
We thank the referee for their comments and time, which have improved our manuscript in many 
ways, as detailed below: 
 
This paper uses a set of observations from low-cost, near-surface sensors to examine relationships 
between CO2 mole fraction and traffic counts, showing strong relationships at individual sites. 
They also investigate correlation length scales between different sites and develop a multiple 
linear regression method to establish relationships between CO2 mole fraction and the factors that 
influence it. The methods described appear to give exciting results showing that traffic fuel 
efficiency can be monitored by combining these methods with traffic count/flow information. 
 
The data and results in this paper are interesting and entirely appropriate for publication in ACP. 
The major flaw in this paper is that insufficient detail of the methods is given, and mostly only 
higher level data products (correlation coefficients, MLR coefficients) are given in most places. 
There are several instances where methods first described in other papers are here described too 
briefly to be understood without detailed reading of the previous publications. In other cases, 
figures that are key to understanding the methodology are given only in the supplementary 
material, and details of the “raw” information that goes into the main figures are lacking. Thus it 
is difficult to evaluate the robustness of the methods, and readers will have difficulty repeating the 
analysis or trying it out themselves. ACP doesn’t have major length limitations, so the main text 
should be expanded so that the methodology can be followed. Specific instances are noted in my 
further comments. 
 
The concepts, data, and written language are all good, but I recommend major revisions to expand 
the explanations of the methodology and show more of the CO2 measurements and comparison to 
the MLR model. This will allow the reviewers and readers to better evaluate the robustness of the 
methodology. 
 
We appreciate the referee’s sentiments with regards to both the significance of our results as well 
as the shortcomings of our manuscript and we endeavor to improve in the ways suggested. In 
particular, we have added much more detailed explanations of the methodologies based on 
previous publications for the convenience of the reader. Due to the extremely high volume of CO2 
observations involved in a multisite, long-term monitoring campaign, it is not always feasible to 
present the data in its raw form–hence our preference for “higher level” data products that can 
summarize large quantities of information relatively succinctly. However, an effort has 
nonetheless been made to incorporate more of the directly observed CO2 concentrations into the 
main text wherever possible; case by case explanations of when we did or did not choose to do so 
are given in response to the specific comments that follow. 
  



Specific comments: 
 
The effect of low-precision measurements is not detailed anywhere in this paper. How does the 0.5 
ppm precision impact the results discussed? How is drift in the sensors accounted for, and how 
will this impact the results, particularly the concept that changes in traffic fuel efficiency could be 
monitored over time? 
 
The ±0.5 ppm hourly precision has little impact on the results discussed, given that most of said 
results are obtained after significant averaging. For example, each dark orange point in Fig. 6 
represents, on average, 20 hours, giving each a cumulative error of around ±0.13 ppm, which is 
invisible on the scale of the graph. When we weight each orange point by its specific uncertainty, 
we actually find a smaller error (11%) in the slope of the resultant linear regression. We have 
chosen to report the more conservative, non-weighted slope error (17%) in the text. To underscore 
the insignificance of the measurement precision, we have revised the text as follows: 
 
“The processed 1-minute averages are assumed to have an uncertainty of less than ±4 ppm, which 
becomes negligible on the averaging timescales used hereafter.” 
 
Any long-term drift in the sensors is accounted for via a combination of periodic (i.e., every 12–
24 months) laboratory recalibration and a post hoc data treatment based on an independent 
reference site in the network domain. This procedure allows us to confidently compare 
measurements taken multiple years apart, thus enabling inter-annual changes in traffic fuel 
efficiency to be monitored. The exact details of the calibration and post hoc data treatment are 
provided in Shusterman et al. (2016) and a full repetition of that discussion is beyond the scope of 
this manuscript. 
 
Although the authors acknowledge that traffic contributes only 40% of CO2 emissions, they then 
focus on only traffic emissions in the analysis. While sites very close to major roads will indeed be 
strongly influenced by the proximal road, sites further from roads will be influenced by multiple 
roads as well as other anthropogenic sources, AND by biogenic CO2 sources and sinks. How are 
these other sources considered? If they are ignored in this analysis, please justify why. 
 
While traffic contributes “only” 40% of the total CO2 emissions budget for the entire San Francisco 
Bay Area, this is the single largest source sector in the inventory and the two next largest sectors 
(industrial/commercial and electricity/co-generation) are often located outside of the urban core 
studied here. Thus, we safely assume that traffic emissions contribute much more than 40% of the 
CO2 emissions in the subset of the overall Bay Area where our sensors are located and focus our 
subsequent analysis on traffic alone.  
 
