

1 **February 2017 extreme Saharan dust outbreak in the Iberian
2 Peninsula: from lidar-derived optical properties to evaluation
3 of forecast models**

4

5 Alfonso J. Fernández¹, Michäel Sicard^{2,3}, Maria J. Costa⁴, Juan L. Guerrero-Rascado^{5,6},
6 José L. Gómez-Amo⁷, Francisco Molero¹, Rubén Barragán^{2,3}, Daniele Bortoli⁴, Andrés
7 E. Bedoya-Velásquez^{5,6}, María P. Utrillas⁷, Pedro Salvador¹, María J. Granados-
8 Muñoz², Miguel Potes⁴, Pablo Ortiz-Amezcu^{5,6}, José A. Martínez-Lozano⁷, Begoña
9 Artíñano¹, Constantino Muñoz-Porcar², Rui Salgado⁴, Roberto Román^{5,6}, Francesc
10 Rocadenbosch^{2,3}, Vanda Salgueiro⁴, José A. Benavent-Oltra^{5,6}, Alejandro Rodríguez-
11 Gómez², Lucas Alados-Arboledas^{5,6}, Adolfo Comerón² and Manuel Pujadas¹.

12

13 ¹Dept. of Environment, Research Centre for Energy, Environment and Technology
14 (CIEMAT), Madrid, Spain.

15 ²Dept. of Signal Theory and Communications, CommSensLab, Universitat Politècnica
16 de Catalunya, Barcelona, Spain.

17 ³Ciències i Tecnologies de l'Espai - Centre de Recerca de l'Aeronàutica i de l'Espai /
18 Institut d'Estudis Espacials de Catalunya (CTE-CRAE / IEEC), Universitat Politècnica
19 de Catalunya, Barcelona, Spain

20 ⁴Institute of Earth Sciences and Dept. of Physics, ECT and IIFA, Universidade de
21 Évora, Évora, Portugal.

22 ⁵Dept. of Applied Physics, University of Granada, Granada, Spain.

23 ⁶Andalusian Institute for Earth System Research (IISTA-CEAMA), Granada, Spain.

24 ⁷Dept. of Physics of the Earth and Thermodynamics, University of Valencia, Valencia,
25 Spain.

26

27 Correspondence to: Alfonso Javier Fernández (alfonsoj.fernandez@ciemat.es)

28

29 **Abstract**

30 An unprecedeted extreme Saharan dust event was registered in winter time from 20 to
31 23 February 2017 over the Iberian Peninsula (IP). We report on aerosol optical

32 properties observed under this extreme dust outbreak through remote sensing (active
33 and passive) techniques. For that, EARLINET (European Aerosol Research Lidar
34 NETwork) lidar and AERONET (AErosol RObotic NETwork) Sun-photometer Cimel
35 CE 318 measurements are used. The sites considered are: Barcelona (41.38°N, 2.17°E),
36 Burjassot (39.51°N, 0.42°W), Cabo da Roca (38.78°N, 9.50°W), Évora (38.57°N,
37 7.91°W), Granada (37.16°N, 3.61°W) and Madrid (40.45°N, 3.72°W).

38 In general, large aerosol optical depths (AOD) and low Ångström exponents (AE) are
39 observed. An AOD of 2.0 at 675 nm is reached in several stations. Maximum values of
40 AOD₆₇₅ of 2.5 are registered in Évora. During and around the peak of AOD₆₇₅, AEs
41 close to 0 are measured. With regard to vertically-resolved aerosol optical properties,
42 particle backscatter coefficients as high as $1.5 \cdot 10^{-5} \text{ m}^{-1} \text{ sr}^{-1}$ at 355 nm are recorded at
43 every lidar stations. Mean lidar ratios are found in the range 40 - 55 sr at 355 nm and 34
44 - 61 sr at 532 nm during the event inside the dust layer. Mean particle and volume
45 depolarization ratios are found to be very consistent between lidar stations. They range
46 0.19-0.31 and 0.12-0.26 respectively. The optical properties are also found very stable
47 with height in the dust layer. Another remarkable aspect of the event is the limited
48 height of the dust transport which is found between the ground and 5 km. Our
49 vertically-resolved aerosol properties are also used to estimate the performances of two
50 dust models, namely BSC-DREAM8b and NMMB/BSC-Dust, in order to evaluate their
51 forecast skills in such intense dust outbreaks. We found that forecasts provided by the
52 NMMB/BSC-Dust show a better agreement with observations than the ones from BSC-
53 DREAM8b. The BSC-DREAM8b forecasts (24 h) present a large underestimation
54 during the event. No clear degradation of the prognostics is appreciated in 24, 48, 72 h
55 except for the Barcelona station.

57 **1 Introduction**

58 Mineral aerosols are usually originated over arid or semiarid regions as a consequence
59 of continuous soil erosion produced by wind. The strong warming of desert areas during
60 daytime produces vertical thermal turbulences that can reach altitudes of up to 5000 m,
61 followed by periods of nocturnal stability (Santos et al. 2013). Massive resuspension of
62 huge amounts of mineral aerosols are thus produced and can be transported long
63 distances by different mechanisms. 40% of aerosol mass emitted into the troposphere is
64 attributed to desert dust and it is considered as the second largest source of natural
65 aerosols (Andreae 1995, Salvador et al. 2014). One of the main desert dust sources is
66 the Sahara desert since it is responsible for more than half of the world atmospheric
67 mineral dust (Prospero et al. 2002, Mahowald et al. 2005, Wagner et al. 2009, Salvador
68 et al. 2016). Under specific synoptic meteorological situations, a large amount of
69 Saharan dust is transported towards the Mediterranean basin (Lafontaine et al. 1990,
70 Obregón et al. 2015, Cuevas et al. 2017).

71 Lately, the number of surveys which address the study of atmospheric mineral aerosols
72 has been increased for several reasons. Firstly, from the climate change standpoint,
73 mineral aerosols play an important role on atmospheric radiative budget through
74 scattering and absorption of the incoming solar and outgoing infrared radiation, and
75 acting as cloud condensation nuclei (Ansmann et al. 2005, Klein et al. 2010, IPCC
76 2013). Currently, the large temporal and spatial variability is responsible for a high
77 uncertainty degree in aerosol radiative forcing estimates (Boucher et al. 2013) (Forster
78 et al. 2007). Furthermore, there is a lack of systematic statistical surveys during a long
79 time period. Some of them, (Mona et al. 2006) (Salvador et al. 2013) (Pey et al. 2013),
80 have indicated that the Mediterranean basin is affected by African dust outbreaks
81 following a marked seasonal pattern. Summer prevalence has been detected in the

82 western side (Sicard et al. 2016), no seasonal trend has been observed in the central
83 region and higher contributions of desert dust have been commonly produced in spring-
84 early summer in the eastern side of this basin.

85 Winter is the season when these phenomena are less likely to occur across the whole
86 Mediterranean basin (Querol et al. 2009). However, extreme dust outbreaks, as the one
87 described in this paper or others that took place quite recently (Cazorla et al. 2017,
88 Sorribas et al. 2017), occurred during the coldest season. According to the fifth IPCC
89 (2013) report an extreme weather event can be defined as a rare phenomenon taking into
90 account its historical statistical distribution for a particular place and/or time. Then 10th
91 and 90th percentiles are usually considered as reference to define "rare". In the
92 supplementary material: Fig. S1, S2, S3 and Table S1, percentile of AOD_{675} and
93 Ångström exponent (440-870 nm) are presented having considered all data available at
94 each station in the Iberian Peninsula. Along with it, data concerning this event is also
95 represented in order to justify its extreme character. This is important to be highlighted
96 as extreme weather events have been discussed and suggested to be connected to
97 climate change. For instance some remaining questions concern whether or not such
98 events take place earlier or later in the season or if their severity has been increased
99 (World Meteorological Organization 2011).

100 What is more, it has been demonstrated that African dust is the main source contributing
101 to the regional background levels of PM_{10} (particular matter with an aerodynamic
102 diameter lower than 10 μm) across the Mediterranean (35-50% of PM_{10}) with maximum
103 contributions up to 80% of the total PM_{10} mass (Pey et al. 2013) . These sporadic but
104 intense natural contributions of PM have been responsible of a high number of
105 exceedances of the PM_{10} daily limit value (50 $\mu g/m^3$, after the 2008/50/EC European
106 Directive) as registered in different rural and urban monitoring sites across the

107 Mediterranean Basin (Querol et al. 2009, Salvador et al. 2013). Moreover, statistically
108 significant evidences on the association between short-term exposure to desert dust and
109 health outcomes have also been derived (Karanasiou et al., 2012). PM_{10} originating
110 from the desert was positively associated with mortality and hospitalizations in 13
111 Southern European cities for the period 2001-2010 (Stafoggia et al. 2016). A recent
112 regional study carried out in Spain has associated PM_{10} levels with daily mortality
113 during African dust outbreaks in most of the Spanish regions (Díaz et al. 2017).

114 In addition, massive aerosol emissions into the atmosphere can be an issue for aircraft
115 operation. For instance, aircraft engines, that fly through atmospheres with significant
116 mineral dust loads on a regular basis, usually undergo an accelerated aging, and as a
117 result, an anticipated and unexpected overhaul and maintenance is required (Weinzierl
118 et al. 2012). In addition, atmospheric mineral dust can cause a huge impact on aviation
119 by reducing the visibility during the landing and takeoff of aircrafts (Weinzierl et al.
120 2017).

121 For all these reasons, characterizing these events in detail is strictly necessary given the
122 aforementioned implications on human society. In this article, we report on a record-
123 breaking dust event that hit the Iberian Peninsula (IP) on 20 - 23 February 2017. The
124 observational task has been carried out through remote sensing techniques at different
125 sites located in the IP. Sun and sky scanning spectral radiometers and lidar
126 measurements have provided observations concerning the spatial (vertical and
127 horizontal) distribution of aerosol. In this sense, the lidar technique is indispensable
128 since it can provide both temporally and vertically resolved dust layering structures. To
129 give an idea of the magnitude of the extreme event it is noteworthy to state that the
130 AOD was greater than 2 at 675 nm in several AERONET stations and for the most
131 intense periods some lidar and sun-photometer retrievals could not be performed due to

132 high aerosol load, respectively, attenuating the lidar signal and blocking the sun. A
133 previous work concerning such event at the IP found an AODs at 500 nm up to 1.5 in
134 the south of Spain (Guerrero-Rascado et al. 2009). In this case, maximum values of
135 particle backscatter coefficients ($1.5 \cdot 10^{-5} \text{ m}^{-1} \text{ sr}^{-1}$ at 355 nm) were similar to those
136 registered during this event, however it took place in September. Preissler et al. (2011)
137 reported an aerosol optical thickness up to 2 in Portugal as a consequence of another
138 extreme dust outbreak episode in April (Preissler et al. 2011).

139 Finally, having the capability to forecast such events is also very important. Comparison
140 exercises between real and modeled data must be done in order to better comprehend
141 extreme dust events but more importantly to provide accurate information to decision
142 makers beforehand. Because of that, it has been checked if the results from dust models
143 (BSC-DREAM8b and NMMB/BSC-Dust) are in agreement with observations as the
144 relationship between certain meteorological patterns and extreme African dust events
145 can provide useful information for human health, air traffic controllers, or to predict
146 different climate change scenarios. However, dust models have proved to fail in certain
147 occasions under extreme dust events (Mamouri et al. 2016) mainly because the scale
148 used by models is not small enough to appreciate such phenomena.

149 The aim of this paper is to procure an overview of the available dust observations
150 obtained from remote sensing techniques at different locations in the IP, to derive the
151 aerosol optical property profiles from such observations and to compare them against
152 the results computed from models. The paper is organized as follows. The instruments
153 and methodology are briefly described in Sect. 2. Sect. 3 deals with the description of
154 the synoptic situation and columnar aerosol optical properties from sun and sky spectral
155 radiometers. In section 4, vertically-resolved optical properties are discussed. Section 5

156 presents the performance of the dust models. Finally, conclusions can be found in Sect.
157 6.

158 **2 Instruments and methodology**

159 **2.1 AERONET CIMEL CE-318 Sun-photometers in the IP.**

160 The AErosol RObotic NETwork (AERONET) is a global ground-based network of
161 sun/sky multi-wavelength CIMEL CE-318 sun-photometers that provides relatively
162 long-term records of atmospheric columnar aerosol optical properties (Holben et al.
163 1998). The CIMEL spectral sun-photometer measures the direct solar irradiances with a
164 field of view of approximately 1.2° and the sky radiances (in the almucantar and
165 principal plane scenarios), at several spectral channels (see table 1). The direct-sun
166 measurements are used to obtain the spectral AOD, Ångström exponent at several
167 wavelength pairs and precipitable water vapor, approximately every 15 min. The
168 estimated AOD uncertainty (mainly due to the calibration) is between 0.01 and 0.02
169 (Holben et al. 1998).

170 The sky radiance measurements can be inverted to estimate aerosol optical properties
171 such as the size distribution, the percentage of spherical particles in the aerosol mixture,
172 several microphysical parameters describing the total, fine and coarse aerosol modes
173 and numerous spectral quantities: complex refractive index, single scattering albedo,
174 phase function, asymmetry parameter, extinction and absorption optical depths. The
175 aerosol properties retrieved are hence used for calculating the broad-band fluxes at the
176 bottom and top of the atmosphere, the radiative forcing and forcing efficiencies are also
177 provided. A detailed description of the version 2 AERONET inversion products is given
178 by (Holben et al. 2001). Table 1 shows the six AERONET stations distributed in the IP
179 that were considered in this study. In figure 2 these places are located on a map.

180

181

182 **Table 1 – Summary of the sites considered in the study, main characteristics of the**
 183 **AERONET sun-photometers and EARLINET lidars used, and lidar measurement**
 184 **time.**

Site	Long. (°)	Lat. (°)	Altitude (m a.s.l.)	AERONET Sun photometer channels for AOD (nm)	EARLINET Lidar channels (nm)			Lidar measurement time	
					Elastic	Raman	Vertical resol. (m)	Start time	Stop time
Barcelona	2.11° E	41.39° N	115	440, 675, 870, 1020	355, 532 total, 532 cross, 1064	387, 407, 607	3.75	08:11 UTC (23 Feb)	23:54 UTC (23 Feb)
Burjassot	0.42° W	39.51° N	60	340, 380, 440, 500, 675, 870, 1020, 1640	355 cross and parallel	387	15	-	-
Cabo da Roca	9.50° W	38.78° N	140	340, 380, 440, 500, 675, 870, 1020	-	-	-	-	-
Évora	7.91° W	38.57° N	293	340, 380, 440, 500, 675, 870, 1020	355, 532, 532 cross, 1064	387, 607	30	00:00 UTC (20 Feb)	23:59 UTC (23 Feb)
Granada	3.61° W	37.16° N	680	340, 380, 440, 500, 675, 870, 1020	355, 532 parallel, 532 cross, 1064	387, 407, 607	7.5	12:00h UTC (20 Feb)	18:00h UTC (20 Feb)
								19:00h UTC (20 Feb)	21:00h UTC (20 Feb)
								07:31h UTC (21 Feb)	14:21h UTC (21 Feb)
								07:31h UTC (22 Feb)	20:00h UTC (22 Feb)
Madrid	3.72° W	40.45° N	669	340, 380, 440, 500, 675, 870, 1020	355, 532, 1064	387, 407, 607	7.5 (elastic), 3.75 (Raman)	21:00h UTC (22 Feb)	23:36h UTC (22 Feb)
								05:00h UTC (23 Feb)	08:00h UTC (23 Feb)
								11:00h UTC (23 Feb)	11:52h UTC (23 Feb)

185

186 **2.2 EARLINET lidars in the IP**

187

188 The European Aerosol Research Lidar Network, EARLINET, aims at creating a
 189 quantitative, comprehensive, and statistically significant database for the horizontal,
 190 vertical, and temporal distribution of aerosols on a continental scale, providing the most

191 extensive collection of ground-based data for the aerosol vertical distribution over
192 Europe (Pappalardo et al. 2014). In this work four Iberian EARLINET stations
193 (Barcelona, Madrid, Évora and Granada) provided lidar data, all of them equipped with
194 multi-wavelength lidars and some of them with depolarization capabilities (see Table 1).
195 Burjassot lidar station was not available at this moment.

196 On a regular basis, the EARLINET protocol establishes that lidar measurements have to
197 be carried out on Monday (at 14 UTC and at sunset) and on Thursday (sunset).
198 However, under exceptional events, as the one described in this work, these stations
199 perform additional measurements in order to register the phenomena as long as possible.
200 Then, lidar signals were averaged over 30 or 60 minute periods in order to guarantee a
201 proper signal-to-noise ratio throughout the vertical column. The criteria followed to
202 choose such periods is based on the representation of the dust plume but also on the data
203 availability at atmospheric levels where Rayleigh computation can be accomplished
204 since the aerosol burden during this event was certainly high and produced a great
205 radiation extinction, which hampered the Rayleigh retrieval. In this work, lidar
206 measurements at each station were performed at the periods specified in Table 1.

