^{15} N-NO₃⁻ values used in our meta-analysis, it is not possible to estimate the ε_N values through the above-mentioned CQC module. As a viable alternative, we 749 adopted the approximate values for ε_N as estimated in Sanjiang (10.99‰) and Nanjing 750 $(15.33 \pm 4.90\%)$. As indicated in Fig. 6, the estimates on the source partitioning is 751 sensitive to the choice of ε_N . Whereas with increasing ε_N , estimates on the relative 752 contribution of on-road traffic and biomass burning remained relatively stable; 753 estimates for coal combustion and biogenic soil changed significantly, in opposite 754 directions. More precisely, depending on ε_N , the average estimate of the fractional 755 contribution of coal combustion decreased drastically from 43% ($\varepsilon_N = 0$ %) to 5% (ε_N 756 = 20%) (Fig. 6), while the contribution from biogenic soil to NO_x emissions increased 757 in a complementary way. Given the lack of better constraints on ε_N for the 13 sampling 758 sites, it cannot be our goal here to provide a robust revised estimate on the partitioning 759 of NOx sources throughout China and its neighboring areas. But we have very good 760 761 reasons to assume that disregard of N isotope fractionation during pNO₃⁻ formation in

previous isotope-based source apportionment studies has likely led to overestimates of the relative contribution of coal combustion to total NO_x emissions in China. For what we would consider the most conservative estimate, i.e. lowest calculated value for the N isotope fractionation during the transformation of NO_x to pNO_3^- ($\epsilon_N = 5\%$), the approximate contribution from coal combustion to the NO_x pool would be 28%, more than 30% less than N isotope mixing model-based estimates would yield without consideration of the N isotope fractionation (i.e., $\epsilon_N = 0\%$) (Fig. 6).

7	7	\sim
1	1	υ

Figure 6.

7	7	2

771

773 4 Conclusion and outlook

Consistent with theoretical predictions, δ^{15} N-pNO₃⁻ data from a field experiment where 774 atmospheric pNO3⁻ formation could be attributed reliably to NO_x from biomass burning 775 only, revealed that the conversion of NO_x to pNO_3^- is associated with a significant net 776 N isotope effect (ε_N). It is imperative that future studies, making use of isotope mixing 777 778 models to gain conclusive constraints on the source partitioning of atmospheric NO_x, 779 will consider this N isotope fractionation. The latter will change with time and space, depending on the distribution of ozone and OH radicals in the atmosphere and the 780 predominant NO_x chemistry. The O-isotope signatures of pNO₃⁻ is mostly chemistry-781 (and not source) driven (modulated by O-isotope exchange reactions in the atmosphere), 782 783 and thus, O isotope measurements do not allow addressing the ambiguities with regards 784 to the NO_x source that may remain when just looking at δ^{15} N values alone. However, δ^{18} O in pNO₃⁻ will help assessing the relative importance of the dominant pNO₃⁻ 785 formation pathway. Simultaneous δ^{15} N and δ^{18} O measurements of atmospheric nitrate 786 thus allow reliable information on ε_{N} and in turn on the relative importance of single 787

NO_x sources. For example, for Nanjing, which can be considered representative for 788 789 other large cities in China, dual-isotopic and chemical-tracer evidence suggest that onroad traffic and coal-fired power plants, rather than biomass burning, are the 790 predominant sources during high-haze pollution periods. Given that the increasing 791 frequency of nitrate-driven haze episodes in China, our findings are critically important 792 in terms of guiding the use of stable nitrate isotope measurements to evaluate the 793 794 relative importance of single NO_x sources on regional scales, and for adapting suitable 795 mitigation measures. Future assessments of NO_x emissions in China (and elsewhere) should involve simultaneous δ^{15} N and δ^{18} O measurements of atmospheric nitrate and 796 NO_x at high spatiotemporal resolution, allowing us to more quantitatively reevaluate 797

798 former N-isotope based NO_x source partitioning estimates.

799 Competing interests

800 The authors declare that they have no competing interests.

801 Data availability

- 802 Data are available from the corresponding author on request. We prefer not to publish
- 803 the software of calculating the nitrogen isotope fractionation factor and estimating
- 804 <u>nitrate source attribution at the present stage in order to avoid compromising the future</u>
- 805 of ongoing software registration. Readers can download the software through the
- 806 website atmosgeochem.com after the finish of software registration.-

带格式的: 字体: (默认) Times New Roman, (中文) 等线, 小四

807 AcknowledgementsAcknowledgement

- 808 This study was supported by the National Key Research and Development Program of
- 809 China (2017YFC0210101), the National Natural Science Foundation of China (Grant
- nos. 91644103, 41705100, and 41575129), the Provincial Natural Science Foundation
- of Jiangsu (BK20170946), the University Science Research Project of Jiangsu Province
- 812 (17KJB170011), and through University Basel Research funds.
- 813
- 814 Reference