We acknowledge that other roads do indeed impact the measurements collected at sites located 
farther from major highways. We do not require that these roads (or other, non-traffic 
anthropogenic sources) have negligible influence as a premise for our analysis, however we do 
find our local CO2 enhancements and secondary data products to be well correlated with traffic 
counts on major highways. While ancillary CO2 sources may account for some of the scatter in 
our correlations, their insignificance relative to or strong correlation with emissions from major 
highways is one possible conclusion, rather than a presumption, of our study. 



 
As for the influence of the biosphere, we do not ignore it, but rather adopt data analysis techniques 
that minimize its importance. Namely, in the multiple linear regression analysis, we separate out 
the components of the CO2 signal that are correlated with time of year and temperature (likely to 
be predictive of biosphere activity) from that which is correlated with day of week (unlikely to be 
predictive of biosphere activity).  
 
P1 L25: The % of global CO2 emissions from urban areas varies depending on how it is 
determined. 70 to 80% is probably a better estimate. 
 
We thank the referee for providing a more accurate range and have updated the text appropriately: 
 
“Currently, an estimated 70–80% of global CO2 emissions are urban in origin and this fraction is 
expected to grow as migration to urban areas continues and intensifies with the industrialization 
of developing nations (United Nations, 2011).” 
 
Section 2.2. Traffic counts. For the sites very close to a particular highway, traffic monitor data 
for that nearby highway makes sense. For sites that are further from any particular highway, even 
if traffic is the dominant proximal CO2 source, surely more than one highway (and local roads as 
well) will contribute to the signal observed at that site. How are multiple sources accounted for? 
 
We agree that accounting only for the influence of a single highway (rather than multiple highways 
and/or additional local roads) is a first order approximation of the total traffic emissions 
influencing a given CO2 monitor, especially those situated at greater distances from said highway. 
Interestingly, we nonetheless find this first order approach to produce robust correlations with the 
observed fluctuations in CO2. As previously stated in our response to an earlier comment, the 
predominance of these single highway emissions (and/or their strong correlation with those from 
other sources) is a possible conclusion, rather than a presumption, of our study. 
 
P3 L31–32; P4 L1–3: Please expand to explain the methodology used here in enough detail to be 
followed without requiring the reader to refer to the McKain paper. Are these correlation lengths 
determined using CO2 mole fraction, or the enhancements in CO2 relative to the background? 
Where is the raw data that is used to derive these correlation lengths? Plots of the CO2 time series 
should be included (these could go in the supplementary material). 
 
We have expanded the manuscript text to include a more thorough explanation of the methodology 
used here: 
 
“To quantify the spatial heterogeneity present across the network, we examine the degree of 
correlation between every possible pairing of sites in a given season as a function of the distance 
between them, borrowing from a similar analysis used by McKain et al. (2012). For 
straightforward comparison with the McKain et al. results, we first average the total CO2 mole 
fractions to 5-minute resolution. Then, for every pairwise combination of two sites, we perform an 
ordinary least squares linear regression between the two 5-minute time series and calculate the 
Pearson correlation coefficient. We repeat this procedure after offsetting the two time series by ±5 
minutes, ±10 minutes, etc., allowing for up to a ±3-h lag and choose the optimal r2 value from the 



possible offsets. We plot the thus optimized pairwise correlations as a function of the distance 
separating the two relevant sites (Figs. 2 and 3) and fit the results to a single term exponential 
decay on top of a constant background, defined by the mean correlation observed at inter-site 
distances greater than 20 km.” 
 
Given the sheer volume of data used to derive these correlation lengths (3–7 months of data at 5-
minute resolution from 28 different sites), we elect to not include CO2 time series in the 
supplementary material, as such plots are too visually cramped to be interpreted easily. Instead, 
we refer interested readers to the Data Availability statement, where we have included a public 
link to all CO2 datasets used in this manuscript. 
 
P4 L6–14: Please explain what the correlation lengths should be interpreted to mean. I take it that 
a shorter correlation length implies more influence of sources close to the sites. Longer length 
scales would imply more influence of sources further away? The referenced studies are all about 
pollutant gases, not CO2–it might be reasonable to expect higher correlations and longer length 
scales for a long-lived gas like CO2 with large and varying background. 
 
