

Author' Response to Referees' Comments

Anonymous Referee #1

Yang et al. present VOC observational results at a rural site in the Beijing metropolitan area before, during, and after a strict emission control implementation for the APEC summit event. They mainly discussed on changes in the VOC composition during three different periods. Then, they move ahead to discuss the potential sources from the PFM analysis and the impacts of VOCs in the context of ozone and aerosol formation rates. Overall the manuscript is very clearly written, and the goals seem to be well achieved.

[1] However, I have a couple of concerns regarding whether this manuscript is well fit in this particular journal. Although the significance in understanding of Chinese pollution problems cannot be overstated considering the large population in China, this manuscript is too narrowly focused on Chinese local air pollution problems without discussion on the bigger context such as regional or global impacts.

Reply: Thanks for the insightful comments. Maybe we have not interpreted our findings properly and fully in the manuscript. We think the findings from our study are implicative at least in two aspects:

1) While exposure to indoor air pollution from burning solid fuels (biomass and coal) affects nearly half of the world's population, and household air pollution has been considered as a major environmental cause of death (Martin et al., 2011; Lim et al., 2012; Subramanian, 2014), a previous study (Liu et al., 2016) revealed that in the Beijing-Tianjin-Hebei (BTH) region, residential use of solid fuels might be a major and underappreciated ambient pollution source for PM_{2.5} (particularly BC and OC) during winter heating period based on the Multiresolution Emission Inventory of China (MEIC; www.meicmodel.org) for January and February 2010. Here we demonstrated that, based on our field monitoring, burning solid fuels (mainly coal) to heat homes would also be a major source of volatile organic compounds (VOCs) during winter in the region. As VOCs are important precursors of secondary aerosols and ozone, our study also suggests that cleaner residential energy use for cooking and heating not only benefit lowering indoor air pollution with great health benefits for the residents, but also benefit lowering the exposure to ambient air pollution for a wider range of people.

2) Due to high secondary aerosol contribution to particulate pollution during haze events (Huang et al., 2014), reducing emissions of VOCs as precursors of secondary organic aerosols is important for combating fine particle air pollution and heavy hazes. Enhacing the controls over emissions from vechicles and industry sector would be effective for reducing ambient VOCs, as demonstrated in our study during the APEC before the start of winter heating period. During the winter heating period, since residential coal/biomass burning was found to be a major source for ambient VOCs even in the Beijing metropolitan area, solely enhancing the emisison control in the traffic and industry sectors would be not so effective as did in the non-heating period. This is a important message for regions, particularly less developed regions, to control emisisons of VOCs to combat air pollution due to ozone and PM_{2.5}.

Therefore, although we conducted our study at a rural site in Beijing, the findings are not just locally significant but also have important implications for other regions. We have incorporated these aspects into our revised manuscript. We have rewrite our introduction, and modified our conclusions and abstract as well.

[2] Moreover, the scientifically relevant analyses such as ozone forming potential and secondary aerosol forming potential are just adapted from previous publications without detailed discussion whether the method is relevant to this particular photochemical environment.

Reply: Thanks. This comment is scientifically very important. It reminds us of remembering that the potentials are related to particular photochemical environments. As for the ozone formation potentials, the Maximum Incremental Reactivity (MIR) scale, originally developed by Carter (1994), has been widely used as a simplified approach to evaluate the relative ground-level ozone impacts of volatile organic compounds. The MIR scale in its nature represents conditions where ambient ozone is most sensitive to changes in VOC emissions, therefore the potentials based on the MIR scale are maximums that can hardly achieved under real atmospheric conditions, particularly depending on the relative availability of NOx (Dondge, 1984; Carter and Atkinson, 1989). However, for the convenience of regulating VOCs based on calculations of their relative ground-level ozone impacts, the metrics used for calculating OFP in the present study have been used worldwide, and therefore we remain the calculation in its present state but indicate in the revised manuscript that it is only a simplified approach.

Organic aerosol formation potentials are comparatively much more complicated. They are largely affected by factors such as the reactivity of the parent compound and volatility of the product species (Odum et al., 1997). The reactivity of the parent species can be directly measured by their reaction rate constants with oxidants. The oxidation products, however, are both numerous and difficult to quantify analytically. Therefore, the SOA yield (Y), defined as mass of SOA formed divided by mass of VOCs reacted, has been used as an indirect measure for a specific VOC species to indicate its ability to form SOA (Odum et al., 1997). This way the secondary organic aerosol formation potentials (SOAFPs) by a mixture of VOCs can be estimated as $\Sigma_i X_i \times Y_i$, where X_i is the mass concentration ($\mu\text{g m}^{-3}$) and Y_i (%) is the SOA yield of precursor i . SOA yield data have been obtained in controlled smog chamber studies. In this study, the SOA yields are taken from studies by Ng et al (2007), Lim and Ziemann (2009) and Loza et al (2014). As SOA formation depends on nitrogen oxides (NOx) (Ng et al., 2007), SOAFPs are typically calculated under low-NOx and high-NOx conditions, approximating the higher and lower limits, respectively. Although widely used in a lot of literatures, this kind of calculation is also a simplified approach to indicate SOA potentially formed if the observed VOCs are completely oxidized in the atmosphere.

In the present study, we put our focus mainly on how the control measures or human activities would impact the VOCs occurring in the ambient air, so we just followed the widely adopted approaches to indicate their ozone and SOA formation potentials, although they are simplified and even scientifically not solid enough.

[3] I recommend expanding discussion at least to compare VOC speciation from other locations in the region and other metropolitan areas in the world.

Reply: Thanks for the suggestion. In the revised manuscript, we have added the comparison as below:

“Table S1 shows a comparison of VOCs from our study with those observed at other metropolitan areas in the world. Mixing ratios of VOCs from this study at a rural site in Beijing during period I (23.41 ppb) and period III (21.71 ppbv) were comparable to that in urban Shanghai from January 2007 to March 2010 (Cai et al., 2010), but lower than those in Beijing during June 2008 (Wang et al., 2010), Guangzhou from June 2011 to May 2012 (Zou et al., 2015), Lille, French from May 1997 to April 1999 (Borbon et al., 2002) and Houston in August-September 2006 (Leuchner and

Rappengluck, 2010). Average mixing ratios of VOCs during period II (11.25 ppbv) with enhanced emission control in the present study were significantly lower than those reported in other metropolitan areas. As for the most abundant VOC species including ethane, propane, ethylene, benzene, toluene and ethyne, the mixing ratios of ethane and ethylene at UCAS were similar to that at Beijing during June 2008 (Wang et al., 2010) and urban Guangzhou from June 2011 to May 2012 (Zou et al., 2015), but significantly lower than that in urban Beijing during 2014 APEC (Li et al., 2015). Propane in present study are comparable with that in Hong Kong from September 2002 to August 2003 (Guo et al., 2007) and Lille, French from May 1997 to April 1999 (Borbon et al., 2002), but factors of 2-3 lower than that reported in urban Shanghai from January 2007 to March 2010 (Cai et al., 2010) and Guangzhou from June 2011 to May 2012 (Zou et al., 2015). Mixing ratios of benzene and toluene in Lille, French from May 1997 to April 1999 (Borbon et al., 2002) were over 2 times higher than that in present study. Mixing ratios of ethylene, benzene and toluene in present study were comparable to those observed in Houston during August-September 2006 (Leuchner and Rappengluck, 2010), while ethyne, a tracer of incomplete combustion, had mixing ratios 3-4 times higher than that in Houston.”

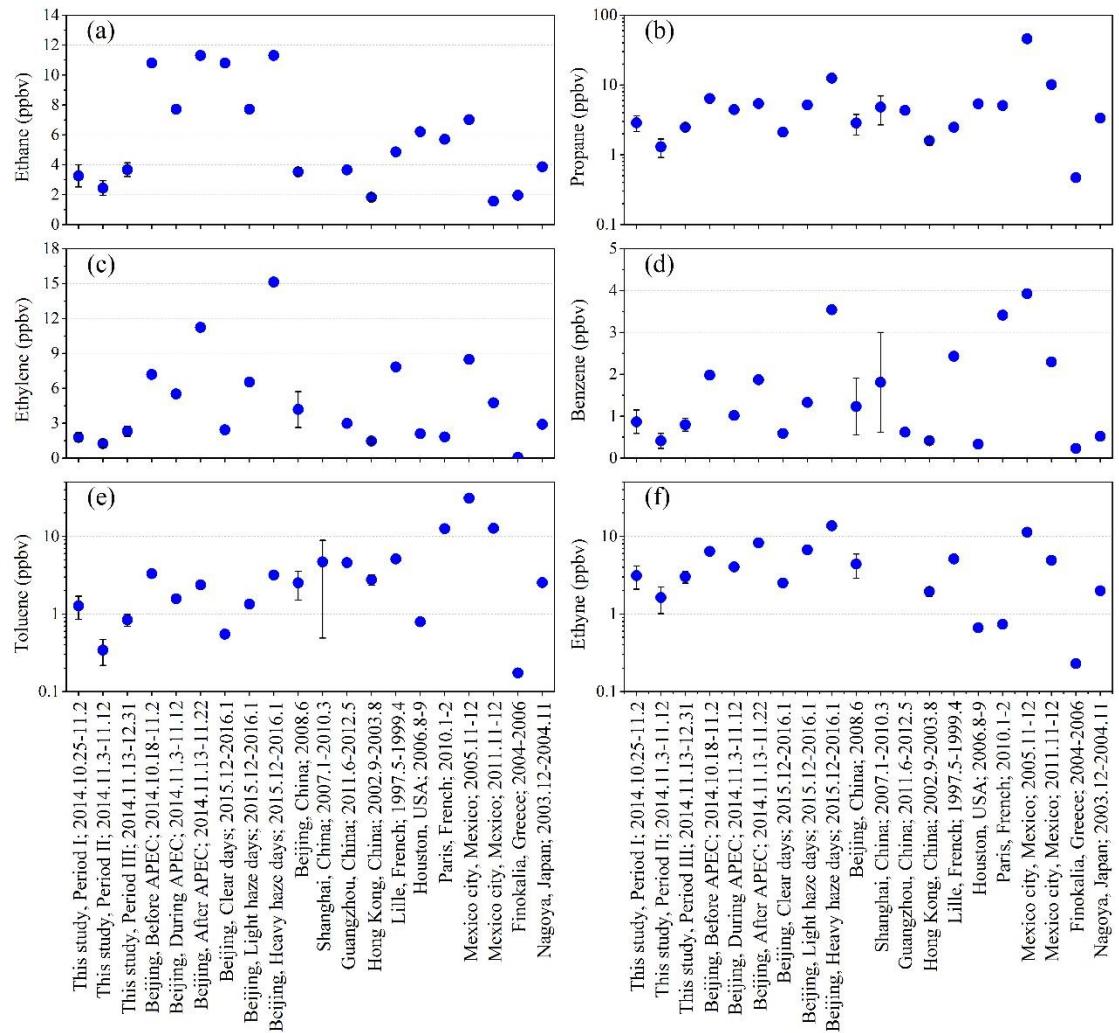


Figure S1. Comparison of (a) ethane, (b) propane, (c) ethylene, (d) benzene, (e) toluene and (f) ethyne observed at UCAS with those from other studies at metropolitan areas in the world.

[4] In addition, I would recommend more thorough descriptions on ozone formation potential and SOA formation potential particularly in the context of whether the metrics are relevant in this photochemical environment.

Reply: As responding to comment [2] above, we fully agree that we should consider if the metrics are relevant in a specific photochemical environment. However, in the present study since we put our focus mainly on how the control measures or human activities would impact the VOCs occurring in the ambient air, so we just followed the widely adopted approaches to indicate their ozone and SOA formation potentials, although they are over simplified and even scientifically not solid enough.

References:

Baudic, A., Gros, V., Sauvage, S., Locoge, N., Sanchez, O., Sarda-Estève, R., Kalogridis, C., Petit,

J. E., Bonnaire, N., and Baisnée, D.: Seasonal variability and source apportionment of volatile organic compounds (VOCs) in the Paris megacity (France), *Atmos. Chem. Phys.*, 16, 11961-11988, <https://doi.org/10.5194/acp-16-11961-2016>, 2016.

Borbon, A., Locoge, N., Veillerot, M., Galloo, J. C., and Guillermo, R.: Characterisation of NMHCs in a French urban atmosphere: overview of the main sources, *Sci. Total Environ.*, 292, 177-191, [https://doi.org/10.1016/S0048-9697\(01\)01106-8](https://doi.org/10.1016/S0048-9697(01)01106-8), 2002.

Cai, C. J., Geng, F. H., Tie, X. X., Yu, Q., and An, J. L.: Characteristics and source apportionment of VOCs measured in Shanghai, China, *Atmos. Environ.*, 44, 5005-5014, <http://dx.doi.org/10.1016/j.atmosenv.2010.07.059>, 2010.

Carter, W. P. L., and Atkinson, R.: Computer modeling study of incremental hydrocarbon reactivity, *Environ. Sci. Technol.*, 23, 864-880, <http://doi.org/10.1021/es00065a017>, 1989.

Carter, W. P. L.: Development of Ozone Reactivity Scales for Volatile Organic Compounds, *Air & Waste*, 44, 881-899, <http://doi.org/10.1080/1073161x.1994.10467290>, 1994.

Dodge, M. C.: Combined effects of organic reactivity and NMHC/NOx ratio on photochemical oxidant formation-a modeling study, *Atmos. Environ.*, 18, 1657-1665, [http://doi.org/10.1016/0004-6981\(84\)90388-3](http://doi.org/10.1016/0004-6981(84)90388-3), 1984.

Garzón, J. P., Huertas, J. I., Magaña, M., Huertas, M. E., Cárdenas, B., Watanabe, T., Maeda, T., Wakamatsu, S., and Blanco, S.: Volatile organic compounds in the atmosphere of Mexico City, *Atmos. Environ.*, 119, 415-429, <https://doi.org/10.1016/j.atmosenv.2015.08.014>, 2015.

Guo, H., So, K. L., Simpson, I. J., Barletta, B., Meinardi, S., and Blake, D. R.: C1-C8 volatile organic compounds in the atmosphere of Hong Kong: Overview of atmospheric processing and source apportionment, *Atmos. Environ.*, 41, 1456-1472, <http://dx.doi.org/10.1016/j.atmosenv.2006.10.011>, 2007.

Huang, R. J., Zhang, Y. L., Bozzetti, C., Ho, K. F., Cao, J. J., Han, Y. M., Daellenbach, K. R., Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G., Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J., Zimmermann, R., An, Z. S., Szidat, S., Baltensperger, U., El Haddad, I., and Prevot, A. S. H.: High secondary aerosol contribution to particulate pollution during haze events in China, *Nature.*, 514, 218-222, <http://doi.org/10.1038/nature13774>, 2014.

Leuchner, M., and Rappenglück, B.: VOC source–receptor relationships in Houston during

TexAQS-II, *Atmos. Environ.*, 44, 4056-4067, <https://doi.org/10.1016/j.atmosenv.2009.02.029>, 2010.

Li, J., Xie, S. D., Zeng, L. M., Li, L. Y., Li, Y. Q., and Wu, R. R.: Characterization of ambient volatile organic compounds and their sources in Beijing, before, during, and after Asia-Pacific Economic Cooperation China 2014, *Atmos. Chem. Phys.*, 15, 7945-7959, <http://dx.doi.org/10.5194/acp-15-7945-2015>, 2015.

Liakakou, E., Bonsang, B., Williams, J., Kalivitis, N., Kanakidou, M., and Mihalopoulos, N.: C2–C8 NMHCs over the Eastern Mediterranean: Seasonal variation and impact on regional oxidation chemistry, *Atmos. Environ.*, 43, 5611-5621, <https://doi.org/10.1016/j.atmosenv.2009.07.067>, 2009.

