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Abstract. Urban carbon dioxide comprises the largest fraction of anthropogenic greenhouse gas emissions but also the most 

challenging monitoring, reporting, and verification (MRV) task, as numerous emission sources reside in close proximity within 

each topographically intricate urban dome. In attempting to better understand each individual source’s contribution to the 10 
overall emission budget, there exists a large gap between activity-based emission inventories and observational constraints on 

integrated, regional emission estimates. Here we leverage urban CO2 observations from the BErkeley Atmospheric CO2 

Observation Network (BEACO2N) to enhance, rather than average across or cancel out, our sensitivity to these hyperlocal 

emission sources. We utilize a method for isolating the local component of a CO2 signal that accentuates the observed intra-

urban heterogeneity and thereby increases sensitivity to mobile emissions from specific highway segments. We demonstrate a 15 
multiple linear regression analysis technique that accounts for boundary layer and wind effects and allows for the detection of 

changes in traffic emissions on scale with anticipated changes in vehicle fuel economy–an unprecedented level of sensitivity 

for low-cost sensor technologies. The ability to represent trends of policy-relevant magnitudes with a low-cost sensor network 

has important implications for future applications of this approach, whether as a supplement to sparser existing reference 

networks or as a substitute in areas where fewer resources are available. 20 

1 Introduction 

Initiatives to curb greenhouse gas emissions and thereby reduce the extent of climate change-related damages are gaining 

momentum from city to global scales (United Nations, 2015). To support this effort, there is a clear need for monitoring, 

reporting, and verification (MRV) strategies capable of describing emission changes and attributing those changes to the 

relevant policy measures (Pacala et al., 2010). Currently, an estimated 70% of global CO2 emissions are urban in origin and 25 
this fraction is expected to grow as migration to urban areas continues and intensifies with the industrialization of developing 

nations (United Nations, 2011). However, cities also present the largest MRV challenge in that many disparate emission 

sources combine with complex topography. 

 A considerable amount of MRV-related work has been invested in the development of activity-based emission inventories 

for selected metropolitan areas, such as Indianapolis (Gurney et al., 2012), Paris (Bréon et al., 2015), Los Angeles (Newman 30 
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et al., 2016), Salt Lake City (Patarasuk et al., 2016), and Toronto (Pugliese et al., 2017), as well as other inventories constructed 

and maintained by individual air management agencies for internal use. These inventories, when updated regularly, offer the 

possibility of direct source attribution without the use of computationally intense and/or heavily parameterized atmospheric 

transport models; they do, however, typically rely on interpolations, generalizations, or proxies to generate the necessary input 

activity data. The FIVE inventory developed by McDonald et al. (2014), for example, uses a representative 7 days of highway 5 
traffic flow measurements to drive the weekly cycle of CO2 emissions from mobile sources on roads of all sizes year round. 

While traffic patterns as well as residential and commercial energy usage are known to vary by day of week (Harley et al., 

2005), the specific timing and magnitude of these variations are likely to be heterogeneous in space and time. Mobile emission 

estimates constructed using an average week of highway observations therefore neglect the impact of anomalous events as 

well as the variety of vehicle fleets, commute practices, and congestion patterns that occur at the neighborhood level. As 10 
knowledge of emission factors and fuel efficiency grows, activity data will become one of the largest sources of uncertainty 

in bottom-up inventory products. 

Ambient atmospheric measurements offer the opportunity to observe nuanced variations in CO2 emission activities 

directly without generalizing across space and time. In order to document baseline conditions in and upcoming changes to 

urban greenhouse gas emissions, surface-level monitoring campaigns in cities using varied approaches are being pursued (e.g. 15 
Bréon et al., 2015; Chen et al., 2016; McKain et al., 2012; McKain et al., 2015; Shusterman et al., 2016; Turnbull et al., 2015; 

and Verhulst et al., 2017). These networks, typically consisting of 2–15 instruments, attempt to constrain and supplement 

activity-based emission inventories with observation-based estimates. Most previous work on observation-based emission 

estimates has focused on domain-wide emission totals over monthly to annual timescales (e.g., Kort et al., 2013). This emphasis 

on integrated signals has led to site selection and data analysis techniques that minimize sensitivity to local emissions, thus 20 
discarding a large portion of the information contained in the datasets collected at individual measurement sites and the 

differences between them (Shusterman et al., 2016; Turner et al., 2016).  

We hypothesize that, if trends in the specific, small-scale CO2 sources implicated in most mitigation strategies are to be 

resolved from atmospheric monitoring datasets, site-to-site heterogeneity must be sought out and retained. Here we present an 

initial characterization of the degree of spatial heterogeneity present in an urban monitoring dataset and offer these direct 25 
observations of intracity heterogeneities as a possible strategy for providing direct constraints on CO2 emissions from 

individual sectors. We provide an initial approach to quantifying changes in the mobile sector and separating the influence of 

that sector from other emissions.  

2 Measurements 

2.1 The BErkeley Atmospheric CO2 Observation Network 30 

The BErkeley Atmospheric CO2 Observation Network (BEACO2N; see Shusterman et al., 2016) is an ongoing greenhouse gas 

and air quality monitoring campaign operating in the San Francisco Bay Area since late 2012. The current network is comprised 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-344
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 22 May 2018
c© Author(s) 2018. CC BY 4.0 License.



