Sources and processes that control the submicron organic aerosol in an urban Mediterranean environment (Athens) using high temporal resolution chemical composition measurements.

I. Stavroulas, A. Bougiatioti, D. Paraskevopoulou, G. Grivas, E. Liakakou, E. Gerasopoulos, and N. Mihalopoulos

Affiliations and footnotes are as in the main manuscript file

Supporting Information Appendix

This Document contains supplementary data as referred to in the main manuscript.

SI.1 ACSM Quality Assurance/ Quality Control

As a first quality control/quality assurance of the obtained data, ammonium concentrations obtained by the ACSM are compared to the respective ammonium concentrations derived from the PILS, both for winter 2016-17 as well as winter 2013-2014. Both measurements are averaged hourly for synchronization reasons. The respective graphs are given in the following figures (Figure SI.1.1, SI.1.2). Furthermore, ACSM concentrations are daily-averaged and the derived averages are compared to the respective concentrations obtained by ion chromatography analysis and thermal-optical analysis of the respective daily PM_{2.5} filters for all the winter periods (Figure SI.1.1, SI.1.2).

Figure SI.1.1: Correlations of the non-refractory PM₁ constituents as measured by the ACMS versus external measurements for the year-long period 2016-2017. Top left ammonium from ACSM vs PILS measurements, top right ACSM Organics vs OC measured on filters using a thermal optical method, bottom left ACSM sulfate vs IC sulfate and bottom left ACSM nitrate vs IC nitrate.

Figure SI.1.2: Correlations of the non-refractory PM₁ constituents as measured by the ACMS versus external measurements for the wintertime intensive campaigns of 2013-2014 and 2015-2016. Top left ACSM sulfate vs IC sulfate (2015-2016), top right ACSM ammonium vs IC ammonium (2015-2016), bottom left ACSM nitrate vs IC nitrate (2015-2016) and bottom left ACSM ammonium vs PILS ammonium (2013-2014)

SI.2 PMF solutions

For the selected solutions, residuals weighted over uncertainty analysis and Organics concentration reconstruction, as resulting from the sum of the different PMF Factors is provided in the following figure.

Figure SI.2.1: Histograms of weighted residuals for variables m/z 43, 44, 55, 57, 60, 71 of the selected solutions and comparison of the sum of the PMF Factors with the Organics measured by the ACSM.

Summertime: The derived mass spectra, together with the α -values used, of the four different factors for the two summer-time periods are shown in the following figure. For all selected solutions, the mass spectra are AMS database compared to reference mass spectra found in the mass spectral (http://cires.colorado.edu/jimenez-group/AMSsd/), using the theta angle approach proposed by Kostenidou et al. (2009) for which calculated angles less than 15° correspond to R > 0.96 thus indicate spectra which are similar to each other, angles between 15° and 30° correspond to 0.96 > R > 0.86 and indicate some similarity but also some important differences between the compared spectra, while angles larger than 30° correspond to correlation coefficient R < 0.86 and thus are considered to indicate spectra that do not compare well. The following tables provides the comparison of the selected solutions' mass spectra for each winter. Selected solutions are chosen based on their affinity to reference mass spectra, combined with the correlation of the factors with external time series, provided in the following section.

Figure SI.2.2: Mass spectra of the derived PMF Factors and reference spectra used, together with the corresponding α -values for the two studied summer periods.

Summer 2016 selected solution with the respective theta angles:

	Hyytiala_Aijala2017	Crippa_2014	Paris Winter C	rippa13	HOA avg	Ng11	HOAwarm	17					
HOA	11.9	4.4	6.5		5.1		1.6						
	Hyytiala_Aijala2017	Paris Winter 0	Crippa13 Me	atCharb	roiling2 l	MeatC	harbroiling	3	COAwarm	า17			
COA	17.8	6.5	5	14.	.3		14.9		1.9				
	Hyytiala_Aijala2017	Crippa_2014	SVOOAavg Ng	11 OOA	BB Finoka	lia SO	Aa-pinene	SOA	Ab-pinene	SOAdi	esel exhaust	IEPOX-OA	
SV-OOA	28.8	14.1	16.5		24		20.2		18.6		19.8	16.2	
	Hyytiala_Aijala2017	Crippa_2014	LVOOAavg Ng	11 OOA	A Finokalia	LV-O	OAwarm17	7					
LV-OOA	42	10.8	17.8		3.4		2.4						