Lim, S. S et al.: A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010, *Lancet*, 380, 2224-2260, [http://dx.doi.org/10.1016/s0140-6736\(12\)61766-8](http://dx.doi.org/10.1016/s0140-6736(12)61766-8), 2012.

Lim, Y. B., and Ziemann, P. J.: Effects of molecular structure on aerosol yields from OH radical-initiated reactions of linear, branched, and cyclic alkanes in the presence of NO_x, *Environ. Sci. Technol.*, 43, 2328-2334, <http://dx.doi.org/10.1021/es803389s>, 2009.

Liu, C. T., Ma, Z. B., Mu, Y. J., Liu, J.F., Zhang, C.L., Zhang, Y. Y., Liu, P. F., and Zhang, H. X.: The levels, variation characteristics, and sources of atmospheric non-methane hydrocarbon compounds during wintertime in Beijing, China, *Atmos. Chem. Phys.*, 17, 10633-10649, <https://doi.org/10.5194/acp-17-10633-2017>, 2017.

Liu, J., Mauzerall, D. L., Chen, Q., Zhang, Q., Song, Y., Peng, W., Klimont, Z., Qiu, X. H., Zhang, S. Q., Hu, M., Lin, W. L., Smith, K. R., and Zhu, T.: Air pollutant emissions from Chinese households: A major and underappreciated ambient pollution source, *P. Natl. Acad. Sci. USA.*, 113, 7756-7761, <http://dx.doi.org/10.1073/pnas.1604537113>, 2016.

Loza, C.L., Craven, J.S., Yee, L.D., Coggon, M.M., Schwantes, R.H., Shiraiwa, M., Zhang, X., Schilling, K.A., Ng, N.L., Canagaratna, M.R., Ziemann, P.J., Flagan, R.C., Seinfeld, J.H.: Secondary organic aerosol yields of 12-carbon alkanes, *Atmos. Chem. Phys.*, 14, 1423-1439, <http://doi.org/10.5194/acp-14-1423-2014>, 2014.

Martin, W. J., Glass, R. I., Balbus, J. M., and Collins, F. S.: A Major Environmental Cause of Death,

Science, 334, 180-181, <http://dx.doi.org/10.1126/science.1213088>, 2011.

Ng, N. L., Kroll, J. H., Chan, A. W. H., Chhabra, P. S., Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol formation from m-xylene, toluene, and benzene, *Atmos. Chem. Phys.*, 7, 3909-3922, <http://doi.org/10.5194/acp-7-3909-2007>, 2007.

Odum, J. R., Jungkamp, T. P. W., Griffin, R. J., Flagan, R. C., and Seinfeld, J. H.: The atmospheric aerosol-forming potential of whole gasoline vapor, *Science.*, 276, 96-99, <http://doi.org/10.1126/science.276.5309.96>, 1997.

Saito, S., Nagao, I., and Kanzawa, H.: Characteristics of ambient C₂-C₁₁ non-methane hydrocarbons in metropolitan Nagoya, Japan, *Atmos. Environ.*, 43, 4384-4395, <https://doi.org/10.1016/j.atmosenv.2009.04.031>, 2009.

Subramanian, M.: Deadly dinners, *Nature*, 509, 548-551, <http://doi.org/10.1038/509548a>, 2014.

Wang, B., Shao, M., Lu, S. H., Yuan, B., Zhao, Y., Wang, M., Zhang, S. Q., and Wu, D.: Variation of ambient non-methane hydrocarbons in Beijing city in summer 2008, *Atmos. Chem. Phys.*, 10, 5911-5923, <http://doi.org/10.5194/acp-10-5911-2010>, 2010.

Zou, Y., Deng, X. J., Zhu, D., Gong, D. C., Wang, H., Li, F., Tan, H. B., Deng, T., Mai, B. R., Liu, X. T., and Wang, B. G.: Characteristics of 1 year of observational data of VOCs, NO_x and O₃ at a suburban site in Guangzhou, China, *Atmos. Chem. Phys.*, 15, 6625-6636, [10.5194/acp-15-6625-2015](https://doi.org/10.5194/acp-15-6625-2015), 2015.

Author' Response to Referees' Comments

Anonymous Referee #2

Household air pollution from burning biomass and coal for cooking foods and heating rooms has long been a major environmental problem. Previous studies suggested that the uncontrolled and inefficient combustion of solid fuels for heating in winter also contributed substantially to outdoor PM_{2.5}, BC, OC, SO₂ and NO_x in many regions, such as in the North China Plain (Liu et al., 2016, PNAS). The field observations at the rural site of Beijing in this study further demonstrated that the combustion of solid fuels for heating in winter made remarkable contribution to ambient volatile organic compounds (VOCs). The authors also took advantage of the temporary intervention measures for emission control during the APEC to evaluate the actual effect of the control measures on the ambient VOCs levels through reduction of the source contributions. The comparison between the heating and non-heating periods offered robust results indicating the influential emission from winter heating. Overall, the data quality of this manuscript is quite good, and the interpretation of the results is appropriate and convincing. Therefore, I strongly recommend publication of this manuscript.

Reply: Thanks for the comments. We have revised our manuscript with your constructive comments and suggestions as below.

Majors:

[1] As stated above, an important finding of this study is that residential coal burning, especially during winter heating period, could be a major contributor to the ambient VOCs. Apart from the emission factors available for residential coal burning, is it possible for the authors to have the amounts of coals consumed in the residential sector especially during winter and give an in-depth explanation why this source could contribute substantially?

Reply: Thanks for the suggestions. The information about coal consumptions and an in-depth explanation to the substantial contribution from residential coal burning have been added into the revised manuscript (section 3.3.2, line 443-459):

“Coal is consumed in residential, industrial and power sectors in Beijing. As showed in Fig. S5a, while annual total coal consumptions dropped rapidly during 2006-2015, the annual residential coal

consumptions remained almost unchanged with their percentages in total coal consumptions rising from 8.7% in 2006 to 23.4% in 2015 (Beijing Municipal Bureau of Statistics, 2016; Yu et al., 2018). As a matter of fact, over 60% of the residential coal consumption occurred in rural areas of Beijing (Fig. S5b), and residential coal is mainly burned in the cool winter season for house heating (Xue et al., 2016). While emission factors of VOCs from residential coal burning have been found to be a factor of 20 greater than those from coal-fired power plants (Liu et al., 2017), the differences in coal quality between the urban and rural areas augment emissions in rural areas: coal used in urban area was entirely anthracite with comparatively much lower emissions of volatiles than other types of coal (Xu et al., 2017); instead only 5-15% of coal used in rural area was anthracite (Xue et al., 2016). Consequently, residential coal combustion could have been a major contributor to the ambient VOCs in rural areas of Beijing during winter.”

The coal consumptions in Beijing from 2006 to 2015 were also added to the supplement information as shown below (Fig. S5).

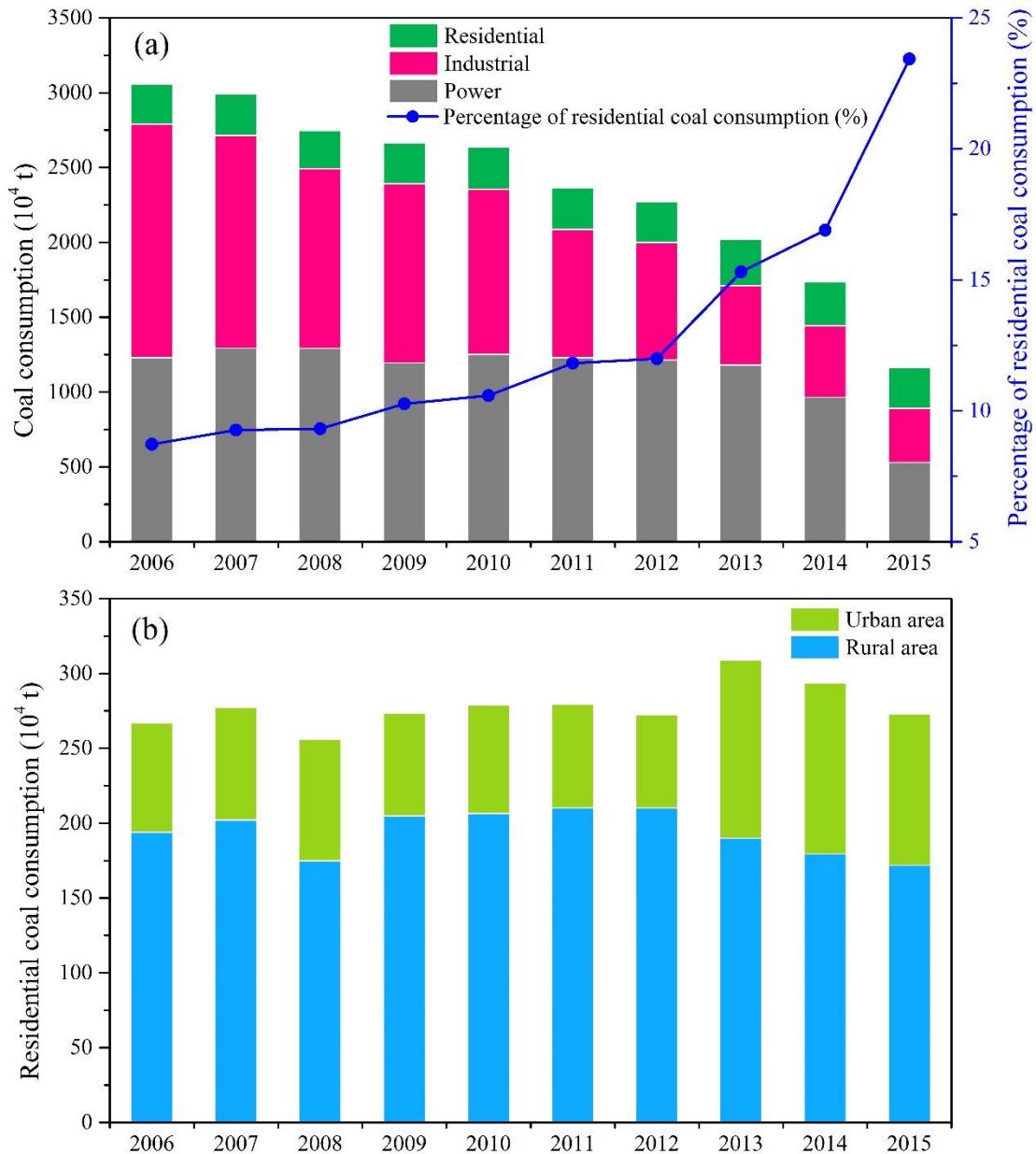


Figure S5. (a) The total coal consumption in residential, industrial and power generation sectors and the percentage of residential coal consumption in total coal consumption in Beijing during 2006-2015; (b) Residential coal consumption in urban and rural areas of Beijing during 2006-2015.

[2] The study suggests clean energy use in residential sector is vital for reducing VOCs in the heavily polluted winter. This aspect should be incorporated into the discussion or the conclusion part of the manuscript.

Reply: Thanks. In the revised manuscript we have re-write the introduction part to stress that residential burning of solid fuels for cooking and heating is not only a problem of indoor air

pollution, but also an important source of outdoor air pollutants. In the conclusion part, based on the results that residential burning of solid fuels contributed nearly halves of VOCs in ambient air during wintertime heating, we added:

“However, as observed in this study, even in megacities like Beijing, burning raw coal or biomass for household heating in winter could contribute near half of VOCs in ambient air. If the emission control over residential burning of solid fuels is underappreciated, the intervention measures targeted on traffic and industry sectors would be not so effective in the wintertime heating period as did in non-heating periods either to lower PM_{2.5} as indicated by Liu et al. (2016) or to lower VOCs in ambient air as indicated by this study. In fact, a study by Yu et al. (2018) during the same field campaign of this study demonstrated that, without emission control over residential burning of solid fuels, ambient PM_{2.5}-bound toxic polycyclic aromatic hydrocarbons in rural Beijing during the 2014 APEC summit remained unchanged despite of the temporary intervention control measures, and they were largely aggravated after the start of wintertime heating. Therefore, cleaner energy use instead of poor-technology burning of solid fuels household heating would have tremendous health benefits in lowering both indoor and outdoor air pollution particularly in heavily polluted winter. It is worth noting that this study was conducted in a rural area of the megacity Beijing. Emission from residential burning of solid fuels would be a source of greater importance and thus deserves more concern in less developed regions.”

Minors:

Although I am not a native English speaker, I would say that there is still room for improving English writing of the manuscript. The authors better find a native English speaker to check the English.

Reply: Thanks for your careful check and your great patience in listing the errors/mistakes. For the revised manuscript, we have also asked a native English speaker to re-check the English writing.

Line 33-34: Change “during wintertime severe haze events” to “during severe wintertime haze events”;

Reply: Revised as suggested.

Line 35: Change “comparatively much less” to “not well”;

Reply: Revised as suggested.

Line 37: Change “inside” to “on”;

Reply: Revised as suggested.

Line 37: add “the” before “University”;

Reply: Revised as suggested.

Line 38: Change “northeast” to “northeastern”;

Reply: Revised as suggested.

Line 39: Remove “that”;

Reply: Revised as suggested.

Line 39: Change “during” to “on”;

Reply: Revised as suggested.

Line 40: Add “the” before “air quality”;

Reply: Revised as suggested.

Line 41: Change “in” to “on”;

Reply: Revised as suggested.

Line 41: Remove “that”;

Reply: Revised as suggested.

Line 41: Change “since” to “on”;

Reply: Revised as suggested.

Line 42: Change “it is” to “this sample collection period provided”;

Reply: Revised as suggested.

Line 43: Remove “the” before “temporary” and before “wintertime”;

Reply: Revised as suggested.

Line 44, 45: Add “the” before “temporary”;

Reply: Revised as suggested.

Line 46: Change “about” to “approximately”;

Reply: Revised as suggested.

Line 47: Change “that” to “the values”;

Reply: Revised as suggested.

Line 46-48: Change “that of 23.41 ppb before the APEC (25 October-2 November; Period I) or

21.71 ppb after the APEC (13 November-31 December; Period III)" to "the values of 23.41 ppb in Period I (25 October-2 November) before the APEC and 21.71 ppb in period III (13 November-31 December) after the APEC";

Reply: Revised as suggested.

Line 48: Change "Their" to "The";

Reply: Revised as suggested.

Line 49: Change "drop" to "decrease";

Reply: Revised as suggested.

Line 50: Change "of" to "over";

Reply: Revised as suggested.

Line 51: Remove "the" before "southerly";

Reply: Revised as suggested.

Line 52: Change "that in the northerly ones during period I, II and III" to "those in northerly air masses during periods I, II and III";

Reply: Revised as suggested.

Line 53: Remove "and";

Reply: Revised as suggested.

Line 54: Change "south" to "southern";

Reply: Revised as suggested.

Line 56: Change "changed" to "the altered";

Reply: Revised as suggested.

Line 57, 58: Remove "the" before "Period";

Reply: Revised as suggested.

Line 58: Change "emission" to "emissions";

Reply: Revised as suggested.

Line 59: Add "the" before "ambient";

Reply: Revised as suggested.

Line 60: Change "emission" to "emissions";

Reply: Revised as suggested.

Line 60: Remove "they";

Reply: Revised as suggested.

Line 61-62: Change “VOCs during the period I, II and III” to “the VOCs during periods I, II and III”;

Reply: Revised as suggested.

Line 62-63: Change “became the dominant source which accounted for 45.1% of the VOCs” to “became the largest source, accounting for 45.1% of the VOCs”;

Reply: Revised as suggested.