The referee has correctly inferred our intended interpretation of the correlation lengths, and we 
have updated the text appropriately to make this explicit: 
 
“The characteristic length scale of this correlation is 2.9 km (defined as the e-folding distance of 
the exponential fits in Fig. 2; 3.6 km during the day and 2.2 km at night), which we interpret as an 
indicator of the distance at which various emission sources exert influence over a site’s 
measurements. Shorter correlation lengths indicate sensitivity to near-field emissions, while longer 
correlation lengths imply sensitivity to far-field phenomena.” 
 
We have also edited the discussion of the prior studies of reactive pollutant gases according to the 
referee’s comments: 
 
“In either season, the correlation lengths are, as expected, considerably longer than the previously 
observed ~100 to 1000-m e-folding distances of reactive urban pollutants that are also lost via 
chemical pathways (e.g., Zhu et al., 2006; Beckerman et al., 2008; Choi et al., 2014), thus 
validating the original choice of 2 km as the desirable inter-site separation in the design of the 
BEACO2N instrument.” 
 
P4 L18–19: I don’t follow why the daytime correlations imply this information. Please clarify. 
 
We have edited the text and added a figure to clarify our intended interpretation of the daytime 
correlations: 
 
“However, McKain et al. saw very little correlation after restricting their analysis to daytime hours, 
even at very short (<5 km) inter-site distances, which implies that daytime observations reflect 
hyperlocal phenomena only. In contrast, we observe moderate to high correlations during the day, 
which illustrates that information about emissions and transport phenomena on a variety of scales 
is preserved. A spatial visualization of the daytime correlation coefficients at four representative 
winter sites is shown in Fig. 4. We see that PER is well correlated with its neighbors only, 



suggesting the presence of local phenomena that do not affect other parts of the network. LCC, 
however, also exhibits relationships with more distant sites, indicating a sensitivity to more 
regional-scale (10–30 km) influences. Meanwhile, HRS and OHS each possess at least one near 
neighbor with whom they are poorly correlated, perhaps due to hyperlocal events specific to those 
sites. While the region-wide phenomena can be characterized using sparser networks of high-cost, 
conventional monitoring equipment, the ability to capture these local processes is unique to the 
high-density approach.”  
 
P4 L33: Figure 4, not Fig. 2? 
 
This typographical error has been corrected. 
 
P5 L1–10: It is curious that the amplitude of the diurnal cycle is larger in winter than in summer. 
The timing of the diurnal pattern shown in Fig. 4 doesn’t quite gel with the argument that this is 
due to the lower/stronger daytime boundary layers. Have the authors considered the influence of 
biogenic CO2 fluxes, which may be more important in the rainy winter season in San Francisco 
than in the summer? 
 
The precise diurnal cycle and relative strength of the summertime vs. wintertime daytime boundary 
layers in the San Francisco Bay Area are not well understood, so we find this potential explanation 
of the CO2 diurnal cycles to be nonetheless plausible if not precisely correct. We do, however, 
agree that the influence of biogenic CO2 fluxes may be an important alternative or additional 
consideration, and have updated the text accordingly: 
 
“This diurnal profile corresponds well with known patterns in traffic emissions–which are largely 
consistent across seasons–superimposed on diel fluctuations in boundary layer height and/or 
biosphere activity that vary in timing and magnitude according to the season. Namely, these results 
might be interpreted to conclude the nighttime boundary layer in the BEACO2N domain to be 
shallower during the winter months, producing a larger regional increase in response to rush hour 
traffic. The wintertime layer also appears to expand and re-contract earlier in the day than the 
summertime layer, resulting in both an earlier minimum and an earlier rise in afternoon–evening 
concentrations. The larger amplitude of the wintertime diurnal cycle may also reflect the greater 
influence of daytime photosynthesis and nighttime respiration during the San Francisco Bay 
Area’s rainy winter season.” 
 
P5 L 26–35: I pity those commuters who are contributing to high traffic flows at 4 am!  
 
Agreed! 
 
“An alternative analysis using traffic density…” I think I understand that this is an attempt to 
examine how congested vs free-flowing traffic might change the results? Please clarify.  
 
“We observe a factor of 2 difference in the local CO2 between congested vs. free-flowing 
conditions”–which is higher? 
 