Rejected solution:

	Hyytiala_Aijala2017	Crippa_2014 Paris	Winter Crippa13	IOA avg I	Ng11				
HOA	11.2	4.1	5.8	2.6					
	Hyytiala_Aijala2017	Paris Winter Crippa	a13 MeatCharb	roiling2	MeatCharb	oiling3			
COA	17.9	6.5	14	.1	14	.8			
	Hyytiala_Aijala2017	Crippa_2014	SVOOAavg Ng1	1 OOAE	3B Finokalia	SOAa-pinen	e SOAb-pinene	SOAdiesel exhaust	IEF
SV-OOA	31.1	20.6	14.9		31.2	21.3	20.8	21.6	
	Hyytiala_Aijala2017	7 Crippa_2014	LVOOAavg Ng	1 00	A Finokalia				
LV-OOA	42.6	11.3	18.3		3.1				

The presented tables provide the theta angle between the selected and the rejected solution for summer 2016. These theta angles represent the affinity of the resulting PMF factors and relevant spectra found in the AMS mass spectral database as well as with the respective solution of 2017. More specifically, as mentioned in the manuscript, these mass spectra refer to Hyytiälä (Äijälä et al. 2017), several sites in Europe (Crippa et al., 2014), wintertime in Paris (Crippa et al., 2013), meat charbroiling (Kaltsonoudis et al., 2017) averaged factors (Ng et al., 2011), Finokalia (Bougiatioti et al., 2014), biogenic SOA (Bahreini et al., 2005) and IEPOX-OA (Budisulistiorini et al., 2013).

Summer	2017	selected	so	olution	W	ith t	he	res	spective	theta a	ngles:
	Hyytiala_Aijala2017	Crippa_2014	Paris W	inter Crippa1	3	HOA avg Ng	g11				
HOA	11.7	4.6		6.4		2.4					
	Hyytiala_Aijala2017	Paris Winter C	rippa13	MeatCharbr	oiling2	MeatCharbr	oiling3				
COA	18.2	7.4		15.1		15.7	7				
	Hyytiala_Aijala2017	Crippa_2014	SVOO	Aavg Ng11	OOAB	B Finokalia	SOAa-p	oinene	SOAb-pinene	SOADiesel exhaust	IEPOX-OA
SV-OOA	27.9	14.2		20.2		24.8	20).5	18.2	19.4	16.5
	Hyytiala_Aijala2017	Crippa_2014	LVOO	Aavg Ng11	OOA F	Finokalia					
LV-OOA	42.5	11.7		18.2		3.6					

For the warm period of 2017, only one solution presented mass spectra which could relate to the anticipated factors. Once more the derived mass spectra are compared to the spectra from Hyytiälä (Äijälä et al. 2017), several sites in Europe (Crippa et al., 2014), wintertime in Paris (Crippa et al., 2013), meat charbroiling (Kaltsonoudis et al., 2017) averaged factors (Ng et al., 2011), Finokalia (Bougiatioti et al., 2014), biogenic SOA (Bahreini et al., 2005) and IEPOX-OA (Budisulistiorini et al., 2013).

Apart from their affinity to reference mass spectra, factors of the derived solutions were also compared to external time series in order to conclude and select the most reasonable solution. The results of the comparison with the external time series are the respective ones of the solutions provided just above for the reference mass spectra. Numbers represent the squared Pearson correlation coefficient R^2 between the PMF factors time series and external time series while correlations higher than 45% are in bold.