Line 64-65: Change “with a remarkably lower average contribution percentage (38.2%) in the southerly air masses than that of 48.8% in the northerly air masses” to “with a specifically lower average contribution percentage in southerly air masses (38.2%) than in northerly air masses (48.8%)”;

Reply: Revised as suggested.

Line 72: Change “emission” to “emissions”;

Reply: Revised as suggested.

Line 73: Change “benefit improving” to “improve the”;

Reply: Revised as suggested.

Line 74: Change “an extensive concern” to “a widespread concern”;

Reply: Revised as suggested.

Line 75, 79: Change “summertime” to “summer”;

Reply: Revised as suggested.

Line 75: Change “wintertime” to “winter”;

Reply: Revised as suggested.

Line 80: Remove “as well”;

Reply: Revised as suggested.

Line 82: Change “comparatively the role of VOCs in the wintertime with PM_{2.5}” to “comparatively, the effect of VOCs on wintertime PM_{2.5}”;

Reply: Revised as suggested.

Line 88: Change “in the control of air pollution by PM_{2.5} in wintertime” to “in the control of PM_{2.5} air pollution in winter”;

Reply: Revised as suggested.

Line 90: Change “under” to “on”;

Reply: Revised as suggested.

Line 92: Change “vehicle exhausts are” to “vehicle exhaust is an”;

Reply: Revised as suggested.

Line 96: Change “particularly in north China in wintertime” to “particularly in northern China in winter”;

Reply: Revised as suggested.

Line 99: Add “the” before “VOCs”;

Reply: Revised as suggested.

Line 100: Change “is widely occurring in the rural areas” to “widely occur in rural areas”;

Reply: Revised as suggested.

Line 101-102: Change “how the enhanced emission” to “how enhanced emissions”;

Reply: Revised as suggested.

Line 109: Change “north” to “northern”;

Reply: Revised as suggested.

Line 110: Add “the” before “air quality”;

Reply: Revised as suggested.

Line 111: Remove “so”;

Reply: Revised as suggested.

Line 111: Remove “when”;

Reply: Revised as suggested.

Line 112: Change “especially in wintertime with” to “especially in winter, with”;

Reply: Revised as suggested.

Line 116: Change “kind” to “type”;

Reply: Revised as suggested.

Line 118: Change “As for” to “For”;

Reply: Revised as suggested.

Line 121: Change “drops of” to “decreases in”;

Reply: Revised as suggested.

Line 123: Change “inside” to “on”;

Reply: Revised as suggested.

Line 124: Add “the” before “total”;

Reply: Revised as suggested.

Line 124: Add “were” before “reduced”;

Reply: Revised as suggested.

Line 125: Add “those in” before “the period”;

Reply: Revised as suggested.

Line 126: Change “about” to “of”;

Reply: Revised as suggested.

Line 127, 134: Remove “the” before “urban”;

Reply: Revised as suggested.

Line 127: Remove “entirely”;

Reply: Revised as suggested.

Line 128: Add “on” before “a regional scale”;

Reply: Revised as suggested.

Line 132-133: Change “The objectives of present study are” to “The objectives of the present study are as follows”;

Reply: Revised as suggested.

Line 135, 136: change “crucial” to “the major”;

Reply: Revised as suggested.

Line 136: Change “wintertime” to “winter”;

Reply: Revised as suggested.

Line 137: Add “the” before “APEC”;

Reply: Revised as suggested.

Line 141: Change “_” to “_”;

Reply: Revised as suggested.

Line 142: Change “inside the campus of” to “on the campus of the”;

Reply: Revised as suggested.

Line 142: Add “the” before “Huairou”;

Reply: Revised as suggested.

Line 143-144: Change “The UCAS is located about 60 km northeast of central Beijing and about 150 km northwest of the Tianjin city” to “UCAS is located approximately 60 km northeast of the center of Beijing and approximately 150 km northwest of the city of Tianjin”;

Reply: Revised as suggested.

Line 145-147: Change “16 meters above ground on the top of a four-story building, about 100 m west of a national road and only 1.5 km far away from the APEC main conference hall” to “16 meters above the ground on the top of a four-story building, approximately 100 m west of a national road and only 1.5 km away from the main APEC conference hall”;

Reply: Revised as suggested.

Line 152: Remove “of”;

Reply: Revised as suggested.

Line 153: Add “and” before “one”;

Reply: Revised as suggested.

Line 154: Add “was” before “less than”;

Reply: Revised as suggested.

Line 154: Add “a” before “relative”;

Reply: Revised as suggested.

Line 154: Add “of” before “less”;

Reply: Revised as suggested.

Line 158: Remove “the time span”;

Reply: Revised as suggested.

Line 163-164: Change “and average temperature was 11.4, 7.0, and 0.6°C during periods I, II and III” to “and the average temperature was 11.4, 7.0 and 0.6°C during periods I, II and III”;

Reply: Revised as suggested.

Line 224: Remove “the” before “period”;

Reply: Revised as suggested.

Line 226: Change “Total” to “The total”;

Reply: Revised as suggested.

Line 226: Change “inside” to “at”;

Reply: Revised as suggested.

Line 227: Change “in” to “on”;

Reply: Revised as suggested.

Line 229: Change “halves of 57.45, 36.17, and 56.56 ppb” to “half the values (57.45, 36.17, and 56.56 ppb)”;

Reply: Revised as suggested.

Line 231: Remove “both”;

Reply: Revised as suggested.

Line 234: Add “a” before “more than”;

Reply: Revised as suggested.

Line 234: Remove “the”;

Reply: Revised as suggested.

Line 234: Change “about” to “an approximately”;

Reply: Revised as suggested.

Line 237: Change “or” to “and the”;

Reply: Revised as suggested.

Line 238: Change “densities” to “density”;

Reply: Revised as suggested.

Line 240: Change “shared by” to “of”;

Reply: Revised as suggested.

Line 240: Remove “quite”;

Reply: Revised as suggested.

Line 243-244: Change “percentages shared by aromatics became lower during period II (12%) when compared to that in period I (21%) or period III (15%)” to “the percentage of aromatics was lower during period II (12%) than during period I (21%) and period III (15%)”;

Reply: Revised as suggested.

Line 246-247: Change “decreased by 49.0, 32.5, 72.8, and 48.1%, respectively, when compared to those during period I” to “were 49.0, 32.5, 72.8 and 48.1% lower than those during period I, respectively”;

Reply: Revised as suggested.

Line 247-248: Change “Aromatics evidently had a more substantial drop” to “Aromatics evidently

underwent a larger decrease”;

Reply: Revised as suggested.

Line 249: Remove “as”;

Reply: Revised as suggested.

Line 252: Change “ozone formation potentials (OFPs)” to “ozone formation potential (OFP)”;

Reply: Revised as suggested.

Line 253: Change “in average during periods I, II and III were” to “on average during periods I, II and III was”;

Reply: Revised as suggested.

Line 255: Change “Their” to “The”;

Reply: Revised as suggested.

Line 255: Change “potentials (SOAFPs)” to “potential (SOAFP)”;

Reply: Revised as suggested.

Line 257, 259: Add “the” to “total”;

Reply: Revised as suggested.

Line 261: Change “VOCs” to “VOC”;

Reply: Revised as suggested.

Line 262: Change “drop” to “decreases”;

Reply: Revised as suggested.

Line 264: Change “changed contribution by aromatic” to “the altered contribution of aromatics”;

Reply: Revised as suggested.

Line 266: Change “condition” to “conditions and from”;

Reply: Revised as suggested.

Line 267: Change “condition” to “conditions”;

Reply: Revised as suggested.

Line 270: Change “showed” to “shown”;

Reply: Revised as suggested.

Line 271: Change “with the increase in” to “with an increase in the”;

Reply: Revised as suggested.

Line 272: Change “like that” to “as those”;

Reply: Revised as suggested.

Line 276: Add “the” before “wind”;

Reply: Revised as suggested.

Line 280: Change “showed” to “shows”;

Reply: Revised as suggested.

Line 281: Change “the” to “a”;

Reply: Revised as suggested.

Lines 282-285: “It clearly demonstrated that the mixing ratios of VOCs increased rapidly, and the back trajectories indicated that air masses changed from northerly to southerly and then declined sharply while the air masses changed back from southerly to northerly”, rewrite the sentences.

Reply: Revised as suggested.

Lines 285-286: Change “The southern areas of UCAS are the central Beijing with stronger emissions” to “The southern areas of UCAS are in central Beijing where emissions are stronger”;

Line 286: Add “that”;

Reply: Revised as suggested.

Line 287: Change “increase of” to “increase in the”;

Reply: Revised as suggested.

Line 288: Change “of source regions” to “in the source region”;

Reply: Revised as suggested.

Line 289: Change “showed” to “shown”;

Reply: Revised as suggested.

Line 291: Change “changed” to “altered”;

Reply: Revised as suggested.

Line 295: Add “and” before “2”;

Reply: Revised as suggested.

Line 296: should be “: : :Mongolia and quickly: : :”;

Reply: Revised as suggested.

Line 297: Change “emission” to “emissions”;

Reply: Revised as suggested.

Line 302: Change “period” to “periods”;

Reply: Revised as suggested.

Line 303: Change “that” to “those”;

Reply: Revised as suggested.

Line 304: Change “OFPs in the southerly air masses were” to “the OFP in southerly air masses was”;

Reply: Revised as suggested.

Line 305: Change “and SOAOPs in the” to “and the SOAOP in”;

Reply: Revised as suggested.

Line 305: Change “were” to “was”;

Reply: Revised as suggested.

Line 308: Change “This indicates that the north and south” to “These results indicate that the northern and southern”;

Reply: Revised as suggested.

Line 313-314: Change “OFPs and SOAOPs” to “OFP and SOAOP”;

Reply: Revised as suggested.

Line 314: Add “that” before “the changes”;

Reply: Revised as suggested.

Line 315: Remove “to”;

Reply: Revised as suggested.

Line 316: Change “when compared to that during period I average” to “compared to that during period I, the average”;

Reply: Revised as suggested.

Line 319: Change “OFPs decreased by 48.1% and SOAOPs” to “the OFP decreased by 48.1% and the SOAOP”;

Reply: Revised as suggested.

Line 320: Change “when compared to that” to “compared to those”;

Reply: Revised as suggested.

Line 321: Add “the” before “average”;

Reply: Revised as suggested.

Line 323: Remove “when”;

Reply: Revised as suggested.

Line 323-324: Change “OFPs decreased by 48.9% and SOAFPs decreased by over 70% during period II relative to period I” to “the OFP decreased by 48.9%, and the SOAFP decreased by over 70% during period II relative to those in period I”;

Reply: Revised as suggested.

Line 325: Add “a” before “more”;

Reply: Revised as suggested.

Line 326: Change “emission control in” to “control over emissions from”;

Reply: Revised as suggested.

Line 327: Change “less changes in mixing ratios” to “decreased changes in the mixing ratios”;

Reply: Revised as suggested.

Line 328: Change “of” to “over”;

Reply: Revised as suggested.

Line 331: Change “that” to “those”;

Reply: Revised as suggested.

Line 331: Change “This difference in the increase rates” to “These different increases”;

Reply: Revised as suggested.

Line 332: Change “are” to “were”;

Reply: Revised as suggested.

Line 333: Change “heating supply was only available since” to “heat sources were only available after”;

Reply: Revised as suggested.

Line 334: Change “already” to “have”;

Reply: Revised as suggested.

Line 336: Change “apportioning” to “apportionment”;

Reply: Revised as suggested.

Line 338: Add “the” before “campaign”;

Reply: Revised as suggested.

Lines 338-339: Change “might be resulted from changed contribution by emission sources, such like” to “might have resulted from the altered contributions from emission sources, such as”;

Reply: Revised as suggested.

Line 341: add “the” before “characteristic”;

Reply: Revised as suggested.

Line 344: Change “in average during period” to “on average during periods”;

Reply: Revised as suggested.

Line 345: Change “were approaching” to “approached”;

Reply: Revised as suggested.

Line 347, 351: Remove “the” before “period”;

Reply: Revised as suggested.

Line 348: Remove “, which is characteristic of vehicular exhaust”;

Reply: Revised as suggested.

Line 349: Add “the” before “incomplete”;

Reply: Revised as suggested.

Line 354: Change “in” to “on”;

Reply: Revised as suggested.

Line 355: Change “that coal burning contributed more” to “an increased contribution of coal burning”;

Reply: Revised as suggested.

Line 357: Change “emission” to “emissions”;

Reply: Revised as suggested.

Line 359: Change “are mainly from” to “mainly originate from”;

Reply: Revised as suggested.

Line 361: Change “were” to “are”;

Reply: Revised as suggested.

Line 364: Change “when compared to that of” to “than the values of”;

Reply: Revised as suggested.

Line 365: Change “or” to “and of”;

Reply: Revised as suggested.

Line 366: Change “This drop in aromatics/CO ratios” to “This decrease in the ratios of aromatics to CO”;

Reply: Revised as suggested.

Line 367: Change “of” to “over”;

Reply: Revised as suggested.

Line 370, 371: Add “those in” before “period I”;

Reply: Revised as suggested.

Line 371-372: Change “Apparently larger decrease in TEX/CO ratios in the northerly air masses reflected” to “A larger decrease in the TEX/CO ratios in northerly air masses reflects the fact that”;

Reply: Revised as suggested.

Line 374: Change “3.3.2 Source Apportioning by PMF” to “3.3.2 Source Apportionment by PMF”;

Reply: Revised as suggested.

Line 375: Change “Thirty-five” to “The 35”;

Reply: Revised as suggested.

Line 375: Add “and” before “ethyne”;

Reply: Revised as suggested.

Line 376: Change “sources” to “source”;

Reply: Revised as suggested.

Line 377: Add “use with” before “the PMF”;

Reply: Revised as suggested.

Line 385: Change “the gasoline vehicle emission” to “gasoline vehicle emissions”;

Reply: Revised as suggested.

Line 386: should be “trichloroethylene and tetrachloroethylene”;

Reply: Revised as suggested.

Line 387: Change “of” to “by”;

Reply: Revised as suggested.

Line 388: Change “manufacturing industrials” to “industrial manufacturing”;

Reply: Revised as suggested.

Line 389-390: Change “by industries for make” to “in industry to prepare”;

Reply: Revised as suggested.

Line 390: Add “during the” before “production”;

Reply: Revised as suggested.

Line 392: Change “emission” to “emissions”;

Reply: Revised as suggested.

Line 393: Change “a larger percentage of the” to “larger percentages of”;

Reply: Revised as suggested.

Line 394: Chang “It is known that TEX are” to “TEX is known to be”;

Reply: Revised as suggested.

Line 396: Change “They are also” to “These compounds are also the”;

Reply: Revised as suggested.

Line 396-397: Change “auto factory painting and building coating” to “automobile factories, paint and building coatings”;

Reply: Revised as suggested.

Line 398: Change “as” to “to be”;

Reply: Revised as suggested.

Line 403-404: Change “top 3 species of” to “the top 3 species emitted during”;

Reply: Revised as suggested.

Line 405: Change “were” to “are”;

Reply: Revised as suggested.

Line 405-406: Change “and aromatics like benzene” to “as well as aromatics such as benzene”;

Reply: Revised as suggested.

Line 406-407: Change “So factor 5 is related to the coal/biomass burning” to “Thus, factor 5 is related to coal/biomass burning”;

Reply: Revised as suggested.

Line 408: Change “period” to “periods”;

Reply: Revised as suggested.

Line 409: Add “the” before “VOCs”;

Reply: Revised as suggested.

