We thank the reviewers for their helpful comments, which have led us to a substantially
improved version of the paper. Here, the reviewers’ comments are shown in boldfaced black
text, and our responses are shown in non-boldfaced blue text. The page and line numbers to
which we refer in our responses correspond to the updated manuscript (the comments of all
reviewers are taken into account in this updated manuscript).

First and foremost, we confirm that the tropospheric chemical mechanism in GISS ModelE2 is
not CBMO4. The original manuscript version contained an incorrect oversimplified description
of the tropospheric chemistry scheme in GISS ModelE2 that has caused our Reviewers
confusion and understandable concerns. We understand that using an old-fashioned chemical
mechanism developed 25 years ago for urban polluted high-NOx environments would be an
inappropriate tool to apply to a study of large-scale isoprene emission perturbation in the
tropics. The chemical mechanism in GISS ModelE2 has been substantially updated and
improved over the past 15 years, for example, to account for important reactions, pathways,
and species under low-NOx conditions (e.g. Shindell et al., 2003; 2006; 2013; Schmidt et al.,
2014).

We now include a more detailed description of the chemical mechanism in Section 2.1
(ModelE2-YIBs description) (Page 4, Line 32):

“The troposphere features NOx-Ox-HOx-CO-CH,; chemistry; an explicit representation of
isoprene; and a lumped hydrocarbon scheme involving terpenes, peroxyacyl nitrates (PANs),
alkyl nitrates, aldehydes, alkenes, and alkanes. The representation of hydrocarbons generally
follows Houweling et al. (1998), which is originally derived from the Carbon Bond Mechanism-4
(Gery et al., 1989) and the Regional Atmospheric Chemistry Model (RACM; Stockwell et al.,
1997), but includes several modifications aimed at representing the wide range of chemical
conditions found in Earth's atmosphere, such as the addition of reactions important in low-NOy
conditions including representation of organic peroxy radical chemistry under low-NOy
conditions and introduction of organic nitrate chemistry. Shindell et al. (2013) describe in detail
the recent updates to the tropospheric chemistry scheme, including the incorporation of
acetone chemistry (Houweling et al., 1998) and the addition of terpene oxidation (Tsigaridis and
Kanakidou, 2007). SOA formation is driven by NOx-dependent oxidation of emissions of
isoprene, monoterpenes, and other reactive VOCs following a volatility-based two-product
scheme (Tsigaridis and Kanakidou, 2007). The formation of secondary inorganic aerosols,
including sulfate (Bell et al., 2005; Koch et al., 2006) and nitrate (Bauer et al., 2007a), depend
on both modeled oxidant levels and the availability of source gases. Primary aerosol types
include dust (which provides a surface for heterogeneous chemistry; Bauer and Koch, 2005;
Bauer et al., 2007b), black carbon, organic carbon, and sea salt (Koch et al., 2006). Stratospheric
chemistry, introduced to the chemical mechanism by Shindell et al. (2006), includes nitrous
oxide (N,0) and halogen (bromine and chlorine) chemistry. Recent updates to stratospheric
chemistry are summarized by Shindell et al. (2013) and include changes in the representations
of polar stratospheric cloud formation (Hanson and Mauersberger, 1988) and heterogeneous
hydrolysis of N,Os on sulfate (Hallquist et al., 2003; Kane et al., 2001).”



