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Abstract. Stratospheric water vapour influences the chemical ozone loss in the polar stratosphere via controlling the polar

stratospheric cloud formation. The amount of water entering the stratosphere through the tropical tropopause differs substan-

tially between chemistry–climate models (CCM). This is because the present-day models, e.g. CCMs, have difficulties in

capturing the whole complexity of processes that control the water transport across the tropopause. As a result there are large

differences in the stratospheric water vapour between the models.5

In this study we investigate the sensitivity of simulated Arctic ozone loss to the amount of water, which enters the stratosphere

through the tropical tropopause. We used a chemical transport model, FinROSE-CTM, forced by ERA-Interim meteorology.

The water vapour concentration in the tropical tropopause was varied between 0.5 and 1.6 times the concentration in ERA-

Interim, which is similar to the range seen in chemistry climate models. The water vapour changes in the tropical tropopause

led to about 1.5 ppm less and 2 ppm more water vapour in the Arctic polar vortex compared to the ERA-Interim, respectively.10

We found that the impact of water vapour changes on ozone loss in the Arctic polar vortex depend on the meteorological

conditions. Polar stratospheric clouds form in the cold conditions within the Arctic vortex, and chlorine activation on their

surface lead to ozone loss. If the cold conditions persist long enough (e.g. in 2010/11), the chlorine activation is nearly complete.

In this case addition of water vapour to the stratosphere increased the formation of ICE clouds, but did not increase the chlorine

activation and ozone destruction significantly. In the warm winter 2012/13 the impact of water vapour concentration on ozone15

loss was small, because the ozone loss was mainly NOx induced. In intermediately cold conditions, e.g. 2013/14, the effect of

added water vapour was more prominent, and resulted in 2-7 % more ozone loss than in the colder winters. The results show

that the simulated water vapour concentration in the tropical tropopause has a significant impact on the Arctic ozone loss and

deserves attention in order to improve future projections of ozone layer recovery.

1 Introduction20

Water vapour in the stratosphere is a minor constituent with typical mixing ratios of 3–6 ppmv (e.g., Randel et al., 2004). It

plays, however, an important role in radiative and chemical processes. Especially in the upper troposphere/lower stratosphere

(UTLS) where changes in the water vapour concentration result in significant changes in radiative forcing of the atmosphere

(Riese et al., 2012). A warmer climate in the troposphere increases stratospheric water vapour (SWV) through increases in
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the water vapour entering through the tropopause, which warms the climate further (Dessler et al., 2013). Photodissociation

of water vapour is an important source of odd hydrogen HOx (H+OH+HO2). Catalytic cycles involving HOx contribute to

chemical ozone loss in the stratosphere (Dvortsov and Solomon, 2001). Changes in HOx affects the chlorine partitioning,

which may lead to even more efficient ozone destruction (e.g., Dvortsov and Solomon, 2001). Water vapour contributes to the

formation of stratospheric aerosols including polar stratospheric clouds (PSCs), i.e. liquid and solid particles in combination5

with H2SO4 and HNO3, or ice particles. In addition, the water vapour concentration affects the composition of liquid PSCs,

i.e. an increase in water vapour may increase the heterogeneous reaction rates (e.g. Shindell and Grewe (2002)). Heterogeneous

reactions in or on PSC particles can lead to massive ozone depletion inside the polar vortices when atmospheric concentration

of halogens is sufficiently high (Solomon et al., 1986; Wohltmann et al., 2013). Since the formation of PSCs requires very

low temperatures (below about 195 K), significant polar ozone depletion takes place only occasionally in the Arctic (Rex et10

al., 2006; Manney et al., 2011; Müller et al., 2008; Chipperfield et al., 2015), while it is has been a yearly phenomenon in the

Antarctic since about the mid 1980s (Dameris et al., 2014). The stratospheric abundance of chlorine will remain elevated for

decades, and polar ozone losses will therefore be seen also in the future. A recovery to 1980 ozone levels will not occur until

ca. 2025–2030 in the Arctic and 2050–2070 in the Antarctic (Eyring et al., 2010). Both colder air and increased SWV can

increase the formation of PSCs, which could release more active chlorine and cause severe ozone depletion although future15

chlorine loadings will be smaller. All these suggest that SWV is a critical factor affecting ozone chemistry.

The majority of the previous studies addressing impacts of SWV on ozone depletion considered the effects of observed

(Rosenlof et al., 2001) and projected (Eyring et al., 2007) increases in SWV concentrations (Kirk-Davidoff et al., 1999;

Dvortsov and Solomon, 2001; Shindell and Grewe, 2002; MacKenzie and Harwood, 2004; Stenke and Grewe, 2005; Feck

et al., 2008; Vogel et al., 2011; Smalley et al., 2017). For example Vogel et al. (2011) used a chemistry–transport model20

(CTM) and studied the effect of increased SWV on Arctic ozone loss for meteorological conditions from the cold Arctic win-

ter 2004/05. They found that increasing SWV by 0.58 ppm, which is a typical amount simulated by chemistry climate models

(CCMs) by the mid-21 century (Eyring et al., 2007), would lead to an additional 6 DU of ozone loss under cold winter condi-

tions. Sinnhuber et al. (2011) used a CTM driven by meteorological conditions for the cold Arctic winter 2010/11 and assumed

a uniform increase of SWV of 1 ppm. For such conditions they reported a 25 DU increase in ozone loss, i.e. about 20 % of25

their simulated total ozone loss for that winter.

Smalley et al. (2017) studied future trends in the tropical lower stratospheric water vapour and provided a regression model

for analysing the factors driving the trends and variability in the 21st-century. They found that warming of the troposphere

causes a long term increasing trend in the water vapour entering the stratosphere, which can be partially offset by an increase

of the Brewer–Dobson circulation with accompanied cooling of the tropical tropopause. MacKenzie and Harwood (2004)30

studied the effect of increasing SWV due to future increase in tropospheric methane on ozone. They simulated the year 2060

under the Intergovernmental Panel on Climate Change Special Report on Emission Scenarios (SRES) B2 scenario, where CH4

lies approximately midway between the extremes of the SRES scenarios. They found an increase in the occurrence of PSCs,

with about 20 to 25 % of the increase due to increases in the water vapour. The rest is from radiative cooling of the middle

atmosphere due to changes in the concentration of several trace gases. In the simulations by MacKenzie and Harwood (2004)35
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the increased SWV due to projected methane increases caused a 15 % (about 0.5 ppm at 465 K level) deeper Arctic ozone loss

in 2060. However, cooling of the stratosphere could at least partially offset the effect of the increased PSCs by slowing down

some gas-phase reactions involved in the catalytic ozone loss cycles (e.g., Revell et al., 2012).

