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Abstract. Marine aerosol particles are an important part of the natural aerosol systems and might have significantly impact on 

the global climate and biological cycle. It is widely accepted that truly pristine marine conditions are difficult to find over the 

ocean. However, the influence of continental and anthropogenic emissions on the marine boundary layer (MBL) aerosol is still 

less understood and non-quantitative, causing uncertainties in the estimation of the climate effect of marine aerosols. This 15 

study presents a detailed chemical characterization of the MBL aerosol as well as the source apportionment of the organic 

aerosol (OA) composition. The data set covers the Atlantic Ocean from 53°N to 53°S, based on four open-ocean cruises in 

2011 and 2012. The aerosol particle composition was measured with a high resolution time-of-flight aerosol mass spectrometer 

(HR-ToF-AMS), which indicated that submicrometer aerosol particles over the Atlantic Ocean are mainly composed of 

sulfates (50% of the particle mass concentration), organics (21%) and sea salt (12%). OA has been apportioned into five factors, 20 

including three factors linked to marine sources and two with continental/anthropogenic origins. The marine oxygenated OA 

(MOOA, 16% of the total OA mass) and marine nitrogen-containing OA (MNOA, 16%) are identified as marine secondary 

products with gaseous biogenic precursors dimethyl sulfide (DMS) or amines. Marine hydrocarbon-like OA (MHOA, 19%) 

was attributed to the primary emissions from the Atlantic Ocean. The factor for the anthropogenic oxygenated OA (Anth-OOA, 

19%) is related to continental long-range transport. Represented by the combustion oxygenated OA (Comb-OOA), aged 25 

combustion emissions from maritime traffic and wild fires in Africa contributed on average a large fraction to the total OA 

mass (30%). This study provides an important finding that long-range transport was found to contribute averagely 49% of the 

submicron OA mass over the Atlantic Ocean. This is almost equal to that from marine sources (51%). Furthermore, a detailed 

latitudinal distribution of OA source contributions showed that DMS oxidation contributed markedly to the OA over the South 

Atlantic during spring, while continental-related long-range transport largely influenced the marine atmosphere near Europe 30 

and the West and Central Africa (15°N to 15°S). In addition, supported by a solid correlation between marine tracer 
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methanesulfonic acid (MSA) and the DMS-oxidation OA (MOOA, R2 > 0.85), this study suggests that DMS-related secondary 

organic aerosols (SOA) over the Atlantic Ocean could be estimated by MSA and a scaling factor of 1.79, especially in spring. 

1 Introduction 

As one of the most important natural aerosol systems at the global level, the marine aerosol plays a significant role in the 

global radiation budget through both direct and indirect climate effects, as well as playing a role in biogeochemical cycling 5 

(O'Dowd and De Leeuw, 2007; Saltzman, 2009). In pristine conditions, marine aerosols consist of primary and secondary 

particles. Primary particles, usually referring to sea salt, are mechanically generated via sea/air interaction (Andreas, 2002). 

Secondary marine aerosol particles are chemically produced from atmospheric reactions of gases emitted by organisms in the 

ocean (Charlson et al., 1987). As one of the most well-known biological gases, dimethyl sulfide (DMS), emitted by marine 

phytoplankton, can be oxidized to eventually form sulfate and methanesulfonic acid (MSA) in the particulate phase (Ayers 10 

and Gillett, 2000; Bates et al., 1987; Charlson et al., 1987; Gondwe et al., 2003; Hertel et al., 1994; Shiro Hatakeyama, 1985; 

von Glasow and Crutzen, 2004). Other volatile organic compounds, such as isoprene and monoterpenes, can also be produced 

by marine organisms (Bonsang et al., 1992; Shaw et al., 2010; Yassaa et al., 2008) and transformed to secondary particles (Fu 

et al., 2011). However, the chemical and physical properties of the marine aerosol are still poorly understood. 

For a long time, non-sea-salt sulfate (nss-SO4) has attracted substantial research attention because it has been recognized as 15 

the major source of cloud condensation nuclei (CCN) over the ocean, consequently influencing the cloud albedo (Charlson et 

al., 1987). This biological regulation of climate has been referred to as the CLAW hypothesis (Charlson et al., 1987). Recently, 

this hypothesis was challenged because of the possible importance of non-DMS sources of the marine boundary layer (MBL) 

CCN, specifically sea salt and organics (Quinn and Bates, 2011). On the one hand, sea salt has been found to be a major mass 

component (60%) in the residual particles of dried cloud droplets (Twohy and Anderson, 2008). On the other hand, sea surface 20 

water is also a reservoir of organic matter that can be injected into the air and enriched in the particles (Aller et al., 2005; 

Kuznetsova et al., 2005; Russell et al., 2010; Schmitt-Kopplin et al., 2012; van Pinxteren et al., 2017). Organic matter has been 

observed to dominate the particle mass (up to 77%) during phytoplankton bloom periods at a coastal station in Ireland (O'Dowd 

et al., 2004; Ovadnevaite et al., 2011). However, many marine aerosol studies were based on observations on islands or in 

coastal areas, where biological activities are much higher than the remote ocean (as illustrated by global maps of chlorophyll-25 

a (Chl-a): https://earthobservatory.nasa.gov/GlobalMaps/view.php?d1=MY1DMM_CHLORA). Hence, more measurements 

aboard ships are required to provide details of the chemical composition and physical properties of marine aerosol over the 

open ocean far from the coast. 

The aerosol particle number size distribution and chemical composition over the ocean can be influenced by many nonmarine 

sources, including continental and ship emissions (Andreae, 2007; Simpson et al., 2014). It is therefore difficult to find pristine 30 

conditions over the ocean. Significant impacts from ship and continental emissions were observed over the Pacific and Atlantic 

(63% of the sampling time) (Frossard et al., 2014), the Arctic (Chang et al., 2011) and the North Pacific between South Asia 
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and North Japan (Choi et al., 2017). Nevertheless, there are still some regions with little anthropogenic impact on marine 

aerosols, such as the station on the coast of Ireland in the northeast Atlantic (Ceburnis et al., 2011; O'Dowd et al., 2014). Due 

to the paucity of ship-based measurements, the non-marine influence on MBL aerosol particles is still unknown, especially for 

a large area of the oceans. Additionally, previous studies were often based on offline measurements, which could hardly 

provide variation of aerosol chemical properties at high temporal and spatial resolution. In this study, aerosol particle 5 

measurements were conducted on board the German research vessel (R/V) Polarstern based on four cruises in the Atlantic 

Ocean in 2011 and 2012, covering the range from 53°N to 53°S. The detailed chemical properties of the aerosol over the 

Atlantic Ocean were measured by a high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). Based on this 

unique data set, sources of the organic aerosol particles over a major part of the Atlantic Ocean were investigated at a high 

temporal and spatial resolution to provide a latitudinal distribution of organic aerosol (OA) source contributions in spring and 10 

autumn in both the Northern and Southern Hemispheres. 

2 Methods 

2.1 Ship-board campaigns measuring submicrometer marine aerosols over the Atlantic Ocean 

This study is based on aerosol measurements conducted by the Leibniz Institute for Tropospheric Research (TROPOS) during 

four cruises on the R/V Polarstern in 2011 and 2012. Expedition details and ship tracks of the cruises are shown in Table 1 15 

and Figure 1. All cruises were part of transfer voyages between Bremerhaven, Germany (53°33′N, 8°35′E), and the German 

Antarctic research station via either Cape Town, South Africa (33°55′S, 18°25′E), or Punta Arenas, Chile (53°10′S, 70°56′W). 

During each cruise, the ship briefly (and only) moored at Las Palmas, Spain (28°9′N, 15°25′W), for resupply. The cruises can 

be divided into two groups according to the period of the year: Cruise 1 (CR1) and Cruise 3 (CR3) correspond to spring in the 

Northern Hemisphere (NH), while Cruise 2 (CR2) and Cruise 4 (CR4) correspond to autumn in the NH. In terms of the spatial 20 

range, CR1, CR2 and CR4 followed almost the same route, while CR3 had different tracks in the Southern Hemisphere but 

followed the same route as the other three cruises from ~ 15°N to 53°N (Figure 1). 