3 
 

of ~50 “nodes” stationed on top of schools and museums at approximate 2 km intervals (Fig. 1). The nodes contain a variety 

of commercially available, low-cost sensor technologies: a Vaisala CarboCap GMP343 for CO2, a Shinyei PPD42NS for 

particulate matter, a suite of Alphasense B4 electrochemical devices for O3, CO, NO, and NO2, as well as meteorological 

sensors for pressure, temperature, and relative humidity. Data is collected every 2–10 s and transmitted wirelessly or via an 

onsite Ethernet connection to a central server, where it is made publicly available in near real time. The distributed low-cost 5 
dataset is supplemented by a “supersite” at the RFS location featuring a Picarro G2401 cavity ring-down spectroscopy analyzer 

for CO2, CO, and H2O, a TSI Optical Particle Sizer 3330 for particulate matter, a ThermoFisher Scientific 42i-TL NOx analyzer 

for NO and NO2, a Teledyne 703E photometric calibrator for O3, a Pandora spectrometer system for total column O3 and NO2, 

a Lufft CHM 15k ceilometer for cloud and aerosol layer height, as well as various instruments for meteorological 

measurements (i.e. a Vaisala WXT520 weather transmitter, a Campbell Scientific CS500 temperature and relative humidity 10 
probe, and a Davis Vantage Pro2 system with a Davis 6410 anemometer and Davis 6450 solar radiation sensor).  This high-

cost, reference-grade instrumentation serves as a high-accuracy anchor point within the network domain. Atmospheric 

boundary conditions are monitored by the Bay Area Air Quality Management District’s Greenhouse Gas Measurement 

Program, which maintains its own reference instruments at four background sites to the northwest, east, southeast, and south. 

A description of the design, deployment, and evaluation of the BEACO2N approach can be found in Shusterman et al. (2016) 15 
and Kim et al. (2017).  

Here we utilize CO2 observations from the 20 BEACO2N sites operating most consistently during the summer and/or 

winter of 2017 (Table 1), defined as 1 June 2017 through 30 September 2017 and 1 November 2017 through 31 January 2018, 

respectively. The raw 2 s CO2 concentrations are averaged to 1 min means, which are subsequently converted to bias-corrected 

dry air mole fractions using site-specific meteorological observations and in-network reference measurements (see Shusterman 20 
et al., 2016). The processed 1 min averages are assumed to have an uncertainty of less than ±4 ppm, or ±0.5 ppm at the hourly 

temporal resolution discussed most often hereafter. 

2.2 Traffic Counts 

Traffic count data is collected by the California Department of Transportation as part of the Caltrans Performance Measurement 

System (PeMS; http://pems.dot.ca.gov/). Hourly passenger vehicle flow data (in vehicles per hour) are obtained from the road 25 
monitors nearest to the relevant BEACO2N site with >50% directly observed (as opposed to modeled) data and are summed 

across all lanes and directions. Due to limited data coverage, in some cases it is necessary to sample road monitors upstream 

or downstream of the desired roadway segment; here we assume the sampled traffic conditions to be reasonable approximations 

of those on the desired segment. The specific monitor IDs used in each analysis are given in Table 1.  

3 Results & Discussion 30 

To quantify the spatial heterogeneity present across the network, we examine the degree of correlation between every possible 

pairing of sites in a given season as a function of the distance between them (Figs. 2 and 3), borrowing from a similar analysis 
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used by McKain et al. (2012). For straightforward comparison with the McKain et al. results, we first average to 5 min 

resolution and allow for up to a ±3 h lag between the two time series before performing a linear regression and choosing the 

optimal r2 value.  

In the summer months, there appears to be some relationship between the proximity of the sites and the correlation of their 

observations at all hours, with higher correlations between neighboring sites decaying into more modest, but still significant, 5 
correlations at longer inter-site distances. The characteristic length scale of this correlation is 2.9 km (defined as the e-folding 

distance of the exponential fits in Fig. 2; 3.6 km during the day and 2.2 km at night). The winter months meanwhile exhibit 

lower pairwise correlations overall and shorter correlation lengths (2.4 km; 2.6 km during the day and 2.1 km at night). Some 

portion of the summer–winter differences may be attributable to seasonal differences in dominant wind patterns, although this 

effect is difficult to disentangle from the slightly different collection of sites sampled during the two seasons; the winter sample, 10 
for example, contains fewer pairs with separation lengths less than 5 km, which affects the perceived overall trend. In either 

season, the correlation lengths are considerably longer than the ~100 to 1000 m e-folding distances of urban pollutants derived 

by previous studies (e.g. Zhu et al., 2006; Beckerman et al., 2008; Choi et al., 2014), however, the correlation length observed 

here does validate the original choice of 2 km as the desirable inter-site separation in the design of the BEACO2N instrument.  