Also Revell et al. (2016) studied the effect of future methane changes on SWV under different RCP-scenarios. The contri-

bution of methane to the SWV was found to be highly dependent on the projected methane concentration, altitude and latitude.5

Under RCP 6.0 between 1960 and 2100 the SWV was projected to increase by approximately 1 ppm throughout most of

the stratosphere, excluding the Antarctic lower stratosphere. The largest increase was seen following the RCP 8.5, with 60 %

additional water vapour in the extratropical upper stratosphere, and ca. 35 % in the Arctic lower stratosphere. The largest con-

tribution from methane to the SWV change was about 50 % under RCP 8.5, which assumes a rather extreme methane increase

scenario, and the smallest about 4 % under RCP 2.6.10

Recently Sagi et al. (2017) studied Arctic ozone losses between years 2002 and 2013 using data assimilation of Odin/Sub-

Millimetre Radiometer (SMR) atmospheric observations. They found that the largest ozone losses were caused either by halo-

gens or by the NOx-family, and the dominating process for ozone destruction is determined mostly by the temperatures inside

the polar vortex. The very stable and cold polar vortex in the Arctic winter 2010/11 led to remarkable halogen driven ozone

loss with 2.1 ppm ozone destroyed at the 450 K level. In the winter 2012/13 the polar vortex was more unstable and a vortex15

split occurred early January due to a sudden stratospheric warming (SSW). Thus NOx rich air from the mesosphere descended

to the upper stratosphere and led to ozone loss there. It is therefore likely that the effect on Arctic ozone depletion from changes

in SWV will depend on the meteorological conditions, and the dynamical stability in a given winter.

The main source of SWV is the upward transport from the troposphere through the tropical tropopause in the upwelling

branch of the Brewer–Dobson circulation. The concentration of SWV is controlled by the coldest temperature met by the as-20

cending air parcels (i.e. cold point temperature). Gettleman et al. (2010) analysed 16 state-of-the-art CCMs and demonstrated

large discrepancies between simulated SWV in these models, which were closely related to the simulated cold point tempera-

tures. The ‘entry’ value of SWV in these models ranged between 2 and 6 ppm, compared to the observed value of 3–4 ppm.

These intermodel differences by far exceed the magnitude of the projected water vapour increases in the 21 century used so

far in the studies of ozone loss sensitivities to SWV. One may wonder what are the implications of these discrepancies for25

stratospheric ozone losses simulated by the CCMs? This question is difficult to address by analyzing CCM outputs because

there are other differences between the models which affect simulated ozone losses, such as differences in transport. Therefore

a more controlled experiment is needed in order to assess the impacts of these SWV differences for ozone losses.

In this study we address the question of what the implications of the differences in simulated tropical stratospheric water

vapour between chemistry–climate models are for the simulated Arctic ozone loss. Similar to Vogel et al. (2011) and Sinnhu-30

ber et al. (2011) we address this question by performing CTM simulations using different SWV concentrations. The principal

differences in our methodology from the previous studies are (1) the boundary conditions of perturbed water vapour experi-

ments resulting in a different spatial pattern of SWV anomalies and (2) the magnitude of SWV perturbation, which is larger

than in the Vogel et al. (2011) and Sinnhuber et al. (2011) studies, but in the range of Revell et al. (2016) and MacKenzie and
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Harwood (2004). We also analysed seven different winters, whose dynamical circumstances such as the as the evolution of the

temperature and polar vortex were different (see Section 3 for more details).

2 Modelling and data

A global off-line chemistry–transport model for the middle-atmosphere, FinROSE-CTM, was used for simulating the effect

of the SWV on Arctic ozone depletion. The FinROSE-CTM is described in detail in Damski et al. (2007b). In this study, the5

model has a horizontal resolution of 3◦× 6◦ (latitude× longitude). It has 40 hybrid-sigma levels up to 0.1 hPa (about 65 km).

The temperature, winds and surface pressure are from the European Centre for Medium-range Weather Forecasts (ECMWF)

ERA-Interim reanalyses (Dee et al., 2011).

The model transport is computed using a flux-form semi-lagrangian transport code (Lin and Rood, 1996). The chemistry

scheme of the model comprises 36 species and includes about 150 reactions. In addition to gas-phase chemistry, the model10

includes a PSC scheme with liquid binary aerosols (LBA), supercooled ternary solution of sulfuric acid, nitric acid and water

(STS, type Ib), solid nitric acid trihydrate (NAT, type Ia) and ice (ICE, type II) PSCs. The heterogeneous chemistry includes

altogether 30 reactions and is based on the calculation of the composition and volume of sulphate aerosols and PSCs, as well

as the partitioning of species between gas phase and condensed phase. The number density profile is prescribed for each PSC

type (Damski et al., 2007b) and the sulphuric acid distribution is based on 2-D model data (Bekki and Pyle, 1992). Absorption15

cross-sections and rate coefficients follow the recommendations by Sander et al. (2011) and for some heterogeneous chemistry

reactions the recommendations by Atkinson et al. (2007), see details in Damski et al. (2007b). Photodissociation coefficients

were pre-calculated using the pseudo-spherical photolysis scheme of PHODIS radiative transfer model and are used through a

look-up table (Kylling et al., 1995).

The tropospheric concentrations of the chemical species are prescribed via model boundary conditions. The boundary con-20

ditions of water vapour and ozone are taken from the ECMWF ERA-Interim reanalysis (Dee et al., 2011) except for the

water vapour boundary conditions in the sensitivity experiments which are described below. The concentration of tropo-

spheric methane (CH4) is from Global view-data (http://www.esrl.noaa.gov/gmd/ccgg/globalview/ch4), nitrous oxide (N2O)

concentration is from Agage data (Prinn et al., 2000), and halogens concentrations in the troposphere (Cly and Bry) are

from Montzka et al. (1999) updated data. The carbon dioxide (CO2) concentration is based on global annual mean trend data25

(ftp://aftp.cmdl.noaa.gov/products/trends/co2). At the upper boundary (0.1 hPa) climatological values of water vapour and

ozone averaged over 2005–2013 from MLS data were used.