During all four cruises, the instruments were deployed inside (and on the roof) of an air-conditioned laboratory container, 

which was located on the first deck of the vessel, approximately 30 m above the ocean surface (Figure 1). The whole-air 

sampling inlet of the container was made of a stainless-steel tube (6 m long, 40 mm diameter, with an inclination angle of 45° 25 

to the container roof). A vacuum system maintained a stable total aerosol flow rate of 15 L min-1 through the inlet. The inlet 

loss due to diffusion and deposition was calculated (Figure S1), suggesting that the average inlet efficiency was nearly 100% 

in the particle size range between 10 nm and 1000 nm but decreased rapidly for particles smaller than 2 nm and larger than 

1500 nm. Therefore, the inlet could be considered a PM1.5 inlet. 

An isokinetic splitter was used downstream of the aerosol inlet to distribute the aerosol flow to different online instruments 30 

for analysis of aerosol physicochemical properties, as mentioned below. Particle size distributions from 10 nm to 3 µm 

(mobility diameter, equal to volume equivalent diameter for spherical particles) were provided by a combination of one 



4 

 

TROPOS-type mobility particle size spectrometer (MPSS, 10 nm - 800 nm, TROPOS custom-built, see Wiedensohler et al., 

2012) and one Aerodynamic Particle Size Spectrometer (TSI APS model 3321, 500 nm - 10 µm, TSI Inc., Shoreview, MN, 

USA). The particle hygroscopicity at 90% relative humidity (RH) was measured by a Hygroscopicity Tandem Differential 

Mobility Analyzer (HTDMA, TROPOS custom-built, e.g. Wu et al., 2011). A Differential Mobility Analyzer – Cloud 

Condensation Nuclei Counter (DMA-CCNc, TROPOS custom-built, e.g. Henning et al., 2014) was used for size-resolved 5 

CCN measurements. Optical properties including light scattering and absorption coefficients of particles were provided by an 

integrating nephelometer (Model 3563, TSI Inc., Shoreview, MN, USA), a multi-angle absorption photometer (MAAP, Model 

5012, Thermo Scientific, Waltham, MA, USA; see Müller et al., 2011) and a particle soot absorption photometer (PSAP, 

Radiance Research, Inc., Seattle, WA, USA). Particle chemical properties were investigated using a HR-ToF-AMS (Aerodyne 

Research, Inc., Billerica, MA, USA), which is the central instrument for the present study. In parallel, a high volume PM1 10 

sampler (Digitel, DHA-80, Digitel Elektronik AG, Switzerland) was fixed on the roof of the aerosol container and provided 

daily (24 h) filter samples. Before each campaign, all instruments in the aerosol container were synchronized to UTC 

(Coordinated Universal Time). 

2.2 Measurements  

2.2.1 Particle chemical analysis 15 

2.2.1.1 HR-ToF-AMS 

The HR-ToF-AMS (referred to as AMS in the following text) can provide the size-resolved chemical composition of 

nonrefractory submicron particles (Canagaratna et al., 2007; DeCarlo et al., 2006). Its size cut is within the range of near unity 

transmission efficiency of the main container inlet during R/V Polarstern cruises (Figure S1). To minimize the inlet loss 

between the AMS and MPSS, the AMS was located next to the MPSS, and the inlet of AMS was connected directly in front 20 

of the MPSS inlet. The two instruments shared a Nafion dryer to maintain the RH of the sampling flow below 40%. The AMS 

was operated alternatively between V- and W-modes at a time resolution of 2 min. Regular calibration was performed 

according to reported methods (Jimenez et al., 2003). Collection efficiency (CE) of 0.7 was applied based on intercomparisons 

between the (1) AMS and MPSS and (2) AMS and offline measurements, as already described in Huang et al. (2017). 

The default components measured by the AMS include organics, sulfate, nitrate, ammonium and chloride. In particular, the 25 

marine biogenic tracer MSA was quantified by the AMS based on standard calibrations and validated by collocated offline 

measurements (Huang et al., 2017). To reduce the signal noise , AMS data at 20-min resolution are calculated and used in the 

following analysis except as noted. Table 2 provides the detection limits (DLs) of detected AMS species at 20-min resolution 

(for calculation details, see Huang et al., 2017). In addition, a total uncertainty of ~ 30% is estimated for AMS measurements, 

including 10% for the inlet system, 20% for the ionization efficiency calibration and 20% for the collection efficiency (Poulain 30 

et al., 2014). 
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The AMS data measured during R/V Polarstern cruises were analyzed using the software Squirrel v1.54 for the unit resolution 

and Pika v1.13 for the high resolution, both downloaded from the ToF-AMS webpage (http://cires1.colorado.edu/jimenez-

group/wiki/index.php?title=ToF-AMS_Main). The software was based on Igor Pro (version 6.22A, WaveMetrics Inc., 

Portland, OR, USA). 

2.2.1.2 Offline measurements 5 

A PM1 high volume Digitel filter sampler was deployed to sample aerosol particles at a 24-hour time resolution (midnight to 

midnight, UTC) during R/V Polarstern CR1, CR2 and CR3, operating at a flow rate of 500 l min-1. The daily aerosol masses 

were collected on quartz fiber filters (150 mm, Munktell, MK 360, Bärenstein, Germany), which were pretreated at 105 °C for 

24 h before being measured. All filter samples were refrigerated at -20 °C until analysis. The total aerosol particle mass was 

determined by the weight of the clean and particle loaded filter, and the particle loaded filter was separated into several aliquots 10 

for different analyses. Inorganic ions were measured after aqueous filter extraction (25% of the filter in 20 mL, filtered with a 

0.45 µm syringe) with ion chromatography (IC, ICS3000, Dionex, Sunnyvale, CA, USA). Organic carbon (OC) and elemental 

carbon (EC) were analyzed by a thermo-optical method with a Sunset Laboratory Dual-Optical Carbonaceous Analyzer 

(Sunset Laboratory Inc., Tigard, OR, U.S.A.) using the EUSAAR 2 protocol (van Pinxteren et al., 2017). In total, 86 ambient 

samples from CR1 (25 samples), CR2 (30 samples) and CR3 (31 samples) were analyzed, while 45 effective samples were 15 

considered in this study due to the exclusion of filters contaminated by ship exhausts and/or sea water. 

2.2.2 Other measurements and data sources 

In this study, the MPSS and MAAP were used as external instruments to evaluate the data quality of the AMS or provide 

supplementary information for the total particle mass. The MPSS was operated at a time resolution of 8 min (CR1, CR2) and 

5 min (CR3, CR4), following recommendations from Wiedensohler et al. (2012). The resulting particle number size 20 

distribution was corrected for internal particle losses. Generally, an uncertainty of approximately 10% can be considered, as 

shown by intercomparison experiments (Wiedensohler et al., 2012). 