Summer 2016 selected solution with the respective correlation coefficients:

Timeseries	СО	BCtot	NO3	SO4	NH4	Chl	m/z60
HOA	0.56	0.03	0.31	0.03	0.03	0.13	0.51
COA	0.24	0.02	0.21	0.02	0.01	0.14	0.67
LV-OOA	0.11	0.18	0.23	0.39	0.49	0.11	0.43
SV-OOA	0.49	0.16	0.81	0.09	0.32	0.11	0.65

Rejected solution:

Timeseries	CO	BCtot	NO3	SO4	NH4	Chl	m/z60
HOA	0.43	0.02	0.28	0.03	0.02	0.08	0.46
COA	0.19	0.02	0.18	0.02	0.01	0.09	0.65
LV-OOA	0.14	0.12	0.26	0.29	0.28	0.09	0.45
SV-OOA	0.41	0.06	0.76	0.1	0.11	0.11	0.63

Summer 2017 selected solution with the respective correlation coefficients:

Timeseries	nss-K	СО	BCtot	BCwb	BCff	NO3	SO 4	NH4	Chl
HOA	0.03	0.44	0.43	0.3	0.4	0.62	0.12	0.13	0.17
COA	0.02	0.32	0.13	0.15	0.11	0.35	0.04	0.05	0.14
LV-OOA	0.03	0.01	0.05	0.06	0.05	0.28	0.46	0.54	0.07
SV-OOA	0.02	0.38	0.36	0.31	0.33	0.88	0.23	0.24	0.22

Wintertime: The derived mass spectra, together with the α -values used, of the five different factors for the three wintertimes are shown in the following figure. It is apparent that the SV-OOA factor for all studied winters originates from biomass burning, as it contains amounts of m/z 60 and 73.

Figure SI.2.3: Mass spectra of the derived PMF Factors and reference spectra used, together with the corresponding α -values for the three studied winters.

Once more, the mass spectra are compared to reference mass spectra found in the AMS mass spectral database using the theta angle approach, where less than 15° correspond to R > 0.96 thus indicate spectra which are similar to each other, angles between 15° and 30° correspond to 0.96 > R > 0.86 and indicate some similarity but also some important differences between the compared spectra, while angles larger than 30° correspond to correlation coefficient R < 0.86 and thus are considered to indicate spectra that do not compare well. The following tables provides the comparison of the selected solutions' mass spectra for each winter. Selected solutions are chosen based on their affinity to reference mass spectra, combined with the correlation of the factors with external time series, provided in the next section. More specifically, the mass spectra refer to Hyytiälä (Äijälä et al. 2017), several sites in

Europe (Crippa et al., 2014), wintertime in Paris (Crippa et al., 2013), meat charbroiling (Kaltsonoudis et al., 2017) averaged factors (Ng et al., 2011), wintertime in Zurich (Lanz et al., 2008), Finokalia (Bougiatioti et al., 2014), different kind of wood (Schneider et al., 2006) as well as within the different winter periods.

Winter 2017 selected solution:

	Hyytiala_Aijala	a2017	Crippa_2014	Paris Winter Cripp	a13 HC	DA avg Ng11	Zurich	Winter Lanz	HOA15	16					
HOA	9.6		5	5.8		5.1		12.8	1.2						
	Hyytiala_Aijala	a2017	Paris Winter Ci	ippa13 MeatChar	oroiling2	2 MeatCharbr	oiling3	3 COA15-16	5						
COA	16.9		6.2	13	.2	14.9		3.7							
															BBOA1
	Crippa_2014	Paris	winter Crippa13	BBOAavg Ng11	Zurich	Winter Lanz	Oak 3	Schneider	Spruce So	chneider	Kosteni	dou_olive	BBOA	Finokalia	16
BBOA	20		26.5	11.5		23.4		15.7	19	.8	2	4.2		20.1	9.7
	Hyytiala_Aijala	a2017	Crippa_2014	Paris winter Crip	pa13	OOABB Fino	kalia	SV-OOA15	-16 SOA	b-pinene	IEPO	X-OA			
SV-OOA	26.2		26.2	25.2		30		17.1		18.6		22.8			
	Hyytiala_Aijal	a2017	Crippa_2014	Paris winter Crip	pa13	LVOOAavg N	lg11	Zurich wint	er Lanz	OOA Fi	nokalia	LV-OOA1	5-16		
LV-OOA	32		8.4	29.1		8.3		9.	3	15	5.1	3.2			