The FinROSE-CTM has been used to study the impact of meteorological conditions on water vapour trends (Thölix et al.,

2016), ozone/NOx chemistry (Salmi et al., 2011) and ozone chemical loss (Karpechko et al., 2013), and the model results

showed good agreement with observations. Also future ozone losses have been investigated by using driving data from a30

chemistry–climate model (Damski et al., 2007a).

For this study, three simulations covering the Arctic winters between 2009/2010 and 2015/2016 were performed. The sim-

ulations differed from each other by the prescribed water vapour concentration in the tropical tropopause region (stratosphere
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between 21◦ S–21◦ N, below 80 hPa), where it was prescribed as follows: (1) water vapour from ERA-Interim (Interim), (2)

1.6× Interim (Max), (3) 0.5× Interim (Min). The SWV lower boundary conditions for Min and Max simulations were ob-

tained by scaling the reanalysis data in the tropical tropopause layer (TTL), around 80 hPa, between 21◦ S-21◦ N, so that they

approximately correspond to the driest and wettest CCMVal-2 models, as determined by SWV values at the tropical tropopause

(Gettleman et al., 2010). This construction allows us to isolate the influence of the tropical water vapour on stratospheric chem-5

istry while keeping all other factors fixed, and thus to estimate the contribution of processes controlling tropical water vapour

entry values to Arctic ozone loss. Eight simulated years before 2009 are considered spinup and were not analysed. Ozone

was initialised with ERA-Interim ozone in every year, in the beginning of December. The water vapour was not adjusted and

allowed to evolve freely through the whole period of integrations. Ozone and water vapour observations from the Microwave

Limb Sounder (MLS) abroad Aura satellite (Lambert et al., 2007) were used to validate the reference simulation. MLS data is10

shown as 5 day averages because of the small amount of data covering the polar vortex in some cases.

3 Results

Model simulations were made for seven winters (2009–2016), but only four of them are discussed here. The four selected

Arctic winters, 2010/11, 2012/13, 2013/14 and 2015/16 differ from each other with respect to the stratospheric temperatures

and polar vortex strength. They provide examples of different role of SWV in ozone loss in mild (2012/13) cold (2010/11,15

2015/16) and intermediate (2013/14) stratospheric winter conditions.

3.1 Temperature and water vapour

The boundary condition at the tropical tropopause for the reference simulation was evaluated by comparing simulated water

vapour concentrations with observed ones from MLS. The top panels in Fig. 1 show daily mean water vapour at 80 hPa

averaged between 21◦ S and 21◦ N for two representative years 2013 and 2014. The temperature for the same region is shown20

in the lower panels. The cold point, where SWV boundary conditions were prescribed, is just below the 80 hPa level. The

temperature shows the typical annual cycle in the TTL with minimum in northern hemisphere (NH) winter and maximum

in NH summer. The temperature in the TTL controls how much water vapour enters the stratosphere by freeze drying the

upwelling air (e.g., Fueglistaler et al., 2005). As a result the maximum water vapour concentration occur in the NH autumn

and minimum in early NH spring. The effect of interannual variability and shorter term variations in the temperature on25

stratospheric water vapour can also be seen, e.g. the low temperature in early 2013 results in 0.5–1 ppm less water vapour than

during the same time in 2014.

The Interim simulation produces water vapour concentrations comparable to the amount seen by MLS (Fig. 1), which shows

that the boundary condition is reasonable. However, Interim variability leads that of MLS by 3–4 weeks suggesting that the

Brewer–Dobson circulation in ERA-Interim responsible for upward transport of the water vapour anomalies in the tropics30

could be too fast (Simmons et al., 1999; Schoeberl et al., 2012; Monge-Sanz et al., 2013). The Max simulation has 2–3 ppm

more water vapour in the tropics than the Interim simulation, while the Min simulation is about 1.5 ppm drier than the Interim
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simulation. A closer look at the SWV differences between the simulations in the tropics suggests that while the Max/Interim

ratio is between 1.55 and 1.6, i.e. very close to 1.6 and in line with the prescribed boundary condition, the Min/Interim is about

0.55–0.6 suggesting that the Min run gains a small amount of water while transporting air upward.

We next describe the meteorological condition in the Arctic stratosphere during the analysed winters. Figure 2 shows the

daily average temperature in the Arctic polar vortex in winters 2010/11, 2012/13, 2013/14 and 2015/16. The polar vortex was5

identified using the modified potential vorticity (mPV) (Lait, 1994). Here the polar vortex is defined as the area enclosed by

the 36 PVU isoline. The winter 2010/11 represents a cold winter with vortex average temperatures below 200 K and minimum

temperatures below 195 K, sufficient for formation of NAT/STS PSCs, through most of the winter, from December to the

beginning of April with only a brief interruption by a warming in early January. Minimum temperatures in the vortex were

record cold and below 190 K even in the end of March (Manney et al., 2011). The winter 2012/13 is an example of a warm10

Arctic stratospheric winter. Vortex average temperatures below 195 K were seen for only a few days in December in the ERA-

Interim data, and the minimum temperature was below 195 K until mid January. A SSW occurred in early January followed

by a weakening and a break up of the polar vortex in the lower stratosphere already in February. The winter 2013/14 was

intermediate with average temperatures inside polar vortex being close to long-term climatological mean through most of

the winter, until late March when a final SSW occurred. There were only a few days in late December when the average15

temperature was below 195 K. The 2015/16 winter was as cold, or even colder, as the 2010/11 winter during December–

February with minimum vortex average temperatures below 195 K. However, a minor SSW occurred in early February and the

final warming came in early March, ending the cold period and reducing ozone depletion potential much earlier than in the

2010/11 winter.