Interdisciplinary work is challenging. We would like to emphasize the novel aspects of this
project. (1) The land cover dataset for maritime Southeast Asia that we use in our study is built
from an existing classification based on Landsat images (Gunarso et al., 2013). This dataset
represents a wall-to-wall mapping of land cover in this region, including explicit representation
of plantations of oil palm (high isoprene emitter) and rubber (high monoterpene emitter).
Gunarso et al. (2013) used a consistent classification methodology for each year of their
analysis, which has provided an internally consistent set of land cover maps for this period for
this region. Other studies have investigated the atmospheric composition impacts from land
cover change in this region: Ashworth et al. (2012) considered a projection of forest to oil palm
conversion based on meeting future demand for biofuels; Warwick et al. (2013) considered the
total conversion of Borneo to oil palm from forest; and Silva et al. (2016) considered the impact
of 2010 oil palm cover relative to an oil-palm-free landscape in addition to considering future
projections of oil palm. We consider the impacts of actual historical land cover change, which is
clearly different than Ashworth et al. (2012) and Warwick et al. (2013). The Silva et al. (2016)
study imposes oil palm expansion by overlaying an oil palm map for 2010 on a separate 16-PFT
land cover distribution; this is a different methodology than we apply here, where we apply an
internally consistent set of maps developed using a wall-to-wall classification methodology. (2)
We have developed the global climate model code to add four additional land cover type PFTs,
focusing on land covers that are pervasive in maritime Southeast Asia, including oil palm and
rubber plantations. Previous studies have focused only on the impacts of oil palm expansion. (3)
We consider the impacts of land-cover-change-driven changes in emissions of both isoprene
and monoterpenes. The study by Silva et al. (2016) presumably includes dynamic changes in
monoterpene emissions for the land covers that are displaced by oil palm, but their one new
land cover type — oil palm — only has the isoprene emission capacity altered relative to the
forest land cover type. Ashworth et al. (2012) and Warwick et al. (2013) consider only isoprene
emission changes. (4) We directly quantify the global radiative forcing induced by ozone and
SOA changes driven by historical land cover change in this region using a coupled global land-
chemistry-climate model framework with the embedded radiative transfer model developed by
A. Lacis and J. Hansen in GISS ModelE2 (e.g. Schmidt et al., 2014). (5) We provide new climate
policy metrics for global ozone radiative forcing per Mha land cover change in the tropics. (6)
We quantitatively identify that important factors driving uncertainty in the forcing include (a)
uncertainty in the magnitude of the isoprene BER for oil palm and (b) uncertainty in the areal
extent of oil palm expansion. Using an analysis based on fixed SOA yields, we additionally show
that the sign of the net forcing is sensitive to uncertainty in the SOA yield from BVOCs.

Responses to Reviewer #2

Harper and Unger present a study of the radiative forcing brought about via differences in
isoprene emission under different land use configurations in the maritime Southeast Asia
(MSEA) region. These land use changes comprise the move towards more oil palm
plantations, which emit more biogenic volatile organic compounds than the native natural
forests. The changes in isoprene emitted to the atmosphere as a result of the increased oil
palm leads to changes in ozone. Of particular interest is that the Enhanced BVOCs caused



bigger changes globally to ozone in the upper troposphere (0.6 ppb) than lower troposphere
(>0.1 ppb), which would seem an important result. The novelty of this study is that the
authors then go on to calculate the radiative forcing expected by these ozone changes,
finding a small increase of +1 mW m-2 Mha-1.

This shows that impacts of land use changes in tropical regions, which are subject to stronger
convective patterns that elsewhere, are very important.

My feeling is that this is a really nice idea, but the wrong tool has been used to carry out the
study. The small changes in ozone seen at the top of the troposphere are probably lost in the
noise of uncertainty of the chemical scheme chosen, and thus | question the impacts on
radiative forcing.

The authors use the carbon bond 4 chemical mechanism to represent the oxidation of
isoprene in the atmosphere. This scheme is very old and does not include some of the recent
discoveries brought about via questioning the discrepancies between isoprene predicted by
models, and observed mixing ratios. These particularly relate to additional OH recycling,
which directly impact the influence of isoprene on 03 (eg Lelieveld et al., 2008; Peeters et al.,
2009).