The 24 hour findings (top panels of Figs. 2 and 3) compare well to those presented by McKain et al., who also documented 15 
a decaying but nevertheless persistent correlation with increasing site separation. However, whereas McKain et al. saw very 

little correlation after restricting their analysis to daytime hours, even at very short (< 5 km) inter-site distances, we observe 

moderate to high correlations during the day. This suggests that the data record at a particular BEACO2N site contains 

information about both local and regional emissions and transport phenomena. While the regionwide phenomena can be 

characterized using sparser networks of high-cost, conventional monitoring equipment, the ability to capture to local processes 20 
is unique to the high-density approach. 

We posit that the true strength of a high-density, surface-level monitoring network lies in its characterization of hyperlocal 

phenomena unique to a given site or subset of sites. In order to directly examine signals attributable to these specific, local 

CO2 emission processes, we separate each site’s observations into a “regional” and “local” component. The regional 

component is, by definition, the same at all sites network-wide, calculated from the bottom 10th percentile of all BEACO2N 25 
readings collected during the surrounding 1 h window. The bottom 10th percentile is chosen (rather than the absolute 

minimum) to account for measurement error (see Shusterman et al., 2016) as well as any nearfield draw down from the local 

biosphere; negative values in the local signals are likely attributable to some combination of these effects. While many different 

sites contribute to this bottom 10th percentile over the course of the data record, some sites located in close proximity to 

emission sources are never represented in the bottom 10th percentile and always exhibit some enhancement (i.e. a non-zero 30 
local component) over the regional background signal. The regional component is allowed to vary throughout the data record 

and will therefore reflect domain-wide changes in response to day of week, synoptic weather events, etc. 

The diel profiles of the regional signal measured in summer and winter 2017 are shown in Fig. 2, reflecting the typical 

convolution of background concentrations, emission processes, and dynamics experienced across the entire BEACO2N 
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domain. In both seasons, we see an increase in the regional signal beginning around 0400 local time (LT), followed by a 

decrease in concentrations at 0800 LT in the winter months and 1200 LT in the summer, and another increase in early to late 

afternoon depending on the season. This diurnal profile corresponds well with known patterns in traffic emissions–which are 

largely consistent across seasons–superimposed on diel fluctuations in boundary layer height that vary in timing and magnitude 

according to the season. Namely, the nighttime boundary layer in the BEACO2N domain appears to be shallower during the 5 
winter months, producing a larger regional increase in response to rush hour traffic. The wintertime layer also expands and re-

contracts earlier in the day than the summertime layer, resulting in both an earlier minimum and an earlier rise in afternoon–

evening concentrations. An analysis of the regional signals calculated for similar periods in 2013 revealed qualitatively similar 

results (Fig. S1), although it should be noted that the 2013 analysis uses observations from a significantly different subset of 

sites in the BEACO2N network. 10 
We isolate the local signals by subtracting the network-wide regional component from the data record at each site. Median 

1 min local CO2 signals range from 0.3 to 40.2 ppm during the day (1100–1800 LT) and 1.1 to 38.5 ppm at night (2100–0400 

LT) during the summer months, although the distributions are skewed, with the 10th to 90th percentile ranges stretching from 

-2.4 to 69.0 ppm during the day and -2.0 to 45.0 ppm at night. During the winter months, the daytime medians range from 3.6 

ppm to 34.8 ppm (-7.0 to 90.8 ppm 10th to 90th percentile range) and -0.8 ppm to 58.7 ppm (-15.0 to 90.6 ppm 10th to 90th 15 
percentile range) at night. A full picture of the overall distributions is shown in Figs. S2 and S3, confirming a much greater 

frequency of high CO2 concentrations during the winter months. In both seasons, the distribution of the local enhancements is 

typically unimodal with a heavy right-hand tail, although some sites exhibit more complex bi- or multi-modal distributions. 

By definition, we expect these local signals to represent a unique combination of emission sources and atmospheric 

dynamics specific to a given site. Mobile sources are estimated to comprise approximately 40% of the San Francisco Bay 20 
Area’s annual CO2 emissions (Claire et al., 2015) and are likely to represent an even larger fraction within the urban core, 

where electricity and co-generation sources are less abundant. However, as noted in the discussion of the regional signals 

above, direct observation of the magnitude and variation of traffic emissions via ambient CO2 concentrations is complicated 

by the coincident variation in turbulent mixing and boundary layer height as the earth’s surface warms and cools at sunrise 

and sunset (Fig. S4). 25 
In order to more directly examine the relationship between highway traffic flow and urban CO2 concentrations, we begin 

by analyzing the subset of observations collected between 0400 and 0800 LT at the LAN site, located less than 40 m from 

Interstate 880. During this period, traffic emissions are high, but the boundary layer is relatively shallow, thus increasing the 

sensitivity of the surface-level monitor to the traffic signal. The resultant strong positive correlation between rush hour traffic 

flow and local CO2 concentrations is shown in Fig. 5, along with the median CO2 concentrations observed in each 500 veh  30 
h-1 traffic flow increment and the linear regressions through these binned medians. (An alternative analysis using traffic 

density–obtained by dividing the traffic flow by the average vehicle speed–yields almost identical results.) We observe a factor 

of 2 difference in local CO2 between congested vs. free-flowing conditions, similar to that observed by a previous on-road 

mobile monitoring study by Maness et al. (2015). The uncertainty in the slope of the linear regression is 17%, indicating that 
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this analysis of a single site could be used to detect 17% changes in average emissions per vehicle. For reference, under the 

Corporate Average Fuel Economy standards, the state of California aims to achieve a fleet-wide average fuel economy of 54.5 

miles per gallon by the year 2025 (US EPA, 2012), corresponding to a 35% decrease in emissions relative to the 35.5 miles 

per gallon economy of 2012–2016 model year vehicles.  