207 Vertically resolved particle coefficients were derived by means of the Klett-Fernald
208 algorithm (Klett 1981, Fernald 1984). This algorithm requires an assumption of the lidar
209 ratio (LR), defined as the particle extinction (α) to particle backscatter (β) coefficients
210 ratio, and for mineral dust we have considered a value of 50 sr (Guerrero-Rascado et al.
211 2008, Guerrero-Rascado et al. 2009, Muller et al. 2009, Muller et al. 2010, Preissler et
212 al. 2011). If possible, α and β coefficient profiles were retrieved independently
213 (Ansmann et al. 1992), which in turn allow computing the vertically-resolved LR.
214 Given the fact that the LR is an intensive parameter, it provides useful information for
215 the analysis of aerosol optical properties. Another intensive variable is the Ångström

216 exponent (Ångström 1964). It is inversely related to the size of particles: the greater the
217 exponent is, the smaller the particles are and vice versa (Amiridis et al. 2009). This is
218 defined for the wavelength pair (λ_1 and λ_2) as:

$$\text{Å}_\alpha = -\frac{\log \left[\frac{\alpha(\lambda_1)}{\alpha(\lambda_2)} \right]}{\log \left[\frac{\lambda_1}{\lambda_2} \right]} \quad \square \quad (1)$$

219

220 Since extinction coefficients were not always available, Ångström exponent was only
221 obtained for such cases. However, the three backscatter coefficients were always
222 estimated, which allowed to retrieve, the backscatter-related Ångström exponent. For
223 this reason this parameter is also estimated, and the relationship to the aerosol size is
224 similar than the previous definition, although it is affected by other parameters such as
225 refractive index so the relationship should not be straightforward. Last but not least,
226 lidar systems equipped with depolarization channels procure relevant information about
227 the aerosol type because backscatter signals related to the cross and parallel-polarized
228 component varies depending on aerosol shape.

229 With regard to the errors associated to the measurements, we made use of the Monte-
230 Carlo technique so as to estimate the uncertainties of the vertically-resolved backscatter
231 and extinction coefficients. This technique is based on the random extraction of new
232 lidar signals, each bin of which is considered a sample element of a given probability
233 distribution with the experimentally observed mean value and standard deviation. The
234 extracted lidar signals are then processed with the same algorithm to obtain a set of
235 solutions from which the standard deviation is inferred as a function of height
236 (Pappalardo et al. 2004).

237 2.3 Description of the models evaluated and methodology

238 The present analysis utilizes the operational 72-hour dust forecasts of the BSC-
239 DREAM8b (Perez et al. 2006, Basart et al. 2012) and the NMMB/BSC-Dust (Perez et
240 al. 2011) models (<http://www.bsc.es/ess/information/bsc-dust-daily-forecast>) for the
241 period from 19 to 22 February 2017. Both models are developed and operated at the
242 Barcelona Supercomputing Center (BSC). Table 2 summarizes the main parameters
243 used in the configuration of the models.

244 **Table 2. Main parameters of the dust models used in this study.**

245

	BSC-DREAM8b	NMMB/BSC-Dust
Meteorological driver	Eta/NCEP	NMMB/NCEP
Model domain	North Africa-Middle East-Europe (25° W – 60° E and 0° – 65° N)	
Initial and boundary conditions	NCEP/GFS data (at 0.5° × 0.5° horizontal resolution) at 12 UT are used as initial conditions and boundary conditions at intervals of 6 hours	
Horizontal resolution	0.33° x 0.33°	
Vertical resolution	24 Eta-layers	40 σ -hybrid layers
Time step	3h	
Dust size bins	8 (0.1–10 μm)	
Radiation interactions	Yes	Yes
Dust initial condition	24 h forecast from the previous day's model run	

246

247 The modeled dust extinction values at 550 nm are directly compared with the observed
248 particle extinction values at 532 nm because of the wavelength proximity and the low
249 spectral extinction dependence of mineral dust (see Section 4). In order to have

250 continuous observations and to maximize their number, day and nighttime inversions of
251 particle backscatter coefficients are used and converted to extinction by multiplying
252 them by a constant lidar ratio of 50 sr. The vertical resolution of both dust models is
253 much coarser than the lidar vertical resolution. In order to evaluate the models'
254 capability to reproduce the vertical distribution of the dust extinction coefficient, the
255 original lidar vertical resolution is downgraded to the resolution of the modeled profiles.

256 Given that the extinction value at a given height, h_i , of the models is the average
257 extinction of the layer comprised between $h_i - \frac{h_i - h_{i-1}}{2}$ and $h_i + \frac{h_{i+1} - h_i}{2}$, the extinction
258 value of the lidar profile at height h_i is calculated as the mean value of the original lidar
259 profile (at the lidar original vertical resolution) calculated in the exact same layer of
260 each model. For the horizontal resolution, the lidar data can be considered as point
261 observations, while the models represent uniform pixels of 0.33° resolution (~33 km).
262 The temporal resolution is also different: while the models provide instantaneous
263 profiles with a time steps of 3 hours, the lidar profiles are averaged over 30 or 60 min.
264 Here we have compared each modeled profile at time t with a 30- (60-) min. averaged
265 lidar-derived profile included in the interval $[t - 30, t + 29 \text{ min.}]$ ($[t - 60, t + 59 \text{ min.}]$).
266 In case two consecutive measurements fulfil this criterion, the measurement which was
267 running at time t is selected. The forecast skill analysis is performed in terms of two
268 vertically integrated statistical indicators, namely the fractional bias (FB), and the
269 correlation coefficient (r), as well as in terms of the center of mass (CoM). FB and r
270 are both calculated for the extinction coefficient. The fractional bias is a normalized
271 measure of the mean bias and indicates only systematic errors, which lead to an
272 under/overestimation of the estimated values. The linear correlation coefficient is a
273 measure of the models' capability to reproduce the shape of the aerosol profile. The

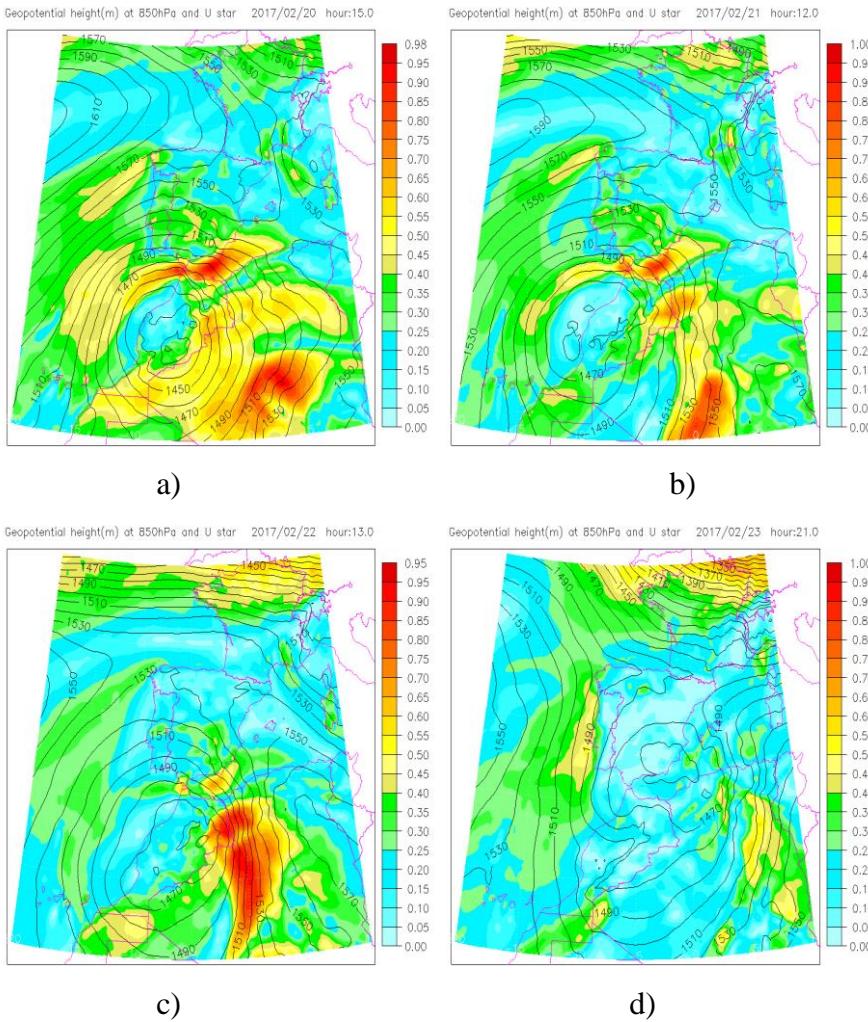
274 vertical integration is made from the lowest pair of simultaneously available model and
275 observed values up to 6 km. No lower limit was fixed because of the dust plume
276 proximity to the ground surface. The upper limit was fixed to 6 km because nearly no
277 dust was detected above that height. The CoM was approximated by the particle
278 backscatter weighted altitude as defined in (Mona et al. 2006) who noted that this
279 approximation “exactly coincides with the true center of mass if both composition and
280 size distribution of the particles are constant with the altitude”.

281 In the following sections we evaluate the model performances for forecasts of 24 hours
282 (Section 5.1) and then we compare these forecasts to longer ones of 48 and 72 h
283 (Section 5.2) to see how the forecast skill behaves as the lead time increases. A forecast
284 (or a lead time) of 24 h represents all forecasts in the range [0; 23h] since the model
285 initialization. 48 and 72 h forecasts represent all forecasts in the range [24; 47h] and
286 [48; 71h] since the model initialization, respectively.

287 **3 Synoptic situation and columnar properties**

288 3.1 Synoptic situation

289 During the period from 20 to 23 February 2017, the synoptic situation in the IP was
290 dominated by the influence of an anticyclone centered northwest from the Western
291 coast, extending in ridge to South Central Europe and by the existence of a low pressure
292 system, initially centered over Morocco, as illustrated in the ECMWF ERA5 reanalysis
293 of the Geopotential height at 850 hPa at several hours (Fig.1). This low is very likely to
294 be associated to Sharav cyclone (Alpert and Ziv, 1989). The plots presented in Figure 1
295 also include the surface wind friction velocity (u_*), which is a good indicator of
296 possible dust emissions from deserts (Alfaro and Gomes, 2001; Darmenova et al., 2009
297 and references therein). It is generally assumed that the dust flux from the surface


298 involves a power law of the wind friction velocity, as well as some parameters that
299 characterize the surface, as the fraction of vegetation, the surface roughness and the soil
300 texture and water content. Significant dust emissions are likely to occur for high friction
301 velocities (above 0.6ms^{-1}), presenting lower sensitivity to land surface parameters
302 (Darmenova et al., 2009).

303 The Geopotential field at 850 hPa (Fig.1) indicates the persistence of an atmospheric
304 flow advecting air from the central North Africa (Algeria) crossing the IP. On 20
305 February (Fig 1a) strong u_* values ($> 6 \text{ ms}^{-1}$) represented over Algerian Sahara, a major
306 dust source region (Ginoux et al., 2012) are suitable to force dust aerosol emissions
307 (Darmenova et al., 2009). The well-shaped deep low, centered over central Morocco
308 transported air from Algeria to southern Spain. Over the Central and Northern parts of
309 the Peninsula, the dominant wind brings air from central Europe under the anticyclonic
310 circulation. Wind vectors at 850 hPa are not represented in Fig.1 for clearness, though at
311 this level it is reasonable to assume geostrophic wind. The situation maintains very
312 similar in the next day and on the 22 February the low provokes high winds on the
313 western side (central-northern Algeria), which may be seen by the proximity of the
314 isopleths and by the strong values of u_* (Fig. 1c), which indicates strong dust
315 emissions. On 23 February the northward shift of the Moroccan low originated weak
316 precipitation events in several locations in the south of Portugal and Spain, but still
317 transporting air from Algeria to Northeast Spain (~Catalonia). The u_* over the desert
318 regions dropped significantly, hinting at the end of the significant dust emissions. The
319 synoptic conditions changed sharply on 24 February with the passage of a frontal
320 system that affected all the IP (not shown in Fig.1).

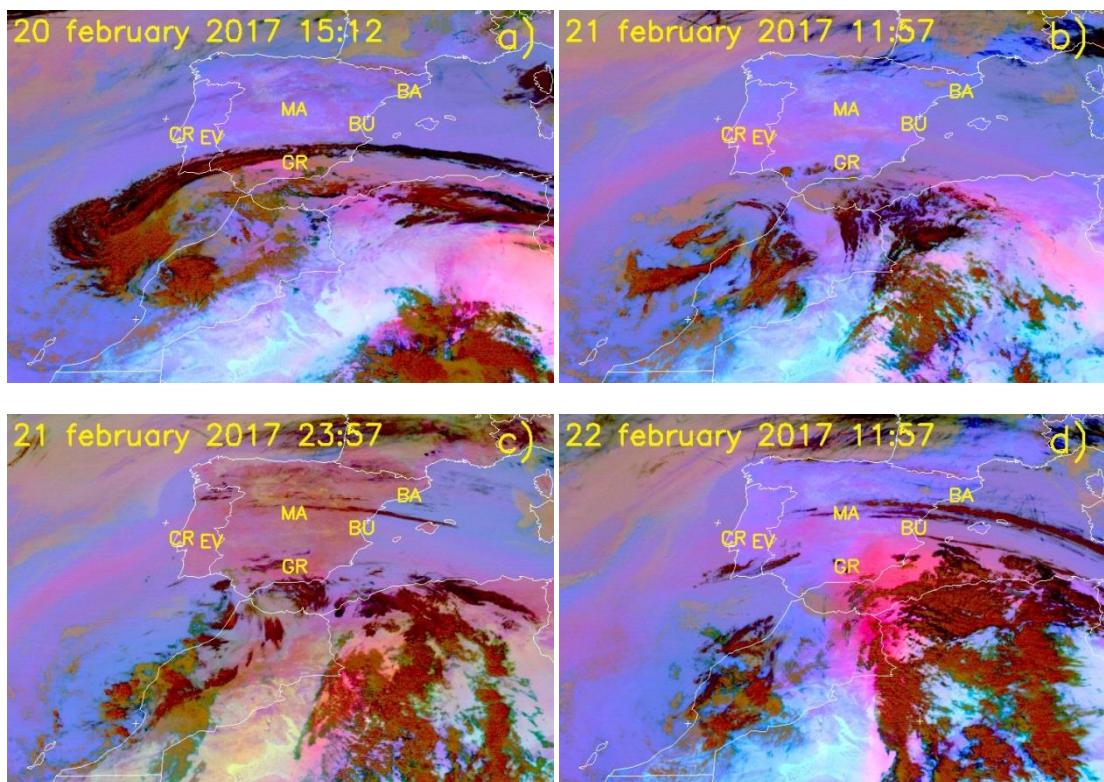
321

322

323

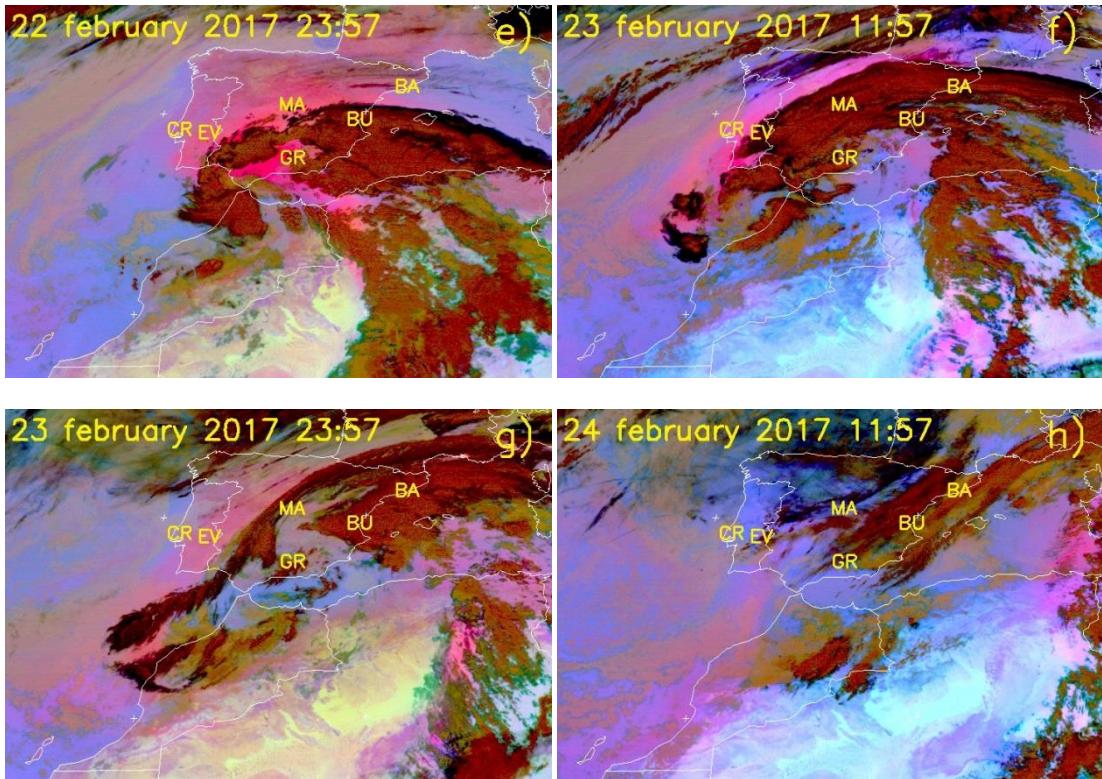
324

325


326

327 **Fig. 1. European Centre for Medium-Range Weather Forecasts (ECMWF)**
328 **reanalysis (ERA 5) of the Geopotential height at 850 hPa (black height contours)**
329 **and surface wind friction velocity (color bar in ms^{-1}) from 20 to 23 February 2017.**
330 **Generated using Copernicus Atmosphere Monitoring Service information [2018].**