Figure 3 shows the five day running mean concentration of water vapour at 54 hPa averaged over the Arctic polar vortex20

for winters 2010/11, 2012/13, 2013/14 and 2015/16. The gaps in the 2012/13 MLS curve are due to undefined vortex (or

a too small vortex with only few observations) after the SSW. The water vapour concentration in the Interim simulation is

comparable to the MLS data. However, the variability in water vapour is smaller in FinROSE than in the MLS data. Typically

there is a stronger increase in the water vapour towards the spring in MLS than in the simulation. This is most evident in

winter 2013/14 when MLS concentrations increased by more than 1 ppm between November and April while the simulated25

increase was only 0.3 ppm. Although an increase by spring is expected due to downward transport of air with higher SWV

concentration by the BD circulation the increase seen in MLS observations in 2014 is unusual. For example the observed

increase in January 2013 after the SSW associated with downward transport of water-rich air from above was about 0.3 ppm

and that increase was reasonably well reproduced by FinROSE. Note that the MLS observations within the polar vortex are

sparse, which adds some noise to the MLS vortex average. Also note that FinROSE vortex-mean values are calculated using all30

data points inside the vortex even if MLS data are not available for each point. This approach increases the robustness of model

estimates but at the same time complicates direct comparison with MLS. Interestingly, when looking at the 60–90◦ N average,

which includes also air from outside the polar vortex, there is no similar spring increase in MLS data as seen in (Fig. 3), and the

agreement between FinROSE and MLS improves (not shown). In all winters, the Max simulation has about 2 ppm more water

vapour in the Arctic polar vortex than the Interim simulation, and the Min simulation is about 1.5 ppm drier than the Interim35
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simulation. This indicates that the simulated differences in the polar vortex water vapour are about the same as the differences

in the boundary conditions for the tropical tropopause (Fig. 1), despite the average increase in SSW between the TTL and the

polar vortex of about 1.5 ppm in each run.

There are also several SWV decreases seen in Fig. 3 which are due to the formation of ICE PSCs and possibly also to

dehydration due to sedimentation of ICE particles. The most pronounced one is in the winter 2015/16 when, during a very5

cold period (Fig. 2), the observed concentrations decreased from 5.2 ppm to 4.7 ppm and remained low until late February.

A relatively small decrease of only about 0.2 ppm was simulated in the Interim run. This decrease corresponded to formation

of ICE PSCs in the model (see Section 3.2 for discussion of PSC results) and therefore at least a part of the decrease could

be explained by sedimentation. A much larger decrease of about 1 ppm was seen in the Max simulation starting from late

December, which is consistent with larger amounts of ICE PSCs simulated in this run. Another, much smaller, decrease of10

about 0.2 ppm can be seen in the MLS observations during mid-January 2011 corresponding to a cold period. The decrease

is almost undistinguishable in the Interim simulation, but is pronounced in the Max simulation, which is a result of a larger

amount of ICE PSCs.

3.2 Polar stratospheric clouds

Table 1. Sum of the ICE and NAT/STS PSC volumes (106km3*day).

Year 2010/11 2012/13 2013/14 2015/16

ICE Interim 94 17 27 499

Min 5 0 0 105

Max 425 160 183 1150

NAT/STS Interim 19487 9642 20417 22128

Min 17751 8600 18220 20939

Max 19919 10007 21474 22034

Figure 4 and 5 show PSC type 2 (ICE) and PSC type 1 a and b (NAT/STS) volumes between 15 and 37 km (about 375 and15

950 K) in the Arctic polar vortex for winters 2010/11, 2012/13, 2013/14 and 2015/16. The volume was calculated by summing

the volumes of model grid boxes containing PSCs. NAT/STS PSC is assumed to exist in the gridbox if there is liquid HNO3

more than 0.3 ppt. In the winter 2010/11 the polar vortex was stable and cold, but not extremely cold. The ICE PSC volume

(Fig. 4) in the Interim simulation was mostly moderate except for a period in late January with cold temperatures and large

ICE PSC volumes. The ICE PSCs lasted longer in the spring than in other winters. It is unusual that ICE PSC:s occur after20

January, but in 2011 ICE PSCs were seen through February even in the Interim simulation. In the Max simulation the ICE

PSCs lasted until mid March. Also the Cloud-Aerosol Lidar and Infrared Path finder Satellite Observation (CALIPSO) (Pitts

et al., 2007) observed PSCs in the 2010/11 winter. The observed ICE PSC areas are comparable to the FinROSE modelled
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ICE areas (Thölix et al., 2016). Also the duration of ICE clouds is comparable. In the winter 2012/13 the polar vortex was

very cold in December, and some ICE PSCs were simulated. However, after the SSW in early January no ICE PSCs were

simulated, not even in the Max simulation. The 2013/14 winter was moderately cold with some ICE PSC occurrence in late

January. For example too dry models may not be able to simulate a large Arctic ozone loss such as of 2010/11. The winter

2015/16 started as very cold in December and January, and the ICE PSC volume was large through January. The maximum5

ICE PSC volumes in the Interim simulation were more than 50 % larger compared to the other cold winter 2010/11. Dörnbrack

et al. (2017) and Khosrawi et al. (2017) also reported unprecedented and widespread ICE PSC formation seen in CALIPSO

observations in 2015/16. This was also the only winter with a significant ICE PSC volume in the Min simulation, with a water

vapour concentration of only about 3.7 ppm.

The water vapour concentration had a strong effect on the ICE PSC formation: in the Max simulations the ICE PSC volume10

increases significantly in all winters. For instance in 2010/11 the largest PSC volume is more than twice as large in Max as

in the Interim simulation. In the warm winters (2012/13 and 2013/14) the relative increase in the ICE PSC volume due to

additional water vapour was even larger than in the cold winters (2010/11 and 2015/16). The amount of water vapour was

an important factor for the extent of ICE PSC occurrence also in winter 2015/16, however, the relative increase between the

Interim and Max simulation was smaller than in other studied winters, that were warmer. PSC starts to form about two weeks15

earlier in the Max simulation compared to the Interim simulation. In the Min simulation the stratosphere is too dry for ICE

PSC formation in nearly all years.

Figure 5 shows the volume of NAT/STS PSCs in the Arctic vortex. NAT/STS volumes are always significantly larger than

the ICE volumes because type 1 PSCs form at warmer temperatures than ICE PSCs. Type 1 PSCs typically start to form in

early November and ICE PSCs in mid to late December. The simulated peak values in the NAT/STS volume range from 26020

to 340 million km3, while the ICE volume peaks range from 4 to 30 million km3 in the Interim simulation. As expected the

type 1 PSCs occur later in the spring than ICE PSCs, e.g. in the winter 2010/11 NAT/STS PSCs were simulated until late April,

more than a month later than the ICE PSCs.