In addition to this first-order sensitivity to vehicle emissions at the near-roadway LAN site, we find that policy-relevant 5 
emission changes can also be detected using nodes stationed greater distances from the highway by controlling for the impacts 

of dispersion. To do so, we decompose the CO2 signals into terms that represent the influence of meteorology and emissions 

separately via a multiple linear regression approach analogous to that described by de Foy (2018). Briefly, linear coefficients 

describing the relationship of a site’s CO2 signal to temperature, specific humidity, wind, boundary layer height, time of day, 

day of week, and time of year are derived in an iterative, compounding fashion, with the variable leading to the greatest increase 10 
in the square of the Pearson correlation coefficient being added to the regression until the addition of a new variable no longer 

increases the r2 value by at least 0.005. Temperature, specific humidity, wind speed, and wind direction are taken from the Port 

of Oakland International Airport weather station maintained by the NOAA Integrated Surface Database 

(https://www.ncdc.noaa.gov/isd/) and boundary layer heights are provided by the ECMWF’s ERA-Interim model (Dee et al. 

2011; http://apps.ecmwf.int/datasets/). The nonlinear relationship between CO2 concentrations and wind or boundary layer 15 
height is captured by dividing these meteorological datasets into quartiles and deriving a linear coefficient for each subset. The 

wind speed quartiles are further subdivided by wind direction before fitting.  

For this analysis, we use hourly total CO2 concentrations (the sum of the local and regional components) measured at five 

sites between 15 February 2017 and 15 February 2018; a representative comparison of the observed and modeled results at the 

LCC site is shown in Fig. S5. The intercept of the multiple linear regression provides an estimate of the average background 20 
CO2 concentration observed at a given site over the entire analysis period; here we find a mean intercept of 426 ppm across 

the five sites. This is considerably higher than the average 407 ppm regional signal calculated for the summer months using 

the bottom 10th percentile method described above, but in good agreement with the average wintertime regional signal (425 

ppm).  

Multiple linear regression coefficients are derived for each hour of the day during five types of days of the week (Mondays, 25 
Tuesdays through Thursdays, Fridays, Saturdays, and Sundays); for clarity, Fig. 6 shows the regression coefficients for 

Tuesdays through Thursdays and Sundays. These MLR “factors” signify the average CO2 enhancement or depletion (in ppm) 

uniquely associated with a particular hour of a particular day of the week. The dependencies on time of day and day of week 

derived via this method primarily reflect the changes in emissions, as the influence of the coincident changes in atmospheric 

dynamics has been at least partially controlled for. Indeed, we do observe some intuitive patterns in the linear regression 30 
coefficients, such as higher coefficients on weekday mornings corresponding to higher rush hour traffic emissions on those 

days. As expected, the weekday enhancement is larger at the sites located close to a freeway (e.g. 520% at FTK) but is less 

pronounced at LBL (70%), which is farther away from major mobile sources. For reference, the 1 km by 1 km FIVE mobile 

emission inventory developed for the San Francisco Bay Area by McDonald et al. (2014) predicts a ~210% weekday 
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enhancement on average, peaking around 0500 LT, much earlier in the day than is observed here. When we examine the 

relationship between these multiple linear regression coefficients and morning traffic flow as we did at LAN (Fig. 7), we find 

positive correlations enabling the detection of 11–30% changes in emissions. This is sufficient sensitivity to detect and monitor 

future increases in the fuel efficiency of the California passenger vehicle fleet with a record as short as 2–3 years.  

It is likely that even greater sensitivity could be achieved with more accurate meteorological datasets. While the single 5 
weather station and relatively coarse (0.125o by 0.125o) reanalysis product we use here may be adequate to represent the 

meteorological conditions across some domains, the San Francisco Bay Area is at the high end of complexity in terms of 

terrain and microclimatology. Higher resolution boundary layer heights and neighborhood-specific wind observations may 

improve the results of our multiple linear regression, but these types of measurements are rarely available on the spatial scale 

of the BEACO2N instrument and are difficult to simulate with accuracy (Jiménez et al., 2013; Banks et al., 2016). In future 10 
work, high-density networks like BEACO2N may therefore be useful not just in source attribution but also in providing a much 

needed observational constraint on our understanding of near-surface transport.  

Future work will also make use of the ancillary datasets provided by the BEACO2N platform, such as the concurrent NOx 

and CO concentrations. The ratio of these species to CO2 provides a unique signature for each different CO2 source (e.g. Ban-

Weiss et al., 2008; Harley et al., 2005), allowing “plumes” or other subsets of the data record to be directly attributed to specific 15 
(e.g. mobile) source types and allowing the relationship between these specific activities and CO2 mixing ratios to be derived 

more precisely. With such a precise methodology for converting between emissions and concentrations, subtler interannual 

trends in emissions could be detected, for example changes in vehicle emissions following construction of new housing.  

