Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-298-SC1, 2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License.

Interactive comment

Interactive comment on "Using CALIOP to constrain blowing snow emissions of sea salt aerosols over Arctic and Antarctic sea ice" by Jiayue Huang et al.

X. Yang

xinyang55@bas.ac.uk

Received and published: 29 June 2018

General comments: This manuscript reports a GEOS-chem model study of sea-ice soured SSA (from both blowing snow and frost flowers) and their impacts on polar aerosol extinction. Numerous model results via changing various parameters are performed and compared to remote sensing (CALIPSO) data. Some results are quite interesting, adding novel information to our knowledge regarding polar SSA production. Authors even derive an 'optimized' seasonal trend of snow salinity. Due to the lack of year around blowing snow and snowpack salinity measurements on polar sea ice surface, we almost know nothing about seasonal variation regarding snow salinity.

Discussion paper

For this reason, I will treat their modelling-based seasonal snow salinity as a weakness. Instead, I think it highlight an issue which is largely unknown to our knowledge. As we know snow salinity is one of the critical factor that could determine both salt mass loading and their airborne budget (via affecting size spectrum and then lifetime). Therefore, it is a quite important to investigate this parameter in a modelling study, though it needs justification as reviewers pointed out. In general, this is well written manuscript with some interesting results presented. It fits well the scope of the 'Atmospheric Chemistry and Physics' and will benefit relevant communities in sea ice, ice core and boundary layer chemistry. Thus, I support publication of this work in ACP after a revision (see below my specific comments). Specific comments: The STD+Snow model run overestimates satellite extinction coefficients. Authors attribute this overestimation to 'higher' snow salinity applied in their model. However, I notice that the salinity levels of 0.1 psu for the Arctic and 0.03 psu for the Antarctic sea ice is not 'very' high comparing to the observation. For example, the 0.03 psu for the SH is only about half of the 'median' surface snow salinity (0.06 psu) and \sim 1/30 of the 'mean' snow salinity (=0.9 psu) observed in the Weddell Sea SIZ (see information in Rhodes et al. 2017). It seems to me the overestimation of SSA by the model could be related to one 'missed' process by the model, namely the negative feedback of sublimated water vapour to the ambient air near surface layer, which prevents further evaporation from suspended blown snow particles in the BS layer [Mann et al. 2000]. Thus, it is likely that model (like GOES-chem) without this process could result in overestimated bulk sublimation and then SSA production. I will not blame them not considering this process in their model, as it is out of the range of this study, but it would be useful if some discussions can be made.

Mann, G. W., Anderson, P. S., and Mobbs, S. D.: Profile measurements of blowing snow at Halley, Antarctica, J. Geophys. Res., 105, 24,491–24,508, 2000.

Another factor that could be responsible for the overestimation may come from one assumption made in this model set-up. According to their previous model study (Huang

ACPD

Interactive comment

Printer-friendly version

Discussion paper

and Jaegle 2016), they assumed that one wind-blown particles will generate 5 sub-SSA, instead of one as assumed in the original parameterization by Yang et al. (2008). Is this term making some differences? It would be helpful if some discussions can be made as a model sensitivity study.

Yang, X., Pyle, J. A., and Cox, R. A.: Sea salt aerosol production and bromine release: Role of snow on sea ice, Geophys. Res. Lett., 35 (L16815), doi:10.1029/2008gl034536, 2008.

Tiny comments: Figure 1, colour bar needs to be improved. It is hard to distinguish the extinguish coefficient values between ~ 10 and ~ 20 Mm-1 in the upper panel, and between ~ 5 and ~ 10 Mm-1 in the bottom panel of figure 1. A similar problem also appeared in other plots. P10 line 4 and Figure 8: longitude/latitude ranges are mentioned, but not shown in in the corresponding plot. Major longitude/latitude information should be given in all relevant figures.

Interactive comment on Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-298, 2018.

ACPD

Interactive comment

Printer-friendly version

Discussion paper