The particle mass concentration of equivalent black carbon (eBC) was converted from the particle light absorption coefficient 

provided by the MAAP. To be combined with the particle concentration measured by the AMS, eBC mass concentration in 

the submicrometer size range is required. Here, the MAAP was connected to the main inlet of the aerosol container, which 25 

mostly collected particles no larger than 1.5 µm. Additionally, Poulain et al. (2011b) reported that eBC particles are mainly 

(90% of mass) distributed in the submicrometer size range according to a comparison between the data from 2 MAAPs with 

upper size cuts of 1 µm and 10 µm inlets in Melpitz (Germany). Thus, we suppose that the measured eBC particles are almost 

in the submicrometer size range. In total, a global uncertainty of 10% was attributed to MAAP measurements taking the 

uncertainties of the instrument, size cutting, density and mass absorption efficiency into consideration. 30 

All meteorological parameters on R/V Polarstern cruises were measured by an onboard German Weather Service (DWD) 

station. Air mass back trajectories along the ship track in 12-hour time resolution (00:00 and 12:00 UTC every day) were also 

retrieved from the DWD using a global meteorological model GME (Global Model of the Earth). Air masses at 950 hPa 

http://cires1.colorado.edu/jimenez-group/wiki/index.php?title=ToF-AMS_Main
http://cires1.colorado.edu/jimenez-group/wiki/index.php?title=ToF-AMS_Main
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(approximately 500 m) were selected and considered as a well-mixed situation, and backward trajectories over the last five 

days (120 h) were investigated in this study. Navigation parameters together with meteorological parameters were supplied by 

the R/V Polarstern central data acquisition system (https://dship.awi.de/). 

2.3 Positive matrix factorization (PMF) 

The source apportionment of OA measured on the R/V Polarstern was analyzed using the PMF method (Paatero, 1997; Paatero 5 

and Tapper, 1994). High-resolution organic mass spectra and their uncertainties over the four cruises were combined and input 

into the Igor Pro-based PMF Evaluation Tool (PET, v2.06, Ulbrich et al., 2009). Before running the PMF model, the high-

resolution organic mass matrix and its error matrix were examined to remove incorrect signals (e.g., organic fragments 

influenced by strong sulfate signal), very low signals (e.g., Cx group, isotopes and m/z > 120), and ship contamination periods. 

According to the instructions from Ulbrich et al. (2009), a minimum error estimate of one measured ion was calculated; the 10 

“bad” data with signal-to-noise ratio (SNR) less than 0.2 were removed, and the “weak” data with SNR between 0.2 and 2 

were downweighted by a factor of 2; signals for m/z 44 (CO2
+) and related ions (O+, HO+, H2O+ and CO+) were also 

downweighted by a factor of 2 to avoid overestimating the importance of CO2
+. To find the best solution, PMF was run between 

1 and 7 factors for (1) rotational forcing parameter fPeak between -1 and 1 (step of 0.2) and (2) seeds with random starts 

between 0 and 50 (step of 2). Based on a comprehensive evaluation of solutions with different factor numbers (regarding both 15 

time series and mass spectral pattern), a 5-factor solution was selected with fPeak = 0 and Q/Qexp = 0.9246. The elemental 

analysis of PMF factors was performed using the analytical procedure for elemental separation (APES light v1.06) tool detailed 

by Aiken et al. (2008) and Canagaratna et al. (2015). Detailed PMF analysis results are shown and interpreted in section 3.2. 

3 Results and discussions 

3.1 Particle chemical composition 20 

3.1.1 AMS data quality assurance 

Ship contamination exclusion. During all four cruises, the ship’s own exhausts (including emissions from the engine and 

kitchen) from the main chimney occasionally affected the measurements, especially when the wind came from behind the ship. 

The specific contamination periods are identified based on extremely high concentrations of combustion tracers (e.g., eBC and 

organics) and meteorological parameters (e.g., wind direction), as illustrated in Figure S2 and Figure S3. Accordingly, the ship 25 

contamination range of the relative wind direction (RWD) was determined to be between 135° and 250°. With this criterion, 

85.2% of ambient AMS data (2-min resolution) remained as “clean” data during all four cruises. In the following text, all the 

data analyses are performed on the “clean” data. 

Intercomparisons between AMS and PM1 offline. Prior to investigating the particle chemical composition during the R/V 

Polarstern measurements, intercomparisons between AMS and parallel measurements were performed to assure the AMS data 30 

https://dship.awi.de/
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quality (Figure S4 and Figure S5). The mass concentration of the individual species from the AMS was compared to that from 

the offline measurements (Figure S4). Organic matter (OM) provided by AMS measurement is correlated with OC from filter 

measurements (R2 = 0.53). The slope of 1.75, i.e., the OM/OC ratio, is similar to those found in offshore areas, e.g., 1.8 in the 

Gulf of Mexico (Russell et al., 2009). An excellent linear correlation was found for sulfate (slope = 1.16, R2 = 0.94), and the 

correlation for ammonium was moderate (slope = 0.80, R2 = 0.63). No correlation was found for nitrate and chloride. A few 5 

values of nitrate from the AMS are higher than those from offline measurements, probably due to the evaporative loss of nitrate.  

The contribution of organic nitrates remains unknown but might not be negligible. Chloride is underestimated by the AMS 

because this instrument partly detects sea salt, which is the main source of the chloride measured during R/V Polarstern cruises. 

Considering that nitrate and chloride account for only a tiny fraction of the measured particle mass concentration and the sea 

salt is estimated specifically, the AMS can still properly detect a major part of MBL aerosols in our measurements. 10 

Mass closure with MPSS. The total particle mass concentration from the AMS is calculated as the sum of the mass 

concentrations of default AMS species (i.e., organics, sulfate, nitrate, ammonium) completed by estimated sea salt and eBC. 

This concentration is compared to the calculated particle mass concentration derived from the particle number size distribution 

(Figure S5). Taking sea salt into consideration can slightly improve the correlation between the two different techniques (the 

slope varies from 0.81 to 0.85; R2 varies from 0.72 to 0.77, Figure S5). The intercomparisons also demonstrated that a constant 15 

CE of 0.7 for AMS measurements could achieve better agreement between AMS and external measurements, whereas the 

composition-dependent collection efficiency introduced by Middlebrook et al. (2012) does not seem appropriate for R/V 

Polarstern measurements because of the high acidity and low ammonium nitrate content of the MBL aerosol particles (Huang 

et al., 2017). 

Sea salt estimation. The important primary marine product, sea salt, was estimated using the method from Ovadnevaite et al. 20 

(2012), who successfully quantified sea salt aerosol concentration with HR-ToF-AMS in Mace Head. The reported method is 

based on the typical sea salt ion NaCl+ (m/z 57.95) and a scaling factor of 51 derived from laboratory calibration using artificial 

seawater (Ovadnevaite et al., 2012). In R/V Polarstern measurements, NaCl+ fragment was well identified by the high-

resolution mode. Nevertheless, the linear correlation between NaCl+ from the AMS and sea salt derived from PM1 filter samples 

showed a mild relationship with R2 of 0.38 and yielded a scaling factor of 62 (± 6). To be consistent with the literature 25 

(Ovadnevaite et al., 2012; Ovadnevaite et al., 2014; Schmale et al., 2013), the scaling factor of 51 from the reference is applied 

to the sea salt surrogate (NaCl+) to estimate the sea salt mass concentration in this study. With this factor, the AMS estimated 

sea salt concentrations are quite close to those measured by the offline method, showing a slope of 1.01, and the main scattering 

points are located within the uncertainty range of the Mace Head measurements (Figure S6). Additionally, the p-value of the 

regression of AMS-derived sea salt with offline results is 0.009 (Spearman's correlation test), indicating that sea salt 30 

concentrations from the AMS and offline methods are correlated significantly. The uncertainties of this estimation method in 

R/V Polarstern measurements probably link to the different sampling (inlet) locations as well as the discrepant analysis 

methods between the AMS and offline measurements. 
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3.1.2 Chemical composition of the aerosol over the Atlantic Ocean 

An overview of the chemical composition of Atlantic aerosol particles during four cruises is given in Figure 2, including AMS 

default species (organics, sulfate, nitrate and ammonium), specially quantified marine products MSA and sea salt, as well as 

eBC. Because the ship tracks on latitude are nearly monotonic to the cruise time, particle chemical composition as a function 

of latitude shows both temporal variation and latitudinal distribution. Air mass back trajectories indicate that the air masses 5 

captured during R/V Polarstern cruises either came from the ocean or were influenced by the continents (Europe, Africa or 

South America), as marked in Figure 2. Additionally, the statistics of seasonal variation of PM1 chemical composition over 

the North (>5°, i.e., 5°N) and South (<-5°, i.e., 5°S) Atlantic Ocean are provided in Table 3. Because there is no clear seasonal 

difference in the chemical composition of measured PM1 in the area near the equator, the average, median, standard deviation 

and percentage in total were calculated for the region from 5°S to 5°N in latitude (defined as tropical in this study) regardless 10 

of the season and are also shown in Table 3. 