4 Conclusions 

We have described the heterogeneity measured at the individual sites of a high-density, surface-level urban CO2 monitoring 20 
network. Networkwide, correlation length scales are found to be slightly longer during daytime during the summer, and 

generally shorter during winter months, but falling in the range of values reported previously based on other stationary 

observation networks and mobile monitoring campaigns. High nearfield correlations are thought to be driven by shared 

sensitivity to local emission events, while moderate farfield correlations reflect regional episodes, suggesting that a given site’s 

data record is likely a convolution of both phenomena. We therefore present a methodology for separating the observed CO2 25 
concentrations into local and regional components and observe distinct distributions (i.e. unimodal vs. bimodal) of local CO2 

enhancements within single neighborhoods. A clear relationship is seen between morning rush hour traffic counts and local 

CO2 concentrations, allowing for the detection of changes in vehicle emissions within 2–3 years, if those changes proceed at 

a rate consistent with policy objectives.  

Prior publications (e.g., McKain et al., 2012; Kort et al., 2013; Wu et al., 2018) have favored sparser networks of high-30 
quality instruments, criticizing high-density, low-cost approaches as either: (a) providing redundant constraints on total urban 

emissions, (b) offering information on CO2 sources in their immediate surroundings only, or (c) possessing insufficient 

accuracy to resolve small emission trends. The ideal trade-off between measurement quality and instrument quantity has been 
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investigated previously using an ensemble of observing system simulations by Turner et al. (2016), who found BEACO2N-

like observing systems to outperform smaller, higher quality networks in estimating regional as well as more localized emission 

phenomena. While Turner et al. saw significant benefits to achieving an instrument precision of 1 ppm, further increases in 

measurement quality offered little advantage in constraining emissions, especially those from line and point sources. 

This work thus provides an important data-based verification of the conclusions of Turner et al.’s theoretical analysis. Not 5 
only do we demonstrate the ability of low-cost sensors to sufficiently constrain policy-relevant trends in line source (i.e. 

highway traffic) emissions, but we do so without the use of computationally intense and heavily parameterized atmospheric 

transport models. Furthermore, we show that a multiple linear regression analysis allows the signature of highway traffic to be 

extracted from sites located throughout the network, enabling trends in mobile emissions to be quantified without specially 

situated, roadside monitors. This is an important result, as deriving and implementing a particular, a priori network layout is a 10 
nontrivial task. Domain-specific transport patterns prevent the development of general principles of optimal sensor placement, 

and, even if ideal locations can be identified, cooperation from facilities in the area cannot be guaranteed. By establishing for 

the first time that an ad hoc, opportunistic sensor siting approach can nonetheless provide sensitivity to emission sources of 

interest, we thus improve the prospects for widespread adoption of distributed monitoring systems in the future. 

Progress toward evaluating the capabilities and proper leverage of low-cost sensors has particular relevance for nations 15 
with rapidly developing economies, where CO2 emissions are increasing much faster than the resources needed to monitor 

them by conventional means. Domestically, citizen science and environmental justice groups are also adopting these 

technologies (Snyder et al., 2013) as an economically accessible means of advocating for greater public health and ecological 

wellbeing. While the specific correlation lengths and emission estimates we derive here are unique to the San Francisco Bay 

Area domain, the sensor performance capabilities and data analysis techniques we outline provide guidance more generally to 20 
any future studies attempting to interpret similar datasets around the world. High-resolution surface networks enabled by low-

cost technologies offer a unique opportunity to provide ground truth constraints on difficult to model near-surface dynamics 

as well as on the individual CO2 sources and sinks that comprise the strategic backbone of greenhouse gas mitigation 

regulation. 

5 Data Availability 25 

All BEACO2N CO2 observations used in this analysis can be downloaded at doi:10.5281/zenodo.1206983. Traffic counts are 

available on the California Department of Transportation website (http://pems.dot.ca.gov/), wind, temperature, and humidity 

observations are available on the NOAA Integrated Surface Database website (http://www.ncdc.noaa.gov/isd/), and boundary 

layer heights are available on the ECMWF website (http://apps.ecmwf.int/datasets/).  

  30 
Acknowledgements. This work was funded by the National Science Foundation (1035050; 1038191), the National Aeronautics 

and Aerospace Administration (NAS2-03144), the Bay Area Air Quality Management District (2013.145), and the 

Environmental Defense Fund. Additional support was provided by a NSF Graduate Research Fellowship to AAS, a Kwanjeong 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-344
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 22 May 2018
c© Author(s) 2018. CC BY 4.0 License.



9 
 

Lee Chonghwan Educational Fellowship to JK, and a Hellman Fund Fellowship to KJL. We acknowledge the use of datasets 

maintained by the California Department of Transportation, the National Oceanic and Atmospheric Administration, as well as 

the European Centre for Medium-Range Weather Forecasts.  

References 

Banks, R. F., Tiana-Alsina, J., Baldasano, J. M., Rocadenbosch, F., Papayannis, A., Solomos, S., and Tzanis, C. G.: Sensitivity 5 
of boundary-layer variables to PBL schemes in the WRF model based on surface meteorological observations, lidar, and 

radiosondes during the HygrA-CD campaign, Atmos. Res., 176, 185–201, doi:10.1016/j.atmosres.2016.02.024,  2016. 