带格式的: 行距: 单倍行距

- 815 Alexander, B., Hastings, M. G., Allman, D. J., Dachs, J., Thornton, J. A., and Kunasek, 816 S. A.: Quantifying atmospheric nitrate formation pathways based on a global model 817 of the oxygen isotopic composition (Δ^{17} O) of atmospheric nitrate, Atmos. Chem. 818 Phys., 9, 5043-5056, doi: 10.5194/acp-9-5043-2009, 2009.
- Altieri, K. E., Hastings, M. G., Gobel, A. R., Peters, A. J., and Sigman, D. M.: Isotopic 819 820 composition of rainwater nitrate at Bermuda: the influence of air mass source and 821 chemistry in the marine boundary layer, J. Geophys. Res., 118, 11, 304-311, 316, 822 doi: 10.1002/jgrd.50829, 2013.
- 823 Anenberg, S. C., Miller, J., Minjares, R., Du, L., Henze, D. K., Lacey, F., Malley, C. S., 824 Emberson, L., Franco, V., Klimont, Z., and Heyes, C.: Impacts and mitigation of excess diesel-related NO_x emissions in 11 major vehicle markets, Nature, 545, 467-825 471, doi: 10.1038/nature22086, 2017. 826
- 827 Böhlke, J. K., Mroczkowski, S. J., and Coplen, T. B.: Oxygen isotopes in nitrate: new 828 reference materials for ¹⁸O:¹⁷O:¹⁶O measurements and observations on nitrate-water equilibration, Rapid Commun. Mass Sp., 17, 1835-1846, doi: 10.1002/rcm.1123, 829 830 2003.
- Cao, F., Zhang, S. C., Kawamura, K., and Zhang, Y. L.: Inorganic markers, 831 carbonaceous components and stable carbon isotope from biomass burning aerosols 832 833 in Northeast China, Sci. Total Environ., 572, 1244-1251, doi: 10.1016/j.scitotenv.2015.09.099, 2016. 834
- Cao, F., Zhang, S. C., Kawamura, K., Liu, X., Yang, C., Xu, Z., Fan, M., Zhang, W., 835 Bao, M., Chang, Y., Song, W., Liu, S., Lee, X., Li, J., Zhang, G., and Zhang, Y. L.: 836 837 Chemical characteristics of dicarboxylic acids and related organic compounds in 838 PM_{2.5} during biomass-burning and non-biomass-burning seasons at a rural site of Northeast China, Environ. Pollut., 231, 654-662, doi: 10.1016/j.envpol.2017.08.045, 839 2017.
- 841 Casciotti, K. L., Sigman, D. M., Hastings, M. G., Böhlke, J. K., and Hilkert, A.: Measurement of the oxygen isotopic composition of nitrate in seawater and 842 freshwater using the denitrifier method, Anal. Chem., 74, 4905-4912, doi: 843 844 10.1021/ac020113w, 2002.

840

- Chang, Y. H.: China needs a tighter PM2.5 limit and a change in priorities, Environ. Sci. 845 Technol., 46, 7069-7070, doi: 10.1021/es3022705, 2012. 846
- 847 Chang, Y. H., Deng, C., Cao, F., Cao, C., Zou, Z., Liu, S., Lee, X., Li, J., Zhang, G., and Zhang, Y.: Assessment of carbonaceous aerosols in Shanghai, China - Part 1: 848 849 long-term evolution, seasonal variations, and meteorological effects, Atmos. Chem. Phys., 17, 9945-9964, doi: 10.5194/acp-17-9945-2017, 2017. 850
- 851 Chang, Y. H., Liu, X., Deng, C., Dore, A. J., and Zhuang, G.: Source apportionment of 852 atmospheric ammonia before, during, and after the 2014 APEC summit in Beijing using stable nitrogen isotope signatures, Atmos. Chem. Phys., 16, 11635-11647, doi: 853 854 10.5194/acp-16-11635-2016, 2016a.
- 855 Chang, Y.H., Zou, Z., Deng, C., Huang, K., Collett, J. L., Lin, J., and Zhuang, G.: The importance of vehicle emissions as a source of atmospheric ammonia in the megacity 856 of Shanghai, Atmos. Chem. Phys., 16, 3577-3594, doi: 10.5194/acp-16-3577-2016, 857 2016b. 858