Over all measurements, the total measured submicron particle mass concentration varied over a large range from 0.22 µg m-3 

to 14.15 µg m-3 with a median of 1.83 µg m-3. The reported concentrations sit between the clean marine case (from 0.27 to 

1.05 µg m-3) measured at the coastal station Mace Head, Ireland (Ovadnevaite et al., 2014) and the case of mixed marine-

continental air masses (from 3.69 to 4.17 µg m-3) over the North Atlantic (Dall'Osto et al., 2010). This difference suggests that 15 

the detected aerosols during the R/V Polarstern cruises were from mixed sources as evidenced by the air mass origins. The 

average chemical composition of the measured particles indicated that sulfate was the major contributor to the total particle 

mass concentration (50 ± 13%), followed by organics (21 ± 9%), sea salt (12 ± 11%), ammonium (9 ± 4%), eBC (5 ± 4%) and 

nitrate (3 ± 2%). The mass concentrations of total particles and individual species showed large variations associated with time 

and were obviously not distributed normally. Hence, the median rather than average of the mass concentration is used below. 20 

During all four cruises, sulfate dominated the particle mass most of time, showing the highest median mass concentration (0.78 

µg m-3) of all six species. Sulfate could contribute up to 85% of the total particle mass concentration. Seasonal discrepancies 

were found for sulfate mass concentration (a higher level in spring than in autumn), especially over the South Atlantic (Table 

3). A similar seasonal variation of the marine biogenic tracer MSA was also observed (Huang et al., 2017), suggesting that 

biogenic sources (i.e., phytoplankton) contributed significantly to sulfate (Charlson et al., 1987; Hoffmann et al., 2016). In the 25 

tropical Atlantic, sulfate appeared at a slightly lower value than that in spring but was still much higher than that in autumn. 

Nonetheless, anthropogenic sources of sulfate cannot be ruled out and can even be important, considering that long-range 

transport has been found to be a major source of sulfate (more important than DMS) over the tropical Pacific (Simpson et al., 

2014).  

Organics (here including MSA) are the second most abundant species (median: 0.26 µg m-3). Organics did not show 30 

pronounced variation associated with seasons but did vary with location. The mass concentration of organics was elevated in 

air masses under continental influence. During CR2 and CR4, organics dominated the total measured particle mass 

concentration (up to 59%) in the region between 0° and 15°N. This resulted in substantial organic aerosols over the tropical 



9 

 

Atlantic (median: 0.34 µg m-3). Moreover, the non-marine species eBC tended to increase together with organics, especially 

near the equator, although taking up only a tiny portion of the total particle mass in the whole measurements, which indicates 

that anthropogenic emissions may be a significant contributor to the organic aerosols over this region of the Atlantic Ocean. 

The marine primary product, sea salt, was found to play a minor role (6% ~ 17% in different regions) in the measured 

submicron particles during R/V Polarstern cruises. However, the mass concentration of sea salt could reach 1.63 µg m-3 while 5 

taking up to 66% of the total particle mass loading associated with elevated wind speed. This finding is comparable to the 

importance of sea salt reported over the Northeast Atlantic (66 – 84%) (Ovadnevaite et al., 2014) and in the sub-Antarctic 

islands (47%) (Schmale et al., 2013) for high wind speed (> 10 m s-1). 

The ammonium concentrations did not exhibit a seasonal difference between spring and autumn. The highest median value 

was found over the tropical Atlantic, followed by the North Atlantic, while the lowest median value was in the Southern 10 

Hemisphere. Both continental emissions via long-range transport and marine organisms could be the origin of the ammonium 

or its precursor ammonia in the MBL (Adams et al., 1999). Nitrate showed low mass concentration (0.04 µg m-3), which is not 

surprising because it both has no marine sources and would mainly occur in supermicron particles - nitrate would react with 

sulfuric acid and escape from submicron particles in the form of gaseous nitric acid, which will relocate to larger particles, 

e.g., sea salt particles (Saltzman, 2009). 15 

3.2 Source apportionment for organic aerosols 

Source apportionment of the MBL organic aerosol particles is necessary for a better understanding of both the sources 

contributing to the OA and their distribution over the Atlantic Ocean. For the OA source apportionment, PMF analysis was 

performed on the dataset of high-resolution OA mass spectra. Eventually, the best solution was obtained with five factors. A 

summary of the model validation of and selection of the five-factor solution is provided in Figure S7, Figure S8 and Figure S9 20 

with captions. Among the five OA factors of the selected solution, three marine factors and two nonmarine factors were 

identified. Their temporal variation and mass spectral profiles are shown in Figure 3. The marine factors included (1) marine 

oxygenated organic aerosol (MOOA), (2) marine nitrogen-containing organic aerosol (MNOA), and (3) marine hydrocarbon-

like organic aerosol (MHOA), the only primary OA factor. The remaining two factors related to nonmarine origins were 

anthropogenic oxygenated organic aerosol (Anth-OOA) and combustion oxygenated organic aerosol (Comb-OOA). 25 

Table 4 summarizes all comparisons for source identification of the five OA factors, including (1) correlations of time series 

between the OA factors and the measured tracers and (2) correlations of mass spectral patterns between the OA factors and 

the identified OA sources in the literature. The average mass fraction of all five factors in the total measured OA, the functional 

group composition and the diurnal variation of each factor with global radiation (the sum of the direct solar radiation and 

diffuse radiation) are shown in Figure 4. As a final summary, Figure 5 provides the latitudinal distribution of five OA factors 30 

(mass fraction in the total OA mass) during the four R/V Polarstern cruises. Note that the residuals correspond to the 

unexplained organics by PMF. They are negligible in the average case (Figure 4) but can be recognized in the latitude series 
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(Figure 5). Details on the characteristics of each OA component, including mass spectral profile, temporal variation, and 

associations with different sources and processes, are discussed in the following sections. 

3.2.1 Marine oxygenated organic aerosol (MOOA) 

The MOOA factor contributes an average of 16% to the total OA mass, with a median mass concentration of 0.04 µg m-3. This 

factor is well correlated with the marine secondary organic aerosol (SOA) tracer MSA (R2 = 0.83, Figure 3) and is consequently 5 

linked to the oxidation of DMS emitted by phytoplankton (Charlson et al., 1987; Gondwe et al., 2003). One characteristic of 

the MOOA factor is a high contribution from CxSy
+ ions (7%), which mainly include the MSA identified ions CH3SO2

+ (m/z 

78.985), CH2SO2
+ (m/z 77.978), CH4SO3

+ (m/z 95.988), CHS+ (m/z 44.980), and CH2S+ (m/z 45.988) (e.g. Huang et al., 2017). 