The referee has interpreted our reference to traffic density correctly; we subsequently observed 
congestion to lead to higher local CO2 enhancements. The text has been updated to provide a 
clarification with regards to these two comments: 
 
“An alternative analysis using traffic density–obtained by dividing the traffic flow by the average 
vehicle speed–yields almost identical results (Fig. S5), revealing a factor of 2 increase in the local 
CO2 during congestion (high traffic flow/density) relative to free-flowing conditions (low traffic 
flow/density), similar to that observed by a previous on-road mobile monitoring study by Maness 
et al. (2015).” 
 
How is the regression slope determined, and how is the uncertainty determined? This needs further 
detail, particularly because the regression slope is determined not from the full dataset, but from 
a fit to the median values. The idea that trends in fuel efficiency can be tracked by this method is 
tantalizing, but the statistics must be demonstrated to be robust. 
 
An explanation of our regression methodology has been added to the text: 
 
“Also shown in Fig. 6 are the median CO2 concentrations observed in each 500 veh h-1 traffic flow 
increment and the ordinary least squares linear regression through these binned medians.” 
 
“The standard error of the slope of the linear regression is calculated as the standard deviation of 
the model–data CO2 residuals divided by the square root of the sum of the squared differences 
between each traffic flow increment and the mean traffic flow.” 
 
P6 L5–17: Not enough information is given to understand how these MLRs are constructed and 
therefore how they can be interpreted. Please expand on the method and provide further details 
on which factors were most important. On the following page (lines 5–12), there is discussion 
about how improved resolution of the meteorological datasets would help, but nowhere is the 
current resolution and limitations of the data explained! 
 
It isn’t clear how the “modelled” CO2 values are determined by this method. Figure S5 is the only 
place where the MLR and CO2 values are compared–please include in the main manuscript and 
expand the discussion of the quality of the model results. Figure S5 is a little misleading–it is easy 
to make it appear that there is good agreement when the model gets the diurnal cycle roughly 
right. But it does appear that there are large differences hour by hour. It is hard to tell at the scale 
shown, but it looks like the model is not capturing the morning rush hour peak very well at all. 
 
We have expanded what was formerly Fig. S5 to include the other four sites and moved it to the 
main text. In updating Fig. S5 (now Fig. 7), an attempt has also been made to allow for closer 
examination of model–observation agreement on short timescales by depicting a representative 
week (rather than an entire month) of data. We have also added a table describing the relative 
importance of the various MLR factors and updated the text to include a more detailed description 
of the MLR analysis, the limitations of the meteorological datasets, as well as an explanation and 
discussion of the model–observation comparison, as follows:  
 



“Briefly, we use an ordinary least squares linear regression to calculate the best fit of the 
relationship between a site’s CO2 signal and temperature, specific humidity, wind, boundary layer 
height, time of day, day of week, and time of year. Hourly measurements of temperature, specific 
humidity, wind speed, and wind direction are taken from a single NOAA Integrated Surface 
Database weather station at the Port of Oakland International Airport 
(https://www.ncdc.noaa.gov/isd/) and 3-hour boundary layer heights are provided at 0.125o by 
0.125o resolution by the ECMWF’s ERA-Interim model (Dee et al., 2011; 
http://apps.ecmwf.int/datasets/). Although the low spatio-temporal resolution of these datasets 
limits their ability to capture hyperlocal meteorologies, here we follow the example of de Foy, who 
was nonetheless able to derive meaningful results from similarly coarse weather products. 

The nonlinear relationship between CO2 concentrations and wind or boundary layer height is 
captured by dividing these meteorological datasets into quartiles and assigning each observation a 
value between 0 (at the maximum of the quartile) and 1 (at the minimum) using piecewise linear 
interpolation. The wind speed quartiles are further subdivided by wind direction and reassigned 
values of 0–1 accordingly before fitting a linear coefficient to each subset. The time of year is 
represented as a sum of sines and cosines with annual or semiannual periodicities whose values 
also vary between 0 and 1 and whose amplitudes are determined by the linear regression. Zeroes 
and ones are used to designate each hour of each type of day of the week as well. For example, 
timesteps corresponding to 0800 LT on a Monday may be assigned a 1 while all other timesteps 
are set to zero before the linear regression is performed. As a result, the MLR factors derived for 
each of the preceding explanatory variables can be interpreted in units of ppm CO2. Meanwhile, 
the temperature and specific humidity variables are treated by calculating their difference from 
their mean values and dividing by their respective standard deviations before each is fit to CO2 
with a single linear coefficient, which will have units of ppm oC-1 and ppm (kgwater kgair-1)-1, 
respectively. 

