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 12 

Abstract. The rapid mass increase of atmospheric nitrate is a critical driving force for the occurrence of fine-particle 13 

pollution (referred to as haze hereafter) in Beijing. However, the exact mechanisms for this rapid increase of nitrate mass has 14 

been not well constrained from field observations. Here we present the first observations of the oxygen-17 excess of 15 

atmospheric nitrate (Δ
17

O(NO3
–
)) collected in Beijing haze to reveal the relative importance of different nitrate formation 16 

pathways, and we also present the simultaneously observed δ
15

N(NO3
–
). During our sampling period, 12h-averaged mass 17 

concentrations of PM2.5 varied from 16 to 323 μg m
–3

 with a mean of (141±88 (1SD)) μg m
–3

, with nitrate ranging from 0.3 18 

to 106.7 μg m
–3

. The observed Δ
17

O(NO3
–
) ranged from 27.5 ‰ to 33.9 ‰ with a mean of (30.6±1.8) ‰ while δ

15
N(NO3

–
) 19 

ranged from –2.5 ‰ to 19.2 ‰ with a mean of (7.4±6.8) ‰. Δ
17

O(NO3
–
)-constrained calculations suggest nocturnal 20 

pathways (N2O5 + H2O/Cl
–
 and NO3 + HC) dominated nitrate production during polluted days (PM2.5 ≥ 75 μg m

–3
) with the 21 

mean possible fraction of 56 – 97 %. Our results illustrate the potentiality of Δ
17

O in tracing nitrate formation pathways, 22 

future modelling work with the constraint of isotope data reported here may further improve our understanding of nitrogen 23 

cycle during haze. 24 

1 Introduction 25 

Severe and frequent haze pollution has become a crucial threat for the air quality in megacity Beijing and the North 26 

China Plain in recent years. The high concentrations of PM2.5 (particulate matter with an aerodynamic diameter equal or 27 

less than 2.5 μm) during severe haze, of which the hourly average can reach 1000 μg m
–3

 (Zheng et al., 2015a), is harmful 28 
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to the public health by contributing to cardiovascular morbidity and mortality (Cheng et al., 2013; Brook et al., 2010). 29 

Nitrate is an important component of PM2.5, accounting for 1–45 % of PM2.5 mass in Beijing and North China Plain (Wen et 30 

al., 2015; Zheng et al., 2015a; Zheng et al., 2015b). The main formation pathways of atmospheric nitrate, defined herein as 31 

gas-phase HNO3 plus particulate NO3
−
, in urban area are summarized in Fig. 1, which includes: (i) NO2 oxidation by OH 32 

radical in the gas-phase, (ii) heterogeneous uptake of NO2 on wet aerosols, (iii) NO3 radical reacting with hydrocarbon (HC), 33 

and (iv) heterogeneous uptake of N2O5 on wet aerosols and chlorine-containing aerosols. Since OH radical is mainly present 34 

in the daytime while NO3 radical and N2O5 are mainly present in the nocturnal atmosphere (Brown and Stutz, 2012), NO2 + 35 

OH is usually referred as the daytime nitrate formation pathway while N2O5 + H2O/Cl
–
 and NO3 + HC are referred as 36 

nocturnal formation pathways (Vicars et al., 2013; Sofen et al., 2014). During haze in Beijing, the mixing ratio of daytime 37 

OH is modelled to be low (Zheng et al., 2015b; Rao et al., 2016) while relatively high mixing ratio of nocturnal N2O5 is 38 

observed in several studies (Wang et al., 2017a; Li et al., 2018; Wang et al., 2017b), therefore, nocturnal pathways are 39 

suggested to be most responsible for the high concentrations of atmospheric nitrate during haze (Su et al., 2017; Pathak et al., 40 

2009; Pathak et al., 2011). In addition, the high PM2.5 concentration and relative humidity during haze in Beijing favors 41 

heterogeneous reactions, which renders NO2 + H2O being a potentially significant pathway for nitrate production (Wang et 42 

al., 2017d; Tong et al., 2015; Zheng et al., 2015a). 43 

Nitrogen isotopic composition of nitrate (δ
15

N(NO3
–
), wherein δ

15
N = (Rsample/Rreference – 1) with R representing isotope 44 

ratios of 
15

N/
14

N in the sample and the reference atmospheric N2) is useful in tracing source of its precursor NOX (Xiao et al., 45 

2015; Beyn et al., 2014; Fang et al., 2011; Hastings et al., 2013). Anthropogenic sources of NOX such as coal combustion are 46 

generally enriched in δ
15

N while natural NOX sources such as soil emissions or lighting typically have negative or zero δ
15

N 47 

signature (Hoering, 1957; Yu and Elliott, 2017; Felix et al., 2012). Therefore highly positive values of observed δ
15

N(NO3
–
) 48 

can be considered as an indicator of anthropogenic combustion (Elliott et al., 2009; Fang et al., 2011), although this 49 

judgment may be influenced by isotopic exchange between NO and NO2 (Freyer et al., 1993; Walters et al., 2016), isotopic 50 

fractionations associated with nitrate formation pathways and isotopic effects occurring during transport, such as deposition 51 

of NO3
–
 and HNO3 partitioning between gas and particle phase (Freyer, 1991; Geng et al., 2014). The oxygen-17 excess 52 

