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S1. ALW, pH, and NOs estimation

For smog chamber aerosols, Model 11 of Extended-Aerosol Inorganic Model (E-AIM) (Wexler
and Clegg, 2002) was used. The effective Henry’s law constant for glyoxal (2 x 10’ M/atm) was
used. Neither radical nor non-radical reactions was considered. Measurements of species (ug/m®)
were converted to moles per the unit volume (moles/m®). The input for H* (or OH") was

determined by the ion balance method (Hennigan et al., 2015):

2 ni x [Anion]; - £ n; x [Cation]i = [H"] (Eq. S2-1)

¥ n; x [Cation]i - Z n; x [Anion]i = [OH] (Eg. S2-2)

where n; is a stoichiometric coefficient of species, i.

[ALW]i and pHi in Supplementary Table 1 are estimated by E-AIM under the conditions above

(inputs). Since the mass increase was only due to water uptake, [ALW]: was obtained as follows:

[ALW]s = [ALW]; + ([M]¢’ - [M]) (Eq. S3)

where [M]¢’ is the wall loss corrected [M]s, which was measured by SMPS.

To determine pHr and [NO3] after smog chamber reactions (Table S1), an equilibrium model was
developed by using FACSIMILE (MCPA Software Ltd.) that contained equilibria listed in Table

S3. It was assumed that all NO, became HNO3 by OH oxidation in the gas phase. Concentrations
were corrected by accounting ALW+. In addition to the concentration of NO3", concentrations of

inorganic constituents in wet aerosols are listed in Table S2.

To determine concentrations of organic/inorganic constituents, ALW, and pH of haze particles in
the atmosphere, off-line measurements by GC-MS needed to be corrected for water uptake by E-
AIM Model V. Glyoxal was used as a surrogate of organic compounds (Brooks et al., 2002). The

daytime humidity during the haze event in Seoul varied from ~ 70 % RH in the morning (8 AM)
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to ~ 35 % RH in the afternoon (3 PM) (Fig S6). So, 70 % RH was used in E-AIM. Note that the
photooxidation in the smog chamber also started at ~ 70 % RH (Fig. S1). No overcast weather
was observed during the haze event. The average temperature (5°C) was used in E-AIM. In
addition to E-AIM estimation of the concentration of NO3™ based on NO3™ measurements on
filters. We also estimates the concentration of NOs™ through the Henry’s law equilibrium from
HNOs in the gas phase using the equilibrium model. The average temperature (5°C) was also
used. Estimated concentrations of NOs, and other organic/inorganic constituents by the

equilibrium model are listed in Table S2.
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Fig. S1. A negative mode of UPLC-Q-TOF-mass spectrum for a pure HNOs solution (1.5
mM). m/z" 147 and 226 are nitrate clusters (m/z 62 is a nitrate). m/z 147 (146.9653)
represents [Na(NOz)2]” with the uncertainty of 4.5 ppm. m/z” 226 (225.9278) represents
[Ca(NO3)s] with the uncertainty of 10.2 ppm.
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Fig. S2. A positive mode of HR-Q-TOF-mass spectrum for a standard mixture solution of
glyoxal (3.8 mM) and HNOs solution (15 mM).
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Fig. S3. Photochemical Model simulations for HNOs, N20s and NOx, and measurements
for NOx. (a) is under chamber conditions. (b) is under ambient conditions. Gas-phase
NOx-HOx chemistry model has been developed here based on the Lim cloud model (Lim
et al., 2005). The actinometric experiments for lamps in our chamber determine that the
photolysis rate of NO2 is 0.55 min (Lee, 2007). For chamber simulations, the
concentration of OH radicals is 1e6 molecules cm=. The conversion rate of NO to NO2
by peroxy radicals is set to be 1e-11 cm® molecules™? st — Note that the conversion rate
for C2H500s is 9.1e-12 cm® molecules™ s (Atkinson et al., 2006). The OH reaction rate
of VOC, which is the source of peroxy radicals that convert NO to NO, is set to be 5e-10
cm® molecules™ s — Note that the OH rate for formic acid (presumably evaporated
organic compounds from aqueous OH reaction of glyoxal) is ~ 3e-10 cm® molecules™ s
(Kwok and Atkinson, 1995). For ambient simulation, the photolysis rate of NOz2 is set to
be 0.27 mint (Lim et al., 2005). The concentration of OH radicals is 1e6 molecules cm=,
Other parameters are set to be the same as chamber conditions. Note that [NO] is
overestimated under chamber conditions (a) (the possible sink of NO to the wall loss as
HONO), and no ambient [NQ] is available during the multiday haze event (b).