Line 411: Add the “the” before “temporary” and remove “the” before “period”;

Reply: Revised as suggested.

Line 412: Change “by” to “of”;

Reply: Revised as suggested.

Line 413: Change “drop” to “decrease”;

Reply: Revised as suggested.

Line 414: Change “by” to “from”;

Reply: Revised as suggested.

Line 415: Change “Quite similar” to “Similar”;

Reply: Revised as suggested.

Line 417: Remove “the”;

Reply: Revised as suggested.

Line 418: Change “from” to “on”;

Reply: Revised as suggested.

Line 419: Change “emission” to “emissions”;

Reply: Revised as suggested.

Line 420: Add “the” before “VOCs”;

Reply: Revised as suggested.

Line 421: Change “were showed” to “are shown”;

Reply: Revised as suggested.

Line 422: Change “by” to “of”;

Reply: Revised as suggested.

Line 422: Change “with the” to “with the increase in”;

Reply: Revised as suggested.

Line 423: Remove “instead”;

Reply: Revised as suggested.

Line 427: Change “consumptions” to “consumption”;

Reply: Revised as suggested.

Line 429: Change “The residential coal combustion is prevailing” to “Residential coal combustion is primarily carried out”;

Reply: Revised as suggested.

Line 429: Change “by using” to “with”;

Reply: Revised as suggested.

Line 430: Add “the” before “rural”;

Reply: Revised as suggested.

Line 431: Change “wintertime” to “winter”;

Reply: Revised as suggested.

Line 431: Remove “the”;

Reply: Revised as suggested.

Line 431: Change “accounts” to “accounted”;

Reply: Revised as suggested.

Line 433: Change “contribute predominately to” to “have been the predominant contributor to the”;

Reply: Revised as suggested.

Line 437, 438, 444, 446, 449: Remove “the” before “period”;

Reply: Revised as suggested.

Line 437, 440, 441: Change “by” to “from”;

Reply: Revised as suggested.

Line 441: Change “reduced” to “decreased”;

Reply: Revised as suggested.

Line 443: Change “showed” to “made”;

Reply: Revised as suggested.

Line 443: Change “period” to “periods”;

Line 447: Change “account” to “accounted”;

Reply: Revised as suggested.

Line 451: Change “period” to “periods”;

Reply: Revised as suggested.

Line 451: Remove “respectively”;

Reply: Revised as suggested.

Line 452: Change “emission (gasoline and diesel vehicles) was” to “emissions (gasoline + diesel) were”;

Reply: Revised as suggested.

Line 453: Change “VOCs during the period” to “the VOCs during periods”;

Reply: Revised as suggested.

Line 454: Remove “instead”;

Reply: Revised as suggested.

Line 456: Change “period” to “periods”;

Reply: Revised as suggested.

Line 459: Change “Contributions” to “The contributions”;

Reply: Revised as suggested.

Line 460: Change “were” to “are”;

Reply: Revised as suggested.

Line 460-461: Change “was mainly coming” to “mainly originated”;

Reply: Revised as suggested.

Line 467, 468, 470: Change “of” to “in”;

Reply: Revised as suggested.

Line 472: Change “emission” to “emissions”;

Reply: Revised as suggested.

Line 474: Change “3.3.3 Source contributions to SOAFPs” to “3.3.3 Source contributions to the SOAFP”;

Reply: Revised as suggested.

Line 475: Change “apportioning” to “apportionment”;

Reply: Revised as suggested.

Line 475: Change “SOAFPs by” to “the SOAFP of”;

Reply: Revised as suggested.

Line 476: Change “showed” to “shown”;

Reply: Revised as suggested.

Line 477: Change “condition” to “conditions”;

Reply: Revised as suggested.

Line 477: Change “SOAFPs by solvent use were much higher than that by” to “SOAFP of solvent use was much higher than that of”;

Reply: Revised as suggested.

Line 478: Change “were” to “was”;

Reply: Revised as suggested.

Line 479, 481: Change “period” to “periods”;

Reply: Revised as suggested.

Line 482: Change “of SOAFPs” to “in SOAFP”;

Reply: Revised as suggested.

Line 483: Change “by” to “from”;

Reply: Revised as suggested.

Line 485: Change “condition,” to “conditions, the”;

Reply: Revised as suggested.

Line 485: Change “of” to “in”;

Reply: Revised as suggested.

Line 486: Change “by” to “from”;

Reply: Revised as suggested.

Line 490: Change “or” to “and”;

Reply: Revised as suggested.

Line 490: Change “from” to “during”;

Reply: Revised as suggested.

Line 494: Change “SOAFPs” to “the SOAFP”;

Reply: Revised as suggested.

Line 494: Remove “only”;

Reply: Revised as suggested.

Line 496: Change “is a large of” to “are large”;

Reply: Revised as suggested.

Line 500-501: Change “SOA often shared higher fractions in” to “SOAs often composed higher fractions of”;

Reply: Revised as suggested.

Line 502: Change “are much less” to “not well”;

Reply: Revised as suggested.

Line 504: Change “inside” to “on”;

Reply: Revised as suggested.

Line 505: Change “during” to “on”;

Reply: Revised as suggested.

Line 505, 506: Remove “and, in fact”;

Reply: Revised as suggested.

Line 507: Change “could take” to “took”;

Reply: Revised as suggested.

Line 509: Change “with” to “from”;

Reply: Revised as suggested.

Line 510: Change “could also compare” to “also compared”;

Reply: Revised as suggested.

Line 511: Add “use”;

Reply: Revised as suggested.

Line 512: Change “investigate” to “investigated”;

Reply: Revised as suggested.

Line 513: Change “the” to “a”;

Reply: Revised as suggested.

Line 514-515: Change “period II (3-12 November)” to “period (period II; 3-12 November), the”;

Reply: Revised as suggested.

Line 515: Change “when compared to that” to “compared to those”;

Reply: Revised as suggested.

Line 516: Change “And their” to “In addition, the”;

Reply: Revised as suggested.

Line 516: Change “potentials” to “potential”;

Reply: Revised as suggested.

Line 518: Change “drop” to “decrease”;

Reply: Revised as suggested.

Line 519: Change “of” to “over”;

Reply: Revised as suggested.

Line 520: Change “apportioning” to “apportionment”;

Reply: Revised as suggested.

Line 523: Chang “about” to “of”;

Reply: Revised as suggested.

Line 524: Change “With” to “Through”;

Reply: Revised as suggested.

Line 525: Change “of wind directions” to “in wind direction”;

Reply: Revised as suggested.

Line 526: Change “Total” to “The total”;

Reply: Revised as suggested.

Line 527: Change “that” to “those”;

Reply: Revised as suggested.

Line 531: Change “were” to “was”;

Reply: Revised as suggested.

Line 533: Change “by” to “of”;

Reply: Revised as suggested.

Line 534: Change “in average due to drops in the percentages by” to “on average due to decreases in the percentages of”;

Reply: Revised as suggested.

Line 535-536: Change “that accounted” to “accounting”;

Reply: Revised as suggested.

Line 537: Change “south” to “southern”;

Reply: Revised as suggested.

Line 538: Change “north” to “northern”.

Reply: Revised as suggested.

References:

Beijing Municipal Bureau of Statistics (BMBS).: Beijing Statistical Yearbook 2016. China Statistics Press, Beijing, 2016.

Liu, C. T., Zhang, C. L., Mu, Y. J., Liu, J. F., and Zhang, Y. Y.: Emission of volatile organic compounds from domestic coal stove with the actual alternation of flaming and smoldering combustion processes, Environ. Pollut., 221, 385-391, <http://dx.doi.org/10.1016/j.envpol.2016.11.089>, 2017.

Liu, J., Mauzerall, D. L., Chen, Q., Zhang, Q., Song, Y., Peng, W., Klimont, Z., Qiu, X. H., Zhang, S. Q., Hu, M., Lin, W. L., Smith, K. R., and Zhu, T.: Air pollutant emissions from Chinese

households: A major and underappreciated ambient pollution source, *P. Natl. Acad. Sci. USA.*, 113, 7756-7761, <http://dx.doi.org/10.1073/pnas.1604537113>, 2016.

Xu, J. Y., Zhuo, J. K., Zhu, Y. N., Pan, Y., and Yao, Q.: Analysis of volatile organic pyrolysis products of bituminous and anthracite coals with single-photon ionization time-of-flight mass spectrometry and gas chromatography/mass spectrometry, *Energ. Fuel.*, 31, 730-737, <https://doi.org/10.1021/acs.energyfuels.6b02335>, 2017.

Xue, Y. F., Zhou, Z., Nie, T., Wang, K., Nie, L., Pan, T., Wu, X. Q., Tian, H. Z., Zhong, L. H., Li, J., Liu, H. J., Liu, S. H., and Shao, P. Y.: Trends of multiple air pollutants emissions from residential coal combustion in Beijing and its implication on improving air quality for control measures, *Atmospheric Environment*, 142, 303-312, 10.1016/j.atmosenv.2016.08.004, 2016.

Yu, Q. Q., Yang, W. Q., Zhu, M., Gao, B., Li, S., Li, G. H., Fang, H., Zhou, H. S., Zhang, H. N., Wu, Z. F., Song, W., Tan, J. H., Zhang, Y. L., Bi, X. H., Chen, L. G., and Wang, X. M.: Ambient PM_{2.5}-bound polycyclic aromatic hydrocarbons (PAHs) in rural Beijing: Unabated with enhanced temporary emission control during the 2014 APEC summit and largely aggravated after the start of wintertime heating, *Environ. Pollut.*, 238, 532-542, <http://dx.doi.org/10.1016/j.envpol.2018.03.079>, 2018.

1 **Volatile organic compounds at a rural site in Beijing:**
2 **Influence of temporary emission control and wintertime**
3 **heating**

4 Weiqiang Yang^{1,3}, Yanli Zhang^{1,2*}, Xinning Wang^{1,2,3*}, Sheng Li^{1,3}, Ming Zhu^{1,3},
5 Qingqing Yu^{1,3}, Guanghui Li^{1,3}, Zhonghui Huang^{1,3}, Huina Zhang^{1,3}, Zhenfeng Wu^{1,3},
6 Wei Song¹, Jihua Tan³, Min Shao^{4,5}

7 1 State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of
8 Environmental Protection and Resources Utilization, Guangzhou Institute of
9 Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China

10 2 Center for Excellence in Regional Atmospheric Environment, Institute of Urban
11 Environment, Chinese Academy of Sciences, Xiamen 361021, China

12 3 University of Chinese Academy of Sciences, Beijing 100049, China

13 4 State Joint Key Laboratory of Environmental Simulation and Pollution Control,
14 College of Environmental Sciences and Engineering, Peking University, Beijing
15 100871, China

16 5 Institute for Environmental and Climate Research, Jinan University, Guangzhou
17 511443, China

18 *corresponding authors:

19 Dr. Yanli Zhang

20 State key Laboratory of Organic Geochemistry,
21 Guangzhou Institute of Geochemistry,
22 Chinese Academy of Sciences, Guangzhou 510640, China

23 Tel.: +86-20-85292718; fax: +86-20-85290706.

24 E-mail: zhang_yl86@gig.ac.cn

25 Dr. Xinning Wang

26 State key Laboratory of Organic Geochemistry,

27 Guangzhou Institute of Geochemistry,

28 Chinese Academy of Sciences, Guangzhou 510640, China

29 Tel.: +86-20-85290180; fax: +86-20-85290706.

30 E-mail: wangxnm@gig.ac.cn

31

32 **Abstract**

33 Secondary organic aerosols (SOA) contribute substantially to PM_{2.5} during severe
34 wintertime ~~severe~~ haze events in northern China, yet ambient volatile organic
35 compounds (VOCs) as SOA precursors are ~~comparatively much less not well~~
36 characterized in winter, especially in rural areas. In this study, ambient air samples were
37 collected in 2014 from 25 October to 31 December at a rural site inside on the campus
38 of the University of Chinese Academy of Sciences (UCAS) in northeastern Beijing for
39 the analysis of VOCs. Since ~~that~~ temporary intervention measures were implemented
40 ~~during on~~ 3-12 November to improve the air quality for the Asian-Pacific Economic
41 Cooperation (APEC) summit held in on 5-11 November in Beijing, and ~~that~~ wintertime
42 central heating started ~~since on~~ 15 November in Beijing after the APEC summit, ~~it is this~~
43 sample collection period provided a good opportunity to study the influence of ~~the~~
44 temporary control measures and ~~the~~ wintertime heating on ~~the~~ ambient VOCs. As a
45 result of the temporary intervention measures implemented during 3-12 November
46 (period II), the total mixing ratios of non-methane hydrocarbons averaged 11.25 ppb,
47 ~~about approximately~~ 50% lower than ~~that that the values~~ of 23.41 ppb ~~before in period I~~
48 ~~the APEC~~ (25 October-2 November; ~~Period I~~) ~~or and~~ 21.71 ppb ~~after the in period III~~
49 ~~APEC~~ (13 November-31 December; ~~Period III~~). The ~~is~~ ozone and SOA formation
50 potentials decreased by ~50% and ~70%, respectively, with the larger ~~drop decrease~~ in
51 SOA formation potentials attributed to more effective control ~~of over~~ aromatic
52 hydrocarbons mainly from solvent use. Back trajectory analysis revealed that the
53 average mixing ratios of VOCs in ~~the~~ southerly air masses were 2.3, 2.3 and 2.9 times
54 ~~that those~~ in ~~the~~ northerly one sair masses during periods I, II and III, respectively; ~~and~~

55 all VOC episodes occurred under the influence of southerly winds, suggesting much
56 stronger emissions in the southern urbanized regions than in the northern rural areas.
57 Based on thea positive matrix factorization (PMF) receptor model, the altereddechanged
58 contributions from traffic emissionss and solvent use could explain 47.9% and 37.6% of
59 the reduction in ambient VOCs, respectively, during the Period II relative to the Period
60 I, indicating that the temporary control measures on vehicle emissionss and solvent use
61 were effective inat lowering the ambient levels of VOCs. Coal/biomass burning,
62 gasoline exhaust, and industrial emissionss were among the vital sources, and they
63 altogether contributed 60.3%, 78.6% and 78.7% of the VOCs during the periodss I, II
64 and III, respectively. Coal/biomass burning, mostly residential coal burning, became
65 the dominant source, which accountinged for 45.1% of the VOCs during the wintertime
66 heating period, with a specificallyremarkably lower average contribution percentage
67 (38.2%) in the-southerly air masses (38.2%) than that of 48.8% in the-northerly air
68 masses (48.8%). The results suggests that emission control in the industry and traffic
69 sectors is more effective in lowering ambient reactive VOCs in non-heating time;
70 however, reducing emissions from residential burning of solid fuels for heating would
71 be of greater importance and would have health co-benefits from lowing both indoor
72 and outdoor air pollution.

73

74 **1. Introduction**

75 Volatile organic compounds (VOCs) are precursors of tropospheric ozone and
76 secondary organic aerosols (SOA) (Forstner et al., 1997; Odum et al., 1997; Atkinson,
77 2000; O'Dowd et al., 2002; Sato et al., 2010). As ozone formation in urban areas is
78 largely VOC-limited (Shao et al., 2009; Tang et al., 2010) and SOA are important
79 components of fine particles or PM_{2.5} (particulate matter with an aerodynamic diameter
80 less than 2.5 μm) (Cabada et al., 2004; Lonati et al., 2005; Huang et al., 2014), reducing
81 emissions of VOCs would be very important for benefit improving the air quality in
82 megacities, such as China's capital city Beijing, where air pollution has become an
83 extensivewidespread concern, with increasing surface ozone levels during summertime
84 and severe PM_{2.5} pollution during wintertime (Streets et al., 2007; Ji et al., 2012; Wang
85 et al., 2014).