带格式的: 缩进: 左侧: 0 厘米, 悬挂缩进: 1 字符, 首行缩 -1 字符

- Chang, Y., Deng, C., Cao, F., Cao, C., Zou, Z., Liu, S., Lee, X., Li, J., Zhang, G., and
 Zhang, Y.: Assessment of carbonaceous aerosols in Shanghai, China Part 1: long term evolution, seasonal variations, and meteorological effects, Atmos. Chem. Phys.,
 17, 9945–9964, doi: 10.5194/acp-17-9945-2017, 2017.
- Buncan, B. N., Lamsal, L. N., Thompson, A. M., Yoshida, Y., Lu, Z., Streets, D. G.,
 Hurwitz, M. M., and Pickering, K. E.: A space-based, high-resolution view of notable
 changes in urban NO_x pollution around the world (2005-2014), J. Geophys. Res., 121,
 976-996, doi: 10.1002/2015JD024121, 2016.
- Elliott, E., Kendall, C., Wankel, S. D., Burns, D., Boyer, E., Harlin, K., Bain, D., and
 Butler, T.: Nitrogen isotopes as indicators of NO_x source contributions to atmospheric
 nitrate deposition across the midwestern and northeastern United States, Environ. Sci.
 Technol., 41, 7661-7667, doi: 10.1021/es070898t, 2007.
- Elliott, E. M., Kendall, C., Boyer, E. W., Burns, D. A., Lear, G. G., Golden, H. E., Harlin,
 K., Bytnerowicz, A., Butler, T. J., and Glatz, R.: Dual nitrate isotopes in dry
 deposition: Utility for partitioning NO_x source contributions to landscape nitrogen
 deposition, J. Geophys. Res., 114, doi: 10.1029/2008jg000889, 2009.
- Fang, Y. T., Koba, K., Wang, X. M., Wen, D. Z., Li, J., Takebayashi, Y., Liu, X. Y., and
 Yoh, M.: Anthropogenic imprints on nitrogen and oxygen isotopic composition of
 precipitation nitrate in a nitrogen-polluted city in southern China, Atmos. Chem.
 Phys., 11, 1313-1325, doi: 10.5194/acp-11-1313-2011, 2011.
- Felix, J. D., Elliott, E. M., and Shaw, S. L.: Nitrogen isotopic composition of coal fired*
 power plant NO_x: Influence of emission controls and implications for global emission
 inventories, Environ. Sci. Technol., 46, 3528-3535, doi: 10.1021/es203355v,
 2012. Felix, J. D., and Elliott, E. M.: Isotopic composition of passively collected
 nitrogen dioxide emissions: Vehicle, soil and livestock source signatures, Atmos.
 Environ., 92, 359-366, doi: 10.1016/j.atmosenv.2014.04.005, 2014.
- Felix, J. D., Elliott, E. M., Gish, T. J., McConnell, L. L., and Shaw, S. L.: Characterizing
 the isotopic composition of atmospheric ammonia emission sources using passive
 samplers and a combined oxidation-bacterial denitrifier approach, Rapid Comm.
 Mass spec., 27, 2239-2246, doi: 10.1002/rcm.6679, 2013.
- Felix, J. D., Elliott, E. M., and Shaw, S. L.: Nitrogen isotopic composition of coal-fired
 power plant NO_x: Influence of emission controls and implications for global emission
 inventories, Environ. Sci. Technol., 46, 3528-3535, doi: 10.1021/es203355v, 2012.
- Felix, J. D., and Elliott, E. M.: Isotopic composition of passively collected nitrogen
 dioxide emissions: Vehicle, soil and livestock source signatures, Atmos. Environ., 92,
 359–366, doi: 10.1016/j.atmosenv.2014.04.005, 2014.

892

- Fibiger, D. L., and Hastings, M. G.: First measurements of the nitrogen isotopic
 composition of NO_x from biomass burning, Environ. Sci. Technol., 50, 11569-11574,
 doi: 10.1021/acs.est.6b03510, 2016.
- Freyer, H. <u>D.</u>: Seasonal trends of NH₄⁺ and NO₃⁻ nitrogen isotope composition in rain
 collected at Jülich, Germany, Tellus, 30, 83-92, 1978.
- 901 Freyer, H. D.: Seasonal variation of ¹⁵N/¹⁴N ratios in atmospheric nitrate species, Tellus,
 902 43, 30-44, doi: 10.3402/tellusb.v43i1.15244, 2017.