In the cold winter 2010/11 NAT/STS PSCs persisted for almost five months, from December to April. An increase in

moisture (Max simulation) had only a minor effect on the NAT/STS volume. In the Min simulation the maximum NAT/STS25

volume was usually about 20 million km3 smaller than in Interim simulation, while the difference between Max and Interim

was much smaller. In the 2012/13 winter NAT/STS PSCs were simulated only in the beginning of the winter and by early

January all the PSCs disappeared due to warm conditions. The maximum values of NAT/STS volumes in 2012/13 winter were

large, 330 million km3, and the difference between Interim and Min simulation is more than 30 million km3. The increase of

water vapour in the Max simulation did not change the PSC volume much. In the early 2013/14 winter the NAT/STS volume30

was even larger than in 2010/11, but warmer temperatures in the vortex in February caused the PSC volume to diminish more

rapidly. The effect of water vapour was the largest among the simulated years, the increase in NAT/STS volume between Min

and Interim simulations was 30–40 million km3. The NAT/STS volumes in the 2015/16 winter were larger than in 2010/11,

but the PSCs did not persist as late as in 2010/11. The increase in type 1 PSC volume due to increased water vapour was smaller

than in 2013/14, about 25 million km3.35
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Table 1 shows cumulative ICE and NAT/STS PSC volumes between the altitudes 15 and 37 km. The largest cumulative ICE

volumes are always seen in the Max simulations. In the Min simulations there are only very small or no ICE PSC volumes,

with the exception of the winter 2015/16, when considerable ICE PSC volume was present in all runs. However, in 2015/16

the ICE PSCs occurred mainly in December and January, while in 2010/11 the ICE PSCs occurred from January until the end

of February. The timing of the PSCs is important for chlorine activation and ozone loss as discussed later. The effect of water5

vapour on the cumulative ICE PSC volume is larger in warm years than in cold years. The NAT/STS volume also strongly

depends on winter temperatures – the maximum volume is simulated in the coldest winter 2015/16 in every simulation, while

the smallest volume is simulated during the warmest winter 2012/13. However, unlike ICE PSC, the NAT/STS clouds are

formed in every winter. The formation of type 1 PSCs is less sensitive to changes in water vapour concentration than the ICE

PSCs. The relatively large changes in water vapour between different simulations results in relatively small small changes in10

the cumulative NAT/STS volume.

3.3 Chlorine activation

Table 2. Vortex-mean mixing ratio integrated over the winter of activated chlorine in Arctic vortex in different runs (ppb*day). Percentage

in parentheses indicate the effect of SWV concentration change compared to Interim simulation.

Year 2010/11 2012/13 2013/14 2015/16

Interim 148 69 110 115

Min 141 (-5 %) 68 (-1 %) 97 (-12 %) 113 (-2 %)

Max 157 (+6 %) 72 (+4 %) 116 (+5 %) 119 (+3 %)

In early winter chlorine is present as reservoir compounds (HCl and ClONO2), which do not destroy ozone. When PSCs

start to form in the cold conditions within the polar vortex the chlorine species are transformed into intermediate species such

as Cl2. These species are easily dissociated when the sunlight reaches the polar vortex in the spring to form active chlorine15

species that participate in the catalytic ozone depletion cycles, i.e. ClOx (ClO, Cl2O2 and Cl). PSCs sustain the regeneration

of ClOx.

Figure 6 shows the fraction of reservoir, intermediate and active chlorine species at 54 hPa in the Min and Max simulations.

The results from the Max simulation are represented by the upper limit for the intermediate (magenta) and active species

(green), and by the lower limit for the reservoir species (black). The chlorine fractions from the Interim simulation always20

fit within the range from the Min and Max simulations. The timing of the changes in the partitioning of the chlorine species

correlates well with the occurrence of PSCs, both NAT/STS and ICE. NAT/STS PSC volume starts to grow at the same time

when chlorine starts to transform from reservoirs to intermediate species (Fig. 5).

In the 2010/11 winter chlorine activation starts in the latter half of December and the fraction of ClOx is large through the

January–Mach period, reaching the maximum of about 85 %. The active chlorine starts to transform back to reservoirs in the25

beginning of March. In early April when the PSCs disappear the active chlorine rapidly decreases to the background values.
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In the 2012/13 winter chlorine activation starts slightly earlier than in the other years, but already in the beginning of February

most of the chlorine has converted back to reservoir species due to a SSW. The maximum fraction of ClOx is about 75 %, and

it is reached already in the end of December. The period with active chlorine lasted only for a short period, the active chlorine

decreased during January, and in the beginning of February the concentration reached nearly background values.

The beginning of the winter 2013/14 winter was very cold, chlorine activation started in mid December, and the maximum5

chlorine activation is reached already in the end of January. After that the vortex warmed and chlorine transformed back to

reservoir species. The maximum fraction of ClOx is slightly lower than in cold winters, about 70 %.

The 2015/16 winter started similar to the cold winter 2010/11 and nearly all of the chlorine was activated at the beginning

of January, but the deactivation started already in the end of January making the period with high ClOx rather short. In the end

of February the vortex warmed up and chlorine transformed back to reservoir species. The maximum fraction of the activated10

chlorine of about 80 % was reached by the beginning of January.

The water vapour concentration seem to strongly affect the transformation of chlorine from the reservoir species to the inter-

mediate ones in the beginning of Arctic winter. The fractions of intermediate and reservoir chlorine species change significantly

with water vapour concentration in November and December, when NAT/STS PSCs start to form. The difference between Min

and Max simulations can be up to 30 % when about half of the reservoir chlorine have transformed to intermediate species, just15

before the concentration of active chlorine species starts to increase. The concentrations of the active and reservoir chlorine

species differs significantly between the Min and Max simulations during the period with high ClOx, except for the 2016

spring. The water vapour content has less effect on the intermediate chlorine species during the chlorine activation period.

In the cold spring 2011 the difference in chlorine activation between Min and Max simulations was about 5 % on average,

it reached nearly 20 % in the beginning of April, when the chlorine deactivation was fast. In the warm winter 2012/13 the20

difference was less significant, about 5 % during the whole short activation period. In 2013/14 winter the difference reached

10 % in the latter half of January. Between mid February and mid March the difference is 15–18 %. The chlorine activation in

2015/16 winter seems to be less dependent on water vapour content. The difference between simulations is only few percents,

only when the deactivation starts (in the end of February) the difference is more than 5 %.

The effect of increased water vapour seems to be large in moderately cold years, i.e. when the chlorine activation is not so25

complete. The amount of chlorine activation correlate with the volume of NAT/STS PSCs. Also the end of chlorine activation

depends on the existence of NAT/STS PSCs. ICE PSC volume instead does not correlate with chlorine activation. For example

in 2012/13 and 2013/14 winters there were no ICE PSC in the Min simulation but the chlorine activation is nearly as high as

in the Max simulation, which have ICE PSCs.

