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Abstract 14	

The University of Science and Technology of China narrowband sodium temperature/wind 15	

lidar, located in Hefei, China (32°N, 117°E), has made routine nighttime measurements since 16	

January 2012. 154 nights (~1400 hours) of vertical profiles of temperature, sodium density, 17	

and zonal wind, and 83 nights (~800 hours) of vertical flux of gravity wave (GW) zonal 18	

momentum in the mesopause region (80-105 km) have been obtained during the period from 19	

2012 to 2016. In temperature, it is most likely that the diurnal tide dominates below 100 km in 20	

spring, while the semidiurnal tide dominates above 100 km throughout the year. A clear 21	

semiannual variation in temperature is revealed near 90 km, in phase with the tropical 22	

mesospheric semiannual oscillation (MSAO). The variability of sodium density is positively 23	

correlated with temperature below 95 km, suggesting that in addition to dynamics, the 24	

chemistry also plays an important role in the formation of sodium atoms. The seasonal 25	

variability of sodium density observed by both lidar and satellite generally agrees well with a 26	

whole atmosphere model simulation using an updated meteoric input function which includes 27	

different cosmic dust sources. In zonal wind, the diurnal tide dominates in both spring and fall, 28	

while semidiurnal tide dominates in winter. The observed semiannual variation in zonal wind 29	

near 90 km is out-of-phase with that in temperature, consistent with the tropical MSAO. The 30	

lidar observations generally agree with satellite and meteor radar observations as well as 31	
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model simulations at similar latitude. The 50-70% of zonal momentum flux is induced by 32	

short-period (10 min – 2 hr) GWs. The large zonal momentum flux in summer and winter due 33	

to short-period GWs are clearly anti-correlated with eastward zonal wind maxima below 90 34	

km, suggesting the filtering of short-period GWs by the SAO wind.  35	
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1. Introduction 36	

The temperature and wind in the mesopause region (80-105 km) are key atmospheric 37	

parameters for studying the dynamics in this region. Ground-based instruments (e.g. lidars, 38	

radars), and space-borne instruments have been widely used to measure these key parameters 39	

over several decades (Vincent and Reid, 1983; She et al., 1998; Wu et al., 2008). Satellites 40	

can provide a near-global view of the mesopause region, but their local coverage is usually 41	

limited to two local times on the ascending and descending orbit. The lack of continuous 42	

coverage in local time makes it difficult to extract information on short period gravity wave 43	

(GW) perturbations from satellite data (Preusse et al., 2009). Ground-based meteor or 44	

medium frequency radars are capable of measuring mesopause wind in a continuous mode, 45	

but do not provide direct temperature measurements with sufficient accuracy and vertical 46	

resolution (Vincent and Reid, 1983). However, a narrowband sodium lidar is able to 47	

simultaneously measure mesopause region temperature and horizontal wind by utilizing the 48	

sodium high resolution spectrum (She et al., 1994; Arnold and She, 2003), which provides a 49	

unique opportunity to study GW perturbations and their breaking process in the mesopause 50	

region (Li et al., 2005; Li et al., 2007). 51	

The long-term lidar observations have been used to study the seasonal variability of 52	

mesopause region temperature (She et al., 1998; Gardner et al., 2002; Xu et al., 2006; 53	

Friedman et al., 2007) and horizontal wind (Franke et al., 2005; Gardner et al., 2007), as well 54	

as sodium density (She et al., 2000; Gardner et al., 2005; Ejiri et al., 2010; Yi et al., 2009; 55	

Yuan et al., 2012), iron density (Yi et al., 2009; Lübken et al., 2011) and potassium density 56	

(Friedman et al., 2002; Plane et al., 2015). These datasets are extremely valuable to validate 57	

satellite results (Xu et al., 2006; Fan et al., 2007a; Dawkins et al., 2014) and improve general 58	

circulation models (Yuan et al., 2008; Feng et al., 2013; Marsh et al., 2013). When GWs 59	

break or dissipate in the mesopause region due to increased amplitudes or approaching critical 60	

level (where wave phase speed equal to horizontal background wind), they tend to deposit 61	

wave energy and momentum into the background flow, and further modify the temperature 62	

and wind near the breaking region (Lindzen et al., 1981; Liu and Hagan, 1998; Li et al., 2007). 63	

