
We appreciate the referee’s time and feedback, which have resulted in significant improvements 
to our manuscript, as detailed below: 
 
Shusterman et al. present and analyze results from the low-cost, high-density CO2 monitoring 
network BEACO2N to demonstrate that such a network allows investigating hyperlocal sources, 
e.g., highway traffic, and to track emission changes due to mitigation measures. Key findings, like 
an experimentally determined correlation length and the strong correlation of local CO2 
enhancements with traffic are important results for the urban GHG research community. Overall, 
the manuscript is very well written, nicely structured, and concise.  
 
1.) However, some further detail on the methodology would be instructive for other (and future) 
researchers attempting to use similar approaches, which would ensure that the paper has the best 
possible impact. The methods applied are properly referenced, but, e.g., the work of de Foy is very 
recent and some more information might be useful for the reader.  
 
The referee’s request for a greater level of detail in our methodological descriptions is a sentiment 
shared by the other referee as well. We have adjusted the text accordingly, as detailed in response 
to the specific comments below as well as our other referee response. 
 
2.) Furthermore, the authors do not clearly define the terms used for spatial scales, e.g., 
“regionwide” (see specific comments). As different groups/communities use different definitions 
of “regional,” it seems imperative that this is added to the manuscript to avoid confusion.  
 
Please see our responses to the specific comments below. 
 
3.) The authors refer to MRV and that this network would/could be useful. While the work 
described here echoes the concept of MRV, MRV itself, as introduced by the Bali action plan 
(UNFCCC), seems not to be the best goal. I would argue that providing atmospheric-based 
constraints on emissions would be very valuable by itself and can enormously help (local) stake- 
holders without the complications of being integrated into an MRV framework.  
 
We acknowledge that some readers, the referee included, may adhere to a much stricter definition 
of MRV activities and have removed all references to MRV from the text in favor of language 
referring to atmospheric-based constraints on emissions more generally; see our responses to the 
specific comments below for details. 
 
After addressing these comments, I would fully recommend this work for publication in ACP as it 
is an important advance in the field and will be of great interest to the community.   



Specific comments:  

P1 L9: Consider adding “at subnational scale” as national CO2 emissions are usually fairly easy 
to report based on consumption data compared to, e.g., CFCs, N2O, or CH4, and MRV frameworks 
exist under UNFCCC (e.g., https://unfccc.int/sites/default/files/non-annex_i_mrv_handbook.pdf). 
For cities MRV has also been developing (e.g., the GHG protocol), but the authors could highlight 
the added/complementary value of atmospheric information.  
 
We have updated the text to refer to subnational scales and have removed this and all subsequent 
references to MRV frameworks: 
 
“Urban carbon dioxide comprises the largest fraction of anthropogenic greenhouse gas emissions 
and yet quantifying urban emissions at subnational scales is highly challenging, as numerous 
emission sources reside in close proximity within each topographically intricate urban dome.” 
 
“To support this effort, there is a clear need for monitoring strategies capable of describing 
emission changes and attributing those changes to the relevant policy measures (Pacala et al., 
2010).” 
 
“However, cities also present the largest atmospheric monitoring challenge in that many disparate 
emission sources combine with complex topography.” 
 
“A considerable amount of emission estimation work has been invested in the development of 
activity-based emission inventories for selected metropolitan areas […]” 
 
P4 L19: Please give an estimate of what scale “regionwide” refers to.  
 
While the specific sentence to which the referee refers no longer exists in its original form, we 
have updated the first reference to regional spatial scales in the text to clarify our intended meaning 
of the term: 
 
“LCC, however, also exhibits relationships with more distant sites, indicating a sensitivity to more 
regional-scale (10–30 km) influences.” 
 
P4 L25: Why did you choose the 10th percentile to define “regional” and not, e.g., the 5th or 20th 
percentile?  