331 Fig. 2 presents RGB composites based upon the combination of infrared channels (8.7,
332 10.8 and 12.0 μm) from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI)
333 on board Meteosat-10, showing the dust transport evolution (magenta) from 20 to 24
334 February 2017. The dust was transported across the Alboran Sea (western
335 Mediterranean Sea) and infiltrated in southern Iberian atmosphere on 20 February
336 (Fig.2a), gradually transported towards west and north by the synoptic circulation,


337 affecting the southern and western sites (CR, EV, GR) as illustrated by Figs.2b and 2c.
338 On the 22 February the dust intrusion was reinforced by a thick plume that
339 progressively entered the IP through the southeastern coast (Fig. 2d) extending north
340 and westwards and affecting all sites represented in the images (Fig. 2e). This new
341 intrusion was accompanied by the presence of high clouds that on the 23 February
342 affected most of the IP, associated with the intensification and northward shift of the
343 Moroccan low (Figs.2f and 2g). The arrival of a frontal system from northwest on the
344 24 February interrupted the North African dust flow, pushing it towards the central
345 Mediterranean regions (Fig. 2h).

346

347

348

349

350

351 **Fig. 2. Meteosat RGB composites showing the evolution of the dust plume from 20**

352 **to 24 February 2017. The Iberian sites considered in the study are also represented**

353 **in the images: Barcelona (BA), Burjassot (BU), Cabo da Roca (CR), Évora (EV),**

354 **Granada (GR) and Madrid (MA).**

355 The temporal evolution of the back-trajectories, from 20 to 24 February 2017, arriving

356 over the six sites considered, at three atmospheric levels (2000, 3000 and 4000 m a.g.l.)

357 is represented in the supplementary material in Fig. S4. The back-trajectories were

358 calculated using the Hybrid Single-Particle Lagrangian Integrated Trajectory

359 (HYSPLIT) model (Stein et al., 2015; Rolph et al., 2017), available online at

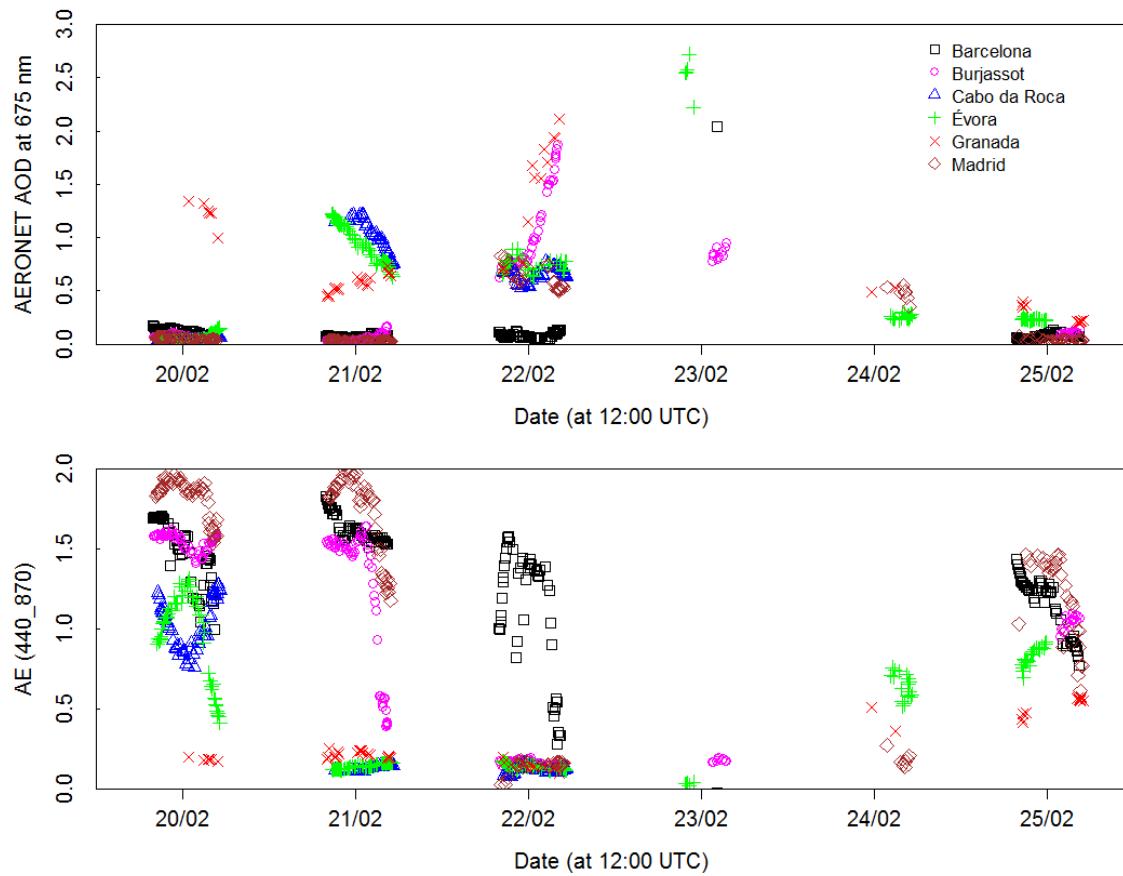
360 <http://ready.arl.noaa.gov/HYSPLIT.php>. The sequence shows that the first sites

361 overpassed by air masses originating in northern Africa were: Granada (20 February;

362 Fig. S4a), followed by Évora and Cabo da Roca (21 February; Fig. S4b and c).

363 Burjassot and Madrid sites started to be influenced by North African air masses between

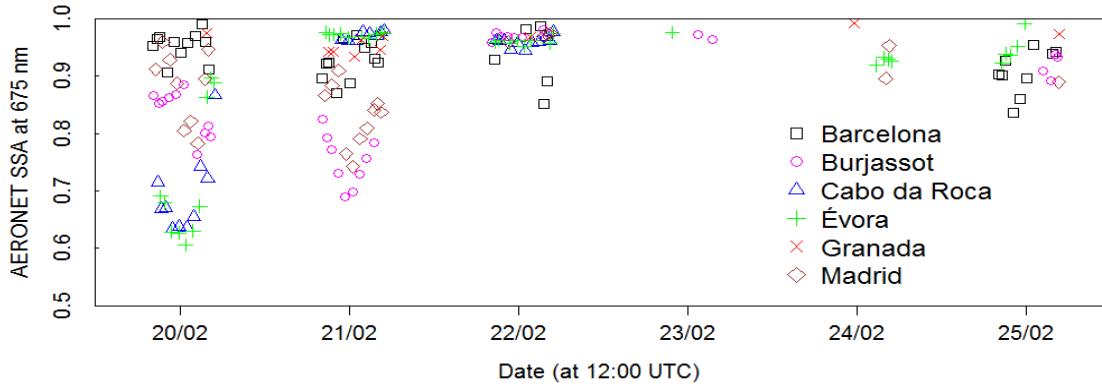
364 the 21 and 22 February (Fig. S4d and e) and finally also Barcelona remained under the


365 influence of the same air masses between the 23 and 24 February (Fig. S4f to and h).
366 Information from Meteosat RGB composites (Fig.2) displaying the dust distribution
367 over North African regions and back-trajectories (Fig. S4), hint at dust originating from
368 central Algeria, which is a recognized major dust source region (Ginoux et al., 2012).
369 This is also in agreement with the strong values of wind friction velocities found over
370 the same region and shown in Fig. 1.

371

372 3.2 Columnar properties

373 The desert dust plume entered the IP from the South on the 20 February, and then it
374 gradually reached the northwest and later on the eastern part of the IP. Fig. 3 shows the
375 time series data of AOD at 675 nm and Ångström exponent (440 and 870 nm), from 20
376 to 25 February 2017 in six sites distributed across the IP. An increase of the AOD was
377 first noticed in Granada site on the 20 February, where the AOD values reach about 1.5,
378 accompanied by very low values of AE, typical of desert dust intrusions, which is
379 confirmed by the Meteosat composite in Fig. 2a. The dust plume maintains its influence
380 over Granada and extends towards the western part of IP, affecting in the next day also
381 Évora and Cabo da Roca sites, with AOD values ranging between about 0.6 and 1.2,
382 once again with very low AE (<0.2). The dust transport continues and on the 22
383 February, during daytime, desert dust is detected in all stations except for Barcelona
384 where it is measured in the next day. Still on the 22 February, extremely high AOD
385 values are reached in Granada and Burjassot (> 2.0) and moderately high in Madrid,
386 Évora and Cabo da Roca (0.5<AOD<1.0), with AE values lower than 0.2 for all these
387 stations. On the 23 February there are only a few AERONET measurements available
388 due to the persistence of clouds over the region, nevertheless the AOD is still
389 considerably high (>2.0) for Évora and Barcelona, with corresponding AE values


390 around zero in these sites, with the provenience of air masses from desert dust source
391 regions supported by the back-trajectories presented in the supplementary material (Fig.
392 S4). As mentioned before, the frontal system on the 24 February interrupted the dust
393 transport and the AOD values on the 24 and 25 February show a consistent decrease
394 with a corresponding increase of the AE.

395
396

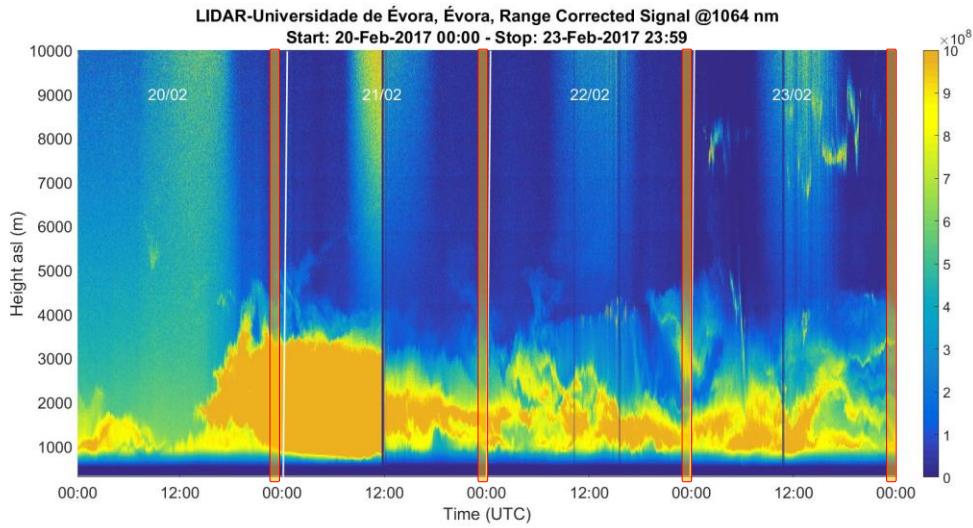
397 **Fig. 3. – AERONET AOD at 675 nm and AE (440 and 870 nm) from 20 to 25**
398 **February 2017 in six sites distributed across the IP.**

399

400

401 **Fig. 4 - AERONET SSA at 675 nm from 20 to 25 February 2017 during the event**
 402 **for six sites distributed across the IP.**

403 The single scattering albedo is characterized by relatively high values in all the stations
 404 during the dust event, showing the predominant dispersive nature of these particles. The
 405 lower SSA values in the first two days (greater absorption) in some of the sites (BU,
 406 CR, EV, MA) depicted in Fig.4, are related with polluted air masses coming from
 407 northwestern Europe (not shown here).


408 **4. Vertically-resolved optical properties**

409

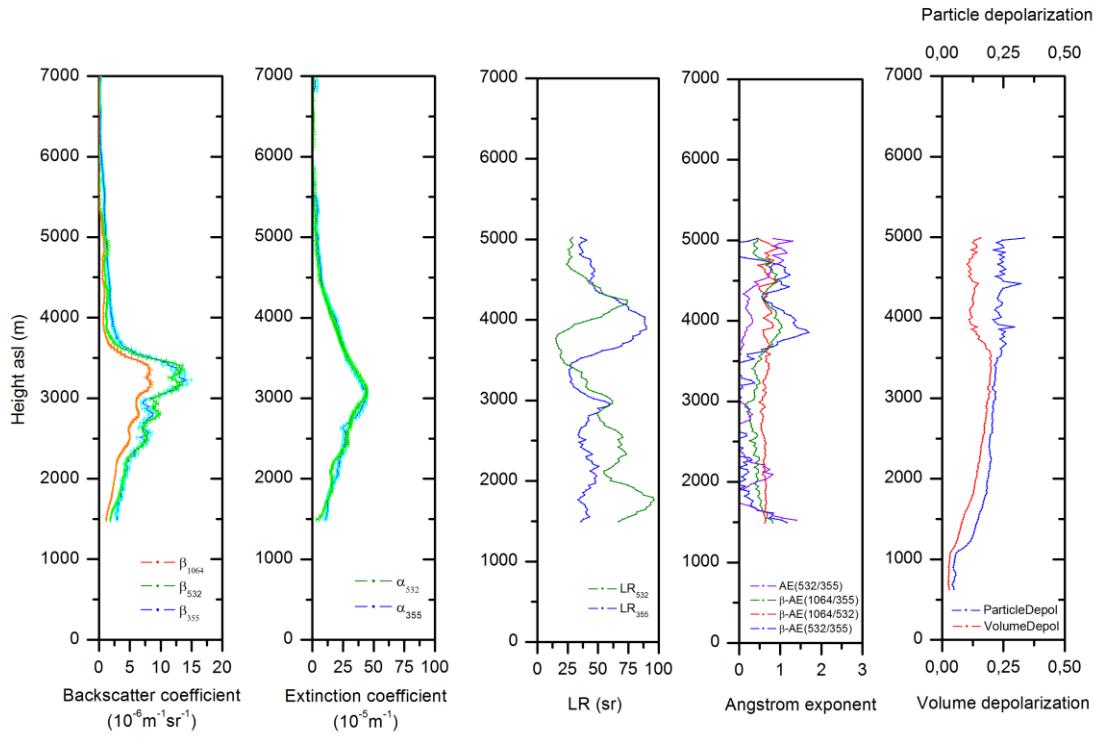
410 **ÉVORA**

411 Fig. 5 represents the Range Corrected Signal (RCS) during 4 days, 24 hours per day,
 412 which provides a very detailed overview of the phenomenon. It can be seen that the
 413 African dust outbreak was especially intense at the beginning of the event, from 20
 414 (12:00 UTC) to 21 (12:00 UTC) February. However, it must be noted that on 21 (12:00
 415 UTC) February a change of the neutral-density filters in front of the detection channel
 416 was necessary to be carried out in order to attenuate the received light. This obviously
 417 reduced the RCS at this point but did not affect the retrieval of aerosol optical
 418 properties. Four different periods have been selected so as to analyze aerosol optical

419 properties from the African plume observed in Évora (highlighted again in red in Fig.
420 5). Nighttime measurements have been chosen for the analysis in order to estimate
421 accurately such properties given the fact that independent extinction from Raman
422 signals was available at this lidar station. The first period (21st Feb from 0:00-0:30
423 UTC), presents the highest backscatter coefficient values out of all periods evaluated, so
424 a special attention has been paid to this period (Fig. 6). Notwithstanding the other 3
425 periods are also analyzed and they can be seen in the supplementary material Fig. S5,
426 S6 and S7. Mean aerosol optical properties are exposed in this latter Table (3) for
427 specific atmospheric layers where in principle the dust plume is representative. For
428 instance, the first period analyzed presents an African dust plume that reaches also 5 km
429 height asl, however maximum values of particle backscatter coefficient are reached at
430 3222 m asl and from 4 to 5 km asl the presence of African dust is very small according
431 to particle backscatter coefficient profiles. For this reason, it is considered more
432 appropriate to evaluate the atmospheric layer detected between 1.5-3.5 km asl. At this
433 atmospheric layer, backscatter-related Ångström exponent at the wavelength pairs:
434 532/355, 1064/532 and 1064/355 were found to be 0.08 ± 0.33 , 0.62 ± 0.04 and 0.42 ± 0.13
435 respectively and the extinction-related Ångström exponent at 532/355 nm was estimated
436 to be 0.16 ± 0.45 . These small values are typical for dust as previously reported during
437 extreme African dust outbreaks (Mamouri et al. 2016) (Guerrero-Rascado et al. 2009,
438 Preissler et al. 2011). The other periods also show relatively low backscatter-related
439 Ångström exponents and Ångström exponent values, which in principle indicates a
440 large particle size.