Rejected solutions

	Hyytiala_Aijala	a2017	Crippa_2014 P	aris Winter	Crippa13	HOA av	g Ng11 Zur	rich Wi	inter Lanz	z HOA1	5-16					
HOA	9.2		5.6	6.1		5.	6	13	3.1	5.	.8					
	Hyytiala_Aijala	a2017	Paris Winter Crip	opa13 Mea	tCharbroilin	ig2 Me	atCharbroili	ling3 C	OA15-16	6						
COA	15.6		5.7		13.8		14.5		4.7							
																BBOA15-
	Crippa_2014	Paris v	winter Crippa13	BBOAavg	Ng11 Zuric	h Winte	er Lanz O	Dak Sch	nneider	Spruce S	Schneider	Kostenic	dou_olive	BBOA F	inokalia	16
BBOA	20		26.5	11.5		23.4	1	15	5.7	1	9.8	24	4.2	2	0.1	9.7
	Hyytiala_Aijala	a2017	Crippa_2014	Paris winte	r Crippa13	OOA	BB Finokali	lia S\	V-OOA15	5-16 SO	Ab-pinene	IEPO)	K-OA			
SV-OOA	22.3		29.1	2	6.3		26.4		22.9		26.7		22.6			
	Hyytiala_Aijal	a2017	Crippa_2014	Paris winte	r Crippa13	LVO	DAavg Ng1	11 Zu	urich wint	ter Lanz	OOA Fir	nokalia	LV-OOA1	5-16		
LV-OOA	34.2		8.3	3	1.4		10.7		12	2.1	13	.7	17.4	Ļ		
	Lhadiele Ailel	-2017		aria Winter	Crimped 2		~ No.11 7	riah \\/;			F 40					
	Hyytiala_Aljala	a2017	Crippa_2014 P	aris winter	Crippa13	HUA av		rich vvi	Inter Lanz	Z HOAT	5-16					
HOA	9.8	0047	4.6	5.4		2.	8	11	1.8	3.	.4					
	Hyytiala_Aijala	a2017 I	Paris Winter Crip	opa13 Mea	Charbroilin	ig2 Me	atCharbrolli	ling3 C	OA15-16)						
COA	17		6.2		14.4		14.9		3.8							550445
	Crimpo 2014	Daria	vinter Orignada	DDOAsus	No.11 Turia	h \\/:		Dale Cak		C	Dohan sidou	Kaatania	مناه بيما		inekelie	BBOA15-
	Chppa_2014	Paris	winter Crippa 13	BBOAavg			er Lanz O	Jak Scr		Spruce a	Schneider	Nostenic		BBUA F	nokalia	10
BBUA	19.0	- 0047	24.0	IZ.0	. 0	21.0		10	0.0	40.00		2	1.7	2	6.9	17.4
01/004	Hyytiala_Aljala	a2017	Crippa_2014	Paris winte	er Crippa'i 3	OUA	BB FINOKAI	lia Sv	V-00A15	5-16 50	Ab-pinene	IEPO)	K-OA			
SV-00A	25.6	~~	26.9	2	6.6		31.4		26.6		24.9		21.8			
	Hyytiala_Aijal	a2017	Crippa_2014	Paris winte	r Crippa13	LVO	JAavg Ng1	11 Zu	urich winf	ter Lanz	OOA Fi	nokalia	LV-OOA1	5-16		
LV-OOA	32.1		8.7		30		8.5		9.	.5	16	.3	20.2	2		
Winter	· 2015:															
	20101															
		1 004				10 110										
	Hyytiala_Alja	ala201	7 Crippa_2012	Paris WI	nter Crippa	a13 HC	DA avg Ng	11 Zu	rich vvin	ter Lanz	2					
НОА	11.3	3	5.4		6.9		2,5		11							
	Hyytiala_Aija	ala2017	7 Paris Winter	Crippa13	MeatChark	proiling	2 MeatCha	arbroil	ling3							
COA	17.8		7.4		14.	6	1	14.7								
	Crippa_2014	4 Pari	s winter Crippa	13 BBOA	avg Ng11	Zurich	Winter Lar	nz C	Dak Schr	neider S	Spruce Sc	hneider	Kostenie	dou_oliv	e BBOA	A Finokalia
BBOA	20.3		29.2		14.1		29.1		23		21.	7	1	7.3		28.1