(Δ
17

O) of nitrate, defined as Δ
17

O = δ
17

O – 0.52δ
18

O, wherein δ
X
O = (Rsample/Rreference – 1) with R representing isotope ratios 53 

of 
X
O/

16
O in the sample and the reference Vienna Standard Mean Ocean Water and X = 17 or 18, is particularly useful in 54 

reflecting nitrate formation pathways (Michalski et al., 2003). Atmospheric nitrate from nocturnal reaction pathways has 55 

higher Δ
17

O than that from daytime OH oxidation at given Δ
17

O(NO2) (Table 1). And once formed, atmospheric Δ
17

O(NO3
–
) 56 

cannot be altered by mass-dependent processes such as deposition during transport (Brenninkmeijer et al., 2003). Previous 57 

studies have shown the utility of atmospheric Δ
17

O(NO3
–
) in quantifying the relative importance of various nitrate formation 58 

pathways (Alexander et al., 2009; Michalski et al., 2003; Patris et al., 2007; Savarino et al., 2013; Vicars et al., 2013). For 59 

example, Δ
17

O(NO3
–
)-constrained box modeling work of Michalski et al. (2003) suggests that more than 90 % of 60 



atmospheric nitrate is from nocturnal N2O5 + H2O pathway in winter La Jolla, California, which is reflected by the highest 61 

Δ
17

O(NO3
–
) values being observed in winter. In another study, Alexander et al. (2009) use observed Δ

17
O(NO3

–
) to constrain 62 

3D model and found that daytime NO2 + OH pathway dominates global tropospheric nitrate production with an annual mean 63 

contribution of 76 %. 64 

Until now, however, field observations of atmospheric Δ
17

O(NO3
–
) have not been conducted in north China to constrain 65 

the relative importance of different nitrate formation pathways during haze. In this work, we present the first observations of 66 

atmospheric Δ
17

O(NO3
–
) during Beijing haze from October 2014 to January 2015, and use this observation to examine the 67 

importance of nocturnal formation pathways. We also present the signature of simultaneously observed δ
15

N(NO3
–
). 68 

2 Materials and Methods 69 

2.1 Sampling and atmospheric observations 70 

PM2.5 filter samples were collected at a flow rate of 1.05 m
3
 min

–1
 by a high volume air sampler (model TH-1000C II, 71 

Tianhong Instruments Co., Ltd, China). The filter is quartz microfiber filter (Whatman Inc., UK), pre-combusted at 450° C 72 

for 4 h before sampling. Our sampling period lasted from October 2014 to January 2015 with the collection interval being 12 73 

h (08:00 – 20:00 LT or 20:00 – 08:00 LT) for each sample. Blank control samples were also collected. The blank was 74 

sampled identically to the real sample except that the collection interval is 1 min. Due to that gaseous HNO3 is likely to 75 

adsorb onto particulate matter already trapped by the filter material (Vicars et al., 2013), the nitrate species collected is likely 76 

to include both particulate nitrate and gaseous HNO3, which is referred to as atmospheric nitrate in previous studies (Vicars 77 

et al., 2013; Morin et al., 2009; Michalski et al., 2003) and in this study. The sampling site is at the campus of University of 78 

the Chinese Academy of Sciences (40.41° N, 116.68° E, ~20 m high) in suburban Beijing, about 60 km northeast of 79 

downtown (Fig. 2), which is a super site set by HOPE-J
3
A (Haze Observation Project Especially for Jing-Jin-Ji Area) with 80 

various observations being reported (Zhang et al., 2017; Xu et al., 2016; Chen et al., 2015; Tong et al., 2015; He et al., 2018). 81 

Hourly concentrations of surface PM2.5, CO, SO2, NO2 and O3 were observed at Huairou station (40.33° N, 116.63° E) by 82 

Beijing Municipal Environmental Monitoring Center, about 10 km to our sampling site. Meteorological data including 83 

relative humidity (RH) and air temperature (T) were measured by an automatic weather station (model MetPak, Gill 84 

Instruments Limited, UK). Time used in the present study is local time (LT = UTC + 8). 85 

2.2 Measurements of ions and isotopic ratios 86 

Ion concentrations of NO3
–
 and Cl

–
 were measured in Anhui Province Key Laboratory of Polar Environment and Global 87 

Change in the University of Science and Technology of China. A detailed description of this method can be found in the 88 



literature (Ye et al., 2015). Briefly, ions in the PM2.5 filter sample were extracted with Millipore water (≥ 18 MΩ) and 89 

insoluble substances in the extract were filtered. Then the ion concentrations were analyzed by an ion chromatograph system 90 

(model Dionex ICS-2100, Thermo Fisher Scientific Inc., USA). The measured ion concentrations of blank samples were 91 

subtracted when determining the ion concentrations of real samples. Typical analytical precision by our method is better than 92 

10 % relative standard deviation (RSD) (Chen et al., 2016). 93 

δ
15

N(NO3
–
) and Δ

17
O(NO3

–
) were measured with a bacterial denitrifier method (Kaiser et al., 2007) in IsoLab at the 94 