441

442 **Fig. 5. RCS at 1064 nm on 20-23 February 2017 for the period established between**


443 **0:00h-23:59 UTC respectively (Évora, 293 m asl).**

444 Since Raman signals were available and extinction coefficients were obtained
 445 independently, particle lidar ratios were derived as well. The dust layer located between
 446 1.5-3.5 km asl on 21Feb (00:00 UTC) presented a lidar ratio of 40 ± 8 sr and 61 ± 18 sr at
 447 355 and 532 nm, respectively. Our estimates at 355 nm are in agreement with Mona et
 448 al. that found a mean lidar ratio at 355 nm of 38 ± 15 sr for three years of Raman lidar
 449 measurements of Saharan dust (Mona et al. 2006). On the other hand, lidar ratio at 532
 450 nm is found greater than the lidar ratio at 355 nm for the first period analyzed (21 Feb,
 451 00:00 UTC), which is not usual for dust particles as it has been already pointed out by
 452 other authors (Muller et al. 2010). Nevertheless, this trend is only observed in the first
 453 period analyzed, the other three analyzed periods show a lidar ratio at 532 lower than
 454 the lidar ratio at 355 nm. The reason behind this observation (high unexpected lidar
 455 ratio values at 532 nm) can be attributed to non-accurate retrievals handicapped by the
 456 high aerosol load, which produces great extinction and consequently a scarce lidar
 457 signal to be evaluated. It is noteworthy to mention that the standard deviation of the
 458 mean lidar ratio at 532 nm on 21Feb (00:00 UTC) is significantly higher compared to

459 the rest of the studied period. On another note, the lidar ratio at 355 nm on 23 Feb (at
 460 00:00 and 23:39 UTC) seems a bit higher than values reported in literature (Mona et al.
 461 2006) and it could be due to a decrease of the African dust outbreak intensity and
 462 therefore a greater proportion of local aerosol might be present in the atmosphere. The
 463 lidar ratio at 532 nm in all cases (apart from the first period) are consistent with
 464 literature since typical values range 35-45 sr for typical desert dust (Mamouri et al.
 465 2013, Nisantzi et al. 2015, Mamouri et al. 2016). In addition, the particle and volume
 466 depolarization ratio were 0.19 ± 0.02 and 0.16 ± 0.03 for the aforementioned atmospheric
 467 layer on 21Feb 00:00 UTC. These two latter parameters are constant with altitude,
 468 which indicates that no changes in the aerosol type is observed within the atmospheric
 469 layer of interest. They are also very similar for the four periods studied, however the last
 470 period of study indicates lower particle and volume depolarization values that is
 471 associated with the decrease of intensity of the Saharan dust outbreak and a greater
 472 contribution of local aerosols.

473 **Table 3. Summary of mean aerosol optical properties retrieved for the 4 periods**
 474 **analyzed from Raman lidar measurements (Évora).**

Atmospheric layer	LR ₃₅₅ (sr)	LR ₅₃₂ (sr)	β-AE 1064-532	β-AE 532-355	β-AE 1064-355	AE 532-355	δ-vol.	δ-part.
00:00 UTC-21Feb 1.5-3.5km asl	40 ± 8	61 ± 18	0.62 ± 0.04	0.08 ± 0.33	0.42 ± 0.13	0.16 ± 0.45	0.16 ± 0.03	0.19 ± 0.02
00:00 UTC-22Feb 1.5-4km asl	45 ± 4	38 ± 8	0.76 ± 0.12	-0.12 ± 0.23	0.44 ± 0.08	0.16 ± 0.19	0.16 ± 0.01	0.21 ± 0.01
00:00 UTC-23Feb 1.5-5km asl	52 ± 7	40 ± 9	1.28 ± 0.33	-0.62 ± 0.48	0.58 ± 0.19	0.01 ± 0.27	0.16 ± 0.02	0.19 ± 0.01
23:39 UTC-23Feb 1.5-4.5km asl	55 ± 12	34 ± 8	1.00 ± 0.18	-0.96 ± 0.29	0.28 ± 0.17	0.18 ± 0.24	0.12 ± 0.01	0.15 ± 0.01

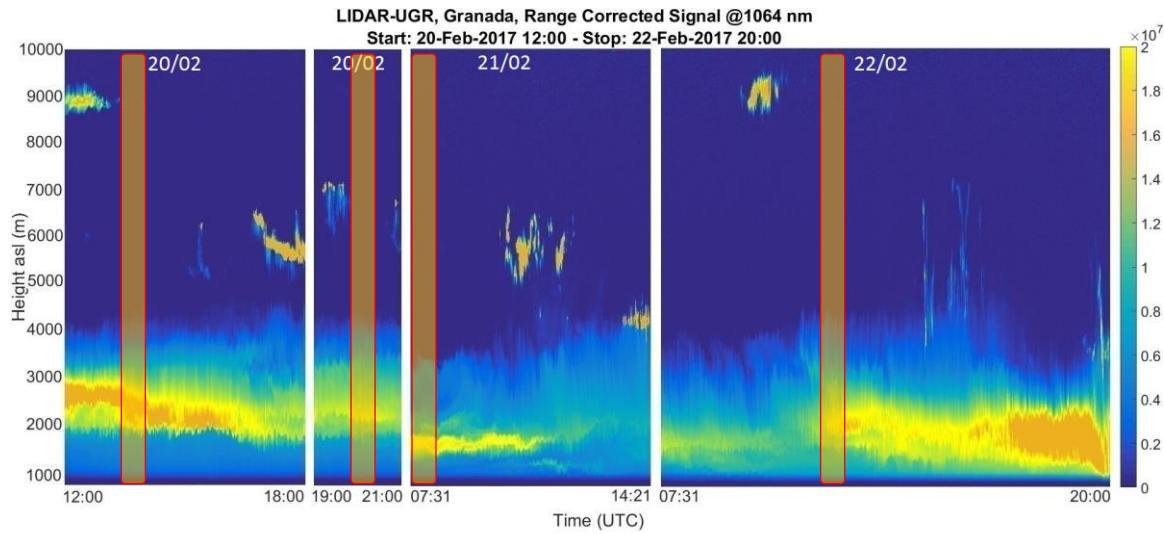
476

477 **Fig. 6. Backscatter coefficient, extinction coefficient, Lidar ratio, Ångström**
 478 **exponents, and particle and volume depolarization profiles at 00:00 UTC on 21,**
 479 **February 2017 at Évora.**

480 GRANADA

481 In Granada, four lidar measurements were carried out during the extreme African dust
 482 outbreak. In particular for the periods: 12:00-18:00 and 19:00-21:00 UTC on 20
 483 February, 07:31-14:21 UTC on 21 February, and 07:31-20:00 UTC on 22 February.
 484 Such measurements are represented in Fig. 7. The red highlights indicate as previously
 485 the selected periods where vertically-resolved aerosol optical properties have been
 486 derived. Such vertical profiles can be seen in the supplementary material in Fig. S7, S9,
 487 S10 and S11. For a better comprehension of these data, mean aerosol optical properties
 488 are presented in table 4 for the periods highlighted in red and for the atmospheric layer
 489 where the dust plume is registered. In general terms, the maximum altitude of the dust

490 plume was registered at 4 km asl approximately and it was maintained relatively
491 constant throughout the four lidar measurements. For certain periods (13:30-14:21 UTC
492 on 21st Feb) intensification of the RCS is observed at the top of the dust plume, which
493 may indicate cloud formation processes related to mineral dust.


494 Concerning intensive aerosol optical properties, backscatter-related and extinction-
495 related Ångström exponents were low, in accordance with previous lidar observations,
496 which indicate a large aerosol size. The Raman retrieval could be performed only for
497 the period 19:00-21:00 UTC on 20 February since it was not possible to perform during
498 nighttime on other days. On 22 February, the African dust outbreak was so intense that
499 it produced large extinction and hampered proper retrieval. So, lidar ratios obtained at
500 Granada were 52 ± 7 and 53 ± 6 at 355 and 532 nm respectively. With regard to particle
501 and volume depolarization ratios, these parameters show similar and consistent values
502 to data obtained in the Évora station. Nevertheless, it is noteworthy to mention that the
503 last analyzed period (12:30 UTC on 22nd Feb) exhibits the greatest particle and volume
504 depolarization ratios observed in all lidar stations. These high values point out that a
505 large backscatter signal related to the cross-polarized component is registered, which in
506 turn is produced by non-spherical particles. This is associated to an enlargement on the
507 contribution of mineral dust due to the reinforcement of the dust plume coming from
508 Africa. Such reinforcement of the dust plume was observed on 22 Feb according to the
509 synoptic meteorological situation (see section 3). In fact, it was not possible to retrieve
510 proper lidar products for measurements carried out on 22 Feb from 17:30 UTC on,
511 given the large extinction of radiation produced by the high contribution of mineral
512 dust.

513 **Table 4. Summary of mean aerosol optical properties retrieved for the 4 periods**
514 **analyzed from Raman lidar measurements (Granada).**

Atmospheric layer	LR ₃₅₅ (sr)	LR ₅₃₂ (sr)	β-AE 1064-532	β-AE 532-355	β-AE 1064-355	AE 532-355	δ-vol.	δ-part.
13:30 UTC-20Feb 2.0-4.0 km asl			0.27±0.12	0.19±0.30	0.24±0.04		0.19±0.03	0.22±0.04
20:00 UTC-20Feb 1.8-4.0 km asl	52±7	53±6	0.19±0.08	0.54±0.21	0.32±0.07	0.51±0.43	0.20±0.02	0.25±0.03
07:31 UTC-21Feb 1.5-3.4km asl			0.86±0.07	0.64±0.13	0.77±0.08		0.18±0.03	0.28±0.01
12:30 UTC-22Feb 1.5-4.0 km asl			0.39±0.12	0.32±0.17	0.36±0.07		0.26±0.01	0.31±0.02

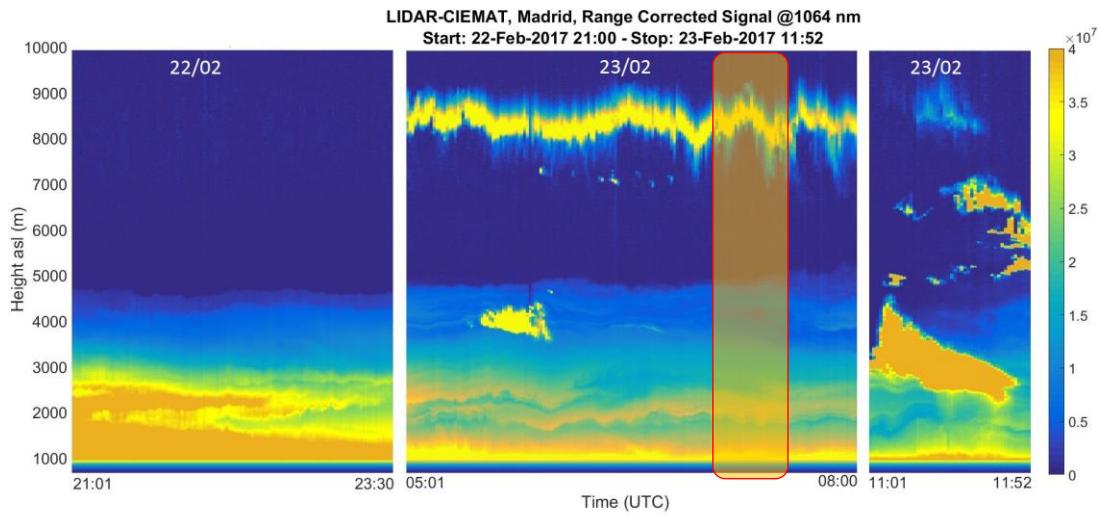
515

516

517

518 **Fig. 7. RCS at 1064 nm on 20 February (12:00-18:00, 19:00-21:00 UTC), 21**
 519 **February (07:31-14:21 UTC), 22 February (07:31-20:00 UTC) 2017 at Granada**
 520 **(680 m asl).**

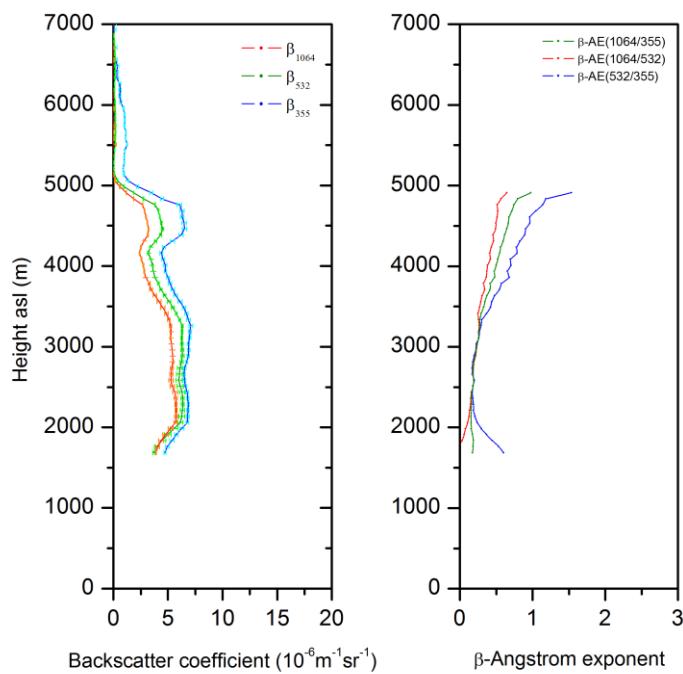
521 **MADRID**


522 In Madrid, as it occurred in Barcelona, the African dust plume was only detected in the
 523 last stage of the African event when the reinforcement of the dust intrusion was
 524 produced by synoptic flows (from 22 February on). Lidar measurements on 20 February

525 (not shown) at Madrid still did no present any sign of this extraordinary plume. During
526 this African event, three lidar measurements were available at this station: on 22 Feb
527 (21:00-23:36 UTC) and 23 Feb (05:00-08:00 and 11:00-11:52 UTC). They are
528 represented in Fig. 8. As it can be seen the thickness of the plume ranged from the
529 ground to 5 km asl and in the last lidar measurement the plume was accompanied by
530 thick clouds. Concerning the retrieval of vertically-resolved aerosol optical properties,
531 only the period 05:00-08:00 UTC (23 Feb) was considered for this purpose. Such
532 profiles are represented in Fig. 9, which concerns the period 06:59-07:29 UTC
533 highlighted in Fig 8. Only one profile is presented given the fact that the extinction
534 observed on the first and third lidar measurement was again excessive at low altitudes
535 due to the dust plume, so Rayleigh extinction could not be appropriately computed. This
536 is a problem we want to highlight as it appeared in several lidar stations when
537 addressing this study and performing the retrievals under such extreme conditions (high
538 aerosol load).

539 Finally, Fig. 9 presents 3 backscatter coefficient profiles at 1064, 532 and 355 nm and
540 their respective backscatter-related Ångström exponents. No particle extinction
541 coefficients could be obtained independently as Raman signal were too noisy due to the
542 aforementioned reasons. Maximum values of particle backscatter coefficient are reached
543 at 2200-2300 m asl. At this altitude β_{355} is $(6.85\pm0.09)\cdot10^{-6}$, β_{532} is $(6.35\pm0.13)\cdot10^{-6}$ and
544 β_{1064} is $(5.75\pm0.01)\cdot10^{-6} \text{ m}^{-1}\text{sr}^{-1}$. Mean backscatter-related Ångström exponents were
545 found to be 0.52 ± 0.34 , 0.28 ± 0.17 , 0.37 ± 0.22 at the wavelength pairs: 532/355,
546 1064/532 and 1064/355 nm for the atmospheric layer established from lidar full overlap
547 height to 4900 m. These low backscatter-related Ångström exponents are in accordance
548 with previous lidar observations, which partially indicate a large aerosol size.