Table 2 shows the cumulative sum of activated chlorine within the polar vortex. The changes in water vapour between30

the Min/Interim/Max simulations have the largest effect on the cumulative ClOx in moderately cold winters (2010/11 and

2013/14). The increase from Interim to Max was +5 to 6 % and change from Interim to Min was -5 to -12 %. In the cold winter

2015/16 the respective changes were +3 and -2 %, and in the warm winter 2012/13 the changes were +4 and -1 %.
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3.4 Ozone loss

Figure 7 shows the mean chemical total ozone loss within the polar vortex for all the studied winters 2010/11, 2012/13, 2013/14

and 2015/16. The total column chemical ozone loss was calculated by subtracting the passive transported total ozone from the

modelled total ozone. However, the polar vortex is defined here using the potential vorticity limit 36 PVU only at the 475 K

level. The figure shows the chemical ozone depletion in the Interim, Min and Max simulations as well as the difference in the5

loss between the Min and Max simulations. The passive ozone tracer was initialized every year on December 1st, when it was

set equal to the ozone in the model. Chemical processes start to reduce ozone already in December, but they have minor effect

on the total wintertime ozone loss. In January the chemical processes become more intensive, when the chlorine activation

increases (see Fig. 6).

In general the ozone loss is larger in cold years. The largest ozone loss was simulated in the beginning of April 2011 when10

about 90 DU ozone had been destroyed according to our model. FinROSE seems to underestimate the ozone loss, possibly

due to a general 10 % negative bias in total ozone, for example Sinnhuber et al. (2011) and Manney et al. (2011) simulated

120 DU ozone loss and Pommereau et al. (2013) even 170 DU in winter 2010/11. If we look at maximum ozone losses instead

of the polar vortex mean losses, then the numbers are larger. The maximum ozone loss in 2010/11 within the polar vortex was

128 DU, which is comparable to the Sinnhuber et al. (2011) value.15

The ozone loss in the warm winter 2012/13 differs from the loss in colder winters (2010/11 and 2015/16). In winters when

the polar vortex is unstable and small or disturbed the Brewer–Dobson circulation brings more NOx-rich air to the polar vortex

than usual. Hence the ozone loss in the 2012/13 winter was produced mostly by NOx chemistry as shown previously by e.g.,

Sagi et al. (2017). The total ozone column loss in this winter remained smaller than in cold years, when the ozone depletion is

driven by halogens. By the end of April 2014 the simulated vortex mean ozone loss was about 75 DU in the Interim simulation.20

Before mid February, i.e. during the coldest period, there was very little effect from the changes in SWV. A relatively small

ozone loss of 60 DU was simulated in 2015/16, which was due to the unstable polar vortex, which split and warmed, stopping

the catalytic ozone cycles and ozone loss early.

Figure 7 also shows the difference of polar vortex averaged chemical ozone loss between Min and Max simulation. It tells

how much the water vapour concentration change affects the ozone loss. The difference is largest (nearly 16 DU) in 2013/14,25

a moderately cold winter, with significant ozone depletion. Another winter, 2010/11, with significant ozone loss and cold, but

not extremely cold conditions showed the second largest effect from addition of water vapour, about 10 DU. In 2012/13, when

the ozone loss was mostly caused by NOx chemistry, the difference between Min and Max simulations was about 7.5 DU.

The 2015/16 winter started as very cold, but warmed early. The difference in ozone loss between the simulations remained

very small up to mid February, by mid March the difference was about 8 DU. A reduction in the water vapour decreased30

ozone loss in every winter. In the Interim simulation the deepest ozone losses were about 3–8 DU (5–10 %) deeper than in

the Min-simulation. The effect from an increase in water vapour from Interim to Max was about same. In 2010/11 winter

the loss increased by about 7 %, while Sinnhuber et al. (2011) and Vogel et al. (2011) reported an increase of ozone loss by

20 % and 10 % (respectively) with water vapour increase being of about the same magnitude as here. Thus, our estimates are
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slightly smaller than those by Vogel et al. (2011). The reason for the difference is not clear, but FinROSE’s horizontal resolution

(3◦× 6◦) may be too coarse to capture the deepest ozone loss.

The changes in the amount of water vapour is not very important for ozone loss in cold years, within the range that was

tested here. In the 2010/11 winter the chlorine activation was nearly complete in the Arctic polar vortex, and additional water

vapour did not increase chlorine activation and thus not the ozone depletion. Increasing water vapour concentration (compared5

the Interim simulation) strengthen ozone loss at least 4 DU at other winters except for 2011 when the increase is not significant.

Table 3. Maximum polar vortex-mean ozone loss produced by full chemistry, heterogeneous chemistry and separately the NAT/STS and ICE

part in Min, Max and Interim simulations ( DU). Percentages show the fraction due to each part relative to the full chemistry.

Year 2010/11 2012/13 2013/14 2015/16

Min Full chemistry 84 54 75 58

Heterogeneous part 50 (60 %) 11 (21 %) 28 (38 %) 37 (64 %)

NAT/STS and ICE 20 (24 %) 5 (10 %) 11 (15 %) 14 (24 %)

Interim Full chemistry 90 56 83 62

Heterogeneous part 56 (62 %) 14 (25 %) 36 (44 %) 41 (66 %)

NAT/STS and ICE 30 (33 %) 8 (15 %) 21 (25 %) 20 (32 %)

Max Full chemistry 91 61 90 66

Heterogeneous part 56 (62 %) 18 (30 %) 42 (47 %) 44 (66 %)

NAT/STS and ICE 34 (37 %) 11 (18 %) 27 (30 %) 24 (36 %)

To better understand the mechanism of SWV influence on ozone loss, simulations without heterogeneous chemistry were

performed. From those simulations ozone loss caused by heterogeneous chemistry can be separated by subtracting the total

ozone simulated without heterogeneous chemistry from that simulated in the full chemistry run. Two different set-ups were used

for testing the effect of the heterogeneous chemistry. In the first gas-phase chemistry simulation the heterogeneous chemistry10

was not included at all. In the second simulation the formation of PSCs was limited by setting the air temperature passed to

the heterogeneous chemistry module to 200 K, similarly to what was done in Karpechko et al. (2013). This setting has little

influence on the reactions on the background aerosols, but prohibits formation of STS, NAT and ICE PSCs. Table 3 summarises

ozone loss characteristics during the studied years and shows the loss produced by full chemistry, heterogeneous chemistry and

separately the NAT/STS and ICE PSCs in Interim, Min and Max simulations.15

In the Interim simulation with full chemistry in 2010/11 about 90 DU ozone was depleted, of which the heterogeneous

chemistry caused 56 DU depletion, i.e. about 62 % of the total ozone loss. Heterogeneous chemistry due to ICE and NAT/STS

PSCs destroyed 30 DU ozone, which was about 33 % of the total loss. The increase of water vapour (Max simulation) did not

increase the ozone loss, but in the Min simulation there was 6 DU less ozone depletion. This is consistent with the results by

Kirner et al. (2015), who argue that the contribution of ICE PSCs to the ozone loss is always less than 5% in the Antarctic20

spring, where the chlorine activation is nearly complete.
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In the warm 2012/13 winter the heterogeneous part is only 25 %. NAT/STS and ICE PSCs caused only a very small part of

the total heterogeneous chemistry driven ozone loss. The loss caused by heterogeneous chemistry increased with increasing

water vapour, but remained small even in the Max simulation.