The independent variable leading to the greatest square of the Pearson correlation coefficient 
is then combined with each of the remaining variables and a second regression is performed. The 
two-input combination leading to the largest increase in the correlation coefficient is then 
combined with each of the remaining variables, and so on, until the addition of a new independent 
variable no longer increases the r2 value by at least 0.005.  

For this analysis, we use hourly total CO2 concentrations (the sum of the local and regional 
components) measured at five sites between 15 February 2017 and 15 February 2018. For each 
site, the optimal set of explanatory variables and their relative contributions to the correlation 
coefficient are given in Table 2. Summing the products of each of the MLR factors with their 
respective independent variables (e.g., time of day, wind speed, etc.) gives the mixing ratio 
predicted by the MLR model; a representative week of observed and modeled CO2 concentrations 
is shown in Fig. 7. We find generally good agreement, with some significant hour-by-hour model–
observation differences, especially at RFS. These do not, however, appear to be systematic either 
in sign or in timing (e.g., the rush hour peak in CO2 may be poorly modeled on one day but well 
predicted on another).” 
 
P6 L18–24: How is the intercept of the MLR calculated? Where is the data that shows this? I don’t 
understand how the value of 426 ppm is determined. These MLR coefficients are key to the rest of 
the interpretation but never clearly explained. 
 



The intercept of the MLR analysis is defined as the modeled CO2 concentration when all of the 
input variables possess a value of zero. More details of the MLR analysis have been added in 
response to previous comments. 
 
P6 L21–24: Why should it be expected that the background is the same in this winter analysis as 
for the summertime? 
 
The intercept calculated using the MLR analysis is not a wintertime intercept, but rather an annual 
average intercept, as the MLR analysis spans 15 February 2017 to 15 February 2018. While we do 
not expect the annual average background to agree perfectly with the summertime background 
concentration, we find it nonetheless interesting to note that the annual value agrees more closely 
with the wintertime value than the summertime one. 
 
P6 L32–34: Where do these enhancement percentages come from? I can’t see where they are 
calculated, nor is the CO2 data for these sites ever shown. I understand that the MLR coefficients 
are useful for interpreting the data, but the CO2 mole fractions need to be shown for each site as 
well. 
 
The weekday enhancements are the maximum difference between Tuesday–Thursday and Sunday 
hourly MLR factors, expressed as a percentage of the Sunday (lower) factor. We have updated the 
text appropriately to clarify this point, and have also added a figure depicting the CO2 mole 
fractions from which the MLR factors are derived: 
 
“The dependencies on time of day and day of week derived via this method are hypothesized to 
primarily reflect the changes in emissions, as the influence of the coincident changes in 
atmospheric dynamics has been at least partially controlled for. For reference, the corresponding 
Tuesday–Thursday and Sunday diel cycles in the total CO2 observed at each site are shown in Fig. 
9. Indeed, we do observe some of the same intuitive patterns in the linear regression coefficients, 
such as higher coefficients on weekday mornings corresponding to higher rush hour traffic 
emissions on those days, but with greater opportunity to differentiate between days of the week, 
especially around noon when raw concentrations are generally similar. As expected, the Tuesday–
Thursday enhancement in the MLR factors is larger at the sites located close to a freeway (e.g., up 
to 520% of the corresponding Sunday MLR factor at FTK) but is less pronounced at LBL (70%), 
which is farther away from major mobile sources.” 
 
P7 L3–4: As in a previous comment–how are the correlation uncertainties determined? This is an 
exciting result but the uncertainties must be shown to be robust to make it believable. 
 
Please refer to our response to the previous comment concerning correlation uncertainties. We 
have also added a discussion of the relevant confidence intervals to the text: 
 
“Assuming a steady decrease in emissions of 3.5% per year, one BEACO2N site is therefore 
sufficiently sensitive to detect such a trend with 68% confidence in as little as 3 years. By 
leveraging multiple independent sites, even greater confidence and/or shorter timescales could be 
achieved.” 
 