549

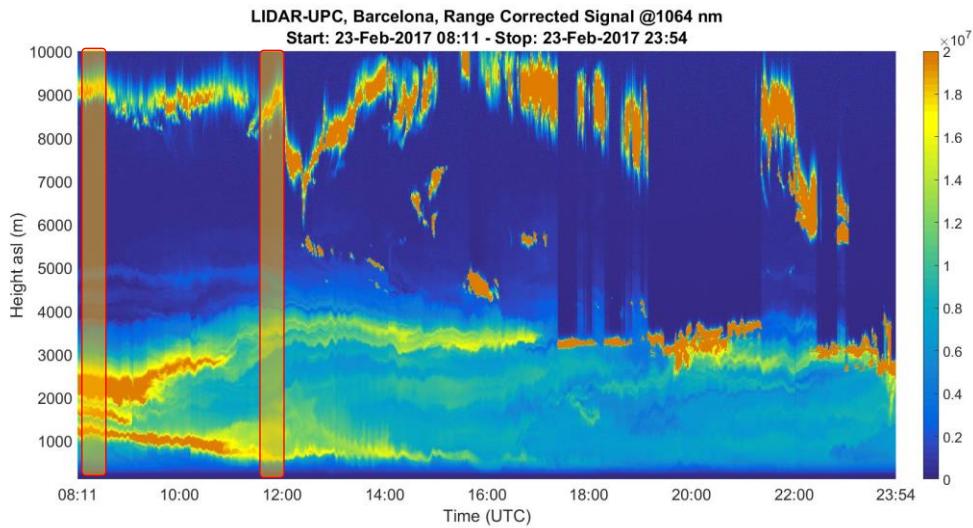

550

551

552 **Fig. 8. RCS at 1064 nm on 22 February (21:00-23:36), 23 February (05:01-08:00**
553 **UTC), 23 February (11:00-11:52 UTC) 2017 at Madrid (669 m asl)**

554

555

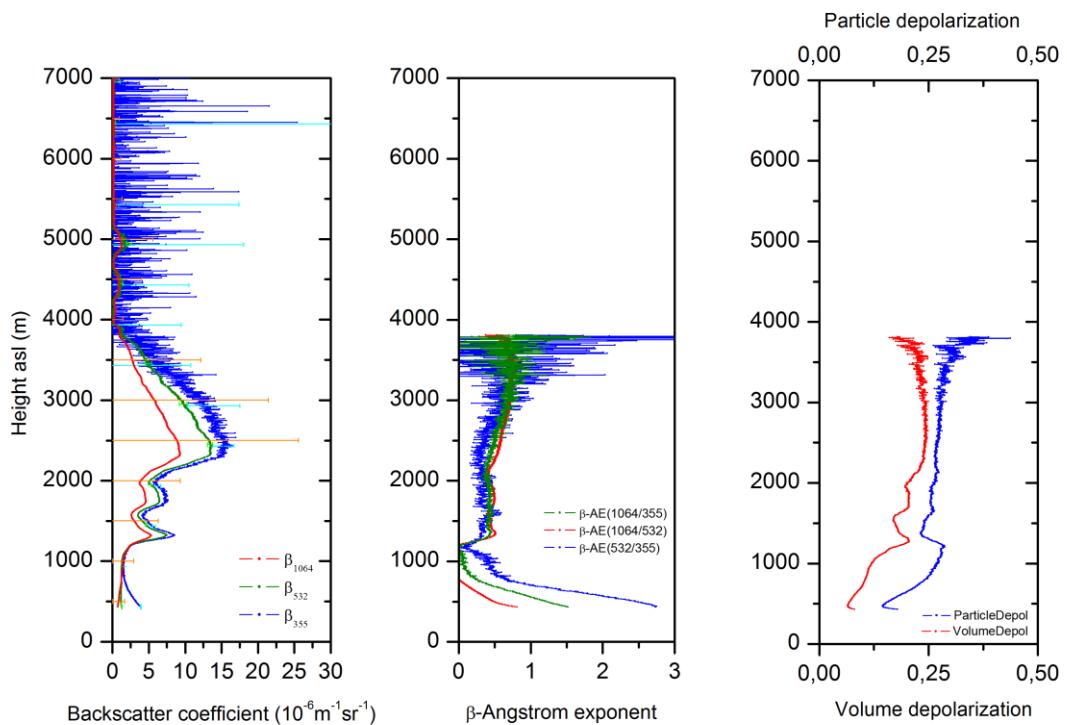

556 **Fig. 9. Backscatter coefficient and β -Ångström exponent profiles at 06:59 UTC on**
557 **23 February 2017 at Madrid.**

558 **BARCELONA**

559

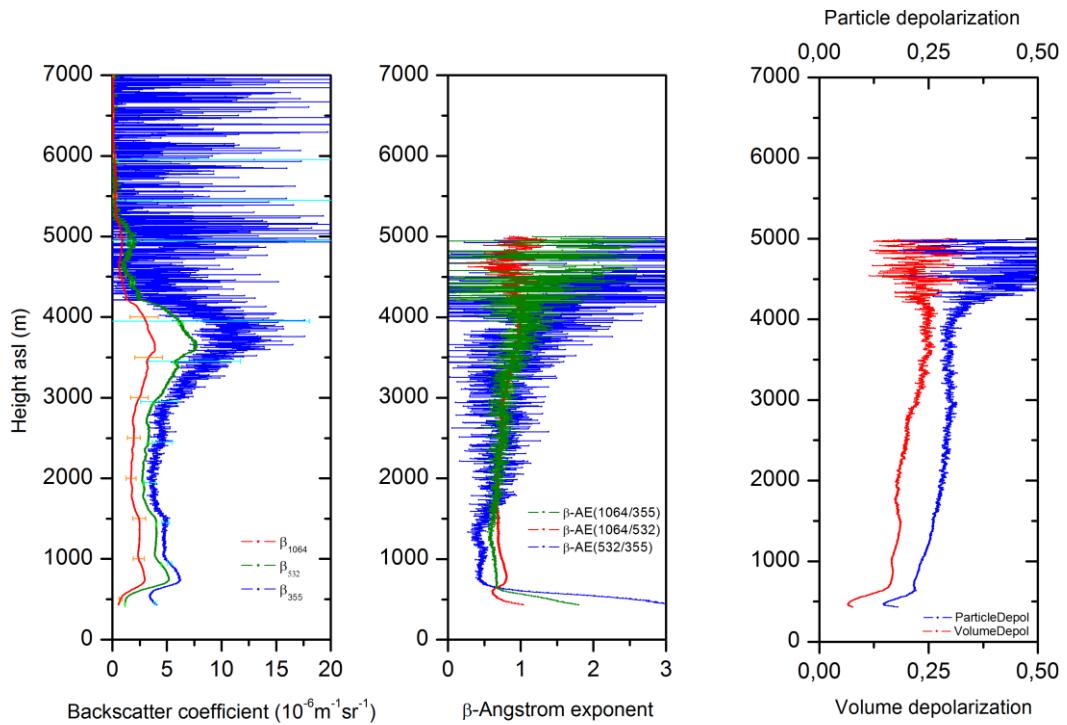
560 According to the meteorological overview, the Barcelona site was the latest place from
561 the time standpoint that was hit by the extreme African dust outbreak. As it can be seen
562 in Fig. 10 the African dust plume was registered throughout almost the entire 23
563 February. At the beginning of the lidar measurement (from 08:11 to 12:00 UTC), the
564 maximum altitude of the plume was detected at 5km asl approximately and after that it
565 decreased gradually until it reached the value of 3-3.5 km at 23:54 UTC. Two periods of
566 30 minutes have been selected (at 08:11 and 11:34 UTC) to show the retrieval of
567 aerosol optical properties from the lidar measurement. The reason to choose these
568 periods lies on the availability of a clear atmosphere to derive Rayleigh extinction. Both
569 of them are highlighted in red on Fig 10. As indicated in the color bar, the RCS was
570 considerably high for the atmospheric layer between 1 and 3 km during the period
571 08:11-08:41 UTC. This is one of the reasons why this period of study was selected since
572 in principle this variable is a proxy of the intensity of the African dust outbreak. The
573 second period to be studied spans from 11:34 to 12:04 UTC. In this case, the dust plume
574 is observed up to 5 km asl, although the structure is a bit different and the RCS is lower
575 than in the first period. It must also be noted that from 12:00 UTC on the aerosol optical
576 properties retrieval is quite complex since it is quite difficult to detect a clean
577 atmospheric layer so as to derive the Rayleigh extinction, which is mandatory to infer
578 the aforementioned aerosol optical properties. For the period 12:00-16:00 UTC
579 dispersed clouds can be observed at 5-7 km and from 17:00-18:00 UTC on clouds are
580 registered at the top of the dust plume layer (at 4 km), which prevents the Rayleigh

581 extinction computation. This latter observation is also interesting from the point of view
 582 of cloud formation processes. Considering the evolution of the plume throughout the
 583 entire lidar measurement at 4 km, it is plausible that African dust aerosol might act as
 584 cloud nuclei (see RCS at 4 km from 18:00 to 23:54 UTC, the variable becomes more
 585 intense than previously).



586

587 **Fig. 10. Range corrected signal (RCS) at 1064 nm on 23 February 2017 for the**
 588 **period established between 08:11-23:54 UTC (Barcelona, 115 m asl).**


589 Fig. 11 shows aerosol optical properties obtained for the period 08:11-8:41 UTC. The
 590 left panel represents the vertical profiles of particle backscatter coefficient at the three
 591 wavelengths. The maximum values of this variable are reached at 2337 m asl. At this
 592 altitude β_{355} is $(1.53 \pm 0.14) \cdot 10^{-5}$, β_{532} is $(1.35 \pm 0.04) \cdot 10^{-5}$ and β_{1064} is $(0.9 \pm 1.6) \cdot 10^{-5} \text{ m}^{-1} \text{sr}^{-1}$. The mean backscatter-related Ångström exponents are 0.37 ± 0.14 , 0.45 ± 0.22 ,
 594 0.42 ± 0.17 respectively at the wavelength pairs: 532/355, 1064/532, 1064/355 for the
 595 altitude range 1-3km asl. In general terms, the greater the aerosol size the lower the
 596 Ångström exponent. In this case the variable used is the backscatter-related Ångström
 597 exponent, which is similar to the previous one (Ångström exponent), so the relation is
 598 affected by other parameters such as refractive index, etc. other than the aerosol size.

599 Nevertheless, these values are typical for African dust (Guerrero-Rascado et al. 2009),
600 where aerosol size plays an important role on this parameter. It is noteworthy to
601 mention that the vertical profile of the backscatter-related Ångström exponent is
602 relatively constant through the atmospheric layer detected between 1-3 km asl. With
603 regard to volume and particle depolarization ratio, we have found mean values of
604 0.21 ± 0.03 and 0.26 ± 0.01 respectively for the aforementioned atmospheric layer. In
605 addition, a slightly increase of depolarization ratio with altitude is observed. The reason
606 behind it lies on the fact that non-spherical particles tend to produce a higher backscatter
607 signal related to the cross-polarized component and higher depolarization ratios. African
608 dust aerosols are well known as non-spherical particles. So this observation would
609 suggest that at higher altitudes (from 1 to 3 km asl) the mineral dust is purer since
610 depolarization ratios are greater. In relation to Fig. 12 (11:34-12:04 UTC), the aerosol
611 dust plume is a bit weaker than in the previous period. The backscatter coefficient
612 profiles are relatively lower and also the backscatter-related Ångström exponent profiles
613 present higher values which should indicate partially a smaller aerosol size. In this
614 sense, the contribution of the local aerosol may be greater. Considering these
615 observations we can conclude that the intensity of the African dust for this period is
616 lower than the previous one. Volume and particle depolarization ratios for the
617 atmospheric layer situated at 1-3 km asl are similar than in the previous period. The
618 mean values are 0.19 ± 0.01 and 0.28 ± 0.02 respectively.

619

620 **Fig. 11. Backscatter coefficient, β - \AA ngström exponent, particle and volume**
 621 **depolarization profiles at 08:11 UTC on 23 February 2017.**

622

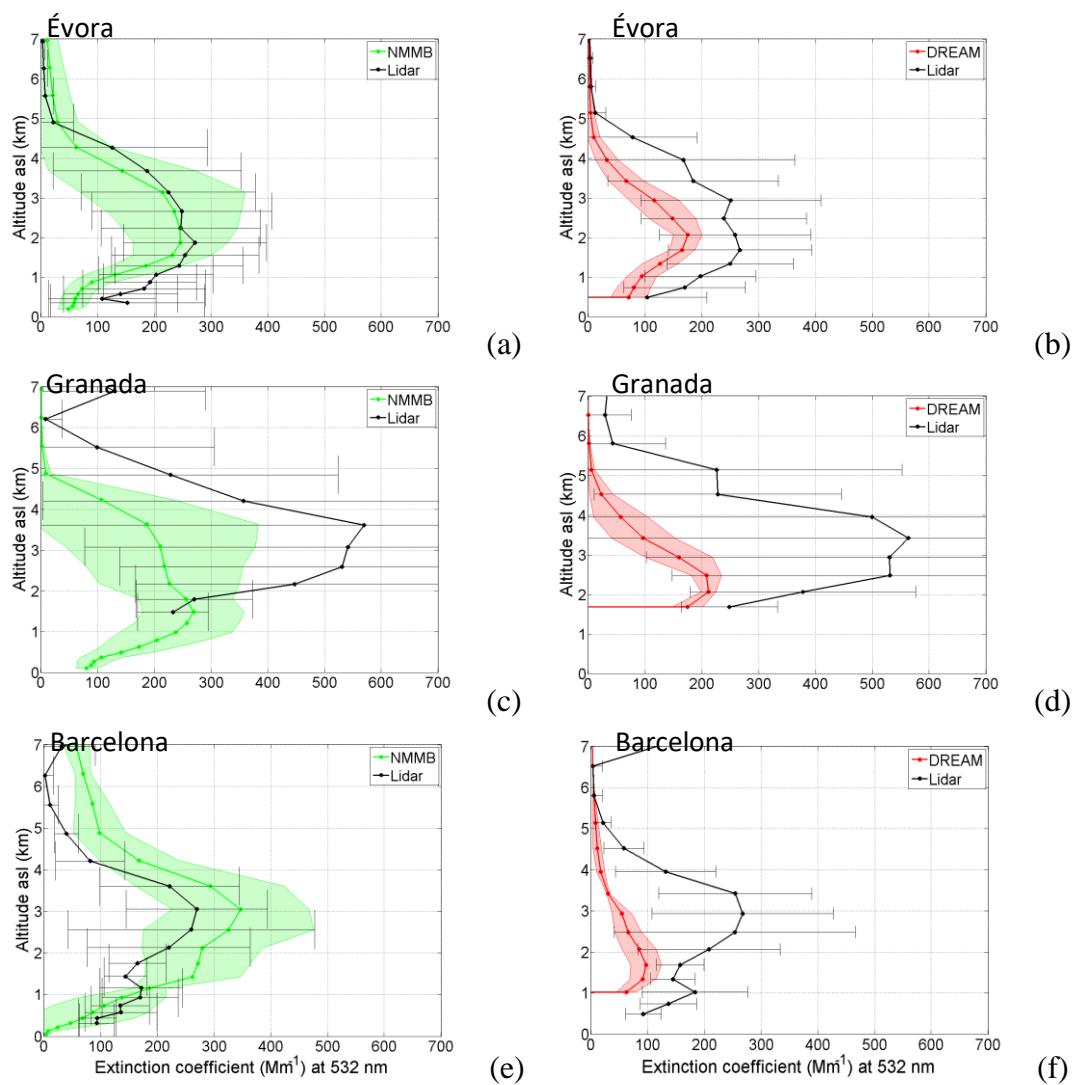
623 **Fig. 12. Backscatter coefficient, β -Ångström exponent, particle and volume**
624 **depolarization profiles at 11:34 UTC on 23 February 2017.**

625

626 **5 Performance of dust models during intense events**

627

628 This section aims at examining the performance of dust models to predict the 3D
629 evolution of mineral dust during such intense outbreaks. The literature available on the
630 evaluation of modelled dust vertical profiles usually inspects the behavior of such
631 models on long time series or for a single moderate outbreak (Gobbi et al. 2013, Santos
632 et al. 2013, Mona et al. 2014, Binietoglou et al. 2015, Sicard et al. 2015), and only
633 rarely for intense outbreaks (Huneeus et al. 2016, Ansmann et al. 2017, Tsekeri et al.
634 2017).