In 2013/14 the heterogeneous chemistry destroyed about 36 DU (44 %) of the ozone and ICE and NAT/STS about 21 DU

(25 %), when the total ozone loss was 83 DU in the Interim run. The increase in SWV from Interim to Max increased the ozone5

loss by about 7 DU and the decrease in SWV from Min to Interim decreased the ozone loss by 8 DU. So, water vapour changes

have larger role than in colder year. The ozone depletion due to heterogeneous chemistry increased with water vapour, even

though the fraction due to heterogeneous chemistry was smaller than in 2010/11 and 2015/16.

In the 2015/16 winter the heterogeneous part was largest when compared to other simulated years, reaching even 66 % of

the ozone loss, and also the ICE and NAT/STS part was large, 32 %. The total ozone loss is however only 62 DU about the10

same as in 2012/13 winter. When the water vapour content was increased from Interim to Max simulation, the fraction due to

the heterogeneous chemistry remained the same, but the fraction due to NAT/STS and ICE PSCs increased.

Based on the results in Table 3 it can be concluded that nearly all SWV impact on ozone loss is through heterogeneous

chemistry. For example in 2010/11 the ozone loss without heterogeneous chemistry was 34 DU in Interim, 34 DU in Min and

35 DU in Max simulation and only the heterogeneous part changed from model run to model run. In 2012/13 and 2013/14 the15

non-heterogeneous contribution is 42 and 47 DU respectively, and in 2015/16 21 DU, i.e. in warm years it is larger than in cold

years.

Finally we analyse the vertical distribution of the ozone loss and the effect of SWV on ozone loss, which is shown in Fig. 8.

The largest ozone loss was simulated in 2010/11, when the ozone destruction in the Interim run with normal SWV was about

1.4 ppm between 60–30 hPa. The ozone depletion increased by 0.2 ppm between the Min and Max simulations. In 2012/1320

the maximum ozone reduction is almost the same as in 2010/11, but it occurs at higher altitude (NOx induced) and lasts for

shorter period than in 2011. The effect of the increase in water vapour from Min to Max simulation had only a minor effect

on the ozone depletion in 2012/13. The heterogeneous chemistry and chlorine activation did not have an important role in the

warm conditions. In the 2014 spring the conditions in the polar vortex remained favourable, but the temperature was not as low

as in 2011. The ozone loss developed steadily, but remained moderate. The two winters 2010/11 and 2013/14 with the most25

favourable conditions for halogen driven ozone depletion showed the largest increase in ozone loss with water vapour. The

effect was more clear in 2013/14, which was the warmer of the two winters. The winters 2010/11 and 2015/16 look similar

during January–February, but the ozone loss became much more severe in 2010/11 due to favourable conditions in March–

April. In 2015/16 there was a very cold period, but it occurred too early to have a large impact on the ozone depletion, and

therefore the water vapour increase had only a moderate effect later in the spring. In 2013/14 the largest ozone loss is about30

1.2 ppm between 60 and 30 hPa while in 2015/16 it is only about 1 ppm at the same altitude. Livesey et al. (2015) and Sagi

et al. (2017) showed results from 450 K level, and their ozone losses were about 2 ppm in winter 2011. In winter 2013 Sagi

et al. (2017) had about 1.5 ppm ozone loss, which is about the same as we found.
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4 Discussion and conclusions

Warmer climate in the troposphere in the future leads to increasing water vapour concentrations in the stratosphere (Dessler

et al., 2013), which further warms the climate due to water vapour feedback. Khosrawi et al. (2016) showed that an increase

in SWV and a cooling of the stratospheric temperature enhances each other, the volume of PSCs increases and they last longer

in the vortex. The ozone loss can thus increase although the halogen loading has been decreased. In this study, rather than5

artificially changing the temperature we used meteorological fields from seven winters during the period 2010–2016 with

different temperatures and dynamical conditions in the stratosphere. We changed the water vapour content in the tropical

tropopause region according to the CCMVal-2 simulations. The water vapour entry concentration is controlled by the cold

point in the TTL, and the distribution of SWV is largely determined by this entry concentration together with the transport and

the contribution from methane oxidation. Results show that, as expected, wetter/drier tropical tropopause leads to wetter/drier10

Arctic polar vortex and also the size of polar ozone depletion changes along the water vapour changes. For example too dry

models may not be able to simulate a large Arctic ozone loss such as of 2010/11, which can be seen from the Table 3.

A reduction in SWV decreases the ozone loss due to heterogeneous processes by decreasing the PSC formation. An increase

in SWV instead makes the heterogeneous chemistry more important by increasing PSCs. If the winter is cold enough, the

increase is less important, because the PSC volume is large anyway, and the chlorine activation is already nearly complete15

in Arctic vortex. As expected, heterogeneous chemistry is more important if the winter is cold and PSC volumes are large.

In winters 2010/11 and 2015/16 over 62 % of the ozone loss is initiated by heterogeneous chemistry, and in the warm winter

2012/13 about 21 %. In winter 2010/11 Pommereau et al. (2013) got 120 DU ozone loss due to heterogeneous reactions, which

is about 70 % of the total loss.

Winters in the stratosphere are often divided into cold, or dynamically inactive, and warm, or dynamically active. In the cold20

winters the polar vortex is stable and more PSCs are formed and halogens can destroy ozone. Warm conditions in the winter

stratosphere are often due to SSW, which allows NOx-rich air masses from the mesosphere to enter the vortex and take part

in the ozone depletion (Sagi et al., 2017). Cold winters differ from the warm winters when looking the ozone loss and the

fraction of ozone loss initiated by heterogeneous chemistry. Also the PSC volumes and thus chlorine activation are in higher

level during cold winters. A lack of water leads to less ICE PSCs, and therefore to less ClOx. However, the ICE PSC volume25

is not the only explaining factor for ozone loss. The type 1 PSCs that form at higher temperatures are responsible for a large

fraction of the chlorine activation. The formation of STS and NAT is limited by the partial pressure of nitric acid, sulfuric acid

and water and hence the concentration of water vapour is not the only thing affecting the NAT/STS volume. However, the dry

conditions in the Min simulations have some limiting effect on the peak NAT/STS volume.