University of Washington, USA. Briefly, ions in the filter sample were extracted with Millipore water (≥ 18 MΩ) and the 95 

insoluble substances were filtered. NO3
–
 in each sample was converted to N2O by the denitrifying bacteria, Pseudomonas 96 

aureofaciens. Then N2 and O2, which were decomposed from N2O in a gold tube at 800° C, were separated by a gas 97 

chromatograph. The isotopic ratios of each gas were then measured by a Finnigan Delta-Plus Advantage isotope ratio mass 98 

spectrometer. Masses of 28 and 29 from N2 were measured to determine δ
15

N. Masses of 32, 33 and 34 from O2 were 99 

measured to determine δ
17

O and δ
18

O and Δ
17

O was then calculated. We use international nitrate reference materials, 100 

USGS34, USGS35 and IAEANO3, for data calibration. The uncertainty (1σ) of δ
15

N and Δ
17

O measurements in our method 101 

is 0.4 ‰ and 0.2 ‰, respectively, based on replicate analysis of the international reference materials. All the samples 102 

including blank samples were measured in triplicate to quantify the uncertainty in each sample. The blank was subtracted for 103 

each sample by using an isotopic mass balance on the basis of isotopic ratios and concentrations of the blank. To minimize 104 

the blank effect, samples with blank concentrations being > 10 % of their concentrations were not analyzed for isotopic 105 

ratios. This ruled out 3 of the total 34 samples, all of which are in non-polluted days (NPD, PM2.5 < 75 μg m
–3

). Totally, 106 

isotopic compositions of 7 samples in NPD and 24 samples in polluted days (PD, PM2.5 ≥ 75 μg m
–3

) are reported here. 107 

2.3 Estimate of different nitrate formation pathways based on Δ
17

O(NO3
–
) 108 

The observed Δ
17

O(NO3
–
) is determined by the relative importance of different nitrate formation pathways and the 109 

relative importance of O3 oxidation in NOX cycling as shown in Eq. (1): 110 

𝛥17O(NO3
;) = 𝛥 OR6 × 𝑓R6

17 + 𝛥 OR7 ×
17 𝑓R7 + 𝛥 OR8 × 𝑓R8

17 + 𝛥 OR9 × 𝑓R9
17 + 𝛥 OR10 × 𝑓R10

17    (1) 111 

Where Δ
17

OR6, Δ
17

OR7, Δ
17

OR8, Δ
17

OR9 and Δ
17

OR10 is respectively Δ
17

O(NO3
–
) resulting from NO2 + OH, NO2 + H2O, NO3 + 112 

HC, N2O5 + H2O and N2O5 + Cl
–
 pathway (Table 1). fR6, fR7, fR8, fR9 and fR10 is respectively corresponding fractional 113 

contribution of above pathways to nitrate production. By using the Δ
17

O assumptions for different pathways in Table 1 and 114 

the definition fR6 + fR7 + fR8 + fR9 + fR10 = 1, Eq. (1) is further expressed as: 115 

𝛥17O(NO3
;)/‰ =    𝑓R6 +    𝑓R7 + (   +   ) × 𝑓R8 + (   +  ) × 𝑓R9 + (   +   ) × 𝑓R10 =    +   ×116 

(𝑓R8 + 𝑓R10) +  𝑓R9   (2) 117 

Where α is the proportion of O3 oxidation in NO2 production rate, calculated by Eq. (3): 118 



 =
𝑘R1[NO][O3]

𝑘R1[NO][O3]:𝑘R2a[NO][HO2]:𝑘R2b[NO][RO2]
   (3) 119 

In Eq. (3), kR1, kR2a and kR2b is respectively the reaction rate constant listed in Table 2. To evaluate α, we estimated HO2 120 

mixing ratios on the basis of empirical formulas between HO2 and O3 mixing ratios derived from observations in winter 121 

(Kanaya et al., 2007), that’s: [HO2]/(pmol mol
–1

) = exp(5.7747×10
–2

×[O3]/(nmol mol
–1

) – 1.7227) during the day time and 122 

[HO2]/(pmol mol
–1

) = exp(7.7234×10
–2

×[O3]/(nmol mol
–1

) – 1.6363) at night. Then RO2 mixing ratio was calculated as 70 % 123 

of HO2 mixing ratios based on previous studies (Liu et al., 2012; Elshorbany et al., 2012; Mihelcic et al., 2003). As NO 124 

mixing ratio was not observed in our study, we estimated NO mixing ratios following the empirical formulas between NOX 125 

and CO mixing ratios derived from observations in winter Beijing (Lin et al., 2011), that’s: [NO]/(nmol mol
–1

) = 126 

([CO]/(nmol mol
–1

) – 196)/27.3 – [NO2]/(nmol mol
–1

) during daytime and [NO]/(nmol mol
–1

) = ([CO]/(nmol mol
–1

) – 127 

105)/30.9 – [NO2]/(nmol mol
–1

) at night. 128 

By using Eq. (2), the relative importance of nocturnal formation pathways (fR8 + fR9 + fR10) can be written as Eq. (4): 129 

𝑓R8 + 𝑓R9 + 𝑓R10 =
𝑓R9

2
+

𝛥17O(NO3
−)

14‰
−  .8    (4) 130 

Eq. (4) suggests that the relative importance of nocturnal pathways is solely a function of the assumption of fR9 at given 131 

Δ
17

O(NO3
–
) and α. Since fR9, fR8 + fR10 and fR8 + fR9 + fR10 should be in the range of 0 – 1 all the time, fR9 is further limited to 132 

meet Eq. (5): 133 

𝑓R9 {
> 0

< min⁡( ,
𝛥17O(NO3

−)