带格式的: 缩进: 左侧: 0 厘米, 悬挂缩进: 1 字符, 首行缩 进: -1 字符

带格式的: 缩进: 左侧: 0 厘米, 悬挂缩进: 1 字符, 首行缩

- Freyer, H. D., Kley, D., Volz-Thomas, A., and Kobel, K.: On the interaction of isotopic
 exchange processes with photochemical reactions in atmospheric oxides of nitrogen,
 J. Geophys. Res., 98, 14791-14796, doi: 10.1029/93JD00874, 1993.
- Freyer, H. D.: Seasonal variation of ¹⁵N/¹⁴N ratios in atmospheric nitrate species, Tellus,
 43, 30-44, doi: 10.3402/tellusb.v43i1.15244, 2017.
- Fu, X., Wang, S., Zhao, B., Xing, J., Cheng, Z., Liu, H., and Hao, J.: Emission inventory
 of primary pollutants and chemical speciation in 2010 for the Yangtze River Delta
 region, China, Atmos. Environ., 70, 39-50, doi: 10.1016/j.atmosenv.2012.12.034,
 2013.
- Galloway, J. N., Aber, J. D., Erisman, J. W., Seitzinger, S. P., Howarth, R. W., Cowling,
 E. B., and Cosby, B. J.: The nitrogen cascade, Biosci., 53, 341-356, doi:
 10.1641/0006-3568(2003)053[0341:Tnc]2.0.Co;2, 2003.
- Geng, L., Murray, L. T., Mickley, L. J., Lin, P., Fu, Q., Schauer, A. J., and Alexander,
 B.: Isotopic evidence of multiple controls on atmospheric oxidants over climate
 transitions, Nature, 546, 133-136, doi: 10.1038/nature22340, 2017.
- Gobel, A. R., Altieri, K. E., Peters, A. J., Hastings, M. G., and Sigman, D. M.: Insights
 into anthropogenic nitrogen deposition to the North Atlantic investigated using the
 isotopic composition of aerosol and rainwater nitrate, Geophys. Res. Lett., 40, 59775982, doi: 10.1002/2013GL058167, 2013.
- Gu, D., Wang, Y., Smeltzer, C., and Boersma, K. F.: Anthropogenic emissions of NO_x
 over China: Reconciling the difference of inverse modeling results using GOME-2
 and OMI measurements, J. Geophys. Res., 119, 7732-7740, doi:
 10.1002/2014JD021644, 2014.
- Hastings, M. G., Sigman, D. M., and Lipschultz, F.: Isotopic evidence for source
 changes of nitrate in rain at Bermuda, J. Geophys. Res., 108, doi:
 10.1029/2003JD003789, 2003.
- Heaton, T. H. E.: ${}^{15}N/{}^{14}N$ ratios of NO_x from vehicle engines and coal-fired power stations, Tellus, 42, 304-307, doi: 10.1034/j.1600-0889.1990.00007.x-i1, 1990.
- Hennigan, C. J., Sullivan, A. P., Collett, J. L., and Robinson, A. L.: Levoglucosan
 stability in biomass burning particles exposed to hydroxyl radicals, Geophys. Res.
 Lett., 37, doi: 10.1029/2010GL043088, 2010.
- Hoering, T.: The isotopic composition of the ammonia and the nitrate ion in rain,
 Geochim. Cosmochim. Ac., 12, 97-102, doi: 10.1016/0016-7037(57)90021-2, 1957.
- Itahashi, S., Yumimoto, K., Uno, I., Hayami, H., Fujita, S. I., Pan, Y., and Wang, Y.: A
 15-year record (2001-2015) of the ratio of nitrate to non-seasalt sulfate in
 precipitation over East Asia, Atmos. Chem. Phys. Discuss., 2017, 1-30, doi:
 10.5194/acp-2017-848, 2017.
- Jaegle, L., Steinberger, L., Martin, R. V., and Chance, K.: Global partitioning of NO_x
 sources using satellite observations: Relative roles of fossil fuel combustion, biomass
 burning and soil emissions, Faraday Discus., 130, 407-423, doi: 10.1039/B502128F,
 2005.
- Jedynska, A., Hoek, G., Wang, M., Eeftens, M., Cyrys, J., Beelen, R., Cirach, M., De
 Nazelle, A., Nystad, W., Makarem Akhlaghi, H., Meliefste, K., Nieuwenhuijsen, M.,
- de Hoogh, K., Brunekreef, B., and Kooter, I. M.: Spatial variations and development