S6



3.5e+5

AS Humid (a)
3.0e+5 4 §
2 2.50+5 | o8
g 8
£ 2.0e+5 | 9 ﬁ
2 o ° e
E 1.5e+5 - 9 3
3 ®
2 8 °
L 1.0e+54 ..
g 8 &% S
& 5.0e+4 A e
0.0 -
0 100 200 300 400 500 600
3.5e+5
ASDry (b)
3.0e+5 4 &)
% 2.5e+5 8 8
2
€ 5.0e+5 | 8
2 8
E 1.5e+5 [¢]
= 8
© 1,045 1 g © t=0min
] ° ® t=180min
& 5.0e+4 -
0.0 q 00000000
0 100 200 300 400 500 600 700
4e+5
% SA Humid (c)
o 3et5 4 ©
£ 8 N
L
33:‘ 5
5 2e+5 4
£ g
S
3 &
z °
3 le+s 1 [ 3 © t=0min
£ ® t=180min
g ’
0 4 00000000
0 100 200 300 400 500 600 700
Diameter (nm)
7e+9
Real-time Surface Area  (d)
6e+9
— ... ©  AS Humid
€ 5e+9 \ o ® ASDry
N(\EJ o, ®  SA Humid
£ 4e+9 A
RS
g B a0 M
< Zet9{ &
@
Q
£
5 2e+9
(7]
le+9 A
0

(; 26 4‘0 (;0 E;O 1(30 120 1;10 1(;0 léO 200

Time (min)
Fig. S4. Particle number distributions of AS aerosols in the humid chamber (2), AS aerosols in
the dry chamber (b), and SA aerosols in the humid chamber (c) att = 0 min and t = 180 min (a, b,
and c); surface area distributions AS and SA aerosols in the humid/dry chamber during 3 hour
photooxidation (d). Only (a) represents the condensation of water vapor and the coagulation while

(b), (c), and (d) represent only the coagulation. Consequently, the surface area for AS humid is
the constant while the other surface areas for AS dry and SA humid decrease.
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Fig. S5. 1) AS aerosols in the absence of glyoxal in the humid chamber (e); 2) AS aerosols in the
dry chamber (e); 3) AS aerosols in the humid chamber (¢); and 4) AS aerosols in the absence of

H>0O; in the humid chamber (). All of plots were wall-loss corrected.
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Fig. S6. Average daytime variations of RH during the haze event in Seoul (Seoul Haze)
and average RH variations during the photooxidation in the humid condition (Humid
Chamber)
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Table S1. Smog chamber ex