Therefore, measurements of the GW vertical flux of horizontal momentum and heat are 64	

critical for evaluating the GW contribution to the background state in this region, and their 65	

key roles in the dynamic coupling between lower and middle/upper atmosphere (Li et al., 66	
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2013; 2016). 67	

The vertical flux of horizontal momentum can be directly derived from the vertical wind 68	

perturbation and associated horizontal wind perturbation. To ensure accuracy of the GW 69	

momentum flux, the wind data must have high temporal and vertical resolutions with good 70	

precision and a long-time average (Kudeki and Franke, 1998; Thorsen et al., 2000). Several 71	

studies of lidar-observed GW momentum flux in the mesosphere/lower thermosphere (MLT) 72	

region have been carried out previously (Espy et al., 2004; Gardner and Liu, 2007; Acott et al., 73	

2009).  74	

In this paper, we present the seasonal variation of sodium density, temperature, zonal 75	

wind and GW zonal momentum flux observed by the University of Science and Technology 76	

of China (USTC) sodium temperature/wind lidar from January 2012 to December 2016 over 77	

Hefei, China (32°N, 117°E). This is the first time simultaneous observations of the seasonal 78	

variability of mesopause region temperature, zonal wind, and GW momentum flux by sodium 79	

lidar over the Eastern Asia region have been reported. We compare the lidar results with 80	

temperature observed by the Sounding of the Atmosphere Using Broadband Emission 81	

Radiometry (SABER) instrument onboard the Thermosphere–Ionosphere–Mesosphere 82	

Energetics and Dynamics (TIMED) satellite (Russell et al., 1999); zonal wind observed by a 83	

nearby meteor radar (Xiong et al., 2004); and sodium density observed by the Optical 84	

Spectrograph and InfraRed Imager System (OSIRIS) onboard the Odin satellite (Llewellyn et 85	

al., 2004). These measurements are then compared with simulations from the Whole 86	

Atmosphere Community Climate Model version 5 (WACCM) (Marsh et al., 2013; Mills et al., 87	

2016; Feng et al., 2017), using an updated meteoric input function (MIF) for Na 88	

(Cárrillo-Sanchez et al.¸ 2016). The instruments, datasets, and data analysis method are 89	

described in section 2, followed by the results of temperature and sodium density in section 3, 90	

and zonal wind and GW zonal momentum flux in section 4. A summary is provided in section 91	

5. 92	

 93	

2. Instruments, datasets and analysis method 94	

The USTC sodium temperature/wind lidar, located on campus in Hefei, China (32°N, 95	

117°E), utilizes a narrowband three-frequency design and can simultaneously observe sodium 96	

density, zonal wind and temperature in the mesopause region during nighttime clear sky 97	
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conditions (Li et al., 2012). The system was initially set up in October 2011 with two 98	

receiving telescopes (30-inch diameter) pointing eastward and northward 30° from zenith for 99	

measuring the zonal and meridional wind, respectively. The output laser beam is split into two 100	

beams, each aligned parallel to one telescope. Between December 2012 and May 2014 (total 101	

83 nights), the two receiving telescopes were pointed to eastward and westward, each 15° 102	

from zenith. This dual-beam setup allows us to derive the GW zonal momentum flux as well 103	

as the zonal wind. Since June 2014, the westward telescope was pointed to vertical for 104	

measuring the vertical fluxes of heat and sodium atoms, and the eastward telescope to 30° 105	

from zenith for measuring zonal wind. Between January 2012 and December 2016, we 106	

obtained 154 nights (~1400 hours) of valid data, which is sufficient to study the seasonal 107	

variations of sodium density, temperature, zonal wind, and GW momentum flux (83 nights) in 108	

the mesopause region over Hefei. Figure 1 shows the number of nights with valid datasets in 109	

each month of the different years. It is clear that Hefei has more clear nights in fall and winter 110	

than in spring and summer.  111	

The Wuhan (31°N, 114°E) meteor radar, located at ~300 km west of Hefei, has 112	

measured mesopause region horizontal wind since January 2002 (Xiong et al., 2004). The 113	

vertical and temporal resolutions of radar wind are 3 km and 2 hr, respectively. The SABER 114	

instrument onboard the TIMED satellite can measure the near-global vertical profile of 115	

temperature from the lower stratosphere to the lower thermosphere (Russell et al., 1999). The 116	