P7 L13–18: The two papers cited only discuss NOx and particulates, and I suggest that the authors 
also refer to the literature on CO2, CO2ff, or CO ratios, for example:  
Miller, J. B., Lehman, S. J., Montzka, S. A., Sweeney, C., Miller, B. R., Wolak, C., Dlugokencky, 
E. J., Southon, J. R., Turnbull, J. C., and Tans, P. P.: Linking emissions of fossil fuel CO2 and 
other anthropogenic trace gases using atmospheric 14CO2, J. Geophys. Res., 117, D08302, 2012.  
Turnbull, J. C., Sweeney, C., Karion, A., Newberger, T., Lehman, S. J., Tans, P. P., Davis, K. J., 
Lauvaux, T., Miles, N. L., Richardson, S. J., Cambaliza, M. O., Shepson, P. B., Gurney, K., 
Patarasuk, R., and Razlivanov, I.: Toward quantification and source sector identification of fossil 
fuel CO2 emissions from an urban area: Results from the INFLUX experiment, J. Geophys. Res. 
Atmos., 120, 292–312, 2015.  
Lopez, M., Schmidt, M., Delmotte, M., Colomb, A., Gros, V., Janssen, C., Lehman, S. J., 
Mondelain, D., Perrussel, O., Ramonet, M., Xueref-Remy, I., and Bousquet, P.: CO, NOx and 
13CO2 as tracers for fossil fuel CO2: results from a pilot study in Paris during winter 2010, Atmos. 
Chem. Phys., 13, 7343–7358, 2013.  
Baker, A. K., Beyersdorf, A. J., Doezema, L. A., Katzenstein, A., Meinardi, S., Simpson, I. J., Blake, 
D. R., and Sherwood Rowland, F.: Measurements of nonmethane hydrocarbons in 28 United States 
cities, Atmos. Environ., 42, 170-182, 2008.  
Warneke, C., McKeen, S. A., de Gouw, J. A., Goldan, P. D., Kuster, W. C., Holloway, J. S., 
Williams, E. J., Lerner, B. M., Parrish, D. D., Trainer, M., Fehsenfeld, F. C., Kato, S., Atlas, E. 
L., Baker, A., and Blake, D. R.: Determination of urban volatile organic compound emission ratios 
and comparison with an emissions database, J. Geophys. Res., 112, D10S46, 2007.  
Nathan, B., Lauvaux, T., Turnbull, J. C., and Gurney, K. R.: Investigations into the use of multi-
species measurements for source apportionment of the Indianapolis fossil fuel CO2 signal, Elem. 
Sci. Anth., 6, 2018. 
Barnes, D. H., Wofsy, S. C., Fehlau, B. P., Gottlieb, E. W., Elkins, J. W., Dutton, G. S., and 
Montzka, S. A.: Urban/industrial pollution for the New York City–Washington, D. C., corridor, 
1996–1998: 1. Providing independent verification of CO and PCE emissions inventories, J. 
Geophys. Res., 108, 4185, 2003.  
 
We thank the referee for providing such an extensive list of possible references; the Lopez et al. 
(2013), Nathan et al. (2018), and Turnbull et al. (2015) studies were found to be most relevant to 
the discussion and have been added to the text. 
 
P8 L1–5: The work in this and previous papers by this group has made huge inroads using low-
cost, high-density CO2 sensors to examine urban emissions, and have shown some clear pathways 
to where this method is useful. Yet the high-quality, low-density systems favoured by other 
researchers have also provided exciting results. Indeed, this paper uses high-quality 
measurements to calibrate and validate the low-cost sensor array. It really isn’t helpful to pit the 
two methods against each other as if only one method is valid. Rather, I suggest that the authors 
reword to emphasize where the methods are complementary.  
 
We appreciate and agree with this perspective on the complementarity of the two approaches and 
have revised the text accordingly: 
 
“Most prior studies of urban CO2 emissions (e.g., McKain et al., 2012; Kort et al., 2013; Wu et al., 
2018) have favored sparser networks of high-quality instruments, finding this approach to be better 



suited for resolving small trends in total region-wide emissions. It is hypothesized that the ideal 
monitoring strategy depends on the particular goals and location of a given application, with 
certain locales and emission sources necessitating high-cost, low-density instrumentation, 
complemented by other domains where low-cost, high-density platforms are more effective. The 
potential trade-offs between measurement quality and instrument quantity specific to the San 
Francisco Bay Area have been investigated previously using an ensemble of observing system 
simulations by Turner et al. (2016), who found BEACO2N-like observing systems to outperform 
smaller, higher quality networks in estimating regional as well as more localized emission 
phenomena there. While Turner et al. saw significant benefits to achieving an instrument precision 
of 1 ppm, further increases in measurement quality offered little advantage in constraining 
emissions, especially those from line and point sources.” 
 