7‰
− 3.6 ,  + 3.6 −

𝛥17O(NO3
−)

7‰
)
   (5) 134 

We estimated the relative importance of nocturnal pathways (fR8 + fR9 + fR10) by using concentration-weighted 135 

Δ
17

O(NO3
–
) observations and production rate weighted α in PD of each haze event rather than each sample due to the 136 

lifetime of atmospheric nitrate is typically on the order of day (Liang et al., 1998), larger than our sampling collection 137 

interval. 138 

2.4 Simulation of surface N2O5 and NO3 radical 139 

To see whether the relative importance of nocturnal pathways constrained by Δ
17

O(NO3
–
) can be reproduced by models, 140 

we use the standard Master Chemical Mechanism (MCM, version 3.3, http://mcm.leeds.ac.uk/) to simulate the mixing 141 

ratios of surface N2O5 and NO3 radical during our sampling period. The input for this modeling work includes: (i) 1 142 

h-averaged mixing ratios of observed surface CO, NO2, SO2 and O3 and estimated NO (see Sect. 2.3), (ii) observed RH and 143 

T, and (iii) the mixing ratios of organic compounds from the literatures (Table S1) (Wang et al., 2001; Wu et al., 2016; Rao et 144 

al., 2016). 145 

http://mcm.leeds.ac.uk/


3 Results and Discussion 146 

3.1 Overview of observations in Beijing haze 147 

Figure 3 describes general characteristics of haze events during our observations. The 12h-averaged PM2.5 148 

concentrations, corresponding with filter samples, varied from 16 to 323 μg m
–3

 with a mean of (141±88 (1SD)) μg m
–3

. In 149 

comparison, the Grade II of NAAQS (National Ambient Air Quality Standard) in China is 75 μg m
–3

 for daily PM2.5. The 150 

NO3
–
 concentrations present similar trends with PM2.5 levels (Fig. 3a), ranged from 0.3 to 106.7 μg m

–3
 with a mean of 151 

(6.1±5.3) μg m
–3

 in non-polluted days (NPD, PM2.5 < 75 μg m
–3

) and (48.4±24.7) μg m
–3

 in polluted days (PD, PM2.5 ≥ 75 μg 152 

m
–3

). Correspondingly, the nitrogen oxidation ratio (NOR, which equals to NO3
–
 molar concentration divided by the sum of 153 

NO3
–
 and NO2 molar concentration), a proxy for secondary transformation of nitrate (Sun et al., 2006), increased from a 154 

mean of 0.09±0.05 in NPD to 0.31±0.10 in PD (Fig. 3b). In residential heating season (Case III – V in November 2014 – 155 

January 2015, Fig. 3b), Cl
–
 concentrations present similar trends with NO3

–
 levels, increased from (0.6±1.0) μg m

–3
 in NPD 156 

to (7.9±4.8) μg m
–3

 in PD. However, during Case I – II in October 2014, Cl
–
 concentrations were (3.5±1.6) μg m

–3
 in NPD 157 

and (3.5±1.9) μg m
–3

 in PD, showing no significant difference at 0.01 level (t-test). Throughout our observational period, the 158 

visibility decreased from (11.4±6.7) km in NPD to (3.1±1.8) km in PD (Fig. 3c) while relative humidity (RH) increased from 159 

(37±12) % in NPD to (62±12) % in PD (Fig. 3d). 160 

Δ
17

O(NO3
–
) ranged from 27.5 ‰ to 33.9 ‰ with the mean of (29.1±1.3) ‰ in NPD and (31.0±1.7) ‰ in PD (Fig. 3c). 161 

Our observed Δ
17

O(NO3
–
) is in the range of aerosol Δ

17
O(NO3

–
) reported in literatures (Table 3) and similar to wet deposition 162 

Δ
17

O(NO3
–
) observed in East Asia (Nelson et al., 2018; Tsunogai et al., 2016; Tsunogai et al., 2010). All our observed 163 

Δ
17

O(NO3
–
) values, no matter daytime sample (08:00 – 20:00) or nighttime sample (20:00 – 08:00), are larger than 25 ‰, the 164 

maximum of Δ
17

O(NO3
–
) that can be produced via NO2 + OH and NO2 + H2O (Table 1) at the assumption of bulk Δ

17
O(O3) 165 

= 26 ‰ (Ishino et al., 2017; Vicars and Savarino, 2014). This directly suggests nocturnal formation pathways (N2O5 + 166 

H2O/Cl
–
 and NO3 + HC) must contribute to all the sampled nitrate. Given the lifetime of atmospheric nitrate is typically 167 

larger than our sampling collection interval (Vicars et al., 2013), each of our samples is expected to reflect both daytime and 168 

nocturnal nitrate production. Not surprisingly, Δ
17

O(NO3
–
) mean of daytime and nighttime samples is (30.3±1.5) ‰ and 169 

(30.9±2.1) ‰, respectively, showing no significant difference at 0.01 level (t-test). 170 

δ
15

N(NO3
–
) in our observation varied from –2.5 ‰ to 19.2 ‰ with a mean of (7.4±6.8) ‰, which is in the range of 171 

δ
15

N(NO3
–
) observed from rainwater in Beijing, China (Zhang et al., 2008) and similar to δ