SABER temperature dataset used in this paper is Level2A version 2.0, which has a vertical 117	

resolution of 2 km and accuracies of ±1-2 K between 75 and 95 km, increasing to ±4 K at 100 118	

km. The OSIRIS instrument onboard the Odin satellite measures solar-pumped Na resonance 119	

fluorescence from a sun-synchronous polar orbit (Llewellyn et al., 2004), and the datasets can 120	

be used to retrieve the global vertical profiles of sodium density between 75 and 110 km with 121	

a ~10% uncertainty for 2 km vertical resolution (Gumbel et al., 2007; Fan et al., 2007a).  122	

To compare with lidar results, we also use the temperature, zonal wind, and sodium 123	

density simulated by the WACCM, a chemistry-climate model which extends from the 124	

Earth’s surface to the lower thermosphere (~140 km) (Garcia et al., 2007; Marsh et al., 2013a). 125	

WACCM uses the framework from the fully coupled global climate model Community Earth 126	

System Model (CESM version 1, e.g., Hurrell et al., 2013). In this paper, we use a version of 127	

WACCM described in Mills et al. (2016), which includes all the detailed physical processes 128	
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as described in the Community Atmosphere Model, version 5 (CAM5) (Neale et al., 2012). 129	

The current configurations for WACCM are based on a finite volume dynamical core (Lin, 130	

2004) for the tracer advection as well as a new surface topography data from Lauritzen et al. 131	

(2015). WACCM has the fully interactive chemistry described in Mills et al. (2016), and we 132	

have included the Na chemistry scheme listed in Plane et al. (2015) and Gomez Martin et al. 133	

(2015, 2017), with an updated meteoric input function (MIF) for Na (Cárrillo-Sanchez et 134	

al.¸2016). The new MIF is calculated for the ablation of cosmic dust particles from Jupiter 135	

Family Comets (80% by mass), Asteroids (8%), and Long Period Comets (12%), and the 136	

injection rate of Na is about 8 times larger than that used in Marsh et al. (2013). The peak Na 137	

ablation rate from Cárrillo-Sanchez et al. (2016) occurs around 87 km, which is ~15 km lower 138	

than the MIF used in Marsh et al. (2013), which was based on meteor head radar 139	

measurements which were biased to the high velocity dust particles which mostly originate 140	

from Long Period Comets (Cárrillo-Sanchez et al., 2016). The absolute Na MIF used in this 141	

paper has been divided by a factor of 5 from that in Cárrillo-Sanchez et al. (2016), in order to 142	

match the observed Na layer density. This most likely reflects the fact that WACCM 143	

underestimates the rate of vertical transport of Na species in the MLT because sub-grid 144	

gravity waves are not resolved in the model (Huang et al., 2015). The horizontal resolution of 145	

WACCM is 1.9˚ latitude by 2.5˚ longitude. The vertical model layers and the vertical 146	

resolution are the same as Mills et al. (2017), which is 70 and ~3 km in the MLT region. 147	

Although the model can be nudged by a re-analysis dataset, in the current study we have used 148	

a “free-running” model simulation, which produces a satisfactory Na climatology in the 149	

model. We ran the model for year 2000 condition for 13 years.  150	

The lidar raw photon counts are first analyzed to generate hourly mean vertical profiles 151	

of sodium density, temperature and line-of-sight (LOS) wind with 2 km vertical resolution for 152	

each direction. Before and after the dual-beam setup (eastward-westward) between December 153	

2012 and May 2014, we assume that the hourly mean vertical wind is negligible and then 154	

derive the hourly mean zonal wind from the east channel LOS wind (eastward pointing at 30° 155	

from zenith). During the dual-beam setup, we derive the hourly mean zonal wind profiles by 156	

subtracting the hourly westward LOS wind from the eastward LOS wind and then dividing by 157	

2sinθ (e.g. θ=20°) (Vincent and Reid,1983). The uncertainties of the hourly mean zonal wind 158	

and temperature typically range from ~1.0 m/s and ~0.5 K at 92 km (Na peak layer) to ~6 m/s 159	
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and ~5 K at 82 km and 103 km (the edge of Na layer), respectively. We then generate the 160	

nighttime hourly mean composite in each season.  161	

Vincent and Reid (1983) presented a method utilizing the dual beam technique to derive 162	

vertical flux of GW horizontal momentum, when two beams are pointed at equal and opposite 163	

angle θ from the zenith. The zonal momentum flux 𝑤′𝑢′ is calculated as follows: 164	

𝑤′𝑢′ =  !
!(!,!)!!!(!!,!)