The cold winter 2010/11 differs from the others by an especially long chlorine activation period, which lead to large ozone30

depletion. In the warm winter 2012/13 the polar vortex was weak; however it was shifted to south where it was exposed to

sun-light earlier than usually, and thus ozone loss could start earlier. The ozone loss was however weak because chlorine

activation remained very low. The ozone depletion in 2012/13 occurred at higher altitudes than in the other years, because of

the NOx induced ozone loss. The 2013/14 winter was moderately cold, and the ozone depletion was second largest among
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the considered winters. In this winter the effect of water vapour changes on ozone loss was the largest across the studied

winters. Winter 2015/16 started as extreme cold (Matthias et al., 2016; Manney et al., 2016), but the stratosphere warmed early

terminating chlorine activation and leaving ozone loss relatively low, despite the fact that the cumulative ICE (and NAT/STS)

volumes were extremely large.

Chemical ozone destruction inside the Arctic vortex varied between 56 and 90 DU in the Interim-simulations, 61 and 91 DU5

in the Max-simulations and 54 and 84 DU in the Min simulations. We find that the meteorological conditions are more impor-

tant for the ozone depletion than the concentration of water vapour. Also the fraction of heterogeneous chemistry in the ozone

loss is more dependent on the temperature than on the water content. Livesey et al. (2015) arrived to similar conclusion, when

investigating ozone loss based on the MLS observations.

MacKenzie and Harwood (2004) showed from their chemistry–climate model simulations, that the increase of water vapour10

increases the volume of PSCs both by microphysical effects and due to lowering the stratospheric temperatures. The micro-

physical processes cover about 20 % of the increase and the rest is due to cooling of the stratosphere. In our study the volume of

ICE PSCs increased by 20 %, but only due to the microphysics. The increase could have been larger with temperature changes

in the simulations. However, the temperature effect can be seen by investigating different years. The difference in cumulative

ICE volumes between studied years was as large as factor 20, and in cumulative NAT/STS volumes it varied by factor 2.15

MacKenzie and Harwood (2004) got about 15 % more ozone loss at 465 K level with less than 1 ppm additional water vapour

without changing temperature. In our study the ozone loss increased by 1 DU (1 %) in 2010/2011, 5 DU (9 %) in 2012/2013,

7 DU (8 %) in 2013/2014 and 4 DU (6.5 %) in 2015/2016 when the water vapour concentration was increased by about 2 ppm.

When the water vapour was instead decreased by about 1.5 ppm, the ozone loss decreased by 6 DU (6.7 %), 2 DU (3.6 %),

8 DU (10 %) and 4 DU (6.5 %), respectively. The small contribution due to water vapour increase in winter 2010/11 can be20

compared to the results of MacKenzie and Harwood (2004) in the Antarctic vortex. There the chlorine activation is nearly

complete in every winter. In winter 2010/11 also in Arctic vortex the chlorine activation was nearly complete, and additional

water vapour did not change the activation and, thus not either the ozone depletion.

Note that effects of changing water vapour concentration on air temperature, not accounted for here, would probably have

increased the water vapour impact on ozone loss. The indirect impact comes through water vapour radiative impact on strato-25

spheric temperatures. Tian et al. (2016) estimates that a 2 ppm increase of water vapour would cool the stratosphere by approx-

imately 2 K, while Rex et al. (2004) estimates that a 1 K cooling could increase ozone loss in the Arctic by 15 DU. Thus based

on these estimates a water vapour increase of 2 ppm, similar to the difference between Interim and Max runs, could result in

up to 30 DU additional ozone loss. This estimate suggest that the direct water vapour impact on ozone loss quantified in our

experiments may account for only about 20 % of total ozone loss, but in order to confirm this estimation a designed experiment30

with a chemistry–climate model would be needed.

In summary, we find that variability of stratospheric water vapour of 3.5 ppm, comparable in magnitude to uncertainty in

simulated water vapour concentration near the tropical tropopause, results in differences in simulated Arctic ozone loss up to

15 DU, i.e. more than 10 % of the total chemical ozone loss in the Arctic vortex. Better understanding of tropical processes
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contributing to the stratospheric water vapour concentration, and thus constraining stratospheric water vapour, would therefore

reduce the uncertainty in Arctic ozone loss and improve future projections of ozone layer recovery.
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Figure 1. Water vapour and temperature around the tropical tropopause between 21◦ S and 21◦ N at level 80 hPa in 2013 and 2014. Green

line is Interim, blue Max, red Min simulation and black is MLS.
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Figure 2. Vortex average temperature within the Arctic polar vortex between altitudes 170 and 10 hPa.
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Figure 3. Water vapour concentration (ppm) at 54 hPa within the Arctic polar vortex. Green line is Interim, blue Max, red Min simulation

and black is MLS.
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Figure 4. The volume of ICE PSCs (106km3) within the Arctic polar vortex in the FinROSE simulations. The volume is calculated between

altitudes 15 and 37 km. Green line is Interim, blue Max and red Min simulation.
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Figure 5. The volume of combined NAT and STS PSCs (106km3) within the Arctic polar vortex in the simulations between altitudes 15 and

37 km. Green line is Interim, blue Max and red Min simulation.
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Figure 6. Chlorine partitioning (%) within the Arctic polar vortex at 54 hPa in the Min and Max simulations. Active form (green) is

Cl+ClO+2*Cl2O2. Intermediate (magenta) contains 2*Cl2+HOCl+OClO+BrCl+ClNO2 and reservoir chlorine (black) HCl+ClONO2.
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Figure 7. Chemical total ozone loss (DU) and difference between ozone loss in the Min and Max simulations within the Arctic polar vortex.

Green line is Interim, blue Max and red Min simulation. The difference is in black.

27

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-310
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 24 April 2018
c© Author(s) 2018. CC BY 4.0 License.



Figure 8. Averaged chemical ozone loss (ppm) in the Interim simulation (upper panels) and the difference between Max and Min simulations

(lower panels) within the Arctic polar vortex.
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