	Crippa_2014	Paris v	winter Crippa13	BBOAavg Ng11	Zurich	n Winter Lanz	Oak S	Schneider	Spruce S	chneider	Kostenido	rilo_r	e BBO	A Finol	kalia
BBOA	20.3		29.2	14.1		29.1		23	21	.7	17.3	3		28.1	
	Hyytiala_Aijala	a2017	Crippa_2014	Paris winter Crip	pa13	OOABB Finok	alia	IEPOX-OA	SO/	Ab-pinene					
SV-OOA	32.3		16.2	31		13.1		20		31.6					
	Hyytiala_Aijala	a2017	Crippa_2014	Paris winter Crip	pa13	LVOOAavg Ng	g11	Zurich win	ter Lanz	OOA Fir	nokalia				
LV-OOA	46.6		15.9	41.1		22.8		25	5.9	4.	9				

For the winter period of 2015, only one solution presented mass spectra which could relate to the anticipated factors. Once more the derived mass spectra are compared to the spectra from the mass spectra refer to Hyytiälä (Äijälä et al. 2017), several sites in Europe (Crippa et al., 2014), wintertime in Paris (Crippa et al., 2013), meat charbroiling (Kaltsonoudis et al., 2017) averaged factors (Ng et al., 2011), wintertime in Zurich (Lanz et al., 2008), Finokalia (Bougiatioti et al., 2014), different kind of wood (Schneider et al., 2006) as well as within the different winter periods.

Winter 2013 selected solution:

okalia BBOA15-16
7 13.3
inc 4.7

Rejected solution

	Hyytiala Aijal	a2017	Crippa 2014 F	Paris Wir	nter Crippa	a13 H0	DA avg Ng11	Zurich	n Winter I	anz	HOA15	5-16																							
HOA	10.7		4.4		5.6		2.1		11.5		2.	.5																							
	Hyytiala_Aijala	a2017	Paris Winter Cr	rippa13	MeatChar	broiling	g2 MeatCha	broilin	g3	COA	15-16																								
COA	18.2		6.9		14	1.4		14.7			3.2																								
	Crippa_2014	Paris	winter Crippa13	BBOAa	avg Ng11	Zurich	Winter Lanz	Oak S	Schneide	r Sp	oruce Sc	hneider	Koster	idou_olive	I	BBOA Finokali	BBOA Finokalia	BBOA Finokalia B	BBOA Finokalia BBC	BBOA Finokalia BBOA15	BBOA Finokalia BBOA15-16														
BBOA	17.8		27.4		10.5		22.2		17.8		20	.3		16.8		26.4	26.4	26.4	26.4	26.4	26.4 12.	26.4 12.9	26.4 12.9	26.4 12.9	26.4 12.9	26.4 12.9	26.4 12.9	26.4 12.9	26.4 12.9	26.4 12.9	26.4 12.9	26.4 12.9	26.4 12.9	26.4 12.9	26.4 12.9
	Hyytiala_Aijal	a2017	Crippa_2014	Paris w	vinter Crip	pa13	OOABB Find	kalia	IEPOX-	ΟA	SOA	b-pinene	e SV-0	DOA15-16																					
SV-OOA	37.2		24.2		40.1		13.6		30).1		38.9		14.1																					
	Hyytiala_Aijal	a2017	Crippa_2014	Paris w	vinter Crip	pa13	LVOOAavg N	lg11	Zurich	vinte	er Lanz	OOA F	inokalia	OOA15-16																					
LV-OOA	43.8		12.7		38.6		19.4			22.6	6	3	3.8	4.1																					