P8 L5–9: “. . .we do so without the use of computationally intense and heavily parameterized 
atmospheric transport models.” The implication here is that this is the first CO2-based study to 
achieve this, whereas in fact a number of studies have gone in this direction. See for example the 
references given above, and:  
LaFranchi, B. W., Pétron, G., Miller, J. B., Lehman, S. J., Andrews, A. E., Dlugokencky, E. J., 
Miller, B. R., Montzka, S. A., Hall, B., Neff, W., Sweeney, C., Turnbull, J. C., Wolfe, D. E., Tans, 
P. P., Gurney, K. R., and Guilderson, T. P.: Constraints on emissions of carbon monoxide, 
methane, and a suite of hydrocarbons in the Colorado Front Range using observations of 14CO2, 
Atmos. Chem. Phys., 13, 11101–11120, 2013.  
Turnbull, J. C., Tans, P. P., Lehman, S. J., Baker, D., Chung, Y., Gregg, J. S., Miller, J. B., Southon, 
J. R., and Zhao, L.: Atmospheric observations of carbon monoxide and fossil fuel CO2 emissions 
from East Asia, J. Geophys. Res., 116, D24306, 2011.  
McMeeking, G. R., Bart, M., Chazette, P., Haywood, J. M., Hopkins, J. R., McQuaid, J. B., 
Morgan, W. T., Raut, J. C., Ryder, C. L., Savage, N., Turnbull, K., and Coe, H.: Airborne 
measurements of trace gases and aerosols over the London metropolitan region. Atmos. Chem. 
Phys, 11, 5163–5187, 2011.  
Ammoura, L., Xueref-Remy, I., Gros, V., Baudic, A., Bonsang, B., Petit, J. E., Perrussel, O., 
Bonnaire, N., Sciare, J., Chevallier, F.: Atmospheric measurements of ratios between CO2 and co-
emitted species from traffic: a tunnel study in the Paris megacity, Atmos. Chem. Phys., 14, 12871–
12882, 2014.  
 
We do not intend to imply that we are the first CO2-based study to employ simpler models to 
constrain emissions; we appreciate and acknowledge the important prior work in this vein 
referenced by the referee. Our intention was rather to contextualize this work relative to the Turner 
et al. (2016) study referenced in the previous sentence, in which it is suggested that low-cost 
monitoring frameworks can be fruitfully leveraged using computationally intense atmospheric 
transport models. The text is simply meant to communicate that we agree low-cost frameworks 
can be fruitfully leveraged, even without said transport models.  
 
P8 L8–10: The interpretation also requires high quality traffic count information, which is not 
available everywhere and will be a significant limiting factor.  
 
We agree with the referee that the particular analysis detailed in this manuscript relies on the 
availability of traffic count information, although we do note that such information does exist for 



many metropolitan areas (e.g., http://pems.dot.ca.gov/, http://transportation.austintexas.io/radar/) 
and ongoing efforts to make these datasets public are progressing in both the academic 
(https://www.cattlab.umd.edu/) and private (http://www.traffic.com/) sectors. We have, however, 
added a disclaimer to the manuscript text: 
 
“Furthermore, we show that a multiple linear regression analysis allows the signature of highway 
traffic to be extracted from sites located throughout the network, enabling trends in mobile 
emissions to be quantified without specially situated, roadside monitors. Although this approach 
requires real time traffic count information that is not yet available in all locations, our finding is 
nonetheless an important result, as deriving and implementing a particular, a priori network layout 
is a non-trivial task.” 
 
FIG7: I suggest showing all data rather than just the median values–Fig. 5 shows that there is a 
lot of scatter in the individual measurements that shouldn’t be ignored.  
 
We believe that a typographical error in the caption for Fig. 7 (now Fig. 10) has led to a 
misunderstanding about the data that is depicted in said figure. The points shown on these plots 
are not median values, as the caption originally stated, but rather the entirety of the dataset of MLR 
coefficients derived to reflect the dependence of the CO2 concentrations upon time of day and day 
of week during morning hours (0400–0800 LT); thus there exists no “scatter” to be shown. The 
caption has been corrected to clarify this point: 
 
“Morning (0400–0800 LT) multiple linear regression coefficients shown as a function of 
summertime traffic flow; black solid lines indicate the linear regression through the MLR factors 
(equations given above each subplot) and gray dashed lines show the uncertainty in the regression 
slope.” 
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