947	of land use regression models of levoglucosan in four European study areas, Atmos.	
948	Chem. Phys. Discuss., 2014, 13491-13527, doi: 10.5194/acpd-14-13491-2014, 2014.	
949	Ji, S., Cherry, C. R., Zhou, W., Sawhney, R., Wu, Y., Cai, S., Wang, S., and Marshall, J.	
950	D.: Environmental justice aspects of exposure to PM ₂₅ emissions from electric	
951	vehicle use in China. Environ. Sci. Technol., 49, 13912-13920. doi:	
952	10.1021/acs.est.5b04927, 2015.	
953	Jin, X., Fiore, A. M., Murray, L. T., Valin, L. C., Lamsal, L. N., Duncan, B., Folkert	带格式的: 行距: 单倍行距
954	Boersma, K., De Smedt, L. Abad, G. G., Chance, K., and Tonnesen, G. S.: Evaluating	
955	a space-based indicator of surface ozone-NO _v -VOC sensitivity over midlatitude	
956	source regions and application to decadal trends, J. Geophys. Res., 122, 439-461, doi:	
957	10.1002/2017JD026720. 2017.	
958	Kaiser, J. C., Riemer, N., and Knopf, D. A.: Detailed heterogeneous oxidation of soot	带格式的: 正文,左
959	surfaces in a particle-resolved aerosol model, Atmos. Chem. Phys., 11, 4505-4520,	
960	doi: 10.5194/acp-11-4505-2011, 2011.	
961	· · · · · · · · · · · · · · · · · · ·	
962	Kendall, C., Elliott, E. M., and Wankel, S. D.: Stable isotopes in ecology and	带格式的:行距:单倍行距
963	environmental science, chapter 12, 2 nd Edition, Blackwell, Oxford, 2007.	
964	Knopf, D. A., Forrester, S. M., and Slade, J. H.: Heterogeneous oxidation kinetics of	
965	organic biomass burning aerosol surrogates by O ₃ , NO ₂ , N ₂ O ₅ , and NO ₃ , Phys. Chem.	
966	Chem. Phys., 13, 21050-21062, doi: 10.1039/C1CP22478F, 2011.	
967	Knopf, D. A., Mak, J., Gross, S., and Bertram, A. K.: Does atmospheric processing of	带格式的:正文,左,缩进:左侧:0厘米,悬挂缩进:1字符,
968	saturated hydrocarbon surfaces by NO3 lead to volatilization?, Geophys. Res. Lett.,	自行缩进:-1 字符
969	33, doi:10.1029/2006GL026884, 2006.	
970	Kojima, K., Murakami, M., Yoshimizu, C., Tayasu, I., Nagata, T., and Furumai, H.:	
971	Evaluation of surface runoff and road dust as sources of nitrogen using nitrate	
972	isotopic composition, Chemosphere, 84, 1716-1722, doi:	
973	10.1016/j.chemosphere.2011.04.071, 2011.	
974	Lamsal, L. N., Martin, R. V., Padmanabhan, A., van Donkelaar, A., Zhang, Q., Sioris,	
975	C. E., Chance, K., Kurosu, T. P., and Newchurch, M. J.: Application of satellite	
976	observations for timely updates to global anthropogenic NO _x emission inventories,	
977	Geophy. Res. Lett., 38, doi: 10.1029/2010GL046476, 2011.	
978	Leighton, P.: Photochemistry of Air Pollution, Academic, New York, 1961.	
979	Levy, H., Moxim, W. J., and Kasibhatla, P. S.: A global three-dimensional time-	
980	dependent lightning source of tropospheric NO _x , J. Geophys. Res., 101, 22911-22922,	
981	doi: 10.1029/96JD02341, 1996.	
982	Li, D., and Wang, X.: Nitrogen isotopic signature of soil-released nitric oxide (NO)	
983	after fertilizer application, Atmos. Environ., 42, 4747-4754, doi:	
984	10.1016/j.atmosenv.2008.01.042, 2008.	
985	Li, M., Zhang, Q., Kurokawa, J. I., Woo, J. H., He, K., Lu, Z., Ohara, T., Song, Y.,	
986	Streets, D. G., Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S.,	
987	Liu, F., Su, H., and Zheng, B.: MIX: a mosaic Asian anthropogenic emission	
988	inventory under the international collaboration framework of the MICS-Asia and	
989	HTAP, Atmos. Chem. Phys., 17, 935-963, doi: 10.5194/acp-17-935-2017, 2017.	
990	Ling, T. Y., and Chan, C. K.: Formation and transformation of metastable double salts	
	35	