The authors do mention the uncertainty in the isoprene chemistry regarding increased
oxidant cycling, right at the end of the paper in the conclusions, but | think there are other
problems with this choice of chemistry scheme. High isoprene atmospheres, such as that
found in this MSEA region, have caused more differences in chemical mechanisms than most
others. Unfortunately, the carbon bond scheme has never fared well when tested alongside
other chemistry schemes under similar isoprene rich atmospheres. | wonder why there has
been no model development in the chemistry scheme in this work when the science behind
this paper depends so highly upon it?

For example Knote et al (2015) tested two variants of the newer carbon bond 5 (CB05)
scheme (neither of which contained updates to the isoprene chemistry) and found they
“tended to be biased low in 03 under low NOx/high VOC conditions (e.g. biogenic emissions
rich) as well as under very high NOx conditions. In general, the CBO5 schemes produced
‘lower than average 8 hourly 03’ produced by other schemes. Mechanisms were ‘found to
differ more strongly in their predictions of O3 levels and other pollutants in regions with
strong biogenic VOC emissions”.

Archibald et al (2010) tested 8 chemical schemes in isoprene rich regions and found that the
CB05 mechanism was ‘unable to generate/recycle HOx at the rates needed to match recently
reported observations at locations characterized by low levels of NOx.

An older study - Emmerson and Evans (2009) tested the carbon bond 4 scheme against 6
other schemes. However the carbon bond 4 results disagreed with the majority of the other
schemes, in even the sign of the changes in ozone (e.g. loss instead of production - see figure



3 panel e). Differences (and thus uncertainty) of 14 ppb were found between the resulting
ozone from the Master Chemical Mechanism and the carbon bond 4 scheme, which is 14
times more than the ~1 ppb of ozone changes found in Harper and Unger’s study at the top

of the troposphere, and upon which the radiative forcing calculations are based.

Thus | don’t agree with the authors’ comment that no updates to the chemistry have
occurred because of “its apparent inconsequence to the surface pollution impacts of regional
land cover change”. | think if a different chemistry scheme had been implemented that the
changes in ozone found by Harper and Unger as a result of including more oil palm
plantations in the model would lead to more significant differences in the radiative forcing
than found by their study.

I'd recommend updating the chemistry scheme. Perhaps even to include a sensitivity study
with a more up to date representation of just the isoprene chemistry — particularly one that
agrees with the sign of ozone changes driven by our current understanding. The chemical
aspect of Harper and Unger’'s work is my only criticism, which if rectified | would then
recommend publication in ACP.

Thank you for the thoughtful comments and guidance. We confirm that the tropospheric
chemical mechanism in GISS ModelE2 is not CBMO4. Please see response at the top of this
document at response to Reviewer #1 point (9). Certainly, we too would have major concerns
about a study using CBMO04 to quantify composition impacts of a large isoprene emission
injection in the tropics. The revised manuscript now includes a more detailed and accurate
description of the chemical mechanism.

We have removed this sentence: “its apparent inconsequence to the surface pollution impacts
of regional land cover change.” We now provide a more balanced assessment of uncertainties
due to isoprene oxidation chemistry, which we have moved to the methodology (Sect. 2.1) as
advised in point (9) below. In our expanded assessment, we have included reference to the
studies noted above (Archibald et al., 2010; Emmerson and Evans (2009); Knote et al. (2015)).

General comments

(1) A map figure would be good, showing the study area with the areal extent of regions
growing oil palm in 1990 and where/how these regions have increased by 2010.

The original version of the manuscript includes Figure S1 in the Supplementary Information; this
figure is now labeled Figure S2 in the updated manuscript. This figure shows, for each of eight
land cover types (including oil palm), the regional change in land cover for (1) 1990-2005 and
(2) 1990-2010. In the manuscript, we refer to this figure on Page 11, Line 16.

We have included a new figure (known as Figure S1 in the updated manuscript) that shows the
areal extent of these same eight land cover types in year 1990. We have added the following



sentence to the manuscript to point readers to this figure (Page 16, Line 14): “Figure S1 in the
Supplement shows the regional land cover distribution for 1990.”