As mentioned in the text, the 10th percentile is chosen “to account for measurement error […] as 
well as any nearfield draw down from the local biosphere.” We note in Sect. 2.1 that Shusterman 
et al. (2016) found the 1-min mean measurements from the BEACO2N CO2 monitors to possess 
an uncertainty of less than ±4 ppm, which amounts to between 5% and 10% of the typical ambient 
CO2 signals observed in our urban domain. We therefore adopt the conservative upper limit of 
10% to allow for some influence from the biosphere, although a precise quantification of this 
component of the signal is beyond the scope of this study. Thus, assuming an overall 10% 
uncertainty in an arbitrarily chosen site’s ability to characterize the regional signal, we define the 
bottom 10th percentile of the observations as our best estimate of this quantity. 



The manuscript text has been updated to direct the reader to the reasoning behind this quantity: 
 
“The bottom 10th percentile is chosen (rather than the absolute minimum) to account for 
measurement error (±4 ppm at 1-min resolution; see Shusterman et al., 2016) as well as any 
nearfield draw down from the local biosphere; negative values in the local signals are likely 
attributable to some combination of these effects.” 
 
P4 L33: Please correct to “Figure 4.”  

This typographical error has been corrected. 

P5 L3: The daily cycle is mainly driven by boundary layer height dynamics–the local traffic flux 
is the superimposed fluctuation here, in my opinion. It surely causes a modification, e.g., by 
causing the morning and evening peaks to be more pronounced. However, different studies in rural 
regions have largely similar diel cycle shapes (e.g., Garcia et al., 2012 
https://www.tandfonline.com/doi/abs/10.3155/1047-3289.58.7.940; Perez et al., 2012 
https://www.sciencedirect.com/science/article/pii/S0048969712007498). 
 
We agree with the referee that the traffic flux is the superimposed fluctuation here, and the text as 
written reflects this sentiment: 
 
“This diurnal profile corresponds well with known patterns in traffic emissions–which are largely 
consistent across seasons–superimposed on diel fluctuations in boundary layer height and/or 
biosphere activity that vary in timing and magnitude according to the season.” 
 
P5 L6: It seems counter-intuitive that the PBLH changes earlier in winter (also compared to other 
studies), as more energy is introduced into the system during summer months to break the NBL 
(as the solar insulation is stronger and the sun rises earlier). Please provide additional data, e.g., 
PBLH or other atmospheric proxy information in the appendix to support your interpretation.  
 
Unfortunately, there exist no direct PBLH observations in the area with adequate temporal 
resolution to inform this analysis. Instead we show the median diel cycles in the summer vs. 
wintertime temperatures and wind speeds observed at the Port of Oakland International Airport’s 
NOAA Integrated Surface Database station (https://www.ncdc.noaa.gov/isd/) below:  

 



We see that the increases in atmospheric proxies that might be associated with PBLH changes 
occur at almost identical times of day across seasons, even if the sun rises earlier and more energy 
is introduced into the system overall during the summer months, as the referee suggests. We do 
acknowledge, however, that the seasonal differences in PBLH changes are not the only possible 
explanation for the difference in the diel cycle in regional CO2 concentrations, and have updated 
the text to reflect an additional possibility suggested by the other referee: 
 
“Namely, these results might be interpreted to conclude the nighttime boundary layer in the 
BEACO2N domain to be shallower during the winter months, producing a larger regional increase 
in response to rush hour traffic. The wintertime layer also appears to expand and re-contract earlier 
in the day than the summertime layer, resulting in both an earlier minimum and an earlier rise in 
afternoon–evening concentrations. The larger amplitude of the wintertime diurnal cycle may also 
reflect the greater influence of daytime photosynthesis and nighttime respiration during the San 
Francisco Bay Area’s rainy winter season.” 
 
P5 L32: Why is the other methodology not shown in the supplement and why is this sentence in 
brackets? Seems to be an interesting finding/information.  
 
We have removed the parentheses around this statement and have added a figure to the supplement 
that illustrates the results of this alternative methodology. 
 
P5 L34: You could also refer to the large amount of traffic tunnel studies that have similar findings 
and are very straightforward (no other source besides traffic), e.g., references in 
https://www.atmos-chem-phys.net/14/12871/2014/acp-14-12871-2014.pdf.  
 
We appreciate the referee’s suggestions of additional related studies and believe that such tunnel-
based measurement campaigns contribute very important information to mobile emission 
estimation efforts. However, in the interest of succinctness, we choose to forego a broader 
discussion of the many analyses that use CO2 as a baseline against which the concentrations of co-
emitted species are normalized and instead limit our discussion to studies that analyze the traffic 
dependence of CO2 concentrations in their own right (i.e., Maness et al., 2015).  
 