- from the crystallization of mixed ammonium nitrate and ammonium sulfate particles,
 Environ. Sci. Technol., 41, 8077-8083, doi: 10.1021/es071419t, 2007.
- Liu, D., Li, J., Zhang, Y., Xu, Y., Liu, X., Ding, P., Shen, C., Chen, Y., Tian, C., and
 Zhang, G.: The use of levoglucosan and radiocarbon for source apportionment of
 PM_{2.5} carbonaceous aerosols at a background site in East China, Environ. Sci.
 Technol., 47, 10454-10461, doi: 10.1021/es401250k, 2013a.
- Liu, F., Zhang, Q., Tong, D., Zheng, B., Li, M., Huo, H., and He, K. B.: High-resolution
 inventory of technologies, activities, and emissions of coal-fired power plants in
 China from 1990 to 2010, Atmos. Chem. Phys., 15, 13299-13317, doi: 10.5194/acp1000 15-13299-2015, 2015.
- Liu, J., Li, J., Zhang, Y., Liu, D., Ding, P., Shen, C., Shen, K., He, Q., Ding, X., Wang,
 X., Chen, D., Szidat, S., and Zhang, G.: Source apportionment using radiocarbon and
 organic tracers for PM_{2.5} carbonaceous aerosols in Guangzhou, South China:
 contrasting local- and regional-scale haze events, Environ. Sci. Technol., 48, 1200212011, doi: 10.1021/es503102w, 2014.
- Liu, X., Zhang, Y., Han, W., Tang, A., Shen, J., Cui, Z., Vitousek, P., Erisman, J. W.,
 Goulding, K., Christie, P., Fangmeier, A., and Zhang, F.: Enhanced nitrogen
 deposition over China, Nature, 494, 459-463, doi: 10.1038/nature11917, 2013b.
- Lu, Z., Streets, D. G., de Foy, B., Lamsal, L. N., Duncan, B. N., and Xing, J.: Emissions
 of nitrogen oxides from US urban areas: estimation from Ozone Monitoring
 Instrument retrievals for 2005-2014, Atmos. Chem. Phys., 15, 10367-10383, doi:
 10.5194/acp-15-10367-2015, 2015.
- 1013 Michalski, G., Scott, Z., Kabiling, M., and Thiemens, M. H.: First measurements and 1014 modeling of Δ^{17} O in atmospheric nitrate, Geophys. Res. Lett., 30, 1870-1872, doi: 1015 10.1029/2003gl017015, 2003.
- Miyazaki, K., Eskes, H., Sudo, K., Boersma, K. F., Bowman, K., and Kanaya, Y.:
 Decadal changes in global surface NO_x emissions from multi-constituent satellite
 data assimilation, Atmos. Chem. Phys., 17, 807-837, doi: 10.5194/acp-17-807-2017,
 2017.
- Morin, S., Savarino, J., Frey, M. M., Yan, N., Bekki, S., Bottenheim, J. W., and Martins,
 J. M.: Tracing the origin and fate of NO_x in the Arctic atmosphere using stable
 isotopes in nitrate, Science, 322, 730-732, doi: 10.1126/science.1161910, 2008.
- Morino, Y., Kondo, Y., Takegawa, N., Miyazaki, Y., Kita, K., Komazaki, Y., Fukuda,
 M., Miyakawa, T., Moteki, N., and Worsnop, D. R.: Partitioning of HNO₃ and
 particulate nitrate over Tokyo: Effect of vertical mixing, J. Geophys. Res., 111, doi:
 1026 10.1029/2005JD006887, 2006.
- Park, Y. M., Park, K. S., Kim, H., Yu, S. M., Noh, S., Kim, M. S., Kim, J. Y., Ahn, J. Y.,
 Lee, M. D., Seok, K. S., and Kim, Y. H.: Characterizing isotopic compositions of TCC, NO₃--N, and NH₄+-N in PM_{2.5} in South Korea: Impact of China's winter heating,
 Environ. Pollut., 233, 735-744, doi: 10.1016/j.envpol.2017.10.072, 2018.
- Parnell, A. C., Phillips, D. L., Bearhop, S., Semmens, B. X., Ward, E. J., Moore, J. W.,
 Jackson, A. L., Grey, J., Kelly, D. J., and Inger, R.: Bayesian stable isotope mixing
 models, Environmetrics, 24, 387-399, doi: 10.1002/env.2221, 2013.
- 1034 Phillips, D. L., Inger, R., Bearhop, S., Jackson, A. L., Moore, J. W., Parnell, A. C.,