!!"# (!!)
                                (1) 165	

where 𝑣! 𝜃,𝑅  and 𝑣!(−𝜃,𝑅) are the square of the LOS wind perturbations in the east and 166	

west channels respectively, and θ is the zenith angle (e.g. 20°). To derive the momentum flux, 167	

we employed a similar procedure to that of Gardner and Liu (2007). Briefly, we first analyze 168	

lidar raw photon counts to generate the LOS wind with a temporal resolution of 5 min and a 169	

vertical resolution of 2 km. Data points with errors larger than 5 m/s were discarded during 170	

the quality check. We remove the linear trend and nightly mean from the LOS wind to form 171	

wind perturbations for each night. Data where the perturbation variances are smaller than the 172	

corresponding noise variances are also excluded. The seasonal mean vertical profile of 173	

perturbation variance is then obtained by averaging all available perturbation variances in that 174	

season. This process is done separately for each beam. Finally, the seasonal mean momentum 175	

flux is calculated using equation (1). In this way, the results only account for the GW 176	

perturbations with periods of 10 min-20 hr and vertical wavelengths of 4-30 km. We also 177	

apply a high-pass filter with cutoff at 2 hr on raw perturbations to examine the relative 178	

contribution of short-period GWs (10 min – 2 hr) to total momentum flux. 179	

Since the meteor radar observed zonal wind is only available in 2013, we then calculate 180	

monthly mean with all available data for comparison. The SABER tracking points within ±5° 181	

latitude band (27-37°N) and longitude band (112-122°E) of the lidar site are selected first. We 182	

then discard the SABER temperature profiles that are outside of the lidar observation period. 183	

Finally, we average all available SABER temperature profiles within each month to form the 184	

monthly mean for comparison. A similar analysis method is used for the OSIRIS data. In the 185	

case of WACCM, the zonal mean data are first extracted at the coordinates of the lidar site 186	

and then the monthly mean profiles are generated in the same way as the lidar and radar 187	

profiles. 188	

 189	
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3. Temperature and sodium density 190	

Figure 2 shows the hourly mean temperature composite in four different seasons. The 191	

temperatures below 95 km are generally warmer in fall and winter than in spring and summer, 192	

consistent with the mesospheric residual meridional circulation with upwelling in the summer 193	

hemisphere and downwelling in the winter hemisphere (Andrew et al., 1987; Smith, 2012). It 194	

is most likely that the diurnal tide with downward phase progression dominates below 100 km 195	

in spring, although we only have 10-12 hr data. However, the tidal feature is not clear below 196	

95 km in other seasons. The temperature above 100 km in all seasons clearly exhibits two 197	

minima after dusk and before dawn and a maximum near midnight, suggesting dominance 198	

and persistence of the semidiurnal tide in this latitude region throughout the year.  199	

The clear downward phase progression of diurnal and semidiurnal tides in mesopause 200	

temperature was previously observed by sodium lidar at the Starfire Optical Range (SOR), 201	

New Mexico (35°N, 107°W) (Chu et al., 2005). However, their observations suggest a clear 202	

dominance of diurnal in April and October and semidiurnal in January below 100 km, while 203	

we see a clear dominance of diurnal only in spring (March-May), and mixed features in other 204	

seasons. In addition, the midnight maximum above 100 km shown in our results is not 205	

observed over SOR. The SABER observations reveal a diurnal amplitude of ~2 K and ~8 K, 206	

and semidiurnal amplitude of ~7 K and ~12 K at 95km for the USTC and SOR lidar sites, 207	

respectively (Zhang et al., 2010). This significant longitudinal variability is likely due to 208	

nonlinear interactions between the migrating tide and non-immigrating tide (Forbes et al., 209	

2003) and stationary planetary wave number 1 (Lieberman et al., 1991), respectively, and/or 210	

tidal/gravity waves interactions (Lindzen, 1981; Liu and Hagan, 1998; Li et al., 2007; 2009). 211	