erimental conditions

) ) [NO]; [NOJ¢ [ALW]i | [ALW]
4 | Atomized Solution | UVior | RHi | RHr | Ti | Tr | (epb) | (ppb) | [Os]i | [Oa)r | [M]li | [Ml | [MI® | (o/m®) | (ug/m?) | [NOs]
Date Dark | (%) | (%) | (K) | (K) | [NOxJi | [NOJJr| (ppb) | (ppb) | (ng/m?) | (pg/m?) | (ug/m?) pHi pHs M)
(ppb) (ppb)
AS + H,0, + Gly 240 | 55 0.8
1 UV | 30 | 3.0 | 293 | 303 0| 249 762 | 47.7 | 613 - -
3/5/2015 280 | 255 6.4
AS + H,0, + Gl 8.2 4.4 0.8
g | ASTHO Gl g | 50 | 204 | 300 69| 77| 777 | 329 | 636 ; ;
3/31/2015 94| 156 6.4
AS + H,0, + Gly 2.4 0 0.9
3 UV | 30 | 3.0 | 292 | 306 96| 340 875 | 400 | 752 - -
11/26/2015 2.9 1.1 6.4
AS + H;0, + Gly 5.1 0.4 347 | 117.7
4 UV | 70.8 | 38.9 | 294 | 304 74| 11.3| 732 | 1014 | 157.4 0.9
3/23/2015 64| 46 4.8 2.2
AS + H;0, + Gly 7.2 2.7 77.9 | 108.0
5 UV | 822|420 295 | 310 6.9| 154 | 131.6 | 965 | 161.7 1.0
4/1/2015 10.5 7.4 4.6 2.4
AS + Gly 547 | 23.3 19.0 | 16.8
6 UV* | 69.4 | 34.8 | 298 | 310 130 | 180 413 | 263 | 39.8 -
5/27/2015 55.5 | 38.7 47 | 43
AS + H,0, 8.5 3.2 60.5 | 55.0
7 UV |837]39.1] 295 | 310 76| 121| 988 | 619 | 91.3 ;
3/30/2015 11.7 7.1 45 | 45
AS + H,0, + Gly 172 | 172 0.6
8 Dark | 3.0 | 3.0 | 297 | 297 64| 59| 722 | 335 | 765 - -
4/27/2015 19.1 | 17.1 6.3
AS + H;0, + Gly 389 | 27.8 229 | 189
9 Dark | 77.7 | 56.2 | 298 | 298 6.2 78| 425 | 226 | 385 -
4/28/2015 39.9 | 332 46 | 45
AS + H,0, + Gl 158 | 15.6 1083 | 74.0
10 227N bark | 717 | 649 | 208 | 208 56| 632251 | 429 | 194.0 -
5/7/2015 169 | 17.1 47 | 46
SA + H;0, + Gly 80.9 | 41.6 321 | 291
11 UV | 7.1 | 3.0 | 293 | 304 0 77| 993 | 369 | 96.3 4.9¢-3
3/9/2015 835 | 77.7 11 | -10
SA + H;0, + Gly 216 | 152 129.2 | 109.6
12 UV | 820|448 | 294 | 307 6.2 85| 1741 | 67.5 | 1545 1.4e-3
3/25/2015 239 | 19.7 06 | -05
SA + H,0, + Gly 158 | 156 8.4
13 Dark | 3.0 | 3.0 | 298 | 298 5.6 63| 314 | 159 | 358 - -
5/6/2015 16.9 | 171 1.1
A + H,0, + Gl 158 | 15.7 62.7 | 63.9
14 | S 2% Gly | e 1776 | 77.1 | 208 | 208 6.1 6.3| 885 | 494 | 87.3 -
4/29/2015 18.0 | 175 07 | -05

Note, AS = ammonium sulfate, SA = sulfuric acid, AN = Ammonium Nitrate, Gly = glyoxal, i =
initial, f = final, M = particle, [M]s=uncorrected mass concentration, [M]¢* = wall loss corrected
mass concentration, [NO3’] = nitrate concentration formed in particles after the chamber reaction,
and ALW = aerosol liquid water. UV* indicates 1-hour irradiation. “-” indicates no ALW.
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Table S2. Concentrations of organic and inorganic constituents and pH in wet aerosols

NOs NH.* HSOs SO C;)r;giﬂ'rf | PH
Exp 4 154 M 403 M 148 M 053 M 017 M 1.3
Exp 5 2.05M 571 M 201 M 0.86 M 0.24 M 1.3
Seoul Haze 3.30 M 749 M 0.30 M 202 M 2.08 M 1.2
Seoul Clean 2.36 M 464 M oM 1.29 M 492 M 8.7
Deokjeok
Island Haze 1.74 M 6.94 M oM 2.69 M 279 M 8.9
Deokjeok
Island 1.76 M 551 M oOM 220 M 3.78 M 9.0
Clean
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Table S3. Aqueous-phase reactions after HNO3 uptake

Reactions

(M/atm or M)

Kogs

-AH/R (K)

Ref

HNOs; 2 HNO;

Keq = 1.6e5 M/atm

8700

(Warneck,
1999)

HNOz; 2 H" + NO3’

Keg = 15.4 M

N/A

(Seinfeld
and
Pandis,
2016)

H2SOs 2 H* + HSO4

Keg =1e3 M

N/A

(Seinfeld
and
Pandis,
2016)

HSOs 2 H* + SO~

Keq = 1026-2 M

2720

(Lim et
al., 2005)

NH4OH 2 NH4" + OH"

Keg = 1.76-5 M

-450

(Seinfeld
and
Pandis,
2016)

H0 2 H" + OH

Keq = 1OE‘14 M

-6710

(Seinfeld
and
Pandis,
2016)

1

K(T) = K9gexp [— % (; -

1
298

)

K(T) is a temperature dependent equilibrium constant. Kags is an equilibrium constant at

298K.

N/A indicates K(T) = Kags.
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