- Semmens, B. X., and Ward, E. J.: Best practices for use of stable isotope mixing models in food-web studies, Can. J. Zool., 92, 823-835, doi: 10.1139/cjz-2014-0127, 2014.
- Price, C., Penner, J., and Prather, M.: NO_x from lightning: 1. Global distribution based
 on lightning physics, J. Geophys. Res., 102, 5929-5941, doi: 10.1029/96JD03504,
 1997.
- Reuter, M., Buchwitz, M., Hilboll, A., Richter, A., Schneising, O., Hilker, M., Heymann,
 J., Bovensmann, H., and Burrows, J. P.: Decreasing emissions of NOx relative to CO₂
 in East Asia inferred from satellite observations, Nat. Geosci., 7, 792-795, doi:
 10.1038/ngeo2257, 2014.
- Richter, A., Burrows, J. P., Nüß, H., Granier, C., and Niemeier, U.: Increase in tropospheric nitrogen dioxide over China observed from space, Nature, 437, 129, doi: 10.1038/nature04092, 2005.
- Savarino, J., Kaiser, J., Morin, S., Sigman, D., and Thiemens, M.: Nitrogen and oxygen
 isotopic constraints on the origin of atmospheric nitrate in coastal Antarctica, Atmos.
 Chem. Phys., 7, 1925-1945, doi: 10.5194/acp-7-1925-2007, 2007.
- Seinfeld, J. H., and Pandis, S. N.: Atmospheric chemistry and physics: From air
 pollution to climate change, John Wiley & Sons, 2012.
- Shiraiwa, M., Pöschl, U., and Knopf, D. A.: Multiphase chemical kinetics of NO₃*
 radicals reacting with organic aerosol components from biomass burning, Environ.
 Sci. Technol., 46, 6630-6636, doi: 10.1021/es300677a, 2012.
- Sigman, D. M., Casciotti, K. L., Andreani, M., Barford, C., Galanter, M., and Böhlke,
 J. K.: A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and
 freshwater, Anal. Chem., 73, 4145-4153, doi: 10.1021/ac010088e, 2001.
- Simoneit, B. R. T., Schauer, J. J., Nolte, C. G., Oros, D. R., Elias, V. O., Fraser, M. P.,
 Rogge, W. F., and Cass, G. R.: Levoglucosan, a tracer for cellulose in biomass
 burning and atmospheric particles, Atmos. Environ., 33, 173-182, Anal. Chem., doi:
 10.1016/S1352-2310(98)00145-9, 1999.
- Simoneit, B. R. T.: Biomass burning a review of organic tracers for smoke from
 incomplete combustion, Appl. Geochem., 17, 129-162, Anal. Chem., doi:
 10.1016/S0883-2927(01)00061-0, 2002.
- Smith, M. L., Bertram, A. K., and Martin, S. T.: Deliquescence, efflorescence, and
 phase miscibility of mixed particles of ammonium sulfate and isoprene-derived
 secondary organic material, Atmos. Chem. Phys., 12, 9613-9628, doi: 10.5194/acp12-9613-2012, 2012.
- Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M.,
 and Miller, H. L.: Climate change 2007: The physical science basis: contribution of
 Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on
 Climate Change, Cambridge University Press, New York, 2007.
- Thiemens, M. H., and Heidenreich, J. E.: The mass-independent fractionation of oxygen:
 a novel isotope effect and its possible cosmochemical implications, Science, 219,
 1076 1073-1075, doi: 10.1126/science.219.4588.1073, 1983.
- 1077 Thiemens, M. H.: Mass-independent isotope effects in planetary atmospheres and the 1078 early solar system, Science, 283, 341-345, doi: 10.1126/science.283.5400.341, 1999.