86 While exposure to indoor air pollution from burning solid fuels affects nearly half
87 of the world's population and household air pollution has long been a major
88 environmental cause of death (Martin et al., 2011; Lim et al., 2012; Subramanian, 2014),
89 emissions from residential energy use such as heating and cooking, prevalent in India
90 and China, also have the largest impact on global premature mortality from outdoor air
91 pollution (Lelieveld et al., 2015). In fact, Juda-Rezler et al. (2011) showed that coal
92 combustion in residential boiler during winter was a major source of PM₁₀ in four cities
93 of central eastern European. A recent study revealed that even in Beijing and its
94 surrounding regions, residential use of solid fuels might be a major and
95 underappreciated ambient pollution source for PM_{2.5} (particularly BC and OC) during

96 winter heating period (Liu et al., 2016). Since substantial amounts of VOCs are released
97 from poor-technology burning of coal and biomass/biofuels (Yokelson et al., 2008;
98 Shrivastava et al., 2015; Fang et al., 2017; Liu et al., 2017; Cheng et al., 2018), it is of
99 wide concern how residential use of solid fuels, particularly for wintertime household
100 heating, would influence ambient levels and compositions of VOCs. In residential areas
101 of Izmir, Turkey, for example, household burning of coal on uncontrolled burners for
102 domestic heating during winter was found to be a larger source of VOCs than the local
103 traffic (Sari and Bayram, 2014).

104 Due to a wide variety of emission sources of VOCs and large uncertainties of the
105 emission inventories of VOCs, to formulate emission control measures on reducing
106 ambient VOCs is a highly challengeable task. More field measurements are therefore
107 needed to characterize VOCs in ambient air and in emission sources for better source
108 attribution. In Beijing, for example, since higher levels of ozone mostly occur during
109 summer and hot seasons ozone formation in urban areas is largely VOC limited (Shao
110 et al., 2009; Tang et al., 2010), many field measurements of VOCs in Beijing were
111 conducted in summertime with a focus on their sources (Song et al., 2007; Lu et al.,
112 2007; Yuan et al., 2009; Wang et al., 2010a) and their mixing ratios (Liu et al., 2009;
113 An et al., 2012; Zhang et al., 2012a; Liu et al., 2013) as well, particularly during ozone
114 episodes (Liu et al., 2009; An et al., 2012; Zhang et al., 2012a; Liu et al., 2013).
115 However, comparatively the role of VOCs in the wintertime with PM_{2.5} pollution is
116 much less understood. On the other hand, during extremely severe and persistent haze
117 events in Beijing in China, organic matter (OM) could contribute 30-70% of the total

118 PM_{2.5} with higher fractions of SOA in OM (Guo et al., 2014; Huang et al., 2014; Zhang
119 et al., 2014a). ~~Therefore~~However, the effect of VOCs on wintertime PM_{2.5} pollution is
120 much less understood, although the control of VOCs, as SOA precursors, is also of great
121 importance in the control of PM_{2.5} air pollutionby PM_{2.5} time. A previous study already
122 demonstrated that levels of aromatic hydrocarbons and carbonyls increased
123 significantly underon haze days in urban Beijing from 2008 to 2010 (Zhang et al.,
124 2014b), yet few reports are available about wintertime precursor VOCs, especially
125 about the potential contribution by burning solid fuels for household heating.

126 ~~In urban areas, vehicle exhaust is an important sources of SOA precursors (McDonald~~
127 ~~et al., 2015; Liu et al., 2015a; Ortega et al., 2016; Deng et al., 2017; Gentner et al.,~~
128 ~~2017). However, biomass/biofuel burning and coal burning may also contribute~~
129 ~~substantially to SOA precursors (Yokelson et al., 2008; Shrivastava et al., 2015; Fang~~
130 ~~et al., 2017), particularly in northern China in winter when raw coal and biofuels are~~
131 ~~widely used for household heating (Liu et al., 2016; Zhang et al., 2016a; Liu et al.,~~
132 ~~2017). In fact, a study by Wang et al. (2013) in 2011–2012 revealed that even at an urban~~
133 ~~site in Beijing, coal combustion could account for 28–39% of the VOCs observed in~~
134 ~~ambient air. As raw coal and/or biofuel burning widely occur in rural areas in winter~~
135 ~~(Liu et al., 2016), it is necessary to investigate how enhanced emissions due to~~
136 ~~wintertime household heating would influence the levels and compositions of VOCs in~~
137 ~~rural areas, as forming SOA or ozone is an issue of regional scale.~~

138 Apart from health benefits from lowering indoor air pollution, controlling
139 emissions in the residential sector would be of greater importance to further improve

140 outdoor air quality worldwide in the future (Liu et al., 2016), although previously efforts
141 have been overwhelmingly targeted on reducing emissions from industrial and traffic
142 sectors in many regions. In northern China, for example, Due to a wide variety of
143 emission sources of VOCs and large uncertainties of the emission inventories of VOCs,
144 to assess the effect of emission control measures on reducing ambient VOCs is a highly
145 challengeable task. The Chinese government has implemented long term pollution
146 control actions and air quality has been greatly improved in north China in recent years
147 due to the implementation of long-term pollution control actions (Hao and Wang, 2005;
148 Wang et al., 2009; Zhang et al., 2012b; Liu et al., 2015a; Kelly and Zhu, 2016). However,
149 the air quality there in Beijing is not ~~so~~-satisfactory ~~when~~ compared to that in cities in
150 the United States and Europe, especially in winter ~~time~~ with frequent haze events and
151 high PM_{2.5} levels. Consequently, during critical international events such as the 2008
152 Olympic Games (Wang et al., 2010b; Huang et al., 2010) and the 2014 Asia-Pacific
153 Economic Cooperation (APEC) summit, temporary intervention measures were
154 adopted to guarantee better air quality. This ~~kindtype~~ of temporary intervention
155 provided a good opportunity to assess the relatively importance of different sources and
156 to study the effectiveness of various control measures on the reduction of ambient air
157 pollutants including VOCs (Yao et al., 2013; Huang et al., 2017). As for For the 21th
158 Asia-Pacific Economic Cooperation (APEC) summit held in Beijing on 5-11 November
159 2014, temporary control measures in Beijing and its surrounding regions resulted in
160 significant ~~dropsdecreased in of~~ air pollutants, including PM_{2.5} and NOx (Huang et al.,
161 2015; Liu et al., 2015b; Wang et al., 2015; Xu et al., 2015; Zhang et al., 2016a). For the

162 VOCs in ambient air, as observed by Li et al. (2015) at an urban site ~~inside~~on the
163 campus of Peking University, ~~the~~ total mixing ratios of VOCs ~~were~~ reduced by 44%
164 during the APEC summit control period ~~when~~ compared to ~~those in~~ the period before.

165 ~~As the 2008 Olympic Games or the 2014 APEC were all held in the non-heating periods,~~
166 ~~it is not certain in what extent the temporary intervention measures mostly targeted on~~
167 ~~industrial and traffic emissions would take effect in the winter heating period. Since~~
168 ~~most observation based evaluations about the effectiveness of temporary emission~~
169 ~~control measures were made with monitoring data in the urban areas, it is entirely~~
170 ~~necessary to further investigate the influence in rural areas or a regional scale.~~

171 ~~In urban areas, While vehicle exhaust is an important source of SOA~~
172 ~~precursors VOCs in urban areas (McDonald et al., 2015; Liu et al., 2015c; Ortega et al.,~~
173 ~~2016; Deng et al., 2017; Gentner et al., 2017). However, coal burning and~~
174 ~~biomass/biofuel burning and coal burning may also contribute substantially to SOA~~
175 ~~precursors (Yokelson et al., 2008; Shrivastava et al., 2015; Fang et al., 2017). VOCs~~
176 ~~particularly in northern China in winter when raw coal and biofuels are widely used for~~
177 ~~household heating in regions like the northern China (Liu et al., 2016; Zhang et al.,~~
178 ~~2016b; Liu et al., 2017). In fact, a study by Wang et al. (2013) in 2011-2012 revealed~~
179 ~~that even at an urban site in Beijing, coal combustion could account for 28-39% of the~~
180 ~~VOCs observed in ambient air. As raw coal and/or biofuel burning widely occur in rural~~
181 ~~areas in winter (Liu et al., 2016), it is necessary to investigate extensively on how~~
182 ~~enhanced emissions due to wintertime household heating would influence the levels~~
183 ~~and compositions of ambient VOCs particularly in rural areas, as forming SOA or ozone~~

184 is an issue of regional scale.

185 In this study, ambient air samples were collected at a rural site in the north of
186 Beijing from 25 October to 31 December 2014, covering the period with ~~the~~ enhanced
187 temporary emission control (3-12 November) for the APEC summit and the wintertime
188 heating period starting from 15 November. The objectives of the present study are as
189 follow: (1) to study changes in the mixing ratios and compositions ~~s~~ of VOCs at a rural
190 site in Beijing in response to the emission control during the APEC summit and ~~the~~
191 wintertime heating; (2) to identify the crucial sources of VOCs in Beijing and their
192 changes during the PM-polluted wintertime; (3) to evaluate the impact of control
193 measures implemented during the APEC summit on the reduction of VOCs in ambient
194 air in rural areas; and (4) to assess the contribution of residential use of solid fuels for
195 household heating to the ambient VOCs during winter.

196 **2. Methodology**

197 *2.1 Sampling Site and Field Sampling*

198 The ambient air samples were collected at a site (40.41° N, 116.68° E; Fig. 1)
199 ~~insideon~~ the campus of the University of Chinese Academy of Science (UCAS) in the
200 Huairou district of Beijing. ~~The~~ UCAS is located ~~about~~ approximately 60 km northeast
201 of the central of Beijing and ~~about~~ approximately 150 km northwest of the city of Tianjin
202 city. It is surrounded by several small villages and farmlands. The samples were
203 collected 16 meters above the ground on the top of a four-story building,
204 ~~about~~ approximately 100 m west of a national road and only 1.5 km ~~far~~ away from the
205 main APEC ~~main~~ conference hall.

206 Ambient air samples were collected from 25 October-31 December 2014 using
207 cleaned and evacuated 2 L silica-lined stainless steel canisters. During field sampling,
208 a model 910 canister sampler (Xonitek Inc., California, USA) with a constant flow rate
209 of 66.7 ml min^{-1} was adopted to allow each canister to be filled in 60 min. Samples
210 were collected at approximately 10:00 and 15:00 ~~of~~ local time (LT) on sunny days, and
211 one or two more samples were collected at 12:00 and/or 18:00 LT on haze days when
212 the visibility was less than 10 km at a relative humidity of less than 90% (Fu et al.,
213 2016). A total of 153 samples were collected during sampling. According to the air
214 pollution control measures, the field campaign was divided into periods I (25 October-
215 2 November), II (3-12 November) and III (13 November-31 December). Period II was
216 ~~the time span when temporary control measures (Table 1;~~
217 http://www.zhb.gov.cn/gkml/hbb/qt/201411/t20141115_291482.htm) implemented for
218 better air quality. Wintertime heating started on 15 November just after the cease of
219 temporary control measures on 13 November. During the sampling periods, the
220 prevailing winds were mostly from north to northwest (315-360 $^{\circ}$); the average wind
221 speeds were 3.5, 3.9, and 4.1 m s^{-1} ; and the average temperature was 11.4, 7.0, and
222 0.6 $^{\circ}\text{C}$ during periods I, II and III, respectively.

223 2.2 *Laboratory Analysis of VOCs and Carbon Monoxide*

224 All ambient air samples were analyzed with a Model 7100 pre-concentrator
225 (Entech Instruments Inc., California, USA) coupled with an Agilent 5973N gas
226 chromatography-mass selective detector/flame ionization detector (GC-MSD/FID,
227 Agilent Technologies, USA). Detailed cryogenically concentration steps are described

228 elsewhere (Zhang et al., 2012c). Briefly, 500 ml ambient air samples in the canister
229 were first pumped into the primarily trap with glass beads and then concentrated with
230 liquid-nitrogen cryogenic trap at -180°C. Following the primary trap was heated to
231 10°C, and all target compounds were transferred by pure helium to a secondary trap at
232 -50°C with Tenax-TA as adsorbents. Majority of H₂O and CO₂ were removed through
233 these two traps. The secondary trap then was heated to get VOCs transferred by helium
234 to a third cryo-focus trap at -170°C. After the focusing step, the third trap was rapidly
235 heated and the VOCs were transferred to the GC-MSD/FID system. The mixture were
236 first separated by a DB-1 capillary column (60 m×0.32 mm×1.0 μm, Agilent
237 Technologies, USA) with helium as carrier gas, and then split into two ways, one is a
238 PLOT-Q column (30 m×0.32 mm×20.0 μm, Agilent Technologies, USA) followed by
239 FID detector, another is to a 0.35 m×0.10 mm I.D. stainless steel line followed by MSD
240 detection. The GC oven temperature was programmed to be initially at 10°C, holding
241 for 3 min; next increased to 120°C at 5°C min⁻¹, and then 10°C min⁻¹ to 250°C with a
242 final holding time of 7 min. The MSD was selected ion monitoring (SIM) mode and the
243 ionization method was electron impacting. Carbon monoxide (CO) in the ambient air
244 samples were also analyzed with an Agilent model 6890 gas chromatography equipped
245 with a FID and a packed column (5Å Molecular Sieve 60/80 mesh, 3 m×1/8 inch). CO
246 was first separated by packed column, then converted to CH₄ by Ni-based catalyst and
247 finally detected by FID (Zhang et al., 2016b).

248 *2.3 Quality Control and Quality Assurance*

249 Before sampling, all canisters were flushed at least five times by repeatedly filling

250 and evacuating humidified zero air. In order to check if there was any contamination in
251 the canisters, all canisters were evacuated after the cleaning procedures, re-filled with
252 pure nitrogen, stored in the laboratory for at least 24 h, and then analyzed the same way
253 as field samples to make sure that all the target VOC compounds were not present.

254 Target compounds were identified based on their retention times and mass spectra,
255 and quantified by external calibration methods. The calibration standards were prepared
256 by dynamically diluting the Photochemical Assessment Monitoring Stations (PAMS)
257 standard mixture and TO-14 standard mixture (100 ppbv, Spectra Gases Inc., New
258 Jersey, USA) to 0.5, 1, 5, 15 and 30 ppb. The calibration curves were obtained by
259 running the five diluted standards plus humidified zero air the same way as the field
260 samples. The humidified zero air was initially analyzed every day to ensure the
261 cleanliness of system and then the analytical system was challenged daily with a one-
262 point (typically 1 ppb) calibration before running air samples. If the response was
263 beyond +/-10% of the initial calibration curve, recalibration was performed. The
264 method detection limits (MDL) for each VOCs species were presented in Table 2.

265 *2.4 Positive Matrix Factorization (PMF)*

266 PMF is a multivariate factor analysis tool that decomposes a matrix of sample data
267 into two matrices: factor contributions (G) and factor profiles (F). The method is
268 reviewed briefly here and described in greater detail elsewhere (Paatero and Tapper,
269 1994; Paatero, 1997). PMF uses both concentration and user-provided uncertainty
270 associated with the data to weight individual points. Data values below the MDL were
271 substituted with MDL/2; missing data values were substituted with median

272 concentrations. If the concentration is less than or equal to the MDL provided, the
273 uncertainty is calculated using the equation of $Unc = 5/6 \times MDL$; if the concentration
274 is greater than the MDL provided, the uncertainty is calculated as $Unc = [(Error\ fraction \times$
275 $mixing\ ratio)^2 + (MDL)^2]^{1/2}$. The number of factors in PMF was initially chosen based
276 on the result of PCA/APCS model (Zhang et al., 2012c).