The clear longitudinal variability of tides between two lidar sites could thus cause significant 212	

differences in the nocturnal climatology. 213	

Figure 3 shows the monthly mean of the nightly mean temperature observed by lidar and 214	

SABER, and simulated by WACCM. All three figures show qualitative agreement in the 215	

general pattern, but difference in absolute values. The mesopause is clearly located near 100 216	

km in winter and below 95 km in summer, indicating a two-level mesopause as previously 217	

observed at mid- and high latitudes (von Zahn et al., 1996; She et al., 1998). The lidar 218	

observed temperature above 95 km is ~10 K lower than SABER, likely due either to the low 219	

signal-to-noise ratio in the lidar return signals above 100 km (Li et al., 2012), or to a non-local 220	
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thermal equilibrium influence in the SABER analysis (Mertens et al., 2001). The lidar 221	

observed mesopause is also 5-10 K colder than that observed by SABER. The WACCM 222	

simulated temperature is clearly higher than both sets of observations at most altitudes and 223	

months. Yuan et al. (2008) showed a significant monthly mean mesopause region temperature 224	

difference between lidar observations and WACCM simulations over Fort Collins, CO (41°N, 225	

105°W); their comparisons show that the WACCM-simulated winter mesopause is much 226	

warmer than measured by lidar, and the summer mesopause is ~3 km lower than lidar 227	

observations. Another interesting feature in all three figures is that we see a temperature 228	

maximum near ~90 km in March and April, and a second maximum in September and 229	

October, likely related to the mesospheric semiannual oscillation (MSAO) usually dominant 230	

in the equatorial middle atmosphere (Dunkerton, 1982; Burrage et al., 1996; Garcia et al., 231	

1997). 232	

Our measured monthly means of the nightly mean temperatures are also generally 233	

consistent with previous lidar observations at SOR (Gardner and Liu, 2007) and Fort Collins, 234	

CO (She et al., 1998; Yuan et al., 2008). However, the SOR lidar observations were ~10 K 235	

colder below 90 km in summer, and ~10 K warmer between 90 and 95 km in spring, 236	

suggesting significant differences between the two locations likely induced by the significant 237	

longitudinal variability of the diurnal tide (Zhang et al., 2010). The semiannual oscillation 238	

signature is evident over both Hefei and SOR between 90 and 95 km, but not over Fort 239	

Collins. The summer mesopause observed by lidar over Hefei is clearly higher than over the 240	

other two locations.  241	

Figure 4 shows the hourly mean sodium density composite during the four different 242	

seasons. The density increases with local time during the night, with a peak height around 92 243	

km. The peak density is overall much higher in fall and winter than in spring and summer, 244	

which is consistent with previous ground-based and satellite observations (She et al., 2000; 245	

Fan et al., 2007a; Fussen et al., 2010). Some peaks above 95 km in summer are likely induced 246	

by sporadic sodium layers (SSLs), which often occur in this season over Hefei (Dou et al., 247	

2010). The seasonal mean sodium peak density in winter can reach 4000-4500 cm-3 after 248	

midnight. Figure 5 shows the monthly mean of nightly mean sodium density observed by (a) 249	

lidar and (b) Odin/OSIRIS, and simulated by (c) WACCM. Both observations agree well in 250	

seasonal pattern and absolute sodium density, and are also consistent with the WACCM 251	
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model simulation. The elevated peak height and enhanced density in summer observed by 252	

lidar is likely due to increased SSL events in summer over Hefei, which is neither frequently 253	

observed by Odin/OSIRIS nor simulated by WACCM. The Odin/OSIRIS did observe SSLs 254	

over China (Fan et al., 2007b), but probably less frequently at 0600 and 1800 local time than 255	

at midnight. The observed sodium density over Hefei is quite consistent with previous 256	

narrowband lidar observations over Fort Collins, CO (She et al., 2000) and Urbana, IL (States 257	

and Gardner, 1998), but ~1.5 times higher than previous broadband sodium lidar observations 258	

over the nearby city of Wuhan, China (Yi et al., 2009).  259	

The variability of sodium density is clearly correlated with the temperature variability 260	

shown in Figure 2. This is further demonstrated in Figure 6, where the correlation coefficient 261	

between the composite temperature and relative sodium density perturbations is plotted using 262	

lidar measurements (left) and the WACCM simulation (right). The temporal resolution for 263	

both lidar and WACCM is 1 hr. The lidar observations are clearly consistent with the 264	