This leads to a high S/C ratio (0.030), which is 10 to 30 times higher than that of other factors (Figure 3). Note that the S/C 

ratios derived from the PMF analysis tool have to be used with caution because of calculation uncertainties (Aiken et al., 2007), 10 

but they can still provide an indication of the significance of sulfur when calculated with the same tool among the factors from 

the same dataset. For instance, the S/C ratio of the MOOA factor is 10 to 30 times higher than the other four OA factors (Figure 

3). Even though organic sulfur species play a remarkable role, oxygenated organic fragments are still the major species, 

accounting for 52% of MOOA mass loading (CxHyO+ 30%, CxHyOz
+ 22%, Figure 4a). These fragment families are followed 

by hydrocarbon fragments, making up 30% of the MOOA mass loading. CH3
+ is the most abundant fragment of the CxHy

+ 15 

family, contributing 43% to the total CxHy
+ group mass loading in the MOOA. As a result, MOOA shows the highest H/C ratio 

(1.73) of all five OA factors, similar to those reported previously: 1.57 (marine OA) in Paris during summer (Crippa et al., 

2013) and 1.8 (MOOA) on Bird Island in the Sub-Antarctic region (Schmale et al., 2013). This suggests that a high level of 

hydrocarbon ions (in particular CH3
+) together with CxSy

+, could be an important characteristic for marine source SOA. The 

MOOA includes almost all organic fragments observed in MSA, as well as some additional oxygenated fragments, which 20 

indicates that the MOOA factor consists of not only MSA but also other organic components either emitted from the same 

source or produced via similar processes as MSA. This finding is also proved by the relationship between the mass 

concentration of MOOA and MSA (slope = 2.19, R2 = 0.83). Significant oxygen-containing ions, such as CO2
+ (m/z 43.990) 

and COOH+ (m/z 44.998), could be related to carboxylic acids, which are important in the composition of secondary marine 

aerosol (Decesari et al., 2011; Fu et al., 2011). The possible precursors of these carboxylic acids could be isoprene and 25 

monoterpenes emitted by marine phytoplankton (Bonsang et al., 1992; Shaw et al., 2010; Yassaa et al., 2008), which can be 

easily oxidized to form highly oxygenated products such as 2-methylglyceric acid, 2-methyltetrol and pinic acids (Claeys et 

al., 2010; Fu et al., 2011). It is well known that isoprene and monoterpene oxidation also leads to the formation of organosulfate 

compounds (Claeys et al., 2010; Fu et al., 2011; Iinuma et al., 2007; Surratt et al., 2008; Surratt et al., 2007), which can 

contribute to the CxSy
+ fragments observed in the MOOA factor.  30 

The secondary origin of MOOA was supported by its diurnal cycle (Figure 4), showing a small but clear elevation in the 

afternoon, reaching the maximum (0.05 µg m-3) at 16:00, almost when global radiation started declining. To focus on the 

atmospheric behavior of MOOA and exclude the influence of other chemical compositions, a “MOOA dominating period” 
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was selected for a case study (approximately 57 h from 19:40, 18.11.2012 to 04:20, 21.11.2012). As shown in Figure 6, the 

MOOA played an important role in the total OA during the selected period, constituting an average of 78% (up to 100%) of 

the total OA mass concentration. The MOOA had strong correlation with MSA with R2 of 0.81, almost the same as the overall 

coefficient (R2 = 0.83). Note that the latter one is slightly higher mainly due to greater variation of both MOOA and MSA 

concentrations during all four cruises. This covariation also resulted in a quite stable MSA/MOOA ratio of 52% ± 9% during 5 

the MOOA dominating period. NO3, NH4 and eBC showed low mass concentrations (median: 0.04 µg m-3, 0.08 µg m-3 and 

0.05 µg m-3, respectively) close to their DLs, indicating a negligible impact from anthropogenic emissions during this period. 

The diurnal pattern for this specific period (Figure 6b), with a minimum of 0.11 µg m-3 (MOOA mass concentration) at 07:00 

and a maximum of 0.25 µg m-3 at 16:00, was more noticeable than the average case (Figure 4b). Similar diurnal cycles are 

observed for MSA and sulfate, suggesting that MOOA, MSA and sulfate are formed via the same secondary pathway (Charlson 10 

et al., 1987; Gondwe et al., 2003; von Glasow and Crutzen, 2004). Model studies found that the DMS is mainly (84% globally) 

removed via photo-oxidation by OH radicals (Kloster et al., 2006) or oxidized by O3 in aqueous-phase reactions to yield a 

significant amount of MSA (Hoffmann et al., 2016). These findings suggest that DMS oxidation is controlled by photochemical 

processes and that its products should show a daytime maximum associated with solar radiation (as well as global radiation, 

as shown in Figure 6b).  15 

The enhancement of MOOA mass concentration was observed to be independent of the air mass categories, and most MOOA 

peaks were associated with marine air masses (Figure 3). The average MOOA mass concentration with marine air masses was 

0.05 ± 0.05 µg m-3 with a maximum of 0.31 µg m-3, both higher than those for MOOA from air masses with continental 

influence, i.e., 0.04 ± 0.03 µg m-3 with a maximum of 0.19 µg m-3. This finding also supports that MOOA originate mainly 

from the ocean. Related to the DMS oxidation, the MOOA factor shows prominent seasonality and higher contributions to the 20 

total OA mass concentration in spring than in autumn; moreover, it shows higher contributions over the South Atlantic than 

the North in spring (Figure 5). In particular, the MOOA could be the exclusive contributor to the OA at approximately 16°S 

in spring, linked to the high biological activity fueled by the Benguela upwelling system, which is a northward-flowing ocean 

current along the west coast of southern Africa from Cape Point (Nelson and Hutchings, 1983) bringing up the nutrients from 

deep cold waters. 25 

Because the MOOA component is successfully traced by MSA, the relationship between the MSA and MOOA should be 

applicable to estimate DMS-related SOA over the Atlantic Ocean. The correlations between MSA and MOOA in spring, 

autumn and tropics (with unclear seasonal variation, 5°N to 5°S latitude) are shown in Figure 7. The scattering points are fitted 

using linear orthogonal distance regression (ODR). Overall, the correlations between MSA and MOOA in three cases are 

robust (R2 = 0.85, 0.53, 0.88), consistent (slope = 0.57, 0.56, 0.56), and independent of regions and seasons (for spring and 30 

autumn). We therefore infer that the relation between MSA and its concomitant (DMS-related) SOA is roughly stable over the 

Atlantic Ocean and suggest estimating MOOA mass concentration as the product of the MSA concentration multiplied by a 

factor of 1.79, which may be useful for a better estimation of marine DMS-related SOA both in field measurements and in 

models. 
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3.2.2 Marine nitrogen-containing organic aerosol (MNOA) 

The MNOA component showed a unique time series and poor correlation with the other four factors (all R2 were below 0.13). 

The mass concentration of MNOA varied from below the DL to 0.47 µg m-3 (median 0.03 µg m-3) and contributed to 16% of 

the OA. The MNOA is characterized by a remarkable contribution from organonitrogen fragments (17%, Figure 4), mainly 

CxHyN+-related, such as C2H6N+ (accounting for 5.3% of total m/z 44 intensity), C2H7N+ (2.6% of m/z 45) and CH4N+ (2.7% 5 

of m/z 30), which are at least one order of magnitude higher (intensity fraction in the located m/z) than in other factors. 

Nevertheless, this factor is still dominated by oxygenated fragments including CxHyO+ (30%) and CxHyOz
+ (28%, Figure 4), 

and the diurnal variation of MNOA shows a broad afternoon peak with maximum at 16:00 UTC (Figure 4), similar to that of 

the amine-related secondary factor in New York City showing a diurnal pattern with maximum at noon (Sun et al., 2011). Both 

of these findings may indicate that secondary formation could be one of the possible pathways for MNOA generation. 10 

N-containing OA (NOA) factors from PMF analysis have been found in many studies and can be related to various origins 

highly dependent on local sources, such as Gentoo penguin hatching activities (Schmale et al., 2013) and local primary 

(industrial) emissions (Aiken et al., 2009). During the R/V Polarstern campaign, the MNOA is correlated with neither eBC (R2 

= 0.17) nor NO3 (R2 = 0.06), excluding the possibility of combustion and anthropogenic (continental) sources. Meanwhile, 

high similarity (R2 = 0.70) of the mass spectral profile is found between the R/V Polarstern MNOA and the NOA in Sun et al. 15 