277 **3. Results and discussion**

278 *3.1 Changing mixing ratios and compositions*

279 As mentioned above, during ~~the~~-period II (3-12 November), temporary emission
280 control measures were implemented to improve air quality during the 2014 APEC
281 summit. ~~The~~ ~~T~~total mixing ratios of VOCs observed at the rural site ~~inside~~at UCAS
282 during the period II was 11.25 ± 3.22 ppb ~~in~~on average, significantly lower than ~~that~~the
283 ~~value~~ of 23.41 ± 5.76 ppb during period I and 21.71 ± 2.97 ppb during period III (Fig. 2).
284 These levels were less than ~~halves of~~half the values (57.45, 36.17, and 56.56 ppb)
285 observed by Li et al. (2015) at an urban site in Beijing before, during and after the
286 APEC summit, respectively. However, ~~both~~our measurements at a rural site in this
287 study and the measurements at an urban site by Li et al. (2015) consistently
288 demonstrated that the temporary emission control resulted in a large decrease in
289 ambient VOCs during the APEC summit, with ~~a~~more than 30% reduction in~~the~~ urban
290 areas (Li et al., 2015) and ~~about~~an approximately 50% reduction in rural areas~~as~~ as
291 observed in this study. This reduced ambient mixing ratios of VOCs during the period
292 II was also in line with the decreased PM_{2.5} concentrations observed in Beijing during
293 the APEC summit (Liu et al., 2015b), ~~or~~and ~~the~~ reduced NO₂ vertical column

294 ~~densities~~density (VCD) and aerosol optical depth (AOD) in Beijing during the APEC
295 summit based on remote sensing (Huang et al., 2015).

296 The percentages ~~shared by~~of alkanes, alkenes, and ethyne in total VOCs were ~~quite~~
297 similar: alkanes accounted for 54, 57 and 54% of VOCs; alkenes accounted for 12, 16
298 and 17%; and ethyne accounted for 13, 14 and 14% of VOCs during periods I, II and
299 III, respectively. Instead, ~~the~~ percentages ~~shared by~~of aromatics ~~became~~was lower
300 during period II (12%) ~~when compared to that in~~than ~~during~~ period I (21%) ~~or~~and
301 period III (15%).

302 The mean mixing ratios of alkanes, alkenes, aromatics and ethyne during period
303 II were 6.47, 1.83, 1.33, and 1.62 ppb (Fig. 2), and they ~~decreased by~~were 49.0, 32.5,
304 72.8, and 48.1% ~~, respectively, when compared to lower than~~ those during period I,
305 respectively. Aromatics evidently ~~had~~underwent a more substantial ~~drop~~decrease.
306 Benzene, toluene, ethylbenzene, and m,p-xylene, which are the most abundant
307 aromatics and usually collectively termed ~~as~~-BTEX, were 52.8, 73.1, 78.8, and 80.5%
308 lower during period II than during period I, respectively.

309 Table S1 shows a comparison of VOCs from our study with those observed at
310 other metropolitan areas in the world. Mixing ratios of VOCs from this study at a rural
311 site in Beijing during period I (23.41 ppb) and period III (21.71 ppbv) were comparable
312 to that in urban Shanghai from January 2007 to March 2010 (Cai et al., 2010), but lower
313 than those in Beijing during June 2008 (Wang et al., 2010a), Guangzhou from June
314 2011 to May 2012 (Zou et al., 2015), Lille, French from May 1997 to April 1999
315 (Borbon et al., 2002) and Houston in August-September 2006 (Leuchner and

316 Rappengluck, 2010). Average mixing ratios of VOCs during period II (11.25 ppbv) with
317 enhanced emission control in the present study were significantly lower than those
318 reported in other metropolitan areas. As for the most abundant VOC species including
319 ethane, propane, ethylene, benzene, toluene and ethyne, the mixing ratios of ethane and
320 ethylene at UCAS were similar to that at Beijing during June 2008 (Wang et al., 2010a)
321 and urban Guangzhou from June 2011 to May 2012 (Zou et al., 2015), but significantly
322 lower than that in urban Beijing during 2014 APEC (Li et al., 2015). Propane in present
323 study are comparable to that in Hong Kong from September 2002 to August 2003 (Guo
324 et al., 2007) and Lille, French from May 1997 to April 1999 (Borbon et al., 2002), but
325 factors of 2-3 lower than that reported in urban Shanghai from January 2007 to March
326 2010 (Cai et al., 2010) and Guangzhou from June 2011 to May 2012 (Zou et al., 2015).
327 Mixing ratios of benzene and toluene in Lille, French from May 1997 to April 1999
328 (Borbon et al., 2002) were over 2 times higher than that in present study. Mixing ratios
329 of ethylene, benzene and toluene in present study were comparable to those observed
330 in Houston during August-September 2006 (Leuchner and Rappengluck, 2010),
331 meanwhile ethyne, a tracer of incomplete combustion, had mixing ratios 3-4 times
332 higher than that in Houston.

333 The total ozone formation potentials (OFPs), based on the simplified approach of
334 MIR (maximum incremental reactivity) scale (Carter, 2009), ~~in~~^{on} average ~~were~~^{was}
335 60.64, 28.51, and 61.47 ppb (Table S1S2) during periods I, II and III, respectively, with
336 a 53.0% reduction during period II relative to the period I (Fig. 2). The ~~er~~^{ir} secondary
337 organic aerosol formation potentials (SOAFPs) under high-NO_x and low-NO_x

338 conditions (Ng et al., 2007; Lim and Ziemann, 2009) were also calculated (Table S2S3).
339 As ~~showed~~shown in Fig. 2, ~~the~~ total SOAOPs under low-NOx conditions decreased by
340 71.0% from $8.77 \mu\text{g m}^{-3}$ during the period I to $2.54 \mu\text{g m}^{-3}$ during period II, and ~~the~~ total
341 SOAOPs under high-NOx conditions decreased by 64.4% from $4.02 \mu\text{g m}^{-3}$ during
342 period I to $1.43 \mu\text{g m}^{-3}$ during period II. This significant decrease in OFPs and SOAOPs
343 during period II is related to lowered VOCs mixing ratios, especially larger
344 ~~drop~~decreases in reactive alkenes and aromatics: alkenes and aromatics explain 26%
345 and 52% of the reduction in total OFPs, respectively, while the decrease in total
346 SOAOPs is mostly due to ~~changed~~the altered contribution ~~by~~of aromatics (Table
347 S2S3), whose SOAOPs decreased from $7.30 \mu\text{g m}^{-3}$ during period I to $1.93 \mu\text{g m}^{-3}$ during
348 period II under low-NOx conditions ~~and from~~, $2.39 \mu\text{g m}^{-3}$ during period I to $0.75 \mu\text{g}$
349 m^{-3} during period II under high-NOx conditions. The results suggest that enhancing the
350 emission control of reactive alkenes and aromatics would ~~be more is especially~~ effective
351 for reducing OFPs and SOAOPs of ambient VOCs-reduction.

352 *3.2 Pollution episodes and influence of source regions*

353 As ~~showed~~shown in Fig. 3d and 3e, a number of episodes with mixing ratios of
354 VOCs over 30 ppb were recorded along with ~~the~~an increase in ~~the~~ CO and SO_2
355 concentrations (Fig. 3d) during the campaign, such ~~like as that those~~ on 4-5 November,
356 15-16 November, 18-21 November, 28-30 November, 17 December, and 26-28
357 December. During the episode on 3-5 November, for example, the total mixing ratio of
358 VOCs was 14.30 ppb on 3 November, reached 31.96 ppb on 4 November, and then
359 decreased again to 13.83 ppb on 5 November. As shown in Fig. 3a, ~~the~~ wind speeds

were all below 2 m s^{-1} during 3-5 November, and the planetary boundary layer (PBL) height on 4 November (477 m) was approximately 83% of that on 3 November (578 m) (Fig. 3c). This lower PBL height on 4 November could only partly explain the higher levels of VOCs. Figure ~~S1a-S2a showed shows~~ the 72-h back trajectories (HYSPPLIT, ver. 4.0; <http://www.arl.noaa.gov/ready/hysplit4.html>) of air masses from 3-5 November at ~~the~~ height of 100 m in 12-h intervals and the corresponding mixing ratios of VOCs. It demonstrated that ~~the~~ mixing ratios of VOCs increased rapidly while air masses changed from ~~the~~ northerly to ~~the~~ southerly, and then declined sharply while the air masses turned back from ~~the~~ southerly to the northerly ~~again~~. The southern areas of UCAS are ~~the in~~ central Beijing ~~with where stronger~~ emissions ~~are stronger;~~ consequently, air masses ~~that~~ passed through these areas would carry higher levels of pollutants to the sampling site, leading to the quick increase ~~of in the~~ mixing ratios of VOCs. This rapid change ~~of in the~~ source regions could reasonably explain more than the PBL height during the pollution episode of VOCs. As ~~showed shown~~ in Fig. ~~S1b S2b~~, ~~1e 2c~~, and ~~1d 2d~~, back trajectories also suggested that the episodes on 18-21 November, 28-30 November and 26-28 December are related to the ~~changed altered~~ source regions.

According to the 72-h back trajectories, air masses arriving at the sampling site could be categorized into two types (Fig. 4): 1) southerly (S) air masses, which passed through Hebei, Shandong, Tianjin, and central Beijing with high-density emissions before reaching UCAS, ~~and~~; 2) northerly (N) air masses, which originated from Mongolia ~~and~~, quickly passed through areas with less anthropogenic activity and low-density emissions ~~s~~ before reaching UCAS. The pollution episodes with higher mixing

382 ratios of VOCs and CO, including the cases on 26-30 October, 4-5 November, 15-16
383 November, 18-20 November, 25-26 November and 26-28 December (Fig. 3d and 3e),
384 all occurred under the influence of southerly air masses, also suggesting the impacts of
385 emissions in the south.

386 During periods I, II and III, the average mixing ratios of VOCs for southerly air
387 masses were 2.3, 2.3 and 2.9 times ~~that those~~ for northerly air masses (Fig. 4),
388 respectively; the OFPs in ~~the~~ southerly air masses ~~were was~~ 2.0, 2.0 and 3.3 times that
389 in ~~the~~ northerly air masses, respectively; and the SOAFPs in ~~the~~ air masses from the
390 south ~~were was~~ 1.7, 3.3, and 3.7 times that in ~~the~~ air masses from the north under low-
391 NOx conditions, and 1.9, 2.7, and 3.5 times that in ~~the~~ air masses from the north under
392 high-NOx conditions, respectively. ~~This~~ These results indicates that the ~~northern~~ and
393 ~~southern~~ regions are completely different in their source strengths. ~~Developing strict~~
394 Stricter control measures in the southern region would be is an effective way for abating
395 VOCs pollution in Beijing.

396 As mentioned above, the mixing ratios of VOCs, as well as their OFPs and
397 SOAFPs, decreased greatly during period II. ~~We can further see t~~ The changes in the
398 southerly and northerly air masses ~~to~~ indicate the changes in different source regions.
399 In the southerly air masses, ~~when~~ compared to that during period I, the average mixing
400 ratios of alkanes, alkenes, aromatics, and ethyne during period II were 8.32, 2.16, 1.93,
401 and 2.23 ppb, with reduction rates of 46.0, 33.3, 64.3, and 44.7%, respectively;
402 accordingly, the OFPs decreased by 48.1% and the SOAFPs decreased by 63.5 % (low-
403 NOx conditions) and 57.6% (high-NOx conditions) during period II ~~when~~ compared to

404 ~~thatthose~~ during period I (Fig. 4). In the northerly air masses, ~~the~~ average mixing ratios
405 of alkanes, alkenes, aromatics, and ethyne decreased 37.7, 4.8, 87.0, and 18.4% during
406 period II ~~when~~ compared to that during period I, respectively; ~~the~~ OFPs decreased by
407 48.9% and SOAFPs decreased by over 70% during period II relative to ~~those in~~ period
408 I (Fig. 4). As discussed below, ~~a~~ more drastic decrease in aromatics in both the northerly
409 and southerly air masses implied more effective ~~emission~~ control ~~over emissions infrom~~
410 industrial solvent use during the APEC summit, and the ~~much~~ less changes in ~~the~~
411 mixing ratios of alkenes in the northerly air masses were related to the less effective
412 control ~~efover~~ domestic coal/biomass burning in the northern regions. The mixing
413 ratios of VOCs in the southerly and northerly air masses during period III were 36.1%
414 and 7.2% higher than ~~thatthose~~ during period I, respectively. ~~This difference in~~
415 ~~theThose different~~ increase~~s~~ rates might be explained by the fact that the urban areas in
416 the south ~~arewere~~ largely central heating areas where heating supply was ~~sources were~~
417 only available ~~sinceafter~~ 15 November, and the northern areas were largely rural areas
418 where individual household heating might ~~alreadyhave~~ started during period I.

419 3.3 Source attribution and ~~apportioningapportionment~~

420 3.3.1 Indication from tracers

421 The great changes in ~~the~~ mixing ratios of VOCs during ~~the~~ campaign might ~~behave~~
422 resulted from ~~ehangedthe altered contributions byfrom~~ emission sources, such ~~likeas~~
423 enhanced emission control during the APEC summit or intensified emissions~~s~~ due to
424 wintertime heating. These changes could be indicated by ~~the~~ characteristic fingerprints
425 of different sources (Guo et al., 2007).

426 The toluene/benzene (T/B) ratio, a widely used indicator for sources of aromatics,
427 was 1.09, 0.67 and 0.70 ~~in on~~ average during periods I, II and III, respectively (Fig.
428 ~~S2aS3a~~). While ~~the~~ T/B ratios during periods II and III ~~were approaching~~approached
429 0.6, which is characteristic of coal/biomass burning (Liu et al., 2008; Liu et al., 2015d),
430 the ratios during ~~the~~ period I fell between that of coal/biomass burning (0.6) and vehicle
431 exhaust (1.6),~~which is characteristic of vehicular exhaust~~ (Wang et al., 2002; Liu et al.,
432 2009; Zhang et al., 2013a). Carbon monoxide (CO), a typical tracer of ~~the~~ incomplete
433 combustion of biomass or fossil fuels (Parrish et al., 2009; Zhang et al., 2015a), showed
434 highly significant correlations with benzene during ~~the~~ period II ($r^2=0.96$, Fig. ~~S2bS3b~~)
435 and ~~the~~ period III ($r^2=0.88$, Fig. ~~S2bS3b~~). SO₂, a good indicator of coal burning (Li et
436 al., 2017), had similar concentrations during period II and period I, but its
437 concentrations~~s~~ increased 56.5% ~~in on~~ average during period III compared to that during
438 period I (Fig. 3d), suggesting ~~that an increased contribution of~~ coal burning ~~contributed~~
439 ~~more~~ after the start of central heating. Methyl tert-butyl ether (MTBE), a specific
440 indicator of gasoline related traffic emissions~~s~~ (Song et al., 2007; Cai et al., 2010),
441 showed better correlation with benzene during period I ($r^2=0.88$, Fig. ~~S2eS3c~~) than
442 during periods II and III.