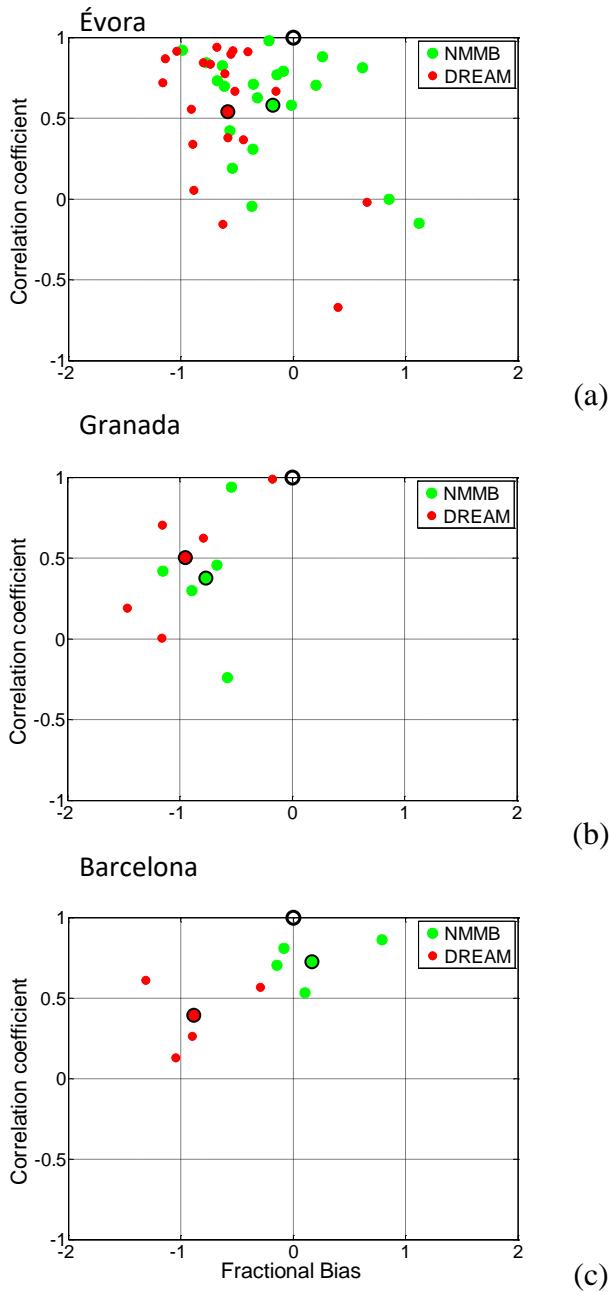

635 **5.1 Forecast skill for a lead time of 24 h**

636 The results are presented for the three sites of Évora, Granada and Barcelona. There are
637 too few measured profiles in Madrid to allow for a statistical comparison. The
638 comparison of the temporal mean profiles of extinction coefficient is made for
639 NMMB/BSC-Dust and BSC-DREAM8b in Fig. 13. The temporal means are averaged
640 over the whole period (see caption of Fig. 13). For each individual profile the
641 correlation coefficient is plotted as a function of fractional bias (FB) in Fig. 14 and the
642 temporal evolution of the latter two parameters is shown in Fig. 15. In the latter figure
643 the time evolution of *FB* and *r* is also shown for lead times of 48 and 72 h and
644 discussed in Section 5.2. The mean values of the fractional bias, the correlation
645 coefficient and the center of mass for both models at each site are reported in Table 5.

646 Table 5 also contains these mean values for lead times of 48 and 72 h, which are
647 discussed in Section 5.2.

648

649


650

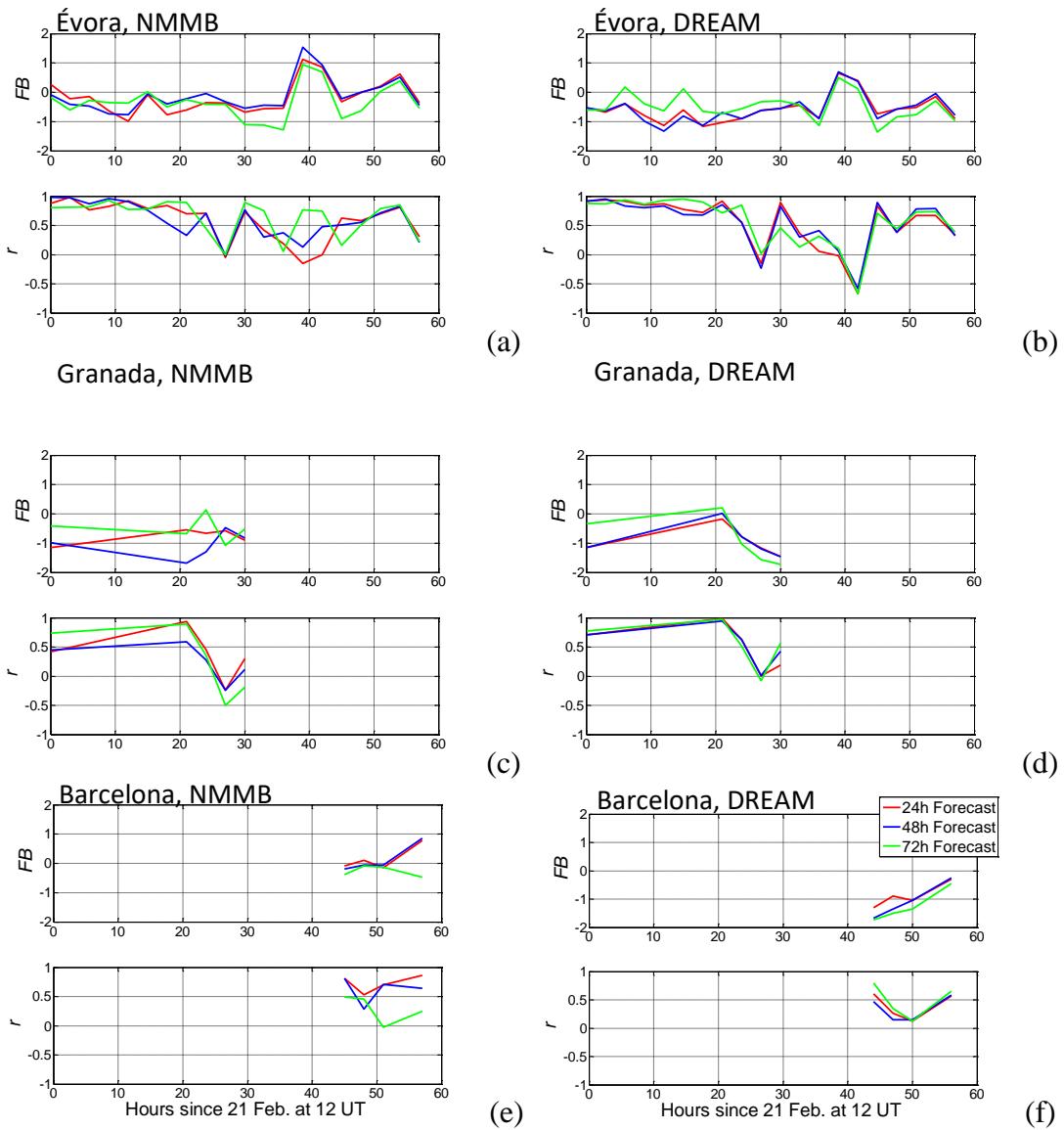
651

652 **Fig. 13. Mean vertical distribution of mineral dust extinction coefficient estimated**
653 **by NMMB/BSC-Dust in (a) Évora, (c) Granada and (e) Barcelona and by BSC-**
654 **DREAM8b in (b) Évora, (d) Granada and (f) Barcelona. The period considered,**
655 **not always continuous, are 21 Feb. 12UT – 23 Feb. 23UT, 21 Feb. 12UT – 22 Feb.**
656 **19UT and 23 Feb. 08UT – 23 Feb. 21UT for Évora, Granada and Barcelona,**

657 respectively. The model shaded areas and the error bars of the lidar represent the
658 standard deviations. All model forecasts are for a lead time of 24 h.

659
660

661
662


663

664 **Fig. 14. Correlation coefficient vs. fractional bias, both calculated for the extinction**
665 **coefficient, calculated for each individual profile in (a) Évora, (b) Granada and (c)**
666 **Barcelona. All model forecasts are for a lead time of 24 h. The mean values are**
667 **represented by larger dots edged by a black line. The ideal (FB/r) pair, (0/1), is**
668 **indicated by a black circle.**

670
671
672

673

674

675 **Fig. 15.** Correlation coefficient and fractional bias, both calculated for the
 676 extinction coefficient, vs. time for forecast lead times of 24, 48 and 72 h for
 677 NMMB/BSC-Dust in (a) Évora, (c) Granada and (e) Barcelona and for BSC-
 678 DREAM8b in (b) Évora, (d) Granada and (f) Barcelona. The legend shown in the
 679 last plot applies to all plots.

680

681 **Table 5.** Main results of the comparison between models and observations. *FB* and
 682 *r* are both calculated for the extinction coefficient.

Évora (21 Feb. 12UT – 23 Feb. 23UT)

	NMMB/BSC-Dust			BSC-DREAM8b		
Number of profiles				20		
Lead time (hours)	24	48	72	24	48	72
<i>FB</i> (%)	-18.0	-12.3	-34.5	-58.0	-57.5	-48.4
<i>r</i>	0.58	0.59	0.65	0.54	0.55	0.56
Model CoM (km)	2.70	2.82	3.04	2.21	2.26	2.38
Lidar CoM (km)	2.43			2.46		

Granada (21 Feb. 12UT – 22 Feb. 19UT)

	NMMB/BSC-Dust			BSC-DREAM8b		
Number of profiles				5		
Lead time (hours)	24	48	72	24	48	72
<i>FB</i> (%)	-76.7	-105.5	-50.8	-95.1	-91.6	-89.0
<i>r</i>	0.37	0.24	0.26	0.50	0.54	0.55
Model CoM (km)	2.26	2.38	2.14	2.70	2.79	2.95
Lidar CoM (km)	3.31			3.37		

Barcelona (23 Feb. 08UT – 23 Feb. 21UT)

	NMMB/BSC-Dust			BSC-DREAM8b		
Number of profiles				4		
Lead time (hours)	24	48	72	24	48	72
<i>FB</i> (%)	+16.8	+13.8	-26.9	-88.6	-108.0	-126.3
<i>r</i>	0.73	0.61	0.29	0.39	0.34	0.48
Model CoM (km)	3.61	3.72	4.37	2.51	2.53	2.69
Lidar CoM (km)	2.57			2.59		

683 When looking at the temporal mean profiles of extinction coefficient (Fig. 13), the most
684 striking feature is the general large underestimation of BSC-DREAM8b at all heights
685 independently of the site. This underestimation is smaller in Évora (mean $FB = -48\%$,
686 Table 5) than in Barcelona (mean $FB = -88.6\%$), where the underestimation is larger. In
687 Fig. 14 it is observed a horizontal spread of the variability of FB larger in Évora ([-115;
688 +65 %]) than in Granada ([-150; -20 %]) and Barcelona ([-130; -30 %]) probably due to
689 the smaller amount of vertical profiles available in Barcelona. The same tendency is
690 observed on NMMB/BSC-Dust data. NMMB/BSC-Dust forecasts show a rather good
691 agreement with the observations, especially in Évora and in Barcelona. While the
692 model tends to underestimate the observations in Évora (especially below the CoM; the
693 mean FB is -18.0 %) and in Granada (especially near the CoM; the mean FB is -76.7
694 %), it tends to overestimate the observations in Barcelona (especially above 1 km; the
695 mean FB is +16.8 %). The agreement between NMMB/BSC-Dust and the Évora lidar
696 is remarkably good (Fig. 13a), taking into account the atmospheric variability
697 represented by the lidar error bars and the rather long period considered (60 hours).
698 While the NMMB/BSC-Dust profiles reach zero at an approximate height of 5 km in
699 Évora and Granada (similarly to the observations), the profiles in Barcelona start
700 decreasing linearly from $\sim 100 \text{ Mm}^{-1}$ at 5 km height to $\sim 50 \text{ Mm}^{-1}$ at 7 km (when the
701 observations indicate an extinction coefficient lower than 50 Mm^{-1} above 4.5 km and
702 reaching zero at 6 km). The increase of the lidar profile at 7 km is due to the presence of
703 a cloud above 7 km (see Fig. 10) taken into account in the computation of the layer-
704 average lidar extinction coefficient at the model height. Possible explanations of the
705 differences observed between NMMB/BSC-Dust and the observation in Barcelona in
706 the upper part of the profile are given in the next paragraph. Also in Barcelona the lidar
707 profiles show a layer connected to the surface below 1.5 km, which is not reproduced by

708 either of the models. The main reason is probably the presence of non-dust type
709 particles mixed with the dust detected in the observations but not taken into account in
710 the models. It is also worth noting that BSC-DREAM8b reproduces less atmospheric
711 variability than NMMB/BSC-Dust (in fig. 13, the red shaded areas are smaller than the
712 green ones), whereas the atmospheric variability denoted by the lidar error bars is large
713 at all sites. This seems to indicate that BSC-DREAM8b has less nervousness than
714 NMMB/BSC-Dust.

715 The capacity of the models to reproduce the shape of the dust vertical distribution is
716 estimated with the correlation coefficient calculated between individual modeled and
717 observed profiles. NMMB/BSC-Dust seems to perform better in Barcelona (r values of
718 0.73) and in Évora (0.58) than in Granada (0.37). BSC-DREAM8b seems to perform
719 better in Évora (r values of 0.54) and in Granada (0.50) than in Barcelona (0.39). The
720 low r value obtained with BSC-DREAM8b in Barcelona (0.39) is apparently due to a
721 vertical downward transport forecast by the model and not visible from the observations
722 (the peak of BSC-DREAM8b profile is approximately 2 km lower than the peak of the
723 lidar, see Fig. 13f). (Huneeus et al. 2016), who compared NMMB/BSC-Dust and BSC-
724 DREAM8b, among other models, to CALIOP (Cloud Aerosol Lidar with Orthogonal
725 Polarization) profiles during an intense dust outbreak in April 2011 with an AOD ~ 0.8 ,
726 found a general underestimation of the dust layer height, that was attributed to an
727 overestimation of the dust deposition near the source. The fact that the cloud of points
728 along the r -axis is more spread in Évora (Fig. 14a) than in Granada or Barcelona (Fig.
729 14b and c) is probably due to the longer time series available in Évora covering two and
730 a half days of the event. Another indicator of the score of the models related to the
731 vertical structure of the dust layer is the center of mass (CoM). In Évora both models
732 retrieve well the center of mass of the dust layers (differences between modeled and

733 observed CoM are less than 0.27 km, see Table 5). In Granada, boths models reproduce
734 smaller CoM values with discrepancies vs. the observations of 1.05 km (NMMB/BSC-
735 Dust) and 0.67 km (BSC-DREAM8b). At this site both models predict a center of mass
736 of the dust plume closer to the ground than it is in reality. In Barcelona BSC-
737 DREAM8b predicts well the CoM with a discrepancy of 0.08 km, The overall
738 performance of BSC-DREAM8b at all three stations are in relatively good agreement
739 with the difference of 0.3 ± 1.0 km found between the same model and the EARLINET
740 station of Potenza, Italy, over a period of 12 years and for dust events with $\text{AOD} < 0.9$
741 (Mona et al. 2014). In Barcelona, the mean CoM forecasted by NMMB/BSC-Dust is
742 3.61 km while the lidar measured a mean value of 2.57 km. This large difference is due
743 to the mean NMMB/BSC-Dust profile of extinction in Barcelona which does not reach
744 zero at ~ 5 km, unlike at the other sites (Fig. 13e; see also the former paragraph). This
745 finding suggests that one or several processes taken into account in NMMB/BSC-Dust
746 and inducing vertical motion of the dust layers did actually not occur. One of these
747 processes is the troposphere–stratosphere exchanges which in some cases has been
748 found to be overestimated by the model because of a misrepresentation of the
749 tropopause that normally limits the maximum altitude of dust transport (Janjic 1994).
750 However, given the limited vertical extension of the dust plume (< 5 km), such an
751 explanation is very unlikely. In our case the vertical upward transport of the dust layers
752 at high altitudes forecast in Barcelona but not in the southern sites is probably due to a
753 too long aerosol lifetime in the upper layers and/or underestimated deposition processes
754 (Mona et al. 2014). Interestingly this overestimation of NMMB/BSC-Dust in the upper
755 layers was also observed by (Binietoglou et al. 2015) who found a slight overestimation
756 of NMMB/BSC-Dust above 4.5-5 km when comparing the model with LIRIC
757 (Lidar/Radiometer Inversion Code) profiles of mass concentration at several sites in

758 Europe and by (Sicard et al. 2015) who compared the model with profiles from
759 EARLINET stations during a moderate dust event affecting the western Mediterranean
760 Basin in July 2012.