Ban-Weiss, G. A., McLaughlin, J. P., Harley, R. A., Lunden, M. M., Kirchstetter, T. W., Kean, A. J., Strawa, A. W., Stevenson, 

E. D., and Kendall, G. R.: Long-term changes in emissions of nitrogen oxides and particulate matter from on-road gasoline 

and diesel vehicles, Atmos. Environ., 42, 220–232, doi:10.1016/j.atmosenv.2007.09.049, 2008. 10 
Beckerman, B., Jerrett, M., Brook, J. R., Verma, D. K., Arain, M. A., and Finkelstein, M. M.: Correlation of nitrogen dioxide 

with other traffic pollutants near a major expressway, Atmos. Environ., 42, 275–290, doi:10.1016/j.atmosenv.2007.09.042, 

2008. 

Bréon, F. M., Broquet, G., Puygrenier, V., Chevallier, F., Xueref-Remy, I., Ramonet, M., Dieudonné, E., Lopez, M., Schmidt, 

M., Perrussel, O., and Ciais, P.: An attempt at estimating Paris area CO2 emissions from atmospheric concentration 15 
measurements, Atmos. Chem. Phys., 15, 1707–1724, doi:10.5194/acp-15-1707-2015, 2015. 

Brown, E. G.: 2016 ZEV action plan: an updated roadmap toward 1.5 million zero-emission vehicles on California roadways 

by 2025, Governor’s Interagency Working Group on Zero-Emission Vehicles, Sacramento, CA, USA, 2016. 

Chen, J., Viatte, C., Hedelius, J. K., Jones, T., Franklin, J. E., Parker, H., Gottlieb, E. W., Wennberg, P. O., Dubey, M. K., and 

Wofsy, S. C.: Differential column measurements using compact solar-tracking spectrometers, Atmos. Chem. Phys., 16, 8479–20 
8498, doi:10.5194/acp-16-8479-2016, 2016. 

Choi, W., Winer, A. M., and Paulson, S. E.: Factors controlling pollutant plume length downwind of major roadways in 

nocturnal surface inversions, Atmos. Chem. Phys., 14, 6925–6940, doi:10.5194/acp-14-6925-2014, 2014. 

Claire, S. J., Dinh, T. M., Fanai, A. K., Nguyen, M. H., and Schultz, S. A.: Bay Area emissions inventory summary report: 

greenhouse gases, Tech. rep., Bay Area Air Quality Management District, San Francisco, CA, USA, 2015. 25 
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., 

Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., 

Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kȧllberg, P., Köhler, M., Matricardi, M., 

McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and 

Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Royal Meteorol. 30 
Soc., 137, 553–597, doi:10.1002/qj.828, 2011. 

de Foy, B.: City-level variations in NOx emissions derived from hourly monitoring data in Chicago, Atmos. Environ., 176, 

128–139, doi:10.1016/j.atmosenv.2017.12.028, 2018. 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-344
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 22 May 2018
c© Author(s) 2018. CC BY 4.0 License.



10 
 

Gurney, K. R., Razlivanov, I., Song, Y., Zhou, Y., Benes, B., and Abdul-Massih, M.: Quantification of fossil fuel CO2 

emissions on the building/street scale for a large U.S. city, Environ. Sci. Technol., 46, 12194–12202, doi:10.1021/es3011282, 

2012. 

Harley, R. A., Marr, L. C., Lehner, J. K., and Giddings, S., N.: Changes in motor vehicle emissions on diurnal to decadal time 

scales and effects on atmospheric composition, Environ. Sci. Technol., 39, 5356–5362, doi:10.1021/es048172+, 2005. 5 
Jiménez, P. A., Dudhia, J., González-Rouco J. F., Montávez, J. P., García-Bustamante, E., Navarro, J., Vilà-Guerau de 

Arellano, J., and Muñoz-Roldán, A.: An evaluation of WRF’s ability to reproduce the surface wind over complex terrain based 

on typical circulation patterns, J. Geophys. Res. Atmos., 118, 7651–7669, doi:10.1002/jgrd.50585, 2013. 

Kim, J., Shusterman, A. A., Lieschke, K. J., Newman, C., and Cohen, R. C.: The BErkeley Atmospheric CO2 Observation 

Network: field calibration and evaluation of low-cost air quality sensors, Atmos. Meas. Tech. Discuss., in review, 2017. 10 
Kort, E. A., Angevine, W. M., Duren, R., and Miller, C. E.: Surface observations for monitoring urban fossil fuel CO2 

emissions: minimum site location requirements for the Los Angeles Megacity, J. Geophys. Res. Atmos., 118, 1577–1584, 

doi:10.1002/jgrd.50135, 2013. 

Maness, H. L., Thurlow, M. E., McDonald, B. C., and Harley, R. A.: Estimates of CO2 traffic emissions from mobile 

concentration estimates, J. Geophys. Res. Atmos., 120, 2087–2102, doi:10.1002/2014jd022876, 2015. 15 
McDonald, B. C., McBride, Z. C., Martin, E. W., and Harley, R. A.: High-resolution mapping of motor vehicle carbon dioxide 

emissions, J. Geophys. Res. Atmos., 119, 5283–5298, doi:10.1002/2013jd021219, 2014. 