	Hyytiala_Aijala	a2017	Crippa_2014 I	Paris Wi	nter Crippa	a13 HC	A avg Ng11	Zurich	n Winter L	.anz	HOA15	-16				
HOA	9.7		4.6		5.5		2.8		11.7		3.4	4				
	Hyytiala_Aijala	a2017	Paris Winter C	rippa13	MeatChar	broiling	2 MeatChai	rbroilin	g3	COA	15-16					
COA	18.1		6.9		14	1.5		14.9			3.3					
	Crippa_2014	Paris	winter Crippa13	BBOA	avg Ng11	Zurich	Winter Lanz	Oak S	Schneider	Sp	ruce Sch	nneider	Kosten	dou_olive	BBOA Finokalia	BBOA15-16
BBOA	19.7		28.6		12.5		23.6		18.2		20.	4		17.2	27.7	13.2
	Hyytiala_Aijala	a2017	Crippa_2014	Paris v	vinter Crip	ba13	OOABB Find	kalia	IEPOX-	OA	SOA	b-pinene	SV-C	OA15-16		
SV-OOA	40.7		28.2		43.8		16.6		3	4		43.1		18.4		
	Hyytiala_Aijal	a2017	Crippa_2014	Paris v	vinter Crip	ba13	VOOAavg N	lg11	Zurich v	vinte	r Lanz	OOA Fi	nokalia	OOA15-16		
LV-OOA	43.2		12		38.2		18.8			21.9	9	3	.5	4.7		

Apart from their affinity to reference mass spectra, factors of the derived solutions were also compared to external time series in order to conclude and select the most reasonable solution. The results of the comparison with the external time series are the respective ones of the solutions provided just above for the reference mass spectra. Numbers represent the squared Pearson correlation coefficient R^2 between the PMF factors time series and external time series while correlations higher than 50% are in bold.

Winter 2017 selected solution with the respective correlation coefficients:

Timeseries	nss-K	CO	BCtot	BCwb	BCff	NO3	SO4	NH4	Chl	NO	m/z60	m/z73
HOA	0.36	0.54	0.53	0.34	0.42	0.42	0.15	0.32	0.49	0.55	0.36	0.44
COA	0.32	0.22	0.23	0.18	0.11	0.17	0.07	0.11	0.27	0.13	0.29	0.34
BBOA	0.62	0.52	0.58	0.78	0.19	0.44	0.13	0.21	0.53	0.34	0.94	0.9
LV-OOA	0.52	0.43	0.46	0.24	0.28	0.63	0.39	0.62	0.47	0.23	0.48	0.51
SV-OOA(BB)	0.61	0.61	0.66	0.82	0.26	0.44	0.16	0.26	0.67	0.43	0.99	0.99

Rejected solutions:

Timeseries	nss-K	CO	BCtot	BCwb	BCff	NO3	SO4	NH4	Chl	NO	m/z60	m/z73
HOA	0.36	0.54	0.53	0.36	0.41	0.42	0.3	0.27	0.49	0.54	0.36	0.45
COA	0.33	0.21	0.22	0.17	0.11	0.17	0.07	0.11	0.27	0.13	0.29	0.34
BBOA	0.62	0.47	0.52	0.66	0.21	0.42	0.15	0.26	0.49	0.3	0.85	0.79
LV-OOA	0.54	0.35	0.39	0.29	0.28	0.62	0.39	0.59	0.19	0.22	0.32	0.34
SV-OOA(BB)	0.57	0.59	0.63	0.74	0.31	0.47	0.16	0.31	0.68	0.42	0.98	0.99