WACCM simulation, and both results suggest a positive correlation with coefficient of 265	

0.5-0.8 between 80-90 km, but a negative correlation with coefficient of less than ~-0.4 above 266	

96 km for lidar and 100 km for WACCM, consistent with lidar observations at Urbana (40N) 267	

(Plane et al., 1999) and in the Arctic (Collins and Smith, 2004). However, our lidar 268	

observations above 95 km are not consistent with the recent sodium lidar observations at 269	

ALOMAR, which showed a positive correlation with temperature above this altitude (Dunker 270	

et al., 2015). This difference may be related to energetic particle precipitation at high latitudes, 271	

but the detailed mechanism is beyond scope of this paper. We also examined the correlation 272	

in the four different seasons (not shown) and found no significant differences, except positive 273	

correlation range in summer extended higher until ~100 km. 274	

Our lidar observations suggest that the main chemistry below 95 km is likely dominated 275	

by neutral sodium chemistry, which essentially involves the partitioning of the metal between 276	

atoms and the main reservoir NaHCO3; the significant activation energy of the reaction 277	

NaHCO3 + H drives the balance towards Na at higher temperatures. In contrast, above 95 km 278	

the source of atomic Na is from Na+, which involves formation of cluster ions that then 279	

undergo dissociative recombination with electrons; the formation of cluster ions is favored at 280	

lower temperatures, hence the negative correlation coefficient between and Na and 281	

temperature on the topside of the Na layer (Plane et al., 2015). 282	
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 283	

4. Zonal wind and gravity wave momentum flux 284	

Figure 7 shows the hourly mean zonal wind composite in 4 different seasons. We see 285	

strong tidal oscillations with downward phase progression in all seasons, much clearer than 286	

those in temperature (Figure 2). The diurnal tide with vertical wavelength of ~ 20 km 287	

dominates in both spring and fall, while the semidiurnal tide with vertical wavelength of 288	

30-40 km dominates in winter. In spring, the diurnal tide in temperature (Figure 2a) leads that 289	

in zonal wind by ~4hr between 90 and 95 km, consistent with earlier mid-latitude 290	

observations (Yuan et al., 2006). There is a strong wave oscillation signature with a period of 291	

~8hr and amplitude of ~20 m/s that dominates in summer, possibly related to the terdiurnal 292	

tide. Previous observations by the nearby Wuhan meteor radar show that the diurnal 293	

amplitude near 90 km during equinox is ~ 30 m/s, with a semidiurnal amplitude of ~10 m/s 294	

(Xiong et al., 2004; Zhao et al., 2005). The comparable amplitude (~10 m/s) of diurnal and 295	

semidiurnal in winter is also revealed by these radar observations, with which our 296	

observations are generally consistent.  297	

We show in Figure 8 the monthly mean of the nightly mean zonal wind observed by (a) 298	

lidar, (b) Wuhan meteor radar, and (c) simulated by WACCM. The radar observed zonal wind 299	

is only available in 2013 for comparison. The general pattern of the lidar observed zonal 300	

winds agrees well with the radar winds, but are 5-10 m/s stronger. This is likely due to the 301	

different vertical and temporal resolutions, signal-to-noise ratio, and the mesurement methods, 302	

as well as the different locations. The lidar results exhibit a semiannual variation near 90 km 303	

with minima in March and August/September, and one maximum in May/June, clearly 304	

out-of-phase with the temperature semiannual variation (Figure 3a). The lidar observed 305	

semiannual variation in both wind and temperature is consistent with the tropical MSAO 306	

previously observed by satellites (Garcia et al., 1997), and simulated by WACCM (Richter 307	

and Garcia, 2006). The lidar and radar observations agree with the WACCM simulation 308	

below 90 km in both pattern and magnitude, while disagreeing above. Interestingly, a recent 309	

comparision between lidar measurements over Fort Collins, CO and several general 310	

circulation models also reveals significant differences (Yuan et al., 2008). 311	

The USTC lidar telescopes were pointed 15° from zenith in eastward and westward 312	

directions between December 2012 and May 2014. This setup allows us to derive the vertical 313	
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flux of GW zonal momentum. A total of 83 nights of GW momentum flux measurements 314	

were obtained with 21, 12, 23, and 27 nights in spring, summer, fall, and winter respectively. 315	