761 5.2 Forecast skill temporal evolution and comparison for different lead times

762 The temporal evolution of the score of the models (in terms of FB and r) for different
763 lead times shown in Fig. 15 allows us to evaluate the forecast skill of each model as a
764 function of time since the forecast initialization. The start of the time series is fixed on
765 21 February, 2017, at 12 UTC, referred in the following as time T_0 , when the first
766 observations are available (in Évora and Granada). The observations available allow us
767 to have 20 points of comparison (at a 3-hour time step) from the 21st at 12 UTC until the
768 23rd at 23 UTC in Évora; 5 points of comparison on the 22nd between 07 and 19 UTC in
769 Granada; and 4 points of comparison on the 23rd between 08 and 21 UTC in Barcelona.
770 In all plots we have represented the temporal evolution of FB and r for lead times of
771 24, 48 and 72 h. We first discuss the forecast skill temporal evolution for a lead time of
772 24 h, and then compare it to the evolution at 48 and 72 hours.

773 In Évora during the first 20 hours (Fig. 15a and b, red lines) both models have similar
774 and more or less stable correlation coefficients with values larger than 0.5. The
775 fractional bias is negative and varies in the range [-100; 0 %]. It is larger (in absolute
776 value) for BSC-DREAM8b than for NNMB/BSC-Dust. At $T_0 + 20$ hours (the 22nd at 08
777 UTC) the situation starts to degrade: FB variations are larger from one prognostic to
778 the next, especially for NNMB/BSC-Dust, and r passes regularly below the value of
779 0.5. A few hours before $T_0 + 40$ hours (the 23rd at 04 UTC) and only for a period of 5-6
780 hours both models overestimate the extinction coefficient ($+50 < FB < +150$ %). During
781 the first hours of the 23rd the AOD in Évora reached its highest values (~2.5; see Fig. 3).

782 In that sense, it seems that the peak of the event is well reproduced in time by the
783 models but its intensity is overestimated. In Granada (Fig. 15c and d, red lines) the
784 prognostic of NNMB/BSC-Dust is quantitatively better (smaller values of FB) but
785 qualitatively worst (smaller correlation coefficients) than for BSC-DREAM8b. Our
786 findings in Granada are in the same line as those found by (Sicard et al. 2015) for a
787 moderate dust event affecting the western Mediterranean Basin in July 2012 who also
788 found that NNMB/BSC-Dust reproduced quantitatively better the profiles while BSC-
789 DREAM8b reproduced better the shape of the profiles. The decrease of FB visible for
790 both models in Granada and starting at $T_0 + 20$ (the 22nd at 08 UTC) coincides with the
791 increase of AOD from ~0.5 to values above 2.0 (see Fig. 3). While on the peak day in
792 Évora (the 23rd) both prognostics show an overestimation for a short period of time, on
793 the peak day in Granada (the 22nd) the general underestimation of both prognostics is
794 accentuated, especially for BSC-DREAM8b. In Barcelona (Fig. 15 e and f, red lines)
795 the comparison starts at $T_0 + 44$ (the 23rd at 08 UTC) at the peak of the event in
796 Barcelona (AOD>2.0, see Fig. 3). NNMB/BSC-Dust shows a very good quantitative
797 agreement in the morning and an overestimation in the afternoon, while BSC-
798 DREAM8b shows an underestimation, which decreases with time. The shape of the
799 vertical profiles is better reproduced by NNMB/BSC-Dust ($r > 0.5$) than by BSC-
800 DREAM8b ($r < 0.5$). In general the forecast skills of BSC-DREAM8b in Barcelona are
801 not as good as those of the southernmost sites. This difference, also observed by
802 (Huneeus et al. 2016) for dust northward transport, might be explained by the
803 difficulties of the models in simulating horizontal winds and vertical dust propagation.

804 If we now look at the forecast skill as a function of lead time, i.e. at the differences
805 between the red, blue and green lines in Fig. 15, corresponding, respectively, to lead
806 times of 24, 48 and 72 hours, the most striking result is that, at first sight, no clear

807 degradation of the prognostics is clearly visible. There is a difference in the temporal
808 evolution of the prognostics: the prognostics at 24 and 48 h are usually quite similar and
809 the one at 72 h is the one that differs the most from the prognostic at 24 h. But, all in all,
810 if one looks at the overall mean values in Table 6, no clear tendency appears neither in
811 terms of FB , nor r , for Évora and Granada, the two stations closest to the source. In
812 this sense these results are in agreement with those of (Huneeus et al. 2016) who found
813 that the forecast skill of both models for AOD was independent of the forecasting lead
814 time in the domain they defined as southern Europe. In Barcelona a slight degradation
815 of the model scores occurs with increasing lead times: the fractional bias increases (in
816 absolute value; BSC-DREAM8b) and the correlation coefficient decreases
817 (NMMB/BSC-Dust) between the prognostics at 24 and 72 h. This deterioration of the
818 forecast skills is not observed in (Huneeus et al. 2016) and may be due to the singularity
819 and exceptionality of the event described in our study.

820 **6 Conclusions**

821 An extreme dust outbreak transported from Northern Africa to the western
822 Mediterranean during 20-23 February 2017 has been reported and analyzed in the IP.
823 By means of lidar and sun-photometer measurements, we have provided a
824 representative picture of this extreme event by means of a detailed 4-D characterization
825 of aerosol optical properties and their evolution during the African event. Furthermore,
826 the combined use of active and passive remote sensing instruments along with dust
827 models has provided useful information to better understand the complexity of dust
828 long-range transport, its extreme character and also the capability of dust models to
829 forecast such events.

830 The appearance of the Moroccan low reinforced by the Atlantic anticyclonic system was
831 responsible for the tropospheric flow that advected atmospheric mineral dust over the IP

832 during this extreme event. From the photometry, we would like to remark two main
833 ideas concerning the most intense stages of the event. Firstly, AOD at 675 nm were
834 registered to be around and over 2, the Ångström Exponent (440/870 nm) was close to
835 0, and SSA was close to 1 in most of AERONET stations, which indicates a high
836 aerosol load, a large aerosol size and the dispersive nature of these particles,
837 characteristics that are attributed to mineral dust. Secondly, the African dust outbreak
838 was accompanied by the presence of clouds that hampered an adequate retrieval and
839 consequently no sun-photometer observations were available at some AERONET
840 stations.

841 From lidar measurements, the African dust plume could be observed in each lidar
842 station. In general, the altitude range of the plume was observed from the ground until
843 4-5 km asl approximately at every lidar station. Maximum values of backscatter
844 coefficients at 532 nm were registered by each lidar system in the range $1 - 1.5 \cdot 10^{-5} \text{ m}^{-1}$
845 sr^{-1} , where, during the most intense stages the high aerosol load prevented the retrieval,
846 which could not be carried out. This is an issue that also complicated the retrieval in
847 every site. Minimum backscatter-related Ångström exponents at these stages were
848 monitored very close to 0, which are in agreement with the results provided by the
849 sunphotometry. Lidar ratios were found in the range 40 - 55 sr at 355 nm and 34 - 61 sr
850 at 532 nm during the event at Évora and Granada. Particle and volume depolarization
851 ratios, registered at those stations where depolarizing channels were available, have
852 shown an interesting consistency of these values given the fact they were very similar.
853 In general, large particle and volume depolarization ratios are attributed to mineral dust
854 since they are not spherical particles and produce a higher backscatter signal related to
855 the cross-polarized component. The larger the particle and volume depolarization ratios,
856 the purer mineral dust. Likewise, according to these depolarizing properties, lidar

857 systems equipped with this channel have indicated the different structures and aerosol
858 layers throughout the vertical column to distinguish local aerosol from mineral aerosol
859 (for instance in Granada). These findings suggest the need of use of combined
860 instrumentation to characterize adequately aerosol optical properties during this kind of
861 events.

862 When it comes to forecasting this extreme event, two dust models have been used:
863 BSC-DREAM8b and NMMB/BSC-Dust. According to the fractional bias and the
864 correlation coefficient analysis there is a large underestimation in the forecast of the
865 extinction coefficient provided by BSC-DREAM8b at all heights independently of the
866 site. By contrast, NMMB/BSC-Dust forecasts presented a better agreement with the
867 observations, especially in Évora . However the NMMB/BSC-Dust reproduced a higher
868 atmospheric variability than BSC-DREAM8b. Some discrepancies such as the forecast
869 of dust by NMMB/BSC-Dust in layers well above 5 km are still not completely
870 understood and further research is needed. Finally, with regard to the forecast skill as a
871 function of lead time of each model, no clear degradation of the prognostic is
872 appreciated at 24, 48 and 72h for Évora and Granada stations, however it does for
873 Barcelona, which is in principle attributed to the singularity of the event.

874

875 **Acknowledgments**

876 The research leading to these results has received funding from ACTRIS-2-H2020
877 (grant agreement no. 654109) and also from the MINECO (Spanish Ministry of
878 Industry, Economy and Competitiveness) under projects: PROACLIM (CGL2014-
879 52877-R), CRISOL (CGL2017-85344-R, AEI/FEDER), CGL2013-45410-R, CGL2016-
880 81092-R and grant TEC2015-63832-P. Co-funding was also provided by the European

881 Union through the European Regional Development Fund, included in the COMPETE
882 2020 (Operational Program Competitiveness and Internationalization) through the ICT
883 project (UID/GEO/04683/2013) with the reference POCI-01-0145-FEDER-007690 and
884 also through ALOP (ALT20-03-0145-FEDER-000004) and DNI-A (ALT20-03-0145-
885 FEDER-000011) projects. This work has also been funded by the research project
886 "Evaluación del impacto en la salud de eventos atmosféricos extremos producidos por el
887 cambio climático" (SINERGIA) and the "Fundación Biodiversidad", from the Spanish
888 Ministry of Agriculture and Fisheries, Food & Environment (MAPAMA).
889 Measurements in Barcelona were also supported by the European Fund for Regional
890 Development and the Unidad de Excelencia María de Maeztu (grant MDM-2016-0600)
891 funded by the Agencia Estatal de Investigación, Spain. The authors express gratitude to
892 the Juan de la Cierva-Formación program (grant FJCI-2015-23904) for the support
893 provided. This work was supported by the Andalusia Regional Government through
894 project P12-RNM-2409 as well, and by the University of Granada through "Plan
895 Propio. Programa 9 Convocatoria 2013". The authors thankfully acknowledge the
896 FEDER program for the instrumentation used in this work. We thank AERONET and
897 Juan Ramón Moreta González, Jose M. Baldasano, Ana María Silva, José Antonio
898 Martínez for their effort in establishing and maintaining the Madrid, Barcelona, Évora,
899 Burjassot site, respectively. The authors thank S. Basart and O. Jorba from the Dept. of
900 Earth Sciences of the Barcelona Supercomputing Center for providing the dust model
901 data. The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL)
902 for the provision of the HYSPLIT transport and dispersion model and/or READY
903 website (<http://www.ready.noaa.gov>) used in this publication.

904 **References.**

905 Alfaro, S. and L. Gomes (2001). "Modeling mineral aerosol production by wind erosion:
906 Emission intensities and aerosol size distributions in source areas". J. Geophys. Res.,
907 106(D16):18075–1808.

908
909 Amiridis, V., D. Balis, E. Giannakaki, A. Stohl, S. Kazadzis, M. Koukouli and P. Zanis (2009).
910 "Optical characteristics of biomass burning aerosols over Southeastern Europe determined
911 from UV-Raman lidar measurements." *Atmospheric Chemistry and Physics* **9**(7): 2431-2440.
912
913 Andreae, M. (1995). "Climate effects of changing atmospheric aerosol levels. In: Henderson-
914 Sellers, A. (Ed), *World Survey of Climatology*, 16, Future Climate of the World. Elsevier, New
915 York, pp. 341-392."
916
917 Ångström, A. (1964). "THE PARAMETERS OF ATMOSPHERIC TURBIDITY." *Tellus* **16**(1): 64-75.
918 Ansmann, A., I. Mattis, D. Müller, U. Wandinger, M. Radlach, D. Althausen and R. Damoah
919 (2005). "Ice formation in Saharan dust over central Europe observed with
920 temperature/humidity/aerosol Raman lidar." *Journal of Geophysical Research: Atmospheres*
921 **110**(D18).
922
923 Ansmann, A., F. Rittmeister, R. Engelmann, S. Basart, O. Jorba, C. Spyrou, S. Rémy, A. Skupin, H.
924 Baars and P. Seifert (2017). "Profiling of Saharan dust from the Caribbean to western Africa—
925 Part 2: Shipborne lidar measurements versus forecasts." *Atmospheric Chemistry and Physics*
926 **17**(24): 14987-15006.
927
928 Ansmann, A., U. Wandinger, M. Riebesell, C. Weitkamp and W. Michaelis (1992). "Independent
929 measurement of extinction and backscatter profiles in cirrus clouds by using a combined
930 Raman elastic-backscatter lidar." *Applied Optics* **31**(33): 7113-7131.
931
932 Basart, S., C. Perez, S. Nickovic, E. Cuevas and J. Baldasano (2012). "Development and
933 evaluation of the BSC-DREAM8b dust regional model over Northern Africa, the Mediterranean
934 and the Middle East." *Tellus Series B-Chemical and Physical Meteorology* **64**.
935
936 Binietoglou, I., S. Basart, L. Alados-Arboledas, V. Amiridis, A. Argyrouli, H. Baars, J. Baldasano,
937 D. Balis, L. Belegante, J. Bravo-Aranda, P. Burlizzi, V. Carrasco, A. Chaikovsky, A. Comeron, G.
938 D'Amico, M. Filioglou, M. Granados-Munoz, J. Guerrero-Rascado, L. Ilic, P. Kokkalis, A. Maurizi,
939 L. Mona, F. Monti, C. Munoz-Porcar, D. Nicolae, A. Papayannis, G. Pappalardo, G. Pejanovic, S.
940 Pereira, M. Perrone, A. Pietruczuk, M. Posyniak, F. Rocadenbosch, A. Rodriguez-Gomez, M.
941 Sicard, N. Siomos, A. Szkop, E. Terradellas, A. Tsekeli, A. Vukovic, U. Wandinger and J. Wagner
942 (2015). "A methodology for investigating dust model performance using synergistic
943 EARLINET/AERONET dust concentration retrievals." *Atmospheric Measurement Techniques*
944 **8**(9): 3577-3600.
945
946 Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, Kerminen, V.-M.,
947 Kondo, Y., Liao, H., Lohmann, U., Rasch, Satheesh, S. K., Sherwood, S., Stevens, B., and
948 Zhang, i. X. Y.: edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, A. M., S. K., Boschung,
949 J., Nauels, A., Xia, Y., Bex, V., and P. M. and Midgley (2013). *Clouds and Aerosols. Climate
950 Change 2013: The Physical Science Basis*. Cambridge, United Kingdom and New York, NY, USA:
951 571-657.
952
953 Cazorla, A., J. A. Casquero-Vera, R. Román, J. L. Guerrero-Rascado, C. Toledano, V. E. Cachorro,
954 J. A. G. Orza, M. L. Cancillo, A. Serrano, G. Titos, M. Pandolfi, A. Alastuey, N. Hanrieder and L.
955 Alados-Arboledas (2017). "Near real time processing of ceilometer network data:
956 characterizing an extraordinary dust outbreak over the Iberian Peninsula." *Atmos. Chem. Phys.
957 Discuss.* **2017**: 1-28.
958

959 Cuevas, E., A. J. Gómez-Peláez, S. Rodríguez, E. Terradellas, S. Basart, R. D. Garcia, O. E. Garcia
960 and S. Alonso-Perez (2017). "The pulsating nature of large-scale Saharan dust transport as a
961 result of interplays between mid-latitude Rossby waves and the North African Dipole
962 Intensity." *Atmospheric Environment* **167**: 586-602.

963

964 Darmenova K., I. N. Sokolik, Y. Shao, B. Marticorena, G. Bergametti, 2009: "Development of a
965 physically-based dust emission module within the Weather Research and Forecasting (WRF)
966 model: Assessment of dust emission parameterizations and input parameters for source
967 regions in Central and East Asia", *J. Geophys. Res.*, 114, D14201.

968

969 Díaz, J., C. Linares, R. Carmona, A. Russo, C. Ortiz, P. Salvador and R. M. Trigo (2017). "Saharan
970 dust intrusions in Spain: health impacts and associated synoptic conditions." *Environmental*
971 *research* **156**: 455-467.

972

973 Fernald, F. G. (1984). "Analysis of Atmospheric Lidar Observations - Some Comments." *Applied*
974 *Optics* **23**(5): 652-653.