(2011), who attributed that factor in New York City to marine and local industry emissions and stressed the possibility of gas-

to-particle conversion via the reactions of acidic gases and the gaseous amines. It is worth noting that the characteristic CxHyN+ 

fragments are actually different in these two studies: C3H8N+ (m/z 58) and C2H4N+ (m/z 42) dominated the CxHyN+ group in 

the New York study, while C2H6N+(m/z 44), C2H7N+ (m/z 45) and CH4N+ (m/z 30) played a more important role in R/V 

Polarstern measurements. These C1-C3 CxHyN+ fragments may originate from low molecular weight aliphatic amines such as 20 

methylamine (CH5N), dimethylamine (C2H7N) and trimethylamine (C3H9N), which have been regarded as the main species in 

organonitrogen fragments from marine sources (Gibb et al., 1999; Müller et al., 2009) as well as important biogenic SOA 

precursors over the ocean (Dall'Osto et al., 2012; Facchini et al., 2008; Müller et al., 2009). In addition, a large number of 

CxHyN+ fragments results in the highest N/C atom ratio (0.124) among all five OA factors, and this N/C ratio is close to the 

one used in a global 3D chemistry-transport model by Kanakidou et al. (2012) to trace the organonitrogen from ocean sources 25 

(0.15), while it is different from the ratio for biomass burning (BB) and anthropogenic sources (0.3). This may also support 

the idea that the MNOA originates from the ocean, likely transformed from phytoplankton-emitted gaseous amines. 

The MNOA shows no correlation with marine secondary product tracer MSA (R2 = 0.01). This absence of correlation has 

already been reported in several marine measurements of particulate amines with biogenic origins (Facchini et al., 2008; 

Miyazaki et al., 2011; Müller et al., 2009), although acid-base reactions were considered a key process of gas-to-particle 30 

conversion for amines over the ocean (Facchini et al., 2008; Sun et al., 2011). Given that gaseous amines can enter the particle 

phase in different ways (Ge et al., 2011), other pathways, including oxidation, nucleation and condensation, should also be 

considered. 
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During each cruise, the MNOA had a low mass concentration with no clear seasonality. However, its high significance can be 

found when the total OA mass concentration was extremely low, generally below 0.5 µg m-3 (Figure 5), e.g., 20°S to 20°N in 

CR1 and CR3. It is interesting that during CR3, the MNOA contributed to nearly half of the total OA between the equator and 

20°S in association with very clean air masses from the open ocean, which may confirm its marine origin. We also noticed 

that the MNOA had a similar variation trend during all four cruises, slowly increasing and then decreasing broadly between 5 

20°S and 20 °N. This variation was generally coincident with the change in the water temperature (Figure S10). The covariation 

might be explained by the biogenic sources of the MNOA - temperature could positively affect metabolism rate, including N 

excretion of marine microorganisms (Ikeda, 2014). 

3.2.3 Marine hydrocarbon-like organic aerosol (MHOA) 

The only true primary factor identified, MHOA, is related to marine primary emissions. It is characterized by a high 10 

contribution of hydrocarbon ions (64% of total factor mass concentration, Figure 4), which is usually considered a feature of 

primary emissions. One-fourth of the MHOA mass was identified as oxygenated organic compounds (CxHyO+, CxHyOz
+). This 

finding is not surprising because carboxylic acids can also be supplied via the primary pathway and have been identified as a 

distinct type of primary marine organic matter (Hawkins and Russell, 2010). A small but pronounced portion (5%) of CxHyN+ 

fragments was observed in total MHOA mass loadings, consistent with the findings in previous measurements that amines 15 

also existed in primary marine OA (Frossard et al., 2014; Quinn et al., 2015). 

The time series of MHOA mass concentration was spiky and varied from <DL to 0.67 µg m-3 with a median of 0.04 µg m-3. It 

contributed 19% to the total OA mass concentration, comparable to two marine secondary factors (MOOA 16%, MNOA 16%). 

No clear diurnal pattern was found for the MHOA, indicating that the contribution of photooxidation could possibly be ignored 

for this factor. 20 

Considering that the ship contamination periods have been eliminated and the MHOA was not correlated with eBC (R2 = 0.04), 

fresh ship emissions were unlikely to have been a contributor to this primary factor. The primary emissions from the ocean 

were considered a main source of the MHOA because of the similarity (R2 = 0.61) in the mass spectral profile between this 

factor and primary marine OA during high biological activity at Mace Head, Ireland (Ovadnevaite et al., 2011). For the entire 

measurement period, the MHOA was not correlated with sea salt (R2 = 0.01) or the wind speed (R2 = 0.01), even though a 25 

similar variation trend (but no strong linear correlation, R2 < 0.4) was found in several periods, such as the southern parts (from 

33°S to 0°) of CR2 and CR4 (Figure S11). This trend does not conflict with the speculation that MHOA is related to marine 

primary emissions because the mass fraction of organics in the sea spray aerosol was found to be size-dependent: increasing 

with decreasing particle size (Gantt et al., 2011; Quinn et al., 2015). The enrichment factor of organic compounds, i.e., the 

ratio between organic carbon in sea spray aerosols and that in sea water, is also largely influenced by particle size (Quinn et 30 

al., 2015). In addition, the transfer of organic matter from seawater to the particles is chemoselective and more complicated 

than it is for inorganic sea salt (Schmitt-Kopplin et al., 2012). During all four cruises, the MHOA factor did not show any 

location dependence but played a more prominent role in regions with extremely low OA mass concentrations, e.g., the 
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southern part of CR1 and the whole period in CR3 (Figure 5). This finding could support the hypothesis that the MHOA 

originates from the ocean. 

3.2.4 Anthropogenic oxygenated organic aerosol (Anth-OOA) 

Although measured over the ocean, 19% of the organic aerosol mass was contributed by continental emissions from human 

activities, presented by the Anth-OOA factor with a similar median (0.04 µg m-3) but the highest maximum (2.70 µg m-3) 5 

compared to the other OA factors. The Anth-OOA factor was identified by anthropogenic tracer NO3 regarding time series (R2 

= 0.52, Figure 3) and resemblance of mass spectral profiles to several reported continental OOA factors (Table 4). The Anth-

OOA in this study was in excellent agreement (R2 = 0.98) with a continental organics factor observed over the central Arctic 

Ocean (Chang et al., 2011). It was also similar (R2 = 0.67) to the average OOA factor based on nine urban measurements (Ng 

et al., 2011). As shown in Figure 4, the Anth-OOA factor was dominated by CxHyO+ fragments (contributing 40% to the total 10 

factor mass), followed by CxHyOz
+ (26%). Significant contributions were observed from CO2

+ (m/z 44, 21% of total Anth-

OOA mass loading) and C2H3O+ (m/z 43, 6%), comparable to values in previous studies in urban and rural areas (e.g. Ng et 

al., 2011; Poulain et al., 2011a). Another carboxylic acid fragment, CO+ (m/z 28, 21% of total Anth-OOA mass loading), was 

estimated according to the CO2
+ ion, and thus CO+ is not specifically discussed in the present work. There was no clear diurnal 

pattern for the Anth-OOA factor (Figure 4). The Anth-OOA mass concentration dropped in the early morning from 05:00, 15 

reached a minimum at ~10:00, then stayed stable until midnight. This change may be explained by the rising mixing layer in 

the morning, which dilutes the particle concentration, and/or increasing temperature after sunrise, which drives volatile species 

from particles into the gas phase. Hence, the Anth-OOA is unlikely to be contributed by local photochemical formation, but 

continental outflow from anthropogenic activities via long-range transport. 

Significant elevation of Anth-OOA mass concentrations (up to 2.70 µg m-3) was associated mainly with continental air masses 20 

(Figure 3). The median value of the Anth-OOA mass concentration in marine air masses was 0.03 µg m-3 and higher (0.08 µg 

m-3) during periods influenced by continental air masses. Additionally, the contribution of Anth-OOA to the total OA 

significantly increased, even when close to Africa and Europe (Figure 8). This confirms that the continental outflow is the 

main source of the Anth-OOA factor. 