Figure 9 shows vertical profiles of the seasonal mean GW zonal momentum flux for period 316	

10min – 16hr (black) and 10min – 2hr (green), and zonal wind (red) in (a) spring, (b) summer, 317	

(c) fall, and (d) winter. The zonal momentum flux is mostly eastward in spring, positively 318	

correlated with the eastward zonal wind. However, the zonal momentum flux is mostly 319	

westward in other seasons, clearly anti-correlated with the eastward zonal wind, suggesting 320	

zonal wind filtering of GWs below 80 km. It is also clear that the zonal momentum flux 321	

induced by short-period (10 min – 2 hr) GWs clearly dominates total momentum flux in all 322	

seasons except summer. 323	

The seasonal variation of zonal momentum flux is consistent with previous sodium lidar 324	

observation at SOR, NM (Gardner and Liu, 2007). However, MU radar observations near 325	

Kyoto, Japan (35°N, 136°E) shows a clear eastward flux in summer and westward flux in 326	

winter between 65 and 85 km (Tsuda et al., 1990). MF radar observations in Adelaide, 327	

Australia (35°S, 138°E) suggest an eastward flux of ~3 m2/s2 in winter (Reid and Vincent, 328	

1987). We note here that part of the differences between our lidar results and other published 329	

work is likely due to different vertical and temporal resolutions and thus sensitivity to 330	

different portions of the GW spectrum. Table 1 compares the GW zonal momentum flux 331	

measured at different mid-latitude lidar and radar stations. The results from other locations are 332	

estimated from the following studies: Gardner and Liu (2007) for the SOR lidar results; Acott 333	

et al. (2009) for the Fort Collins, CO lidar results; and Tsuda et al. (1990) for the Japan MU 334	

radar results. This comparison demonstrates that all observations report a clear westward GW 335	

zonal momentum flux in winter. In spring, both the USTC and SOR lidars observed an 336	

eastward momentum flux of 1.4-2 m2/s2.  337	

The short-period (10 min – 2 hr) GWs clearly contribute 50%-70% of the total 338	

momentum flux, consistent with previously medium frequency (MF) radar observations 339	

(Fritts and Vincent, 1987). The large westward momentum fluxes of -0.9 and -0.6 m2/s2 for 340	

short-period GWs in summer and winter respectively are clearly anti-correlated with eastward 341	

zonal wind maxima below 90 km (Figure 8a), suggesting the filtering of short-period GWs by 342	

the SAO wind. However, this SAO variation is not clear in the total momentum flux. For the 343	

annual mean, our lidar result is clearly smaller than the SOR lidar result, mainly due to 344	
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significant difference in summer. Our results also show that the annual mean zonal wind 345	

averaged between 87-95 km is ~10 m/s eastward, and anti-correlated with the westward 346	

momentum flux of ~-0.15 m2/s2 induced by short-period GWs. This anti-correlation suggests 347	

that the GW momentum flux observed in the mesopause region is generally consistent with 348	

the wind filtering theory proposed by Lindzen (1981), and adopted by general circulation 349	

models (e.g. Richter et al., 2010).  350	

 351	

5. Summary 352	

Between 2012 and 2016, the USTC sodium temperature/wind lidar observed mesopause 353	

region nighttime temperature, zonal wind, and sodium density over 150 nights, and the 354	

vertical flux of zonal momentum during 83 nights. The seasonal nighttime hourly composites 355	

of temperature and zonal wind show clear diurnal and/or semidiurnal tidal signatures. In 356	

temperature, the diurnal tide with clear downward phase progression dominates only in spring, 357	

while the semidiurnal tide dominates above 100 km throughout the year. In zonal wind, the 358	

diurnal tide with vertical wavelength of ~ 20 km dominates in both spring and fall, while the 359	

semidiurnal tide with vertical wavelength of 30-40 km dominates in winter. Between 90 and 360	