(2) Page 2 line 2. “Compared to natural forests oil palm plantations are much stronger
emitters of BVOCs” Some numbers would be good here. How much stronger?

Updated text (additions in bold; Page 2, Line 11): “Above-canopy flux measurements taken in
Borneo in 2008 indicate that, compared to the natural forests of maritime Southeast Asia
(MSEA), oil palm plantations are much stronger emitters of the biogenic volatile organic
compound (BVOC) isoprene (CsHg), with mean midday fluxes about five times stronger from
oil palm (Langford et al., 2010; Misztal et al., 2011).”

The factor difference may be even stronger if comparing the canopy-level BERs, but the values
of the BERs can depend on the model parameterization applied (e.g., Misztal et al., 2011), so
we use the above comparison instead.

(3) Page 2 line 20. Try placing the (Baker et al., 2005; Klinger et al., 2002) references at the
end of sentence to avoid breaking the flow of the sentence up too much.

Fixed. (We introduce the high-monoterpene-emitting capacity of rubber trees earlier in the
revised introduction.)

(4) Page 2 line 29. How is photolysis treated in the model?

We have provided an expanded description of photolysis in the manuscript (Page 5, Line 18):
“Photolysis rate calculations follow the Fast-J2 scheme of Bian and Prather (2002). At each 30
minute time step, the simulated distributions of clouds, ozone, and aerosols are passed to the
photolysis code, providing a mechanism for simulated changes in aerosols to impact
atmospheric chemistry through modification of photolysis rates (Bian et al., 2003).”

We have added these references:

Bian, H. and Prather, M.J.: Fast-J2: Accurate simulation of stratospheric photolysis in global
chemical models, J. Atmos. Chem., 41, 281-296, doi: 10.1023/A:1014980619462, 2002.

Bian, H., Prather, M.J., and Takemura, T.: Tropospheric aerosol impacts on trace gas budgets
through photolysis, J. Geophys. Res., 108, 4242, doi: 10.1029/2002JD002743, 2003.

(5) Page 3 line 27. ‘the’ calculation



Fixed.

(6) Page 5 line 12. It is not clear where this LAl dataset has come from?

For the four new land cover types that have been added to ModelE2-YIBs for this study, the
assigned LAl values are from published literature and are shown in Table 1 in the main text (this
table was previously Table S2 in the Supplement), with the references noted in the footnotes of
that table. To better point readers to this information, we have added the phrase (Page 9, Line
20) “including LAl and vegetation height” to the sentence in the manuscript that describes the
information that can be found in Table 1; in this sentence, we additionally replace the phrase
“BVOC emissions” with the more specific phrase “leaf-level basal emission rates for isoprene
and monoterpenes.” (The assigned LAl applied to other vegetation is described in the following
paragraph.)

(7) Page 5 line 14 (onwards in this paragraph). LAl has units of m2 m-2

Fixed in all three instances in this paragraph (Page 9, Line 11): “An analysis of the leaf area
index (LAI) of rainforest plots in Central Sulawesi, Indonesia, under different land use regimes
found that disturbance of the forest by selective logging reduced the LAl below the 6.2 m? [leaf]
m [ground] value measured for the undisturbed natural forest (Dietz et al., 2007). Removal of
“small-diameter” trees reduced LAl to 5.3 m? m?, while removal of “large-diameter” trees
reduced LAl to 5.0 m* m™ (Dietz et al., 2007).”

We also added the units to two places in the new Table 1 (previously Table S2 in the
Supplement) — once in the table and once in the footnote.

(8) Page 5 line 21. Table S2 — mention this is in the supplementary section.

We have moved this table and its footnotes to the main text (now known as Table 1).

(9) Page 19 line 21. This whole discussion of uncertainties in the chemistry scheme would be
better placed in section 2.1 which introduces the method used.

Fixed. We expanded this discussion and moved it to Section 2.1.
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