Timeseries	nss-K	CO	BCtot	BCwb	BCff	NO3	SO4	NH4	Chl	NO
HOA	0.32	0.56	0.53	0.4	0.45	0.33	0.21	0.28	0.53	0.45
COA	0.32	0.25	0.26	0.19	0.15	0.21	0.11	0.14	0.34	0.17
BBOA	0.55	0.53	0.58	0.76	0.23	0.34	0.12	0.21	0.51	0.35
LV-OOA	0.34	0.18	0.19	0.1	0.18	0.5	0.3	0.51	0.16	0.15
SV-OOA(BB)	0.58	0.68	0.72	0.78	0.38	0.45	0.2	0.3	0.69	0.46

Winter 2015 selected solution with the respective correlation coefficients:

Timeseries	СО	BCtot	BCwb	BCff	NO3	SO4	NH4	Chl	mz60
HOA	0.52	0.47	0.27	0.49	0.21	0.11	0.21	0.29	0.3
COA	0.33	0.28	0.34	0.19	0.17	0.08	0.18	0.25	0.42
BBOA	0.36	0.51	0.82	0.26	0.44	0.15	0.35	0.71	0.94
LV-OOA	0.36	0.27	0.52	0.21	0.44	0.27	0.44	0.39	0.59
SV-OOA(BB)	0.38	0.52	0.8	0.34	0.5	0.24	0.47	0.64	0.96

Winter 2013 selected solution with the respective correlation coefficients:

Timeseries	nss-K	NO	BCtot	BCwb	BCff	NO3	SO4	NH4	Chl	m/z60	m/z73
HOA	0.57	0.43	0.56	0.42	0.49	0.34	0.03	0.33	0.58	0.53	0.52
COA	0.28	0.06	0.17	0.34	0.06	0.17	0.02	0.18	0.27	0.32	0.4
BBOA	0.52	0.14	0.29	0.53	0.06	0.46	0.05	0.37	0.49	0.56	0.52
LV-OOA	0.68	0.26	0.52	0.63	0.32	0.71	0.28	0.71	0.68	0.78	0.77
SV-OOA(BB)	0.76	0.34	0.56	0.69	0.33	0.33	0.02	0.34	0.81	0.98	0.96

Rejected solutions:

Timeseries	nss-K	NO	BCtot	BCwb	BCff	NO3	SO4	NH4	Chl	m/z60	m/z73
HOA	0.26	0.3	0.33	0.28	0.27	0.27	0.02	0.28	0.47	0.36	0.51
COA	0.19	0.09	0.21	0.35	0.08	0.17	0.02	0.19	0.29	0.37	0.41
BBOA	0.45	0.22	0.35	0.5	0.17	0.38	0.03	0.37	0.7	0.56	0.76
LV-OOA	0.31	0.14	0.4	0.47	0.25	0.7	0.15	0.68	0.42	0.66	0.58
SV-OOA(BB)	0.48	0.33	0.56	0.68	0.33	0.33	0.02	0.34	0.8	0.98	0.97

Timeseries	nss-K	NO	BCtot	BCwb	BCff	NO3	SO4	NH4	Chl	m/z60	m/z73
HOA	0.54	0.44	0.54	0.44	0.48	0.34	0.02	0.33	0.58	0.39	0.53
COA	0.28	0.09	0.19	0.32	0.08	0.16	0.01	0.18	0.28	0.36	0.41
BBOA	0.62	0.24	0.39	0.54	0.19	0.33	0.02	0.33	0.72	0.81	0.83
LV-OOA	0.46	0.13	0.39	0.48	0.26	0.71	0.16	0.68	0.4	0.65	0.55
SV-OOA(BB)	0.78	0.34	0.58	0.68	0.34	0.34	0.02	0.36	0.81	0.98	0.98