15
N(NO3

–
) values observed from 172 

aerosols in Germany (Freyer, 1991). Figure 3d shows that δ
15

N(NO3
–
) varies largely in October 2014. The mean δ

15
N(NO3

–
) 173 

varied from (0.4±1.5) ‰ in 08:00 Oct. 18 – 08:00 Oct. 21 to (10.7±1.4) ‰ in 08:00 Oct. 21 – 08:00 Oct. 23 and then 174 

decreased to (–0.9±2.1) ‰ in 08:00 Oct. 23 – 08:00 Oct. 26, which corresponds to PM2.5 concentrations being 155±63, 175 



57±19 and (188±51) μg m
–3

 respectively. However, during residential heating season, relatively high δ
15

N(NO3
–
) (7.6 – 176 

19.2 ‰) were always observed both in NPD and PD. This may be related to the high NOX emission from coal combustion in 177 

north China (Wang et al., 2012; Lin, 2012; Zhang et al., 2007). 178 

3.2 Relationships between Δ
17

O(NO3
–
) and other data 179 

Figure 4 presents the relationships between Δ
17

O(NO3
–
) and NO3

–
 concentrations, PM2.5 concentrations, NOR, visibility, 180 

RH and δ
15

N(NO3
–
). Δ

17
O(NO3

–
) shows a positive correlation with NO3

–
 concentrations when NO3

–
 < 50 μg m

–3
 (r = 0.81, p 181 

< 0.01). Similarly, Δ
17

O(NO3
–
) shows a positive correlation with PM2.5 concentration in Fig. 4b and NOR in Fig. 4c when 182 

NO3
–
 < 50 μg m

–3
 (r = 0.71 and r = 0.80, p < 0.01, respectively). Figure 4d shows that Δ

17
O(NO3

–
) is negative correlated with 183 

visibility in general (r = –0.66, p < 0.01). The significant decrease of visibility will largely reduce surface radiation and 184 

thereby OH mixing ratios (Zheng et al., 2015b), which is unfavorable for nitrate production via NO2 + OH pathway. Since 185 

NO2 + OH pathway produces low Δ
17

O(NO3
–
) (Table 1), the decreased importance of NO2 + OH pathway will conversely 186 

increase Δ
17

O(NO3
–
). While the raise of RH accompanying the large increase of PM2.5 favors nitrate production via 187 

heterogeneous uptake of gases, e.g., N2O5 (Zheng et al., 2015b; Zheng et al., 2015a) and heterogeneous uptake of N2O5 188 

produces relative high Δ
17

O(NO3
–
) (Table 1), the enhanced heterogeneous uptake of N2O5 will increase Δ

17
O(NO3

–
) too. 189 

Therefore, the decrease of importance of NO2 + OH and the increase of importance of heterogeneous uptake of N2O5 should 190 

be responsible for the positive correlation between Δ
17

O(NO3
–
) and NO3

–
 concentrations. In addition, for samples with NO3

–
 > 191 

50 μg m
–3

, visibility was always low with narrow variations (2.3±1.0 km) and RH was always high with narrow range 192 

(67±7 %), which may be responsible for the relatively high Δ
17

O(NO3
–
) being observed (31.2±1.7 ‰). Figure 4f shows that 193 

Δ
17

O(NO3
–
) is not correlated with δ

15
N(NO3

–
). 194 

3.3 Estimate of nocturnal formation pathways 195 

Before estimating the relative importance of different nitrate formation pathways, we estimate the proportion of O3 196 

oxidation in NO2 production rate, α. The possible α range can be calculated based on observed Δ
17

O(NO3
–
). It can be 197 

obtained from Table 1 that 25α ‰ < Δ
17

O(NO3
–
) < (25α + 14) ‰, so the lower limit of possible α is (Δ

17
O(NO3

–
) – 198 

14 ‰)/25 ‰. And since Δ
17

O(NO3
–
) ≥ 27.5 ‰ in our observation, the higher limit of α is always 1 for all the samples. Figure 199 

5 presents the possible range of calculated α based on Δ
17

O(NO3
–
). The calculated lower limit of α ranged from 0.56 to 0.81 200 

with a mean of 0.68±0.07, which directly suggests that O3 oxidation played a dominated role in NOX cycling during Beijing 201 

haze. To estimate the specific α value, chemical kinetics in Table 2 and Eq. (3) were used. Specific α is estimated to range 202 

from 0.86 to 0.97 with a mean of (0.94±0.03), which is in the possible range of α value calculated directly based on 203 

Δ
17

O(NO3
–
) (Fig. 5) and close to the range of 0.85 – 1 determined in other mid-latitude areas (Michalski et al., 2003; Patris et 204 



al., 2007).  205 

Figure 6a shows the estimated relative importance of nocturnal formation pathways (N2O5 + H2O/Cl
–
 and NO3 + HC) 206 

during PD of each case on the basis of observed Δ
17

O(NO3
–
). Possible fractional contribution of nocturnal formation 207 

pathways ranges from 49 – 97 %, 58 – 100 %, 60 – 100 %, 45 – 90 % and 70 – 100 % in PD of Case I to V, respectively, 208 

with a mean of 56 – 97 %. This directly implies that nocturnal chemistry dominates atmospheric nitrate production in Beijing 209 

haze. This finding is consistent with the suggested importance of heterogeneous uptake of N2O5 during Beijing haze by 210 

previous studies (Su et al., 2017; Wang et al., 2017b). The other pathways (NO2 + OH and NO2 + H2O) account for the 211 

remaining fraction with a mean possible range of 3 – 44 %. Since NO2 + OH and NO2 + H2O produces the same Δ
17

