

Interactive comment on “Measurement and modeling of the multi-wavelength optical properties of uncoated flame-generated soot” by Sara D. Forestieri et al.

C. He

cenlinhe@ucar.edu

Received and published: 31 May 2018

This manuscript is well written. I have a minor suggestion. Page 3, Lines 5–8: For the authors' information, another new particle-optics method (geometric-optics surface-wave approach) has been recently developed to calculate optical properties of BC with complex particle structures (He et al., 2015, 2016), which also accounts for interactions between spherules and could be included as a reference here.

References

He, C., et al.: Variation of the radiative properties during black carbon aging: theo-

C1

retical and experimental intercomparison, *Atmos. Chem. Phys.*, 15, 11967-11980, doi:10.5194/acp-15-11967-2015, 2015.

He, C., et al.: Intercomparison of the GOS approach, superposition T-matrix method, and laboratory measurements for black carbon optical properties during aging, *J. Quant. Spectrosc. Radiat. Transf.*, 184, 287–296, doi:10.1016/j.jqsrt.2016.08.004, 2016.

Interactive comment on *Atmos. Chem. Phys. Discuss.*, <https://doi.org/10.5194/acp-2018-306>, 2018.

C2