3.2.5 Combustion oxygenated organic aerosol (Comb-OOA) 25 

Of all five factors, the Comb-OOA is the only one correlated with eBC (R2 = 0.69, Figure 3), pointing to combustion sources. 

It was the most abundant component of the measured OA on average, contributing 30% of the total OA mass. The median 

Comb-OOA mass concentration was 0.07 µg m-3 (<DL to 1.38 µg m-3). Similar to the Anth-OOA, most Comb-OOA peaks 

appeared together with continental air masses (Figure 3), indicating a non-marine source. One significant characteristic of the 

Comb-OOA factor was its highly oxygenated level. Oxygenated fragments including CxHyO+ and CxHyOz
+ accounted for 73% 30 

of the total Comb-OOA mass concentration (Figure 4). This factor contained remarkably high CO2
+ (CO2

+/total Comb-OOA 

= f44 = 32%), indicating a possible origin from organic acids. As a result, the Comb-OOA exhibited the highest O/C ratio (O/C 
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= 1.35) and lowest H/C ratio (H/C = 0.94) of all OA factors. The Comb-OOA was also contributed to by pronounced N-

containing fragments: CxHyN+ (4%) and CxHyOzNw
+ (2%). Despite the small contribution to the Comb-OOA mass 

concentration, CxHyOzNw
+ fragments were primarily distributed in this factor (46% of total CxHyOzNw

+ intensity). 

The Comb-OOA factor was attributed to aged aerosol particles from combustion emissions mainly because of its highly 

oxygenated level and covariance with combustion tracer eBC. Additionally, this factor had a similar mass spectrum to the OA 5 

below clouds measured by a flight impacted by ship emissions (R2 = 0.73) (Coggon et al., 2012) and the photooxidation 

products of diluted diesel generator exhaust (R2 = 0.46) (Sage et al., 2008), rather than any fresh combustion emissions, e.g., 

the fresh ship emissions factor (R2 = 0.00) (Chang et al., 2011), the average BB organic aerosols BBOA (R2 = 0.09) (Ng et al., 

2011), and the average HOA factor (R2 = 0.01) (Ng et al., 2011). This finding is reasonable because the influence of direct 

ship emissions from the R/V Polarstern has been removed. Sage et al. (2008) found that SOA could be quickly formed from 10 

fresh diesel exhausts, and the aged products were increasingly oxidized with time, resembling the profile of atmospheric aged 

OA within a few hours of oxidation. Given that most of the time, the R/V Polarstern travelled along major shipping routes 

(Figure S12), a possible source of the Comb-OOA could be the transported ship exhausts from other ships. 

The BB emissions via long-range transport are likely to be the other important source of the Comb-OOA, indicated by good 

correlation with CxHyOzNw
+ fragments (from AMS, R2 = 0.83) and potassium (K+, from offline measurements, R2 = 0.61), as 15 

shown in Figure 8. The CxHyOzNw
+ ions have been related to the photooxidation product of m-cresol, a typical wood burning 

emission (Iinuma et al., 2010; Poulain et al., 2011a), and potassium is commonly regarded as an unreactive tracer of BB 

emissions. Nevertheless, some often used BB tracers, C2H4O2
+ and C3H5O2

+ (Capes et al., 2008; Cubison et al., 2011), were 

extremely low in our Comb-OOA factor (C2H4O2
+/total Comb-OOA = f60 = 0.06%, C3H5O2

+ /total Comb-OOA = f73 = 0%), 

even though the f60 increased to 0.18% during the high Comb-OOA period (the factor mass concentration and mass fraction in 20 

total OA reached 1.02 µg m-3 and 47%). The absence of these BB tracers may be caused by decay in the aging process during 

long-range transport. Fresh BB emissions can be quickly photochemically aged (in several hours), resulting in the formation 

of new OA with a higher degree of oxygenation and a significant decrease in BB tracers as well as saturated hydrocarbon 

compounds. This change has been observed in both laboratory (Bertrand et al., 2018; Grieshop et al., 2009) and field 

measurements (Capes et al., 2008; DeCarlo et al., 2010). 25 

The significance of the Comb-OOA, i.e., the aged particles from combustion emissions, are dependent on regions and seasons 

(Figure 5). More than 50% of the total OA was contributed by aged particles from combustion emissions, especially during 

the two November cruises (CR2 and CR4) between 15°N and 15°S, when the ship was near West and Central Africa. It is well 

known that Africa is the single biggest continental source of BB emissions with strong seasonality (Roberts et al., 2009). In 

West and Central Africa, more intense fires occurred in November than in April/May according to the fire maps (Figure S13), 30 

consistent with higher mass concentrations of Comb-OOA in CR2 and CR4, than during the other two cruises. In addition, the 

mass concentration of the Comb-OOA increased when the ship was near the English Channel, where marine traffic is very 

busy (Figure S12). 
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4 Summary 

This study presents the physicochemical measurements of the MBL aerosol over the Atlantic Ocean conducted during four 

open-ocean cruises for a total of 17 weeks in 2011 and 2012 and covering latitudes from 53°N to 53°S. Based on this unique 

dataset, especially the part obtained with HR-ToF-AMS, the aerosol chemical composition and OA sources were investigated 

in detail. 5 

The submicrometer chemical aerosol composition varied dynamically during the cruises, with an average of sulfate (50%), 

organics (21%), sea salt (12%), ammonium (9%), eBC (5%) and nitrate (3%). Sulfate was found to be the dominant species of 

submicron aerosol particle over the open Atlantic Ocean. Sulfate also showed noticeable seasonality, suggesting a major 

contribution of marine biogenic sources. Considering that organics are an important constituent of the submicrometer aerosol 

and contain a large number of compounds from different sources and processes, source apportionment of OA was therefore 10 

performed using the PMF method. Five OA factors were identified and linked to distinct sources, including following three 

marine factors: a) a MOOA factor related to marine DMS oxidation (16% of the total OA mass concentration), b) a MNOA 

factor from the secondary formation of biogenic amines (16%), and c) a MHOA factor from primary marine emissions (19%). 

Two non- marine factors have been identified: a) an Anth-OOA factor from continental outflow (19%) and b) a Comb-OOA 

factor attributed to aged aerosol particles from combustion emissions mainly from biomass burning over the African continent 15 

and marine traffic over the Atlantic Ocean (30%). The MOOA factor shows prominent seasonality, with an increased 

contribution to the total OA mass concentration in spring than in autumn. Moreover, it shows a higher contribution over the 

Southern than over the North Atlantic Ocean in spring. This seasonality is, however, not observed for the other two marine 

factors. The MNOA and MHOA both played a significant role in the clean marine regions with low particle mass concentration 

(e.g., in CR3 when the ship started from Punta Arenas). Continental influences on the MBL aerosol over the Atlantic Ocean 20 

were latitude-dependent during the R/V Polarstern measurements, represented by the Anth-OOA and Comb-OOA factors. 

Both factors had dominant, even overwhelming, mass fractions, when measurements have been performed close to a continent, 

e.g., Europe and West and Central Africa, especially between 15°N and 15°S. 