O(NO3
–
) 212 

signature in our assumptions (Table 1), we cannot distinguish their fractional contribution barely from the observed 213 

Δ
17

O(NO3
–
) in the present study. However, the overall positive correlation between Δ

17
O(NO3

–
) and RH (r = 0.55, p < 0.01, 214 

Fig. 4e) suggests heterogeneous uptake of NO2 should be less important than heterogeneous uptake of N2O5, otherwise, a 215 

negative relationship between Δ
17

O(NO3
–
) and RH is expected. Our calculations also suggest that the sum of possible 216 

fractional contribution of N2O5 + Cl
–
 and NO3 + HC is in the range of 0 – 49 %, 17 – 58 %, 20 – 60 %, 0 – 45 % and 41 – 70 % 217 

in PD of Case I to V, respectively, with a mean of 16 – 56 % (Table 4), which emphasizes that N2O5 + Cl
–
 and NO3 + HC 218 

played a non-ignorable role in nitrate production during Beijing haze. Due to that N2O5 + Cl
–
 and NO3 + HC produce the 219 

same Δ
17

O(NO3
–
) in our assumptions (Table 1), we cannot distinguish their fractional contribution barely from the observed 220 

Δ
17

O(NO3
–
) in this study, either. However, NO3 + HC should be minor for nitrate production. For example, 3D modelling 221 

work of Alexander et al. (2009) suggests NO3 + HC pathway only accounts for 4 % of global tropospheric nitrate production 222 

annually on average, and Michalski et al. (2003) found that NO3 + HC pathway contributes 1 – 10 % to nitrate production on 223 

the basis of an annual observation at La Jolla, California, with low values in winter. Therefore, in addition to NO3 + HC, 224 

N2O5 + Cl
–
 is likely to also contribute to nitrate production during haze in Beijing. Supportively, the concentrations of Cl

–
 is 225 

as high as (5.5±4.1) μg m
–3

 during PD of all the cases in our observation and the mixing ratios of ClNO2, an indicator of 226 

N2O5 + Cl
–
 pathway, reached up to 2.9 nmol mol

–1
 during a summer observation in suburban Beijing (Wang et al., 2018b) 227 

and reached up to 5.0 nmol mol
–1

 in a modelling work in summer rural Beijing (Wang et al., 2017c). 228 

Figure 6b presents the simulated mixing ratios of surface N2O5 and NO3 radical during our observational period by 229 

using the box model MCM. The 12h averaged mixing ratios of simulated N2O5 ranged from 3 to 649 pmol mol
–1

 while 230 

simulated NO3 radical ranged from 0 to 27 pmol mol
–1

. In comparison, previous observations in Beijing suggest 5s averaged 231 

N2O5 can be as high as 1.3 nmol mol
–1

 and 30 min averaged NO3 radical can be as high as 38 pmol mol
–1

 with large 232 

day-to-day variability (Wang et al., 2017b; Wang et al., 2015). During Case I and II in October, simulated N2O5 and NO3 233 

radical present similar trends with the observed NO3
–
 and remain relatively high during PD (346±128 pmol mol

–1
 and 9±7 234 

pmol mol
–1

, respectively, Fig. 6b), which supports the dominant role of nocturnal formation pathways suggested by 235 

Δ
17

O(NO3
–
). However, during Case III – V in residential heating season, the simulated surface mixing ratios of N2O5 and 236 



NO3 radical remain relatively low during PD (63±80 pmol mol
–1

 and < 1 pmol mol
–1

, respectively, Fig. 6b), which seems to 237 

be inconsistent with Δ
17

O(NO3
–
) observations. We note that a recent study suggests that heterogeneous uptake of N2O5 is 238 

negligible at surface but larger at higher altitudes (e.g., > 150 m) during winter haze in Beijing (Wang et al., 2018a). So 239 

during PD of Case III – V in our observational period, large nitrate production via heterogeneous uptake of N2O5 may occur 240 

aloft rather than at surface, which leads to the dominant role of nocturnal formation pathways as suggested by Δ
17

O(NO3
–
). 241 

4 Conclusions 242 

We report the first observation of isotopic composition (Δ
17

O and δ
15

N) of atmospheric nitrate in Beijing haze. The 243 

observed Δ
17

O(NO3
–
) ranged from 27.5 ‰ to 33.9 ‰ with a mean of (30.6±1.8) ‰. δ

15
N(NO3

–
) ranged largely from –2.5 ‰ 244 

to 19.2 ‰ with a mean of (7.4±6.8) ‰. When NO3
–
 is < 50 μg m

–3
, a positive correlation was observed between Δ

17
O(NO3

–
) 245 

and NO3
–
 concentration (r = 0.81, p < 0.01). This is likely to result from the variation of relative importance of different 246 

nitrate formation pathway. Calculations with the constraint of Δ
17

O(NO3
–
) suggest that nocturnal pathways (N2O5 + H2O/Cl

–
 247 

and NO3 + HC) dominated nitrate production during polluted days (PM2.5 ≥ 75 μg m
–3