443 As toluene, ethylbenzene and xylene (TEX),~~are~~ mainly originate from solvent use
444 in ~~painting~~, ~~decorations~~ and ~~coatings~~ (Guo et al., 2007; Zhang et al., 2012c), the ratios
445 of TEX to CO ~~were are~~ widely used to examine the impact of solvent use relative to
446 combustion emissions (Zhang et al., 2013a). The ratios of T/CO, E/CO and X/CO were
447 0.61 ± 0.09 , 0.23 ± 0.06 and 0.35 ± 0.07 (ppb/ppm) during period II, obviously lower ~~when~~

448 ~~compared to that of than the values of~~ 1.16±0.49, 0.59±0.24 and 0.99±0.41 during
449 period I, ~~or and of~~ 1.34±0.27, 0.40±0.06 and 0.83±0.09 during period III (Fig. 5B),
450 respectively. This ~~dropdecrease~~ in ~~the ratios of~~ aromatics ~~to /CO ratios~~ during period II
451 also reflected more effective control ~~efover~~ solvent use during the APEC summit.

452 If further categorized according to the air masses trajectories, the ratios of T/CO,
453 E/CO and X/CO decreased 29.5, 45.7 and 45.7% in the southerly air masses during
454 period II relative to ~~those in~~ period I, and decreased 68.0, 80.3 and 83.0% in the
455 northerly air masses during period II relative to ~~those in~~ period I, respectively (Fig. 5A).
456 ~~ApparentlyA~~ larger decrease in ~~the~~ TEX/CO ratios in ~~the~~ northerly air masses
457 ~~reflectsreflects the fact that~~ the control of solvent use was more effective in northern
458 regions.

459 3.3.2 Source ~~Apportioning~~Apportionment by PMF

460 ~~Thirty-five~~The 35 most abundant VOCs, including alkanes, alkenes, aromatics,
461 ~~and~~and ethyne, and sources tracers, such as chloromethane, trichloroethylene,
462 tetrachloroethylene and MTBE, plus SO₂ and CO, were selected for use with the PMF
463 receptor model. Figure 6 shows the 5 sources retrieved by the model.

464 Factor 1 has high values of MTBE and C₅-C₆ alkanes. MTBE is a common
465 gasoline additive in China, and 2,2-dimethylbutane is used to enhance the octane levels
466 of gasoline (Chang et al., 2004; Song et al., 2007; Cai et al., 2010). Ethyne can be
467 formed during fuel combustion (Blake and Rowland, 1995; Song et al., 2007;
468 Suthawaree et al., 2010). C₅-C₆ alkanes are associated with unburned vehicular
469 emissions (Guo et al., 2004; Cai et al., 2010; Zhang et al., 2013b). Consequently factor

470 1 is related to ~~the~~ gasoline vehicle emissions.

471 Factor 2 is distinguished by a strong presence of trichloroethylene, and
472 tetrachloroethylene and moderate contributions ~~of~~by propene and butenes.
473 Trichloroethylene and tetrachloroethylene are species from industrial manufacturing
474 ~~industrials~~ (Yuan et al., 2013; Zhang et al., 2015b); propene and butenes are gases
475 widely used ~~by industries in industry for to make prepare~~ organic chemicals (Guo et al.,
476 2007), such as during the production of synthetic rubber in the petrochemical industry
477 (Lau et al., 2010). Thus, factor 2 was identified as industrial emissions.

478 Factor 3 accounts for ~~a~~ larger percentages of ~~the~~ toluene, ethylbenzene, m/p-xylene
479 and o-xylene. ~~It~~TEX is known ~~that~~TEX are to be the primary constituents of solvent
480 (Guo et al., 2004; Yuan et al., 2009; Zheng et al., 2013; Zhang et al., 2014c; Ou et al.,
481 2015). ~~They~~These compounds are also the main components in emissions from
482 ~~automobile~~ factories, y painting and building coatings (Liu et al., 2008; Yuan et al.,
483 2010). Therefore, this source is considered ~~as~~to be solvent use related to painting and
484 architecture.

485 Factor 4 is diesel exhaust, which is characterized by a significant amount of n-
486 undecane and n-dodecane (Song et al., 2007; Zhang et al., 2012c).

487 Factor 5 is characterized by the presence of ethane, ethylene, CO, SO₂ and
488 chloromethane. Chloromethane is the typical tracer of biomass burning (Liu et al., 2008;
489 Cai et al., 2010; Zhang et al., 2014c). Ethylene, ethane and propene are the top 3 species
490 ~~of~~emitted during rice straw burning (Zhang et al., 2013c; Fang et al., 2017). The VOC
491 species from coal burning ~~were are~~ mainly ethyne, C₂-C₃ alkenes and alkanes, and as

492 well as aromatics ~~like such as~~ benzene (Liu et al., 2008). SO₂ is mainly from coal
493 burning (Li et al., 2017). ~~So Thus~~, factor 5 is related to ~~the~~ coal/biomass burning.

494 Figure 7 shows the source contributions during period~~s~~ I, II and III. During period
495 I, gasoline exhaust was the largest source and accounted for 24.0% of the VOCs, while
496 during period II, coal/biomass burning became the largest source. The most significant
497 changes due to the temporary emission control during ~~the~~ period II were in the
498 contribution percentages ~~by of~~ coal/biomass burning (22.3% in period I and 42.4% in
499 period II) and ~~by~~ solvent use (21.9% in period I and 5.8% in period II). The large
500 ~~drop decrease~~ in the contribution ~~by from~~ solvent use was consistent with the above
501 discussion about the TEX/CO ratios. ~~Quite similar contributions were observed for~~
502 ~~industrial emission and diesel exhaust.~~

503 In ~~the~~ period III (13 November-31 December), with ~~the~~ central heating starting
504 ~~from on~~ 15 November, coal/biomass burning became the largest source (45.1%), and
505 industrial emission, solvent use, diesel exhaust and gasoline exhaust accounted for 25.2,
506 12.8, 8.7 and 8.2% of the VOCs, respectively. The time series of source contributions
507 during the campaign ~~were showed are shown~~ in Fig. S3S4; the contribution percentages
508 ~~by of~~ coal/biomass burning increased gradually with the increase in the wintertime
509 heating, while that of gasoline exhaust ~~instead~~ decreased.

510 Coal/biomass burning was an important source of VOCs during winter in Beijing,
511 especially during period III with the start of central heating. In Beijing, coal
512 consumption was greater than that of residential biomass (Liu et al., 2016). Coal is
513 consumed in residential, industrial and power sectors in Beijing. As showed in Fig. S5a,

514 while annual total coal consumptions dropped rapidly during 2006-2015, the annual
515 residential coal consumptions remained almost unchanged with their percentages in
516 total coal consumptions rising from 8.7% in 2006 to 23.4% in 2015 (Beijing Municipal
517 Bureau of Statistics, 2016; Yu et al., 2018). As a matter of fact, over 60% of the
518 residential coal consumption occurred in rural areas of Beijing (Fig. S5b), and
519 residential coal is mainly burned in the cool winter season for house heating (Xue et al.,
520 2016). While emission factors of VOCs from residential coal burning have been found
521 to be a factor of 20 greater than those from coal-fired power plants (Liu et al., 2017),
522 the differences in coal quality between the urban and rural areas augment emissions in
523 rural areas: coal used in urban area was entirely anthracite with comparatively much
524 lower emissions of volatiles than other types of coal (Xu et al., 2017); instead only 5-
525 15% of coal used in rural area was anthracite (Xue et al., 2016). Consequently,
526 residential coal combustion could have been a major contributor to the ambient VOCs
527 in rural areas of Beijing during winter. During 2008-2014 in Beijing the annual
528 residential coal consumptions increased gradually while the total coal consumption
529 decreased (Beijing Municipal Bureau of Statistics, 2015). The residential coal
530 combustion is prevailing for heating and cooking by using domestic coal stoves in rural
531 areas around urban Beijing particularly during wintertime. In 2014, although the annual
532 residential coal consumption accounts for 17% ($2.93 \times 10^9 \text{ kg a}^{-1}$) of the total coal
533 consumption in Beijing (Beijing Municipal Bureau of Statistics, 2015), residential coal
534 burning could contribute predominately to ambient VOCs from coal burning since the
535 emission factors of VOCs from residential coal burning have been found to be a factor

536 of 20 greater than those from coal-fired power plants (Liu et al., 2017).

537 Compared with that in the period I (Fig. S4S6), the contribution ~~byfrom~~ solvent
538 use during ~~the~~ period II was reduced to a greater extent than other sources; it became
539 4.29 ppb lower and could explain 37.6% of the reduction in ambient VOCs (Table
540 S3S4). The contribution ~~byfrom~~ gasoline vehicles was 3.18 ppb lower and accounted
541 for 27.9% of the total reductions. The contribution ~~byfrom~~ diesel exhaust and industrial
542 emissions ~~reduceddecreased~~ 2.28 ppb and 1.35 ppb, and explained 20.0 and 11.8% of
543 the total reduction, respectively. Coal/biomass burning ~~showedmade~~ similar
544 contributions during periods I and II, with an elevated contribution percentage in ~~the~~
545 period II due to the reduction in other sources. This is consistent with the fact that during
546 the APEC summit residential coal/biomass burning was not restricted in the rural areas.
547 Traffic-related sources (gasoline and diesel vehicles) and solvent use accounted for 47.9
548 and 37.6% of the total reduction in ambient VOCs, indicating that control measures
549 (Table 1) related to the control of traffic and solvent use were among the most effective
550 ways to reduce the ambient VOCs.

551 Figure 8 shows the source contributions in the southerly and northerly air masses
552 during periods I, II and III, ~~respectively~~. In the southerly air masses, traffic related
553 emission (gasoline and diesel vehicles) ~~was~~were the largest source, contributing 44.1
554 and 41.5% of the VOCs during ~~the~~ periods I and II, respectively, while coal/biomass
555 burning ~~instead~~ was the largest source during period III, contributing 38.2% of the
556 VOCs. In the northerly air masses, coal/biomass burning contributed 28.8, 51.6 and
557 48.8% of the VOCs during periods I, II and III, respectively. Overall, gasoline vehicle

558 exhaust contributed more VOCs in the southern regions (mostly densely populated
559 urban areas) and coal/biomass burning and diesel exhaust accounted for more emissions
560 of VOCs in northern regions (mostly rural areas). The ~~E~~contributions of different
561 sources to most reactive alkenes and aromatics based on PMF ~~were~~was presented in
562 Fig. 9. Alkenes ~~was~~ mainly ~~coming originated~~ from coal/biomass burning, with shares
563 of 31.2-68.0%, and gasoline exhaust ranked second, with contributions of 3.0-26.5%.
564 Unlike alkenes, solvent use was the major contributors of aromatics, accounting for
565 77.5% during period I and 29.0% during period II in the northerly air masses; gasoline
566 exhaust contributed 8.2-43.6% of the aromatics during the campaign. In the southerly
567 air masses, the reductions in solvent use, gasoline exhaust, and diesel exhaust during
568 ~~the~~ period II relative to ~~the~~ period I could explain 38.1, 31.1, and 15.8% of the total
569 reduction ~~of~~in VOCs, respectively. In the northerly air masses, reductions ~~of~~in solvent
570 use, diesel exhaust, and gasoline exhaust during ~~the~~ period II relative to the period I
571 could explain 46.5, 35.8 and 11.9% of the total reduction ~~of~~in VOCs, respectively.
572 Consequently, control measures related to solvent use and gasoline exhaust were more
573 effective in the southern regions, while the control of solvent use and diesel exhaust
574 emissions were more effective in the northern region.

575 3.3.3 *Source contributions to the SOA FP_s*

576 With the PMF source ~~apportioning~~apportionment results, the contributions of the
577 SOA FP_s ~~by~~of different sources were further estimated. As ~~showed~~shown in Fig. 10,
578 under low-NO_x conditions, the SOA FP_s ~~by~~of solvent use ~~were~~was much higher than
579 that ~~by~~of other sources, which ~~were~~was 4.88, 0.68 and 2.89 $\mu\text{g m}^{-3}$, accounting for 56.9,

580 27.2 and 54.7% of the total SOAFPs during periods I, II and III, respectively. Gasoline
581 exhaust contributed 19.2, 29.5 and 10.9%, and diesel exhaust contributed 16.5, 26.8
582 and 11.3% of the SOAFPs during periods I, II and III, respectively. During ~~the~~-period
583 II, with temporary intervention measures, the reduction ~~of~~ in SOAFPs was mainly due
584 to reduced contributions ~~by~~ from solvent use, gasoline exhaust and diesel exhaust,
585 which could explain 69.1, 14.9 and 12.2% of the reduction in SOAFPs, respectively.
586 Under high-NOx conditions, the calculated reduction ~~of~~ in SOAFPs during ~~the~~-period
587 II relative to ~~the~~-period I could largely be explained by the reduced contributions ~~by~~ from
588 solvent use, diesel exhaust and gasoline exhaust, which accounted for 54.0, 25.8 and
589 16.8% of the reduction in SOAFPs, respectively.

590 It is worth noting that recent chamber studies revealed that aromatic hydrocarbons
591 ~~or~~ and traditional VOCs could not fully explain the SOA formed ~~from~~ during
592 atmospheric aging of source emissions (Zhao et al., 2014; 2015; Liu et al., 2015c; Deng
593 et al., 2017; Fang et al., 2017), particularly for emissions from diesel vehicles or
594 biomass burning (Zhao et al., 2015; Deng et al., 2017; Fang et al., 2017). Therefore the
595 discussion on the SOAFPs in this study is ~~only~~ limited to traditional anthropogenic SOA
596 precursor species (mainly aromatic hydrocarbons), and intermediate-volatility organic
597 compounds (IVOCs), which ~~is~~ are important SOA precursors ~~large of secondary~~
598 ~~organic aerosol~~ (Zhao et al., 2014), should be further considered in order to fully
599 understand the influence of control measures on ~~the~~-ambient SOA.

600 4. Conclusions

601 During severe wintertime haze events in recent years in Beijing, SOA often

602 ~~shared~~composed higher fractions ~~in~~of organic aerosols, yet their precursor VOCs in
603 ambient air during winter are ~~much less~~not well understood, especially in ~~the~~rural areas.
604 In this study, we collected ambient air samples from 25 October to 31 December in
605 2014 at a rural site ~~inside~~on the campus of UCAS in north Beijing. As the APEC summit
606 was held in Beijing ~~during~~on 5-11 November 2014, ~~and~~ temporary control measures
607 were adopted to improve the air quality, and ~~in fact~~ the so-called “APEC Blue” was
608 achieved due to the enhanced emission control. Therefore, we ~~could take~~took advantage
609 of this opportunity to see how the control measures influenced~~d~~ the ambient VOCs in
610 ~~the~~rural areas. On the other hand, wintertime heating ~~with~~from coal burning has been
611 regarded as ~~a~~ major contributor to wintertime PM pollution and haze events; thus, we
612 ~~could~~ also compared~~d~~ the ambient VOC levels and composition~~s~~ before and after the
613 start of central heating—on 15 November, and investigated~~d~~ the influence of wintertime
614 heating on ambient VOCs based on our observation at ~~the~~a rural site.

615 We observed that during the enhanced emission control period (period II; 3-12
616 November), ~~the~~ average mixing ratios of VOCs decreased ~50% ~~when~~ compared to
617 ~~that~~those before or after that period. ~~And~~In addition, ~~the~~ir ozone and SOA formation
618 potentials~~s~~ accordingly decreased by ~50% and ~70%, respectively, ~~as~~ as a result of ~~the~~
619 temporary intervention measures implemented during period II. The larger
620 ~~drop~~decrease in SOA formation potentials was attributable to more effective control
621 ~~of~~over aromatic hydrocarbons mainly from solvent use. Based on PMF source
622 ~~apportioning~~apportionment, the control of traffic-related emissions (gasoline and diesel
623 exhaust) and solvent use could explain 47.9 and 37.6% of the reduction in ambient

624 VOCs. This result thus offered an observation-based evaluation ~~about of~~ the temporary
625 emission control measures.