P5 L35: One question raised would be how long would you have to observe to confirm this 17% 
trend? Which is answered at P7 L4 for 11–30% emission changes. Consider removing the 
discussion of the 17% here.  
 
As suggested, we have moved this discussion to occur later in the manuscript. 
 
P6 L15: How exactly are the wind speed quartiles subdivided (and why)? See general comment 
1.)  
 
As noted in the text, the wind speed quartiles are subdivided to allow for a “nonlinear relationship” 
between CO2 concentrations and this explanatory variable. In Gaussian dispersion modeling, for 
example, the downwind concentration of a given pollutant is inversely (rather than linearly) 
proportional to wind speed. Because our regression method is by definition linear, subdividing the 
wind speeds in this way allows us to decompose more complex mathematical relationships into 



linear components. We have updated the text to give more detail regarding the exact methodology 
of this approach: 
 
“The nonlinear relationship between CO2 concentrations and wind or boundary layer height is 
captured by dividing these meteorological datasets into quartiles and assigning each observation a 
value between 0 (at the maximum of the quartile) and 1 (at the minimum) using piecewise linear 
interpolation. The wind speed quartiles are further subdivided by wind direction and reassigned 
values of 0–1 accordingly before fitting a linear coefficient to each subset. The time of year is 
represented as a sum of sines and cosines with annual or semiannual periodicities whose values 
also vary between 0 and 1 and whose amplitudes are determined by the linear regression. Zeroes 
and ones are used to designate each hour of each type of day of the week as well. For example, 
timesteps corresponding to 0800 LT on a Monday may be assigned a 1 while all other timesteps 
are set to zero before the linear regression is performed. As a result, the MLR factors derived for 
each of the preceding explanatory variables can be interpreted in units of ppm CO2. Meanwhile, 
the temperature and specific humidity variables are treated by calculating their difference from 
their mean values and dividing by their respective standard deviations before each is fit to CO2 
with a single linear coefficient, which will have units of ppm oC-1 and ppm (kgwater kgair-1)-1, 
respectively. 

The independent variable leading to the greatest square of the Pearson correlation coefficient 
is then combined with each of the remaining variables and a second regression is performed. The 
two-input combination leading to the largest increase in the correlation coefficient is then 
combined with each of the remaining variables, and so on, until the addition of a new independent 
variable no longer increases the r2 value by at least 0.005.” 

 
P6 L26: Why are Mondays and Saturdays not shown in the supplement?  
 
A figure depicting MLR factors derived for Mondays, Fridays, and Saturdays has been added to 
the supplement. 
 
P6 L29: Could you quantify to which degree the atmospheric dynamics have been controlled for? 
Claiming that it is "partially controlled for" does not automatically mean that the residual 
only/primarily reflects emission changes.  
 
Without knowledge of the true emissions within a given site’s footprint of sensitivity, we cannot 
quantify the degree to which atmospheric dynamics have been controlled for. The fact that the 
MLR factors remaining after “partially” controlling for dynamics may primarily reflect emission 
changes is a hypothesis rather than a premise of this study, a hypothesis that the discussion goes 
on to support with a first order, proof-of-concept analysis of the diel cycles in these factors. We 
have updated the text to clarify the speculative nature of this claim, and also to provide additional 
detail regarding the diel cycle analysis: 
 
“The dependencies on time of day and day of week derived via this method are hypothesized to 
primarily reflect the changes in emissions, as the influence of the coincident changes in 
atmospheric dynamics has been at least partially controlled for. For reference, the corresponding 
Tuesday–Thursday and Sunday diel cycles in the total CO2 observed at each site are shown in Fig. 
9. Indeed, we do observe some of the same intuitive patterns in the linear regression coefficients, 



such as higher coefficients on weekday mornings corresponding to higher rush hour traffic 
emissions on those days, but with greater opportunity to differentiate between days of the week, 
especially around noon when raw concentrations are generally similar. As expected, the Tuesday–
Thursday enhancement in the MLR factors is larger at the sites located close to a freeway (e.g., up 
to 520% of the corresponding Sunday MLR factor at FTK) but is less pronounced at LBL (70%), 
which is farther away from major mobile sources.” 
 