), with the mean possible contribution 248 

of 56 – 97 %. Δ
17

O(NO3
–
) also indicates that O3 dominated NO oxidation during Beijing haze. 249 
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Figures and Tables 461 

 462 

Figure 1. Simplified schematic of the main nitrate formation pathways in urban air. “het.” means heterogeneous reactions on 463 

aerosols. 464 



 465 

Figure 2. A brief map of sampling site in Beijing. The map scale of base map is 1:1250000. Huairou station is set by Beijing 466 

Municipal Environmental Monitoring Center, where hourly PM2.5, SO2, CO, NO2 and O3 were observed. 467 



 468 

Figure 3. General characteristics of haze events in Beijing (October 2014 – January 2015). (a) Time series of PM2.5 and 469 

NO3
–
 concentrations. (b) Time series of nitrogen oxidation ratio (NOR, which equals to NO3

–
 molar concentration divided by 470 

the sum of NO3
–
 and NO2 molar concentration) and Cl

–
 concentrations. (c) Time series of Δ

17
O(NO3

–
) and visibility. (d) Time 471 

series of δ
15

N(NO3
–
) and relative humidity (RH). The error bars in (c) and (d) are ±1σ of replicate measurements (n = 3) of 472 

each sample. The khaki shaded area indicates polluted days (PD, PM2.5 ≥ 75 μg m
–3

). 473 



 474 

Figure 4. Relationships between Δ
17

O(NO3
–
) and other parameters. The relationship between Δ

17
O(NO3

–
) and NO3

–475 

concentrations (a), PM2.5 concentrations (b), nitrogen oxidation ratio (NOR, c), visibility (d), relative humidity (RH, e) and 476 

δ
15

N(NO3
–
) (f). The dark red dots are samples with NO3

–
 < 50 μg m

–3
 and the orange dots are samples with NO3

–
 > 50 μg m

–3
. 477 

The black dash lines are linear least-squares fitting lines for all samples, the dark red solid lines are linear least-squares 478 

fitting lines for samples with NO3
–
 < 50 μg m

–3
 and the orange solid lines are linear least-squares fitting lines for samples 479 

with NO3
–
 > 50 μg m

–3
. The error bars are ±1σ of replicate measurements of each sample. 480 

 481 

Figure 5. Estimate of the proportion of O3 oxidation in NOX cycling, α. The gray column represents possible α range 482 



determined by Δ
17

O(NO3
–
). The blue dot represents specific α value calculated by Eq. (3). 483 

 484 

Figure 6. Estimate of the nocturnal formation pathways. The estimated relative importance of nocturnal formation pathways 485 

(fR8 + fR9 + fR10) during PD of each case on the basis of observed Δ
17

O(NO3
–
) (See Sect. 2.3, a) and the simulated mixing 486 

ratios of N2O5 and NO3 radical by MCM (b). R8, R9 and R10 in (a) represents NO3 + HC, N2O5 + H2O and N2O5 + Cl
–
 487 

pathway, respectively. 488 

Table 1. Isotope assumptions of different nitrate formation pathways. 489 

No. Reaction 

Δ
17

O of product 

Reference 

Expression Value (‰) 
a
 

R1 NO + O3 → NO2 + O2 Δ
17

O(NO2) = 1.18×Δ
17

O(O3) + 6.6 ‰ 37 (Savarino et al., 2008) 

R2 NO + HO2/RO2 → NO2 + OH/RO Δ
17

O(NO2) = 0.0 0.0 (Sofen et al., 2014) 

R4 NO2 + O3 → NO3 + O2 Δ
17

O(NO3) = 

⁡
2

3
Δ

17
O(NO2) + 

1

3
(1.23×Δ

17
O(O3) + 9.0 ‰) 

25α + 14 (Berhanu et al., 2012) 

R5 NO2 + NO3 → N2O5 Δ
17

O(N2O5) = 
2

5
Δ

17
O(NO2) + 

3

5
Δ

17
O(NO3) 

30α + 8 (Sofen et al., 2014) 

R6 NO2 + OH → HNO3 Δ
17

O(NO3
–
) = 

2

3
Δ

17
O(NO2) 

25α (Sofen et al., 2014) 

R7 2NO2 + H2O → HNO3 + HNO2 Δ
17

O(NO3
–
) = 

2

3
Δ

17
O(NO2) 

25α 
b 

R8 NO3 + HC → HNO3 + products Δ
17

O(NO3
–
) = Δ

17
O(NO3) 25α + 14 (Sofen et al., 2014) 

R9 N2O5 + H2O → 2HNO3 Δ
17

O(NO3
–
) = 

5

6
Δ

17
O(N2O5) 

25α + 7 (Sofen et al., 2014) 

R10 N2O5 + Cl
–
 → HNO3 + ClNO2 Δ

17
O(NO3

–
) = Δ

17
O(NO3) 25α + 14 

c 

a
 The values are calculated on assumptions that bulk Δ

17
O(O3) = 26 ‰ (Vicars and Savarino, 2014; Ishino et al., 2017) and 490 

Δ
17

O(HO2/RO2) = 0 ‰. Δ
17

O(RO2) is equal to 0 ‰ in the troposphere (Morin et al., 2011), in contrast, observations suggest 491 

Δ
17

O(HO2) = 1 – 2 ‰ (Savarino and Thiemens, 1999). However, the difference in calculated Δ
17

