Supplement information

Volatile organic compounds at a rural site in Beijing:
Influence of temporary emission control and wintertime
heating

5 Weiqiang Yang^{1,3}, Yanli Zhang^{1,2*}, Xinming Wang^{1,2,3*}, Sheng Li^{1,3}, Ming Zhu^{1,3},

- 6 Qingqing Yu^{1,3}, Guanghui Li^{1,3}, Zhonghui Huang^{1,3}, Huina Zhang^{1,3}, Zhenfeng Wu^{1,3},
- 7 Wei Song¹, Jihua Tan³, Min Shao^{4,5}

8 1 State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of

9 Environmental Protection and Resources Utilization, Guangzhou Institute of

- 10 Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- 11 2 Center for Excellence in Regional Atmospheric Environment, Institute of Urban

12 Environment, Chinese Academy of Sciences, Xiamen 361021, China

13 3 University of Chinese Academy of Sciences, Beijing 100049, China

14 4 State Joint Key Laboratory of Environmental Simulation and Pollution Control,

- 15 College of Environmental Sciences and Engineering, Peking University, Beijing
- 16 100871, China
- 17 5 Institute for Environmental and Climate Research, Jinan University, Guangzhou
- 18 511443, China
- 19 *corresponding authors:
- 20 Dr. Yanli Zhang
- 21 State key Laboratory of Organic Geochemistry,
- 22 Guangzhou Institute of Geochemistry,

- 23 Chinese Academy of Sciences, Guangzhou 510640, China
- 24 Tel.: +86-20-85292718; fax: +86-20-85290706.
- 25 E-mail: zhang_yl86@gig.ac.cn
- 26 Dr. Xinming Wang
- 27 State key Laboratory of Organic Geochemistry,
- 28 Guangzhou Institute of Geochemistry,
- 29 Chinese Academy of Sciences, Guangzhou 510640, China
- 30 Tel.: +86-20-85290180; fax: +86-20-85290706.
- 31 E-mail: wangxm@gig.ac.cn

33 1. Calculation of ozone formation potentials (OFPs) and secondary organic

34 aerosol formation potentials (SOAFPs)

35 The OFP of individual VOC species *i*, OFP (*i*), is calculated by the following equation:

36 OFP (*i*)=conc(*i*)×MIR(*i*)

- 37 where conc (i) is the concentration of VOC species i, and MIR (i) is the maximum
- incremental reactivity coefficient of VOC species *i*, which is defined by Carter (2009).
- 39 SOAFPs is estimated using the following formula:

40 SOAFPs=
$$\sum_{i} X_i \times Y_i$$

41 where X_i is the mass concentration of precursor *i* (µg m⁻³), and Y_i (%) is the SOA yield 42 of precursor *i*. In this study, the SOA yields are taken from Ng et al (2007), Lim and 43 Ziemann (2009) and Loza et al (2014).

Table S1. Ozone formation potentials (OFPs) of VOCs in the air masses from the south and the north during period I, II and III.

		Ozone formation potentials, ppbv				
		Alkanes	Alkenes	Aromatics	Ethyne	Sum
Period I		10.02	25.90	21.81	2.91	60.64
Period II		4.51	17.42	5.07	1.51	28.51
Period III		8.78	36.73	13.17	2.80	61.47
Period I	South ^a	12.04	30.03	23.57	3.58	69.21
	North ^b	3.97	13.53	16.53	0.90	34.92
Period II	South ^a	6.07	20.46	7.29	2.08	35.89
	North ^b	2.27	13.04	1.85	0.69	17.86
Period III	South ^a	14.15	67.64	25.40	5.51	112.70
	North ^b	5.93	20.38	6.70	1.36	34.39

47 ^a For the datasets in the southerly air masses; ^b For the datasets in the northerly air masses.

Table S2. Secondary organic aerosol formation potentials (SOAFPs) of VOCs in the southerly and northerly air masses during period I, II and III.

		Secondary organic aerosol formation potentials, $\mu g m^{-3}$					
		Low-NOx			High-NOx		
		Alkanes	Aromatics	Sum	Alkanes	Aromatics	Sum
Period I		1.47	7.30	8.77	1.63	2.39	4.02
Period II		0.61	1.93	2.54	0.68	0.75	1.43
Period III		0.68	4.62	5.30	0.75	1.68	2.43
Period I	South ^a	1.66	8.08	9.74	1.83	2.71	4.54
	North ^b	0.91	4.96	5.86	1.01	1.44	2.45
Period II	South ^a	0.75	2.80	3.55	0.84	1.09	1.92
	North ^b	0.40	0.68	1.09	0.45	0.27	0.72
Period III	South ^a	1.08	9.11	10.19	1.17	3.37	4.54
	North ^b	0.47	2.25	2.72	0.52	0.79	1.31

51 ^a For the datasets in the southerly air masses; ^b For the datasets in the northerly air masses.

53 Table S3. Average reductions (ppbv) of VOCs contributed by different sources as

54 derived from the PNIF source apportioning resu

Sources	Average sources reduction contribution, ppbv			
	All ^a	South ^b	North ^c	
Gasoline exhaust	3.18	4.00	0.57	
Industrial emission	1.35	1.77	0.27	
Solvent use	4.29	4.90	2.22	
Diesel exhaust	2.28	2.03	1.71	
Coal/biomass burning	0.31	0.16	0	
Total	11.41	12.86	4.77	

55 ^a For all the data; ^b For the datasets in the southerly air masses; ^c For the datasets in the northerly air masses.

58 Figure S1. Mixing ratios of VOCs and corresponding back trajectories of air masses

- arriving at 100 m above the ground level during (a) 3-5 November, (b) 18-21 November,
- 60 (c) 28-30 November, and (d) 26-28 December, respectively.
- 61

Figure S2. Scatter plots of (a) toluene versus benzene, (b) benzene versus carbon
monoxide, and (c) benzene versus methyl tert-butyl ether (MTBE), during period I (in
blue), II (in green) and III (in red).

Figure S3. Time series of source contributions based on PMF results (No data on
2014/12/6 due to unexpected power failure).

and (c) in the air masses from north during period I and II, as resolved from PMF model.

- Carter, W. P. L.: Update maximum incremental reactivity scale and hydrocarbon bin
 reactivities for regulatory application, California Air Resources Board Contract
 07-339., 2009.
- Lim, Y. B., and Ziemann, P. J.: Effects of molecular structure on aerosol yields from
 OH radical-initiated reactions of linear, branched, and cyclic alkanes in the
 presence of NOx, Environ. Sci. Technol., 43, 2328-2334,
 http://dx.doi.org/10.1021/es803389s, 2009.
- 83 Loza, C.L., Craven, J.S., Yee, L.D., Coggon, M.M., Schwantes, R.H., Shiraiwa, M.,
- 84 Zhang, X., Schilling, K.A., Ng, N.L., Canagaratna, M.R., Ziemann, P.J., Flagan,
- R.C., Seinfeld, J.H.: Secondary organic aerosol yields of 12-carbon alkanes,
 Atmos. Chem. Phys., 14, 1423-1439, http://doi.org/10.5194/acp-14-1423-2014,
 2014.
- Ng, N. L., Kroll, J. H., Chan, A. W. H., Chhabra, P. S., Flagan, R. C., and Seinfeld, J.
- 89 H.: Secondary organic aerosol formation from m-xylene, toluene, and benzene,
- 90 Atmos. Chem. Phys., 7, 3909-3922, http://doi.org/10.5194/acp-7-3909-2007, 2007.