P7 L4: What is your confidence of the reported detection of such a trend within 2–3 years? 95%? 
How was this calculated?  
 
The stated uncertainty in the regression slopes (11–30%) is the standard error, i.e., the 68% 
confidence interval. Assuming that the 35% reduction in CO2 emissions per vehicle required by 
fuel efficiency regulation occurs evenly over ~10 years necessitates a 3.5% change in CO2 
emissions per vehicle per year. Thus, with a regression uncertainty of 11%, this 3.5% annual trend 
is detectable within just over 3 years using the observations from a single site. Even modest 
improvements in our ability to leverage information from 𝑁 > 1 sites within the network would 
allow for trend detection with greater confidence and/or shorter timescales if, for example, 
different sites’ observations are found to be sufficiently independent to scale down the uncertainty 
by √𝑁. We have updated the manuscript text to clarify this point, include the re-located discussion 
of the LAN 17% slope uncertainty, and present the timescale of detection more precisely: 
 
“When we examine the relationship between these multiple linear regression coefficients and 
morning traffic flow as we did at LAN (Fig. 10), we again find positive correlations. The standard 
error of the slope of the linear regression is calculated as the standard deviation of the model–data 
CO2 residuals divided by the square root of the sum of the squared differences between each traffic 
flow increment and the mean traffic flow. The uncertainty in the slopes is thus found to be 11–
30%, indicating that analysis of a single site could be used to detect as small as 11% changes in 
average emissions per vehicle, an improvement upon the 17% slope uncertainty calculated for the 
near-highway LAN site. For reference, under the Corporate Average Fuel Economy standards, the 
state of California aims to achieve a fleet-wide average fuel economy of 54.5 miles per gallon by 
the year 2025 (US EPA, 2012), corresponding to a 35% decrease in emissions relative to the 35.5 
miles per gallon economy of 2012–2016 model year vehicles. Assuming a steady decrease in 
emissions of 3.5% per year, one BEACO2N site is therefore sufficiently sensitive to detect such a 
trend with 68% confidence in as little as 3 years. By leveraging observations from multiple 
independent sites, even greater confidence and/or shorter timescales could be achieved.” 
 
P7 L17: The assumption that plumes can be detected within an urban area should be supported, 
e.g., by citations. At scales below 1 km2 it seems that street canyon effects, building disturbances, 
etc. could play an important role and hinder the application of concepts such as “plumes,” see, 
e.g., Lietzke and Vogt (2013; https://www.sciencedirect.com/science/article/pii/ 
S1352231013002069) that also investigated traffic emissions at street scale.  
 
Previous work using BEACO2N measurements has provided preliminary evidence that plume-like 
events (if not “plumes” in the strictest sense) can be detected at this scale in urban areas (Kim et 
al., 2018). These plume-like events are not necessarily representative of a single vehicle’s tailpipe, 
for example, but are nonetheless characterized by a sharp, distinct enhancement above background 



concentrations and have been shown to be correlated with average emission factors expected for a 
given vehicle fleet. We have updated the text to include a reference to this important proof-of-
concept study: 
 
“Prior studies have demonstrated a methodology for detecting plume-like events in the BEACO2N 
NOx and CO observations (Kim et al., 2018), and the ratio of these species to CO2 provides a 
unique signature for each different CO2 source (e.g., Ban-Weiss et al., 2008; Harley et al., 2005; 
Lopez et al., 2013; Nathan et al., 2018; Turnbull et al., 2015), allowing subsets of the data record 
to be directly attributed to specific (e.g., mobile) source types and allowing the relationship 
between these specific activities and CO2 mixing ratios to be derived more precisely.” 
 
P8 L5: I would suggest reconsidering the wording here, especially as you refer to MRV earlier in 
the manuscript. This work strongly supports the conclusions of Turner et al. (2016), but it seems 
you have validated and not verified them. 
  
We appreciate the referee’s attention to detail in this case and have updated the text accordingly: 
 
“This work thus provides an important data-based validation of the conclusions of Turner et al.’s 
theoretical analysis.” 
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