O(NO3
–
) between assuming 492 



Δ
17

O(HO2) = 0 ‰ and Δ
17

O(HO2) = 2 ‰ is negligible in this study (< 0.1 ‰). And the assumption that Δ
17

O(HO2) = 0 ‰ 493 

simplifies calculations and is also consistent with previous studies (Michalski et al., 2003; Alexander et al., 2009; Morin et 494 

al., 2008; Kunasek et al., 2008; Sofen et al., 2014). α is the proportion of O3 oxidation in NO2 production rate, calculated by 495 

Eq. (3). 496 

b
 Previous studies suggest that in R7 one oxygen atom of NO3

–
 is from H2O and the other two are from NO2 (Li et al., 2010; 497 

Cheung et al., 2000; Goodman et al., 1999), which will result in Δ
17

O(NO3
–
) = 2/3Δ

17
O(NO2). 498 

c
 R4 and R5 suggest that the central oxygen atom of N2O5 (O2N-O-NO2) is from NO3 radical (O-NO2) with Δ

17
O (‰) = 499 

1.23×Δ
17

O(O3) + 9.0 ‰. R10 is suggested to occur via O2N-O-NO2 (aq) ↔ NO2
+
 + NO3

–
 and the following NO2

+
 + Cl

–
 → 500 

ClNO2 (Bertram and Thornton, 2009), so Δ
17

O(NO3
–
) = 1/3(1.23×Δ

17
O(O3) + 9.0 ‰) + 2/3Δ

17
O(NO2) = Δ

17
O(NO3). 501 

Table 2. Reaction expressions for different NO2 production pathways. 502 

No. Reaction Rate expression Rate constant 

(cm
3
 molecule

–1
 s

–1
) 

Reference 

R1 NO + O3 → NO2 + O2 kR1[NO][O3] kR1=3.0×10
–12

×e
(–1500/T)

 (Burkholder et al., 2015) 

R2a NO + HO2 → NO2 + OH k2Ra[NO][HO2] k2Ra=3.3×10
–12

×e
(270/T)

 (Burkholder et al., 2015) 

R2b NO + RO2 → NO2 + RO k2Rb[NO][RO2] k2Rb = k2Ra (Burkholder et al., 2015; Kunasek et al., 2008) 

Table 3. Atmospheric Δ
17

O(NO3
–
) in aerosols obtained from the literature and this study. 503 

Sample location Sample period 

Collection 

interval 

Δ
17

O (‰) range Reference 

Huairou, Beijing 

(40.41° N, 116.68° E) 

October 2014 – January 2015 12 h 27.5 – 33.9 

(30.6 ± 1.8) 

This study 

Trinidad Head, California 

(41.0° N, 124.2° W) 

April – May 2002 1 – 4 days 20.1 – 27.5 (Patris et al., 2007) 

La Jolla, California 

(32.7° N, 117.2° W) 

March 1997 – April 1998 3 days 20 – 30.8 (Michalski et al., 2003) 

Mt. Lulin, Taiwan 

(23.5°N, 120.9°E) 

January – December 2010 1 day 2.7 – 31.4 

(17 ± 7) 

(Guha et al., 2017) 

Cape Verde Island 

(16.9° N, 24.9° W) 

July 2007 – May 2008 2 – 3 days 25.5 – 31.3 (Savarino et al., 2013) 

Cruise in costal California 

(32.8° N – 38.6° N) 

May – June 2010 2 – 22 h 19.0 – 29.2 

(24.1 ± 2.2) 

(Vicars et al., 2013) 

Cruise from 65° S to 79° N September – October 2006 1 – 4 days Non-polar: (Morin et al., 2009) 



April – May 2007 

February – April 2006 

24 – 33 

Polar: 35 ± 2 

Alert, Nunavut 

(82.5 °N, 62.3°W) 

March – May 2004 3 – 4 days 29 – 35 

(32.7 ± 1.8) 

(Morin et al., 2007b) 

Barrow, Alaska 

(71.3° N, 156.9° W) 

March 2005 1 day 26 – 36 (Morin et al., 2007a) 

Dumont d’Urville, Antarctic 

(66.7° S, 140.0° E) 

January – December 2001 10 – 15 

days 

20.0 – 43.1 (Savarino et al., 2007) 

Dumont d’Urville, Antarctic 

(66.7° S, 140.0° E) 

January 2011 – January 2012 7 days 23.0 – 41.9 (Ishino et al., 2017) 

Table 4 The possible range of fractional contribution of different nitrate formation pathways during PD of each case 504 

estimated on the basis of observed Δ
17

O(NO3
–
) 

a
. 505 

PD of Case fR9 assumption (%) fR8 + fR9 + fR10 (%) fR8 + fR10 (%) fR6 + fR7 (%) 

I 0 – 97 49 – 97 0 – 49 3 – 51 

II 0 – 83 58 – 100 17 – 58 0 – 42 

III 0 – 80 60 – 100 20 – 60 0 – 40 

IV 0 – 90 45 – 90 0 – 45 10 – 55 

V 0 – 59 70 – 100 41 – 70 0 – 30 

Average 0 – 82 56 – 97 16 – 56 3 – 44 

a
 R6, R7, R8, R9 and R10 is respectively NO2 + OH, NO2 + H2O, NO3 + HC, N2O5 + H2O and N2O5 + Cl

–
 pathway. 506 