McKain, K., Wofsy, S. C., Nehrkorn, T., Eluszkiewicz, J., Ehleringer, J. R., and Stephens, B. B.: Assessment of ground-based 

atmospheric observations for verification of greenhouse gas emissions from an urban region, P. Natl. Acad. Sci. USA, 109, 

8423–8428, doi:10.1073/pnas.1116645109, 2012. 20 
McKain, K., Down, A., Raciti, S. M., Budney, J., Hutrya, L. R., Floerchinger, C., Herndon, S. C., Nehrkorn, T., Zahniser, M. 

S., Jackson, R. B., Phillips, N., and Wofsy, S. C.: Methane emissions from natural gas infrastructure and use in the urban 

region of Boston, Massachusetts, P. Natl. Acad. Sci. USA, 112, 1941–1946, doi:10.1073/pnas.1416261112, 2015. 

Newman, S., Xu, X., Gurney, K. R., Hsu, Y. K., Li, K. F., Jiang, X., Keeling, R., Feng, S., O’Keeffe, D., Patarasuk, R., Wong, 

K. W., Rao, P., Fischer, M. L., and Yung, Y. L.: Toward consistency between trends in bottom-up CO2 emissions and top-25 
down atmospheric measurements in the Los Angeles megacity, Atmos. Chem. Phys., 16, 3843–3863, doi:10.5194/acp-16-

3843-2016, 2016. 

Pacala, S. W., Breidenich, C., Brewer, P. G., Fung, I., Gunson, M. R., Heddle, G., Law, B., Marland, G., Paustian, K., Prather, 

M., Randerson, J. T., Tans, P., and Wofsy, S. C.: Verifying Greenhouse Gas Emissions: Methods to Support International 

Climate Agreements, The National Academies Press, Washington, D. C., 2010. 30 
Patarasuk, R., Gurney, K. R., O’Keeffe, D., Song, Y., Huang, J., Preeti, R., Buchert, M., Lin, J. C., Mendoza, D., and 

Ehleringer, J. R.: Urban high-resolution fossil fuel CO2 emissions quantification and exploration of emission drivers for 

potential policy applications, Urban Ecosyst., 19, 1013–1039, doi:10.1007/s11252-016-0553-1, 2016. 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-344
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 22 May 2018
c© Author(s) 2018. CC BY 4.0 License.



11 
 

Pugliese, S. C., Murphy, J. G., Vogel, F. R., Moran, M. D., Zhang, J., Zheng, Q., Stroud, C. A., Ren, S., Worthy, D., and 

Broquet, G.: High-resolution quantification of atmospheric CO2 mixing ratios in the Greater Toronto Area, Canada, Atmos. 

Chem. Phys., 18, 3387–3401, doi:10.5194/acp-18-3387-2018, 2017. 

Shusterman, A. A., Teige, V. E., Turner, A. J., Newman, C., Kim, J., and Cohen, R. C.: The BErkeley Atmospheric CO2 

Observation Network: initial evaluation, Atmos. Chem. Phys., 16, 13449–13463, doi:10.5194/acp-16-13449-2016, 2016. 5 
Turnbull, J. C., Sweeney, C., Karion, A., Newberger, T., Lehman, S. J., Tans, P. P., Davis, K. J., Lauvaux, T., Miles, N. L., 

Richardson, S. J., Cambaliza, M. O., Shepson, P. B., Gurney, K., Patarasuk, R., and Razlivanov, I.: Toward quantification and 

source sector identification of fossil fuel CO2 emissions from an urban area: Results from the INFLUX experiment, J. Geophys. 

Res. Atmos., 120, 292–312, doi:10.1002/2014jd022555, 2015. 

Snyder, E. G., Watkins, T. H., Solomon, P. A., Thoma, E. D. Williams, R. W., Hagler, G. S. W., Shelow, D., Hindin, D. A., 10 
Kilaru, V. J., and Preuss, P. W.: The changing paradigm of air pollution monitoring, Environ. Sci. Technol., 47, 11369–11377, 

doi:10.1021/es4022602, 2013. 

Turner, A. J., Shusterman, A. A., McDonald, B. C., Teige, V., Harley, R. A., and Cohen. R. C.: Network design for quantifying 

urban CO2 emissions: assessing trade-offs between precision and network density, Atmos. Chem. Phys., 16, 13465–13475, 

doi:10.5194/acp-16-13465-2016, 2016. 15 
United Nations, Human Settlement Programme: Hot Cities: Battle-Ground for Climate Change, 2011. 

United Nations, Framework Convention on Climate Change: Adoption of the Paris Agreement, 

21st Conference of the Parties, Paris, 2015. 

United States Environmental Protection Agency, 2017 and Later Model Year Light-Duty Vehicle Greenhouse Gas Emissions 

and Corporate Average Fuel Economy Standards, Washington, D.C., 2012. 20 
Verhulst, K. R., Karion, A., Kim, J., Salameh, P. K., Keeling, R. F., Newman, S., Miller, J., Sloop, C., Pongetti, T., Rao P., 

Wong, C., Hopkins, F. M., Yadav, V., Weiss, R. F., Duren, R. M., and Miller, C. E.: Carbon dioxide and methane 

measurements from the Los Angeles Megacity Carbon Project – Part 1: calibration, urban enhancements, and uncertainty 

estimates, Atmos. Chem. Phys., 17, 8313–8341, doi:10.5194/acp-17-8313-2017, 2017. 

