Supplementary Information

River Breezes for Pollutant Dispersion in GoAmazon2014/5

Adan S. S. Medeiros^{1,2}, Igor O. Ribeiro¹, Marcos V. B. Morais⁴, Rita V. Andreoli³, Jorge A. Martins⁵, Leila D. Martins⁶, Carla E. Batista¹, Patrícia C. Guimarães¹, Scot T. Martin^{*,7}, Rodrigo A. F. Souza^{*,3}.

E-mail: scot_martin@harvard.edu, souzaraf@gmail.com

Atmospheric Chemistry and Physics

*To Whom Correspondence Should be addressed

¹ Post-graduate Program in Climate and Environment, CLIAMB, INPA/UEA, Av. André Araújo, 2936, 69060001, Manaus, Amazonas, Brazil

² Amazonas State University, Center of Superior Studies of Tefé, R. Brasília, 2127, 69470-000, Tefé, Amazonas, Brazil

³ Amazonas State University, Superior School of Technology, Av Darcy Vargas, 1200, 69065020, Manaus, Amazonas, Brazil

⁴ Post-graduate Program in Environmental Engineering, Federal University of Technology, Av dos Pioneiros, 3131, 86047-125, Londrina, Paraná, Brazil;

⁵ Department of Physics, Federal University of Technology, Av dos Pioneiros, 3131, 86047-125, Londrina, Paraná, Brazil;

⁶ Department of Chemistry, Federal University of Technology, Av dos Pioneiros, 3131, 86047-125, Londrina, Paraná, Brazil;

⁷ School of Engineering and Applied Sciences, Harvard University, 02138, Cambridge, Massachusets, USA

List of Figures

Figure S1. Comparison between observed (red) and simulated (blue) daily cycle of temperature, relative humidity, and wind speed at the T3 supersite for March 2014. Box-whisker plot represents quartiles for the box, median for the line, full range of values except outliers for the whiskers, and outliers as crosses. An outlier is defined as >1.5× of the interquartile range.

Table S1. Differences in pollutant concentration X (ppb) for the case of wR ("with rivers") compared to that of woR ("without rivers"), calculated as X_{wR} - X_{woR} , where X is the monthly mean at 00:00, 06:00, 12:00, and 18:00 (local) for each of O_3 , NO_x , and CO. Results are shown for locations T3, R1, and R2.

	O ₃	NO_x	СО
T3 (00:00)	+0.8	-0.4	+2.5
R1 (00:00)	+3.9	+2.3	+4.6
R2 (00:00)	+5.9	+1.9	+4.0
T3 (06:00)	0.0	-1.1	+0.8
R1 (06:00)	+3.0	+6.8	+3.8
R2 (06:00)	+4.2	+2.5	+4.1
T3 (12:00)	-2.1	-0.1	-0.2
R1 (12:00)	+11.1	+0.6	+5.4
R2 (12:00)	+12.2	+1.7	+2.6
T3 (18:00)	+2.9	+0.1	+2.4
R1 (18:00)	+3.6	+0.3	+3.0
R2 (18:00)	+2.1	0.0	+2.2

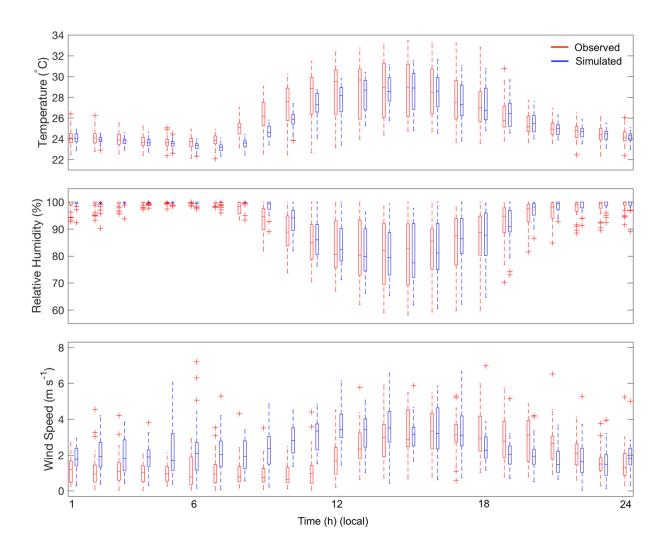


Figure S1