95 km, the diurnal tide in temperature in spring leads that in zonal wind by ~4 hr, consistent 361	

with previous observations and model simulations. The monthly mean results show a 362	

signature of semiannual variation in both temperature and zonal wind near 90 km but with 363	

clear out-of-phase feature, consistent with the tropical MSAO. Comparison of the USTC lidar 364	

results with observations by satellite and meteor radar, and simulated by WACCM show 365	

generally good agreement, although there are some differences among them, with pronounced 366	

disagreement between the observed zonal wind and the model above 90 km. 367	

The seasonal mean of zonal momentum flux is mostly westward in summer, fall and 368	

winter, clearly anti-correlated with the eastward zonal wind, which suggests zonal wind 369	

filtering of GWs below 80 km. However, during spring the zonal momentum flux is mostly 370	

eastward, positively correlated with the eastward zonal wind. The short-period GWs clearly 371	

contribute 50%-70% of total momentum flux averaged over 87-95 km. The large westward 372	

momentum fluxes in summer and winter for short-period GWs are clearly anti-correlated with 373	

eastward zonal wind maxima below 90 km (Figure 8a), suggesting the filtering of 374	

short-period GWs by the SAO wind. The annual mean flux averaged over 87-95 km is ~-0.15 375	
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m2/s2 (westward) induced by the short-period GWs, anti-correlated with the zonal wind of 376	

~10 m/s (eastward), suggesting that the GW momentum flux observed in the mesopause 377	

region is generally consistent with the wind filtering theory.  378	

The sodium density increases with local time during the night, with a peak height near 92 379	

km. The peak density is overall much higher in fall and winter than in spring and summer. 380	

The seasonal mean sodium peak density in winter can reach 4000-4500 cm-3 after mid-night. 381	

The variability of sodium density is positively correlated with temperature variability, 382	

suggesting that chemistry plays a dominant role in the formation of sodium atoms in the 383	

mesopause region below 95 km. The lidar observations agree well with Odin/OSRIS satellite 384	

observations in both seasonal pattern and absolute monthly mean sodium density, consistent 385	

with WACCM simulations using a new Na meteoric input function.  386	
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Table 1. Comparison of the GW zonal momentum flux (m2/s2) measured at different middle 631	

latitude lidar and radar stations. 632	

Stations Altitude/filter Annual Spring Summer Fall Winter 

USTC lidar 

(32°N, 117°E) 

87 – 95 km 

10min – 16hr 

-0.08 1.4 -0.2 -0.3 -0.9 

87 – 95 km 

10min – 2hr 

-0.15 0.8 -0.9 -0.16 -0.6 

SOR lidar 

(35°N, 107°W) 

85 – 100 km 

3min – 14hr 

-1.2 ~2 1.8 N/A -1.7 

CSU lidar 

(41°N, 105°W) 

85 – 95 km 

6min – 4hr 

N/A ~0.1 N/A ~0.1 -0.7 

MU Radar 

(35°N, 136°E) 

65 – 85km 

5min – 2 hr 

N/A ~0 2.0 ~0 -1.5 

  633	
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 634	

Figure 1. Histogram of number of nights with valid data observed by the USTC sodium lidar.	 	635	
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 636	

Figure 2. Lidar observed nighttime hourly mean temperature composite in (a) spring, (b) 637	

summer, (c) fall, and (d) winter.	 	638	
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 639	

Figure 3. Monthly mean of mean temperature observed by (a) lidar, (b) SABER, and 640	

simulated by (c) WACCM.	 	641	
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 642	

Figure 4. Same as Figure 2, but for sodium number density.  643	
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 644	

Figure 5. Monthly mean of nightly mean sodium density observed by (a) lidar and (b) Odin/ 645	

OSIRIS, and simulated by (c) WACCM. 	 	646	
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 647	

Figure 6. The vertical profiles of correlation coefficent (blue) between composite temperature 648	

and relative sodium density perturbations, and annual mean sodium density (red), observed by 649	

lidar (left) and simulated by WACCM (right).	 	650	

(a) (b)
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 651	

Figure 7. Same as Figure 2, but for zonal wind.	 	652	
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 653	

Figure 8. Monthly mean of nightly mean zonal wind observed by (a) lidar, (b) meteor radar, 654	

and simulated by (c) WACCM.	 	655	
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 656	

Figure 9. Comparision of seasonal mean of nightly mean zonal wind (red) and zonal 657	

momentum flux for 10min - 16hr (black) and 10min - 2hr (green) observed by lidar in (a) 658	

spring, (b) summer, (c) fall, and (d) winter. 659	

(a) (b)

(c) (d)