Wu, K., Lauvaux, T., Davis, K. J., Deng, A., Lopez Coto, I., Gurney, K. R., and Patarasuk, R.: Joint inverse estimation of 25 
fossil fuel and biogenic CO2 fluxes in an urban environment: An observing system simulation experiment to assess the impact 

of multiple uncertainties, Elem. Sci. Anth., 6, doi:10.1525/elementa.138, 2018.  

Zhu, Y., Kuhn, T., Mayo, P., and Hinds, W. C.: Comparison of daytime and nighttime concentration profiles and size 

distributions of ultrafine particles near a major highway, Environ. Sci. Technol., 40, 2531–2536, doi:10.1021/es0516514, 2006. 

 30 
 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-344
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 22 May 2018
c© Author(s) 2018. CC BY 4.0 License.



12 
 

 
 

Figure 1. Map of BEACO2N node locations (black dots). Nodes used in this study are labeled. Map data © 2017 Google. 
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Figure 2. Optimal correlation coefficients for every possible pairing of summer 2017 sites as a function of their separation distance 10 
during all hours (top), daytime hours (1100–1800 LT, middle), and nighttime hours (2100–0400 LT, bottom). Solid lines show 
exponential decay of the correlation coefficients. 
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Figure 3. Optimal correlation coefficients for every possible pairing of winter 2017 sites as a function of their separation distance 5 
during all hours (top), daytime hours (1100–1800 LT, middle), and nighttime hours (2100–0400 LT, bottom). Solid lines show 
exponential decay of the correlation coefficients. 
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Figure 4. Hourly median values of the network-wide, regional CO2 signals calculated for summer (orange) and winter (blue) 
periods in 2017. Lighter colored curves indicate the standard error; note the difference in y-scale. 
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Figure 5. Morning (0400–0800 LT) local summertime CO2 concentrations at LAN shown as a function of nearby highway traffic 
flow. Darker points indicate the median CO2 concentration observed in each 500 veh h-1 traffic flow increment; black solid line 
indicates the linear regression through the binned medians (equation given above plot) and gray dashed lines show the uncertainty 5 
in the regression slope. 
 
 
 

 10 
 
Figure 6. Multiple linear regression coefficients for five sites derived for each hour of the day on Tuesdays through Thursdays 
(orange solid line) and Sundays (blue dashed line) between 15 February 2017 and 15 February 2018. 
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Figure 7. Morning (0400–0800 LT) multiple linear regression coefficients shown as a function of summertime traffic flow; black 
solid lines indicate the linear regression through the binned medians (equations given above each subplot) and gray dashed lines 
show the uncertainty in the regression slope. 5 
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SITE 

CODE 
LAT 
(o N) 

LON 
(o E) 

TRAFFIC MONITOR  
IDs 

DISTANCE FROM  
HIGHWAY (m) 

ALB* 37.896 -122.292 401052, 402062 1390 
BAM 37.788 -122.391 402815, 404920 170 
BOD* 37.754 -122.156 401857, 401858 300 
CHA 37.819 -122.181 400302, 400308 1720 
COL 38.002 -122.289 401230, 401269 510 
CPS* 37.848 -122.240 402201, 402202 220 
DEJ† 37.933 -122.338 400361, 400445 950 
EXB† 37.802 -122.397 402815, 404920 1570 
EXE 37.801 -122.399 402815, 404920 1580 
FTK 37.737 -122.173 JJAS: 400442, 400955 

NDJ: 400608, 400793 
1350 

HRS* 37.809 -122.205 400302, 400308 700 
LAN† 37.794 -122.263 400835, 408138 40 
LBL 37.876 -122.252 400176, 400728 3090 
LCC 37.736 -122.196 JJAS: 400442, 400955 

NDJ: 400608, 400793 
220 

MAD† 37.928 -122.299 400819, 401558 1850 
MAR† 37.863 -122.314 400176, 400728 950 
MTA 37.995 -122.335 400538, 400976 2040 
NOC* 37.833 -122.276 401211, 401513 750 
NYS† 37.928 -122.359 400359, 400734 380 
OHS* 37.804 -122.236 400261, 401017 160 
PDS* 37.831 -122.257 400224, 401381  800 
PER 37.943 -122.365 400639, 400738 1790 
PTL 37.920 -122.306 400819, 401588 970 
RFS 37.913 -122.336 400202, 400675 760 

RHS† 37.953 -122.347 401228, 406660 1530 
SHL 37.967 -122.298 416774, 416790 2030 
SPB* 37.960 -122.357 401894, 401895 2280 
STW† 37.990 -122.291 400313, 400902 500 

 
Table 1: List of site geo-coordinates, relevant traffic monitor IDs, and approximate distance from a highway. Asterisks indicate sites 
with data available in winter 2017 only; daggers indicate sites with data available in summer 2017 only. 
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