During the R/V Polarstern cruises, marine sources contributed on average 51% to the total OA mass concentration, close to 

that of the non-marine emissions (49%), reflecting the fact that continental-related long-range transport have a large influence 25 

on the MBL aerosol,  even over the open ocean. However, the latitudinal source contribution shows that marine-source OA 

are ubiquitous and, in a great part of cruising areas, dominate the total OA mass loadings. DMS oxidation could even be the 

sole source of the OA in some regions, e.g., with upwelling, while the marine primary OA and amine-related organics 

represented a background marine contribution and were more visible in the clean marine areas. Finally, as a coproduct of the 

source apportionment, a solid linear correlation has been found between MOOA and MSA, which enables the estimation of 30 

marine SOA with DMS origin in the spring as MSA mass concentration times a factor of 1.79. This may be applicable in both 

field measurements and model studies with a focus on marine aerosols. 
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Data availability. The data in the study are available upon request at TROPOS (poulain@tropos.de). The AMS data were 

analyzed using the software Squirrel v1.54 and Pika v1.13, both downloaded from the ToF-AMS webpage 

(http://cires1.colorado.edu/jimenez-group/wiki/index.php?title=ToF-AMS_Main). All reference mass spectra were 

downloaded from AMS spectral database (UMR: http://cires1.colorado.edu/jimenez-group/AMSsd/, HR: 

http://cires1.colorado.edu/jimenez-group/HRAMSsd/). Air mass back trajectories along the ship track were ordered and 5 

obtained from German Weather Service (DWD). Navigation parameters and meteorological parameters were downloaded 

from the R/V Polarstern central data acquisition system (https://dship.awi.de/). Fire maps were obtained from an online 

database of MODIS satellite (http://rapidfire.sci.gsfc.nasa.gov/firemaps/). Density map of the maritime traffic was a snapshot 

taken from https://www.marinetraffic.com/en/ in May 2014.   
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Table 1. The description of four cruises 

Expeditions Starting point and destination Duration Season 

(in NH) 

Cruise 1 (ANT-XXVII/4) Cape Town - Bremerhaven 20.04 -20.05.2011 Spring 

Cruise 2 (ANT-XXVIII/1) Bremerhaven - Cape Town 28.10 -01.12.2011 Autumn 

Cruise 3 (ANT-XXVIII/5) Punta Arenas -Bremerhaven 10.04 -15.05.2012 Spring 

Cruise 4 (ANT-XXIX/1) Bremerhaven - Cape Town 27.10 -27.11.2012 Autumn 
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Table 2.  The 20-min detection limits during four Polarstern cruises (µg m-3) 

 CR1 CR2 CR3 CR4 

Organics 0.024 0.025 0.017 0.022 

Sulfate 0.011 0.018 0.014 0.012 

Nitrate 0.004 0.006 0.008 0.005 

Ammonium 0.021 0.020 0.021 0.018 

Chloride  0.005 0.006 0.005 0.007 

MSA 0.002 0.003 0.002 0.006 
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Table 3. Seasonal chemical composition of measured submicron aerosol particles over the Atlantic (µg m-3) 

  Spring Autumn 

  average median σ % average median σ % 

North 

Atlantic 

(>5°) 

SO4 1.38 1.02 1.09 51% 0.76 0.63 0.55 42% 

Org 0.53 0.38 0.52 20% 0.47 0.27 0.51 26% 

SS 0.27 0.17 0.26 10% 0.16 0.10 0.16 9% 

NH4 0.29 0.19 0.31 11% 0.20 0.15 0.15 11% 

NO3 0.09 0.06 0.08 3% 0.07 0.06 0.04 4% 

eBC 0.10 0.06 0.10 4% 0.13 0.08 0.14 7% 

MSA 0.04 0.03 0.03 1% 0.01 0.01 0.01 1% 

Total 2.71    1.79    

South 

Atlantic 

(<-5°) 

SO4 1.23 1.11 0.70 57% 0.33 0.28 0.17 47% 

Org 0.23 0.18 0.16 11% 0.17 0.15 0.09 24% 

SS 0.37 0.33 0.22 17% 0.09 0.07 0.08 13% 

NH4 0.15 0.08 0.12 7% 0.07 0.07 0.04 10% 

NO3 0.04 0.04 0.02 2% 0.02 0.01 0.01 2% 

eBC 0.07 0.05 0.07 3% 0.02 0.01 0.03 3% 

MSA 0.05 0.04 0.04 2% 0.01 0.01 0.00 1% 

Total 2.14    0.71    

Tropic 

Atlantic 

(-5°~5°) 

SO4 1.03 0.93 0.65 50%     

Org 0.46 0.34 0.33 23%     

SS 0.13 0.12 0.08 6%     

NH4 0.23 0.22 0.13 11%     

NO3 0.04 0.03 0.02 2%     

eBC 0.14 0.10 0.12 7%     

MSA 0.02 0.02 0.02 1%     

Total 2.05        

(σ = standard deviation; SO4 = sulfate, Org = organics, SS = sea salt, NH4 = ammonium, NO3 =nitrate) 
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Table 4. Summary of correlations of time series and mass spectra for the five-factor PMF solution 

 
MOOA MNOA Anth-OOA Comb-OOA MHOA 

Time 

series 

(R2)  

particulate MSA C2H7N+ particulate NO3 particulate BC  

(0.83) (0.86) (0.52) (0.68)  

Mass 

spectra  

(R2) 

MOOA in Bird 

Island (Schmale 

et al., 2013) 

NOA in New 

York (Sun et al., 

2011) 

Continental 

organics  (Chang 

et al., 2011) 

Below the clouds 

along the ship 

track (Coggon et 

al., 2012) 

Marine primary 

organic matter in 

Mace Head 

(Ovadnevaite et 

al., 2011)  
(0.71) (0.70) (0.98) (0.73) (0.61)   
MOA in Paris 

summer (Crippa 

et al., 2013) 

Alanine 

(Schneider et al., 

2011) 

Average OOA 

(Ng et al., 2011) 

Oxidation 

products of diesel 

generator 

exhausts (Sage et 

al., 2008) 

 

 
(0.68) (0.50) (0.67) (0.46)    
Marine organics 

over Arctic 

(Chang et al., 

2011) 

 Average 

LVOOA1  

(Ng et al., 2011) 

Ship track 

(Coggon et al., 

2012) 

 

 
(0.54)  (0.66) (0.40)  

1  LVOOA: low-volatility oxygenated organic aerosols 

 

 

 5 

 

 

 

 

 10 

 

 

 

 

 15 

 

 

 

 



27 

 

 

 

Figure 1. (a) Ship tracks of four cruises; (b) The position of the container during Polarstern cruises. 
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  5 
Figure 2. Latitudinal variation of organics, nitrate, sulfate, ammonium, eBC, sea salt (left axis) and MSA (right axis) during the four 

Polarstern cruises. Air masses with continental influence (grey) and originated from the ocean (blank) are marked on background.  

Note that CR1, CR2, and CR4 followed almost the same ship track between Bremerhaven and Cape Town, while the route of CR3 

was different (from 15°N) since starting from Punta Arenas.  
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Figure 3. (a) High resolution mass spectra and (b) time series of five OA components. Also shown are simultaneous variation of 

tracer compounds on the right axes with marine (blank) and continental influenced (grey) air masses.     
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Figure 4 (a) Average mass fraction of each component in the total OA mass concentration, and the functional groups 

composition of each OA factor, and (b) diurnal variations of five OA factors with global radiation. 
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Figure 5 Latitudinal distribution of five OA factor mass fractions in the total OA with total OA mass concentration along the ship 

track during four cruises. The Benguela upwelling is marked in the maps for CR2 and CR4, while not displayed (but still exists) in 

CR1 and CR3.    
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Figure 6 The characteristics of the MOOA dominating period: (a) time series of MOOA and MSA (top), possibly non-marine species 

(eBC, NH4, NO3; middle figure), as well as the ratio between MSA and MOOA, and the mass fraction of MOOA in the total OA 

(bottom); (b) the diurnal variation of MOOA, MSA, Sulfate (reduced to one tenth for comparison) and the global radiation.   5 
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Figure 7 The correlations between the MSA and MOOA factor in spring and autumn over different regions of the Atlantic Ocean 5 
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Figure 8  The variation of Comb-OOA (green dot), CxHyOzNw

+ fragments (red line) and potassium (K+, the yellow bar with grey 

box) during Polarstern cruises. Note that the 24h-average mass concentration of K+ is obtained from offline measurements only 

performed during the first three cruises. The scattering plot in the sub-window provides the correlation between 24h-average mass 5 
concentration of Comb-OOA from AMS and potassium from offline measurements.    
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