带格式的: 正文, 左, 缩进: 左侧: 0 厘米, 悬挂缩进: 1 字符, 首行缩进: -1 字符

- 1079 Turekian, V. C., Macko, S., Ballentine, D., Swap, R. J., and Garstang, M.: Causes of
 1080 bulk carbon and nitrogen isotope fractionations in the products of vegetation burns:
 1081 laboratory studies, Chem. Geol., 152, 181-192, doi: 10.1016/S0009-2541(98)001051082 3, 1998.
- 1083 Walters, W. W., Goodwin, S. R., and Michalski, G.: Nitrogen stable isotope composition 1084 $(\delta^{15}N)$ of vehicle-emitted NO_x, Environ. Sci. Technol., 49, 2278-2285, doi: 1085 10.1021/es505580v, 2015.
- Walters, W. W., and Michalski, G.: Theoretical calculation of nitrogen isotope
 equilibrium exchange fractionation factors for various NO_y molecules, Geochim.
 Cosmochim. Ac., 164, 284-297, doi: 10.1016/j.gca.2015.05.029, 2015.
- Walters, W. W., and Michalski, G.: Theoretical calculation of oxygen equilibrium
 isotope fractionation factors involving various NO_y molecules, OH, and H₂O and its
 implications for isotope variations in atmospheric nitrate, Geochim. Cosmochim. Ac.,
 191, 89-101, doi: 10.1016/j.gca.2016.06.039, 2016.
- 1093 Walters, W. W., Simonini, D. S., and Michalski, G.: Nitrogen isotope exchange between 1094 NO and NO₂ and its implications for δ^{15} N variations in tropospheric NO_x and 1095 atmospheric nitrate, Geophys. Res. Lett., 43, 440-448, doi: 10.1002/2015gl066438, 1096 2016.
- Wang, H., Lu, K., Chen, X., Zhu, Q., Chen, Q., Guo, S., Jiang, M., Li, X., Shang, D.,
 Tan, Z., Wu, Y., Wu, Z., Zou, Q., Zheng, Y., Zeng, L., Zhu, T., Hu, M., and Zhang,
 Y.: High N₂O₅ concentrations observed in urban Beijing: Implications of a large
 nitrate formation pathway, Environ. Sci. Technol. Lett., 4, 416-420, doi:
 10.1021/acs.estlett.7b00341, 2017.
- 1102 Wankel, S. D., Chen, Y., Kendall, C., Post, A. F., and Paytan, A.: Sources of aerosol 1103 nitrate to the Gulf of Aqaba: Evidence from δ^{15} N and δ^{18} O of nitrate and trace metal 1104 chemistry, Mar. Chem., 120, 90-99, doi: 10.1016/j.marchem.2009.01.013, 2010.
- Wojtal, P. K., Miller, D. J., O'Conner, M., Clark, S. C., and Hastings, M. G.: Automated,
 high-resolution mobile collection system for the nitrogen isotopic analysis of NO_x, J.
 Vis. Exp., 118, e54962, doi: 10.3791/54962, 2016.
- Yienger, J. J., and Levy, H.: Empirical model of global soil-biogenic NO_x emissions, J.
 Geophys. Res., 100, 11447-11464, doi: 10.1029/95JD00370, 1995.
- Zhang, Q., Geng, G., Wang, S., Richter, A., and He, K.: Satellite remote sensing of
 changes in NO_x emissions over China during 1996-2010, Chinese Sci. Bull., 57,
 2857-2864, doi: 10.1007/s11434-012-5015-4, 2012.
- Zhang, R., Tie, X., and Bond, D. W.: Impacts of anthropogenic and natural NO_x sources
 over the U.S. on tropospheric chemistry, P. Natl. Acad. Sci. U.S.A, 100, 1505-1509,
 doi: 10.1073/pnas.252763799, 2003.
- Zhao, B., Wang, S. X., Liu, H., Xu, J. Y., Fu, K., Klimont, Z., Hao, J. M., He, K. B.,
 Cofala, J., and Amann, M.: NO_x emissions in China: historical trends and future
 perspectives, Atmos. Chem. Phys., 13, 9869-9897, doi: 10.5194/acp-13-9869-2013,
 2013.
- Zhao, Y., Qiu, L. P., Xu, R. Y., Xie, F. J., Zhang, Q., Yu, Y. Y., Nielsen, C. P., Qin, H.
 X., Wang, H. K., Wu, X. C., Li, W. Q., and Zhang, J.: Advantages of a city-scale
- emission inventory for urban air quality research and policy: the case of Nanjing, a

of various inorganic species (MSA: stands for methyl sulphonate) during day-night_-

- samplings at Sanjiang between 8 and October 2013 18 (sample ID 1 to 8,
- respectively). The higher relative abundances of nss-K⁺ and Cl⁻ are indicative for a
- biomass-burning dominated source. For sample ID information and exact sampling

dates, refer to Table S3.

带格式的: 上标

1164Figure 3. Original δ^{15} N values (δ^{15} N_{ini}) for pNO₃, calculated values for the N isotope1165fractionation (ϵ_N) associated with the conversion of gaseous NO_x to pNO₃, and1166corrected δ^{15} N values (δ^{15} N_{corr}; 15 N_{ini} minus ϵ_N) of pNO₃ for each sample collected1167during the Sanjiang sampling campaign. The colored bands represent the variation1168range of δ^{15} N values for different NO_x sources based on reports from the literature1169(Table S2). See Table S3 for the information regarding sample ID.

Figure 4. Comparison between the theoretical calculation and WRF-Chem simulation
of the average contribution ratio (γ) for nitrate formation in Nanjing via the reaction

1177 of NO₂ and photochemically produced •OH.

- 1178
- ----
- 1179
- 1180
- _00
- 1181

1183Figure 5. (a) Time-series variation of coal combustion and road traffic contribution to1184the mass concentrations of ambient pNO_3^- in Nanjing, as estimated through MixSIR;1185(b) Correlation analysis between the mass concentrations of coal combustion-related1186 pNO_3^- and SO₂; (c) Correlation analysis between the mass concentrations of road1187traffic-related pNO_3^- and CO.

- ____

.

ter consideration of significant N isotope fractionation during transformation ($\epsilon_N = 5\%$, 10%, 15% or 20%).