626 ~~With Through~~ back trajectory analysis, we could compare ambient VOCs with the
627 change ~~of in~~ wind directions and thus further investigate ~~the~~ source emission strength in
628 different regions. ~~The~~ Total mixing ratios of VOCs in ~~the~~ southerly air masses were
629 2.3, 2.3 and 2.9 times ~~that those~~ in ~~the~~ northerly air masses before, during and after the
630 period with temporary emission control for the APEC summit. VOC episodes during
631 the campaign all occurred under southerly winds. This confirms that emission control
632 in the southern urbanized regions is crucial for reducing ambient VOCs.

633 As residential coal/biomass burning ~~were was~~ not controlled during the APEC
634 summit, its contribution to the ambient mixing ratios of VOCs was similar between
635 period I and period II, although ~~the~~ contribution percentages ~~by of~~ coal/biomass burning
636 became the largest ~~in on~~ average due to ~~drops decreases~~ in the percentages ~~by of~~ other
637 sources. During period III, with emissions from burning solid fuels for household
638 heating, coal/biomass burning became the largest source, ~~that account inged~~ for 45.1%
639 of the VOCs. Specifically, during period III, coal/biomass combustion contributed 38.2%
640 of ~~the~~ VOCs in ~~the~~ southerly air masses (or in the ~~southern~~ regions), and 48.8% of ~~the~~
641 VOCs in ~~the~~ northerly air masses (or in the ~~northern~~ regions).

642 The finding of this study will provide useful information ~~for the emission on the~~
643 ~~direction of~~ control strategy~~ies~~ of VOCs ~~for abating both ozone and PM_{2.5} pollution. A~~
644 ~~comparison of VOCs between period I (without intervention measures) and period II~~
645 ~~(with intervention measures) revealed that the temporary intervention measures mostly~~

646 targeted on the control in traffic and industry (industrial processes and solvent use)
647 sectors are very effective to reduce reactive alkenes and aromatics and thereby to The
648 reduction reduce in total the OFPs and SOAFPs during the APEC is largely due to the
649 drop of reactive alkenes and aromatics, so adopting reactivity based emission control
650 would be the effective and economical way to lower the ozone and SOA formation
651 potentials of VOCs in ambient air. As control measures related to solvent use and
652 vehicle exhausts explained most of the reduction in both ambient VOCs and their
653 ozone/SOA formation potentials. Therefore, enhancing emission control for solvent use
654 (especially solvents with aromatic hydrocarbons) and vehicle exhaust would benefit the
655 VOC-related air pollution improving air quality in the future. Moreover However, as
656 observed in this study, even in megacities like Beijing, burning raw coal or biomass for
657 household heating in winter could contribute near half of VOCs in ambient air. If the
658 emission control over residential burning of solid fuels is underappreciated, the
659 intervention measures targeted on traffic and industry sectors would be not so effective
660 in the wintertime heating period as did in non-heating periods either to lower PM_{2.5} as
661 indicated by Liu et al. (2016) or to lower VOCs in ambient air as indicated by this study.
662 If fact, a study by Yu et al. (2018) during the same field campaign of this study
663 demonstrated that, without emission control over residential burning of solid fuels,
664 ambient PM_{2.5}-bound toxic polycyclic aromatic hydrocarbons in rural Beijing during
665 the 2014 APEC summit remained unchanged despite of the temporary intervention
666 control measures, and they were largely aggravated after the start of wintertime heating.
667 Therefore, cleaner energy use instead of poor-technology burning of solid fuels

668 household heating would have tremendous health benefits in lowering both indoor and
669 outdoor air pollution particularly in heavily polluted winter. It worth noting that this
670 study was conducted in a rural area of the megacity Beijing. Emission from residential
671 burning of solid fuels would be a source of greater importance and thus deserves more
672 concern in less developed regions.a cleaner way of wintertime household heating would
673 help to lower both primary emission and secondary formation of air pollutants.

674

675 **Acknowledgments**

676 This study was supported by the National Key Research and Development Program
677 (2016YFC0202204/2017YFC0212802), the Chinese Academy of Sciences (Grant No.
678 QYZDJ-SSW-DQC032), the National Natural Science Foundation of China (Grant No.
679 41673116/41530641/41571130031), and the Guangzhou Science Technology and
680 Innovation Commission (201607020002/201704020135).

681

682 References

683 An, J. L., Wang, Y. S., Wu, F. K., and Zhu, B.: Characterizations of volatile organic
684 compounds during high ozone episodes in Beijing, China, Environ. Monit. Assess.,

685 184, 1879-1889, <http://dx.doi.org/10.1007/s10661-011-2086-7>, 2012.

686 Atkinson, R.: Atmospheric chemistry of VOCs and NO_x, Atmos. Environ., 34, 2063-
687 2101, [http://dx.doi.org/10.1016/S1352-2310\(99\)00460-4](http://dx.doi.org/10.1016/S1352-2310(99)00460-4), 2000.

688 Baudic, A., Gros, V., Sauvage, S., Locoge, N., Sanchez, O., Sarda-Estève, R.,
689 Kalogridis, C., Petit, J. E., Bonnaire, N., and Baisnée, D.: Seasonal variability and
690 source apportionment of volatile organic compounds (VOCs) in the Paris megacity
691 (France), Atmos. Chem. Phys., 16, 11961-11988, <https://doi.org/10.5194/acp-16-11961-2016>, 2016.

693 Beijing Municipal Bureau of Statistics (BMBS).: Beijing Statistical Yearbook 20165.
694 China Statistics Press, Beijing, 20165.

695 Blake, D. R., and Rowland, F. S.: Urban leakage of liquefied petroleum gas and its
696 impact on Mexico-city air-quality, Science., 269, 953-956,
697 <http://dx.doi.org/10.1126/science.269.5226.953>, 1995.

698 Borbon, A., Locoge, N., Veillerot, M., Galloo, J. C., and Guillermo, R.: Characterisation
699 of NMHCs in a French urban atmosphere: overview of the main sources, Sci. Total
700 Environ., 292, 177-191, [https://doi.org/10.1016/S0048-9697\(01\)01106-8](https://doi.org/10.1016/S0048-9697(01)01106-8), 2002.

701 Cabada, J. C., Pandis, S. N., Subramanian, R., Robinson, A. L., Polidori, A., and Turpin,
702 B.: Estimating the secondary organic aerosol contribution to PM_{2.5} using the EC
703 tracer method, Aerosol Sci. Technol., 38, 140-155,

704 http://dx.doi.org/10.1080/02786820390229084, 2004.

705 Cai, C. J., Geng, F. H., Tie, X. X., Yu, Q., and An, J. L.: Characteristics and source
706 apportionment of VOCs measured in Shanghai, China, *Atmos. Environ.*, 44, 5005-
707 5014, http://dx.doi.org/10.1016/j.atmosenv.2010.07.059, 2010.

708 Carter, W. P. L.: Update maximum incremental reactivity scale and hydrocarbon bin
709 reactivities for regulatory application, California Air Resources Board Contract
710 07-339., 2009.

711 Chang, C. C., Chen, T. Y., Chou, C., and Liu, S. C.: Assessment of traffic contribution
712 to hydrocarbons using 2,2-dimethylbutane as a vehicular indicator, *Terr. Atmos.*
713 *Ocean. Sci.*, 15, 697-711, https://doi.org/10.3319/TAO.2004.15.4.697(A), 2004.

714 Cheng, J., Zhang, Y. S., Wang, T., Xu, H., Norris, P., and Pan, W.-P.: Emission of
715 volatile organic compounds (VOCs) during coal combustion at different heating
716 rates, Fuel, 225, 554-562, https://doi.org/10.1016/j.fuel.2018.03.185, 2018.

717 Deng, W., Hu, Q. H., Liu, T. Y., Wang, X. M., Zhang, Y. L., Song, W., Sun, Y. L., Bi,
718 X. H., Yu, J. Z., Yang, W. Q., Huang, X. Y., Zhang, Z., Huang, Z. H., He, Q. F.,
719 Mellouki, A., and George, C.: Primary particulate emissions and secondary
720 organic aerosol (SOA) formation from idling diesel vehicle exhaust in China, *Sci.*
721 *Total Environ.*, 593-594, 462-469, https://doi.org/10.1016/j.scitotenv.2017.03.088,
722 2017.

723 Fang, Z., Deng, W., Zhang Y. L., Ding, X., Tang, M. J., Liu, T. Y., Hu, Q. H., Zhu, M.,
724 Wang, Z. Y., Yang, W. Q., Huang, Z. H., Song, W., Bi, X. H., Chen, J. M., Sun, Y.
725 L., George, C., and Wang, X. M.: Open burning of rice, corn and wheat straws:

726 primary emissions, photochemical aging, and secondary organic aerosol formation,
727 Atmos. Chem. Phys., 17, 14821-14839, <http://doi.org/10.5194/acp-17-14821-2017>.

728

729 Forstner, H. J. L., Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol from
730 the photooxidation of aromatic hydrocarbons: Molecular composition, Environ.
731 Sci. Technol., 31, 1345-1358, <http://doi.org/10.1021/es9605376>, 1997.

732 Fu, X. X., Wang, X. M., Hu, Q. H., Li, G. H., Ding, X., Zhang, Y. L., He, Q. F., Liu, T.
733 Y., Zhang, Z., Yu, Q. Q., Shen, R. Q., and Bi, X. H.: Changes in visibility with
734 PM_{2.5} composition and relative humidity at a background site in the Pearl River
735 Delta region, J. Environ. Sci., 40, 10-19, <http://doi.org/10.1016/j.jes.2015.12.001>,
736 2016.

737 Garzón, J. P., Huertas, J. I., Magaña, M., Huertas, M. E., Cárdenas, B., Watanabe, T.,
738 Maeda, T., Wakamatsu, S., and Blanco, S.: Volatile organic compounds in the
739 atmosphere of Mexico City, Atmos. Environ., 119, 415-429,
740 <https://doi.org/10.1016/j.atmosenv.2015.08.014>, 2015.

741 Gentner, D. R., Jathar, S. H., Gordon, T. D., Bahreini, R., Day, D. A., El Haddad, I.,
742 Hayes, P. L., Pieber, S. M., Platt, S. M., de Gouw, J., Goldstein, A. H., Harley, R.
743 A., Jimenez, J. L., Prevot, A. S. H., and Robinson, A. L.: Review of Urban
744 Secondary Organic Aerosol Formation from Gasoline and Diesel Motor Vehicle
745 Emissions, Environ. Sci. Technol., 51, 1074-1093,
746 <http://dx.doi.org/10.1021/acs.est.6b04509>, 2017.

747 Guo, H., Wang, T., and Louie, P. K. K.: Source apportionment of ambient non-methane

748 hydrocarbons in Hong Kong: Application of a principal component
749 analysis/absolute principal component scores (PCA/APCS) receptor model,
750 Environ. Pollut., 129, 489-498, <http://dx.doi.org/10.1016/j.envpol.2003.11.006>,
751 2004.

752 Guo, H., So, K. L., Simpson, I. J., Barletta, B., Meinardi, S., and Blake, D. R.: C1–C8
753 volatile organic compounds in the atmosphere of Hong Kong: Overview of
754 atmospheric processing and source apportionment, Atmos. Environ., 41, 1456–
755 1472, <http://dx.doi.org/10.1016/j.atmosenv.2006.10.011>, 2007.

756 Guo, S., Hu, M., Zamora, M. L., Peng, J. F., Shang, D. J., Zheng, J., Du, Z. F., Wu, Z.
757 J., Shao, M., Zeng, L. M., Molina, M. J., and Zhang, R. Y.: Elucidating severe
758 urban haze formation in China, P. Natl. Acad. Sci. USA., 111, 17373–17378,
759 <http://doi.org/10.1073/pnas.1419604111>, 2014.

760 Hao, J. M., and Wang, L. T.: Improving urban air quality in China: Beijing case study,
761 J. Air Waste Manage. Assoc., 55, 1298–1305,
762 <http://dx.doi.org/10.1080/10473289.2005.10464726>, 2005.

763 Huang, K., Zhang, X. Y., and Lin, Y. F.: The "APEC Blue" phenomenon: Regional
764 emission control effects observed from space, Atmos. Res., 164–165, 65–75,
765 <http://dx.doi.org/10.1016/j.atmosres.2015.04.018>, 2015.

766 Huang, R. J., Zhang, Y. L., Bozzetti, C., Ho, K. F., Cao, J. J., Han, Y. M., Daellenbach,
767 K. R., Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M.,
768 Bruns, E. A., Crippa, M., Ciarelli, G., Piazzalunga, A., Schwikowski, M.,
769 Abbaszade, G., Schnelle-Kreis, J., Zimmermann, R., An, Z. S., Szidat, S.,

770 Baltensperger, U., El Haddad, I., and Prevot, A. S. H.: High secondary aerosol
771 contribution to particulate pollution during haze events in China, *Nature.*, 514,
772 218-222, <http://doi.org/10.1038/nature13774>, 2014.

773 Huang, X. F., He, L. Y., Hu, M., Canagaratna, M.R., Sun, Y., Zhang, Q., Zhu, T., Xue,
774 L., Zeng, L. W., Liu, X. G.: Highly time-resolved chemical characterization of
775 atmospheric submicron particles during 2008 Beijing Olympic Games using an
776 Aerodyne High-Resolution Aerosol Mass Spectrometer, *Atmos. Chem. Phys.*, 10,
777 8933-8945, <http://dx.doi.org/10.5194/acp-10-8933-2010>, 2010.

778 Huang, X. Y., Zhang, Y. L., Yang, W. Q., Huang, Z. Z., Wang, Y. J., Zhang, Z., He, Q.
779 F., Lü, S. J., Huang, Z. H., Bi, X. H., Wang, X. M.: Effect of traffic restriction on
780 reducing ambient volatile organic compounds (VOCs): observation-based
781 evaluation during a traffic restriction drill in Guangzhou, China, *Atmos. Environ.*,
782 161, 61-70, <http://dx.doi.org/10.1016/j.atmosenv.2017.04.035>, 2017.

783 Ji, D. S., Wang, Y. S., Wang, L. L., Chen, L. F., Hu, B., Tang, G. Q., Xin, J. Y., Song,
784 T., Wen, T. X., Sun, Y., Pan, Y. P., and Liu, Z. R.: Analysis of heavy pollution
785 episodes in selected cities of northern China, *Atmos. Environ.*, 50, 338-348,
786 <http://dx.doi.org/10.1016/j.atmosenv.2011.11.053>, 2012.

787 Juda-Rezler, K., Reizer, M., and Oudinet, J. P.: Determination and analysis of PM₁₀
788 source apportionment during episodes of air pollution in Central Eastern European
789 urban areas: The case of wintertime 2006, Atmos. Environ., 45, 6557-6566,
790 <https://doi.org/10.1016/j.atmosenv.2011.08.020>, 2011.

791 Kelly, F. J., and Zhu, T.: Transport solutions for cleaner air, *Science.*, 352, 934-936,

792 http://doi.org/10.1126/science.aaf3420, 2016.

793 Lau, A. K. H., Yuan, Z. B., Yu, J. Z., and Louie, P. K. K.: Source apportionment of
794 ambient volatile organic compounds in Hong Kong, *Sci. Total Environ.*, 408,
795 4138-4149, http://dx.doi.org/10.1016/j.scitotenv.2010.05.025, 2010.

796 Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., and Pozzer, A.: The contribution
797 of outdoor air pollution sources to premature mortality on a global scale, *Nature*,
798 525, 367-371, https://doi.org/10.1038/nature15371, 2015.

799 Leuchner, M., and Rappenglück, B.: VOC source–receptor relationships in Houston
800 during TexAQS-II, *Atmos. Environ.*, 44, 4056-4