975

976 Forster, P., V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. Fahey, J. Haywood, J. Lean, D.
977 Lowe, G. Myhre, J. Nganga, G. Prinn, G. Raga, M. Schulz and R. Van Dorland (2007). "Changes in
978 atmospheric constituents and in radiative forcing." *Climate Change 2007: The physical Science*
979 *Basis*, 129-234, Cambridge Univ. Press, U.K.

980

981 Ginoux, P., J.M. Prospero, T.E. Gill, N.C. Hsu, M. Zhao (2012). "Global-scale attribution of
982 anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue
983 aerosol products". *Rev. Geophys.*, 50.

984

985 Gobbi, G., F. Angelini, F. Barnaba, F. Costabile, J. Baldasano, S. Basart, R. Sozzi and A. Bolignano
986 (2013). "Changes in particulate matter physical properties during Saharan advections over
987 Rome (Italy): a four-year study, 2001-2004." *Atmospheric Chemistry and Physics* **13**(15): 7395-
988 7404.

989

990 Guerrero-Rascado, J., F. Olmo, I. Aviles-Rodriguez, F. Navas-Guzman, D. Perez-Ramirez, H.
991 Lyamani and L. Arboledas (2009). "Extreme Saharan dust event over the southern Iberian
992 Peninsula in september 2007: active and passive remote sensing from surface and satellite."
993 *Atmospheric Chemistry and Physics* **9**(21): 8453-8469.

994

995 Guerrero-Rascado, J., B. Ruiz and L. Alados-Arboledas (2008). "Multi-spectral Lidar
996 characterization of the vertical structure of Saharan dust aerosol over southern Spain."
997 *Atmospheric Environment* **42**(11): 2668-2681.

998

999 Holben, B., T. Eck, I. Slutsker, D. Tanre, J. Buis, A. Setzer, E. Vermote, J. Reagan, Y. Kaufman, T.
1000 Nakajima, F. Lavenu, I. Jankowiak and A. Smirnov (1998). "AERONET - A federated instrument
1001 network and data archive for aerosol characterization." *Remote Sensing of Environment* **66**(1):
1002 1-16.

1003

1004 Holben, B., D. Tanre, A. Smirnov, T. Eck, I. Slutsker, N. Abuhassan, W. Newcomb, J. Schafer, B.
1005 Chatenet, F. Lavenu, Y. Kaufman, J. Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R.
1006 Halthore, A. Karneli, N. O'Neill, C. Pietras, R. Pinker, K. Voss and G. Zibordi (2001). "An
1007 emerging ground-based aerosol climatology: Aerosol optical depth from AERONET." *Journal of*
1008 *Geophysical Research-Atmospheres* **106**(D11): 12067-12097.

1009

1010 Huneeus, N., S. Basart, S. Fiedler, J.-J. Morcrette, A. Benedetti, J. Mulcahy, E. Terradellas, C. P.
1011 Garcia-Pando, G. Pejanovic and S. Nickovic (2016). "Forecasting the northern African dust
1012 outbreak towards Europe in April 2011: a model intercomparison." *Atmospheric chemistry and*
1013 *physics* **16**(8): 4967.

1014

1015 IPCC (2013). "Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis.
1016 Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental
1017 Panel on Climate Change, edited by Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J.
1018 Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley. Cambridge University Press, Cambridge,
1019 United Kingdom and New York, NY, USA.". 1020

1021 Janjic, Z. (1994). "THE STEP-MOUNTAIN ETA COORDINATE MODEL - FURTHER DEVELOPMENTS
1022 OF THE CONVECTION, VISCOUS SUBLAYER, AND TURBULENCE CLOSURE SCHEMES." *Monthly*
1023 *Weather Review* **122**(5): 927-945.

1024

1025 Karanasiou, A. , N. Moreno, T. Moreno, M. Viana, F. de Leeuw, X. Querol (2012). "Health
1026 effects from Sahara dust episodes in Europe: Literature review and research
1027 gaps." *Environment International*, Volume 47, Pages 107-114.

1028

1029 Klein, H., S. Nickovic, W. Haunold, U. Bundke, B. Nillius, M. Ebert, S. Weinbruch, L. Schuetz, Z.
1030 Levin and L. A. Barrie (2010). "Saharan dust and ice nuclei over Central Europe." *Atmospheric*
1031 *Chemistry and Physics* **10**(21): 10211-10221.

1032

1033 Klett, J. D. (1981). "Stable Analytical Inversion Solution for Processing Lidar Returns." *Applied*
1034 *Optics* **20**(2): 211-220.

1035

1036 Lafontaine, C., R. Bryson and W. Wendland (1990). "AIRSTREAM REGIONS OF NORTH-AFRICA
1037 AND THE MEDITERRANEAN." *Journal of Climate* **3**(3): 366-372.

1038

1039 Mahowald, N., A. Baker, G. Bergametti, N. Brooks, R. Duce, T. Jickells, N. Kubilay, J. Prospero
1040 and I. Tegen (2005). "Atmospheric global dust cycle and iron inputs to the ocean." *Global*
1041 *Biogeochemical Cycles* **19**(4).

1042

1043 Mamouri, R., A. Ansmann, A. Nisantzi, P. Kokkalis, A. Schwarz and D. Hadjimitsis (2013). "Low
1044 Arabian dust extinction-to-backscatter ratio." *Geophysical Research Letters* **40**(17): 4762-4766.
1045 Mamouri, R., A. Ansmann, A. Nisantzi, S. Solomos, G. Kallos and D. Hadjimitsis (2016).
1046 "Extreme dust storm over the eastern Mediterranean in September 2015: satellite, lidar, and
1047 surface observations in the Cyprus region." *Atmospheric Chemistry and Physics* **16**(21): 13711-
1048 13724.

1049

1050 Mona, L., A. Amodeo, M. Pandolfi and G. Pappalardo (2006). "Saharan dust intrusions in the
1051 Mediterranean area: Three years of Raman lidar measurements." *Journal of Geophysical*
1052 *Research-Atmospheres* **111**(D16).

1053

1054 Mona, L., N. Papagiannopoulos, S. Basart, J. Baldasano, I. Binietoglou, C. Cornacchia and G.
1055 Pappalardo (2014). "EARLINET dust observations vs. BSC-DREAM8b modeled profiles: 12-year-
1056 long systematic comparison at Potenza, Italy." *Atmospheric Chemistry and Physics* **14**(16):
1057 8781-8793.

1058

1059 Muller, D., A. Ansmann, V. Freudenthaler, K. Kandler, C. Toledano, A. Hiebsch, J. Gasteiger, M.
1060 Esselborn, M. Tesche, B. Heese, D. Althausen, B. Weinzierl, A. Petzold and W. von Hoyningen-
1061 Huene (2010). "Mineral dust observed with AERONET Sun photometer, Raman lidar, and in situ

1062 instruments during SAMUM 2006: Shape-dependent particle properties." *Journal of*
1063 *Geophysical Research-Atmospheres* **115**.

1064

1065 Muller, D., B. Heinold, M. Tesche, I. Tegen, D. Althausen, L. Arboledas, V. Amiridis, A. Amodeo,
1066 A. Ansmann and D. Balis (2009). "EARLINET observations of the 14-22-May long-range dust
1067 transport event during SAMUM 2006: validation of results from dust transport modelling."
1068 *TELLUS. SERIES B, CHEMICAL AND PHYSICAL METEOROLOGY* **61**(1): 325-339.

1069

1070 Nisantzi, A., R. Mamouri, A. Ansmann, G. Schuster and D. Hadjimitsis (2015). "Middle East
1071 versus Saharan dust extinction-to-backscatter ratios." *Atmospheric Chemistry and Physics*
1072 **15**(12): 7071-7084.

1073

1074 Obregón, M., S. Pereira, V. Salgueiro, M. J. Costa, A. M. Silva, A. Serrano and D. Bortoli (2015).
1075 "Aerosol radiative effects during two desert dust events in August 2012 over the Southwestern
1076 Iberian Peninsula." *Atmospheric Research* **153**: 404-415.

1077

1078 Pappalardo, G., A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linne, A. Ansmann,
1079 J. Bosenberg, G. D'Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D.
1080 Nicolae and M. Wiegner (2014). "EARLINET: towards an advanced sustainable European
1081 aerosol lidar network." *Atmospheric Measurement Techniques* **7**(8): 2389-2409.

1082

1083 Pappalardo, G., A. Amodeo, M. Pandolfi, U. Wandinger, A. Ansmann, J. Bosenberg, V. Matthias,
1084 V. Amirdis, F. De Tomasi, M. Frioud, M. Iarlori, L. Komguem, A. Papayannis, F. Rocadenbosch
1085 and X. Wang (2004). "Aerosol lidar intercomparison in the framework of the EARLINET project.
1086 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratio." *Applied Optics*
1087 **43**(28): 5370-5385.

1088 Perez, C., K. Haustein, Z. Janjic, O. Jorba, N. Huneeus, J. Baldasano, T. Black, S. Basart, S.
1089 Nickovic, R. Miller, J. Perlitz, M. Schulz and M. Thomson (2011). "Atmospheric dust modeling
1090 from meso to global scales with the online NMMB/BSC-Dust model - Part 1: Model description,
1091 annual simulations and evaluation." *Atmospheric Chemistry and Physics* **11**(24): 13001-13027.

1092 Perez, C., S. Nickovic, G. Pejanovic, J. Baldasano and E. Ozsoy (2006). "Interactive dust-
1093 radiation modeling: A step to improve weather forecasts." *Journal of Geophysical Research-
1094 Atmospheres* **111**(D16).

1095

1096 Pey, J., X. Querol, A. Alastuey, F. Forastiere and M. Stafoggia (2013). "African dust outbreaks
1097 over the Mediterranean Basin during 2001–2011: PM 10 concentrations, phenomenology and
1098 trends, and its relation with synoptic and mesoscale meteorology." *Atmospheric Chemistry
1099 and Physics* **13**(3): 1395-1410.

1100

1101 Preissler, J., F. Wagner, S. Pereira and J. Guerrero-Rascado (2011). "Multi-instrumental
1102 observation of an exceptionally strong Saharan dust outbreak over Portugal." *Journal of*
1103 *Geophysical Research-Atmospheres* **116**.

1104

1105 Prospero, J., P. Ginoux, O. Torres, S. Nicholson and T. Gill (2002). "Environmental
1106 characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total
1107 Ozone Mapping Spectrometer (TOMS) absorbing aerosol product." *Reviews of Geophysics*
1108 **40**(1).

1109

1110 Querol, X., J. Pey, M. Pandolfi, A. Alastuey, M. Cusack, N. Pérez, T. Moreno, M. Viana, N.
1111 Mihalopoulos and G. Kallos (2009). "African dust contributions to mean ambient PM10 mass-
1112 levels across the Mediterranean Basin." *Atmospheric Environment* **43**(28): 4266-4277.

1113

1114 Salvador, P., S. M. Almeida, J. Cardoso, M. Almeida-Silva, T. Nunes, M. Cerqueira, C. Alves, M.
1115 A. Reis, P. C. Chaves, B. Artinano and C. Pio (2016). "Composition and origin of PM₁₀ in Cape
1116 Verde: Characterization of long-range transport episodes." *Atmospheric Environment* **127**:
1117 326-339.

1118

1119 Salvador, P., S. Alonso-Perez, J. Pey, B. Artinano, J. de Bustos, A. Alastuey and X. Querol (2014).
1120 "African dust outbreaks over the western Mediterranean Basin: 11-year characterization of
1121 atmospheric circulation patterns and dust source areas." *Atmospheric Chemistry and Physics*
1122 **14**(13): 6759-6775.

1123

1124 Salvador, P., B. Artíñano, F. Molero, M. Viana, J. Pey, A. Alastuey and X. Querol (2013). "African
1125 dust contribution to ambient aerosol levels across central Spain: Characterization of long-
1126 range transport episodes of desert dust." *Atmospheric Research* **127**: 117-129.

1127

1128 Santos, D., M. J. Costa, A. M. Silva and R. Salgado (2013). "Modeling Saharan desert dust
1129 radiative effects on clouds." *Atmospheric research* **127**: 178-194.

1130

1131 Sicard, M., R. Barragan, F. Dulac, L. Alados-Arboledas and M. Mallet (2016). "Aerosol optical,
1132 microphysical and radiative properties at regional background insular sites in the western
1133 Mediterranean." *Atmospheric Chemistry and Physics* **16**(18): 12177-12203.

1134

1135 Sicard, M., G. D'Amico, A. Comeron, L. Mona, L. Alados-Arboledas, A. Amodeo, H. Baars, J.
1136 Baldasano, L. Belegante, I. Binietoglou, J. Bravo-Aranda, A. Fernandez, P. Freville, D. Garcia-
1137 Vizcaino, A. Giunta, M. Granados-Munoz, J. Guerrero-Rascado, D. Hadjimitsis, A. Haefele, M.
1138 Hervo, M. Iarlori, P. Kokkalis, D. Lange, R. Mamouri, I. Mattis, F. Molero, N. Montoux, A.
1139 Munoz, C. Porcar, F. Navas-Guzman, D. Nicolae, A. Nisantzi, N. Papagiannopoulos, A.
1140 Papayannis, S. Pereira, J. Preissler, M. Pujadas, V. Rizi, F. Rocadenbosch, K. Sellegri, V.
1141 Simeonov, G. Tsaknakis, F. Wagner and G. Pappalardo (2015). "EARLINET: potential
1142 operability of a research network." *Atmospheric Measurement Techniques* **8**(11): 4587-
1143 4613.

1144

1145 Rolph, G., Stein, A., and Stunder, B., (2017). "Real-time Environmental Applications and Display
1146 System: READY". *Environmental Modelling & Software*, 95, 210-228.

1147

1148 Sorribas, M., J. Adame, E. Andrews and M. Yela (2017). "An anomalous African dust event and
1149 its impact on aerosol radiative forcing on the Southwest Atlantic coast of Europe in February
1150 2016." *Science of the Total Environment* **583**: 269-279.

1151

1152 Stafoggia, M., S. Zauli-Sajani, J. Pey, E. Samoli, E. Alessandrini, X. Basagaña, A. Cerniglio, M.
1153 Chiusolo, M. Demaria and J. Díaz (2016). "Desert dust outbreaks in Southern Europe:
1154 contribution to daily PM10 concentrations and short-term associations with mortality and
1155 hospital admissions." *Environmental health perspectives* **124**(4): 413.

1156

1157 Stein, A.F., Draxler, R.R, Rolph, G.D., Stunder, B.J.B., Cohen, M.D., and Ngan, F., (2015).
1158 "NOAA's HYSPLIT atmospheric transport and dispersion modeling system", *Bull. Amer. Meteor.
1159 Soc.*, 96, 2059-2077.

1160

1161 Tsekeri, A., A. Lopatin, V. Amiridis, E. Marinou, J. Igloffstein, N. Siomos, S. Solomos, P. Kokkalis,
1162 R. Engelmann and H. Baars (2017). "GARRLiC and LIRiC: strengths and limitations for the
1163 characterization of dust and marine particles along with their mixtures." *Atmospheric
1164 Measurement Techniques* **10**(12): 4995.

1165

1166 Wagner, F., D. Bortoli, S. Pereira, M. J. Costa, A. SILVA, B. Weinzierl, M. Esselborn, A. Petzold, K.
1167 Rasp and B. Heinold (2009). "Properties of dust aerosol particles transported to Portugal from
1168 the Sahara desert." Tellus B **61**(1): 297-306.

1169

1170 Weinzierl, B., A. Ansmann, J. Prospero, D. Althausen, N. Benker, F. Chouza, M. Dollner, D.
1171 Farrell, W. Fomba, V. Freudenthaler, J. Gasteiger, S. Gross, M. Haarig, B. Heinold, K. Kandler, T.
1172 Kristensen, O. Mayol-Bracero, T. Muller, O. Reitebuch, D. Sauer, A. Schafler, K. Schepanski, A.
1173 Spanu, I. Tegen, C. Toledano and A. Walser (2017). "THE SAHARAN AEROSOL LONG-RANGE
1174 TRANSPORT AND AEROSOL-CLOUD-INTERACTION EXPERIMENT Overview and Selected
1175 Highlights." Bulletin of the American Meteorological Society **98**(7): 1427-1451.

1176

1177 Weinzierl, B., D. Sauer, A. Minikin, O. Reitebuch, F. Dahlkötter, B. Mayer, C. Emde, I. Tegen, J.
1178 Gasteiger, A. Petzold, A. Veira, U. Kueppers and U. Schumann (2012). "On the visibility of
1179 airborne volcanic ash and mineral dust from the pilot's perspective in flight." Physics and
1180 Chemistry of the Earth **45-46**: 87-102.

1181

1182 World Meteorological Organization, W. M. O. (2011). "Weather Extreme in a Changing Climate:
1183 Hindsight on Foresight" WMO-No. 1075 (ISBN: 978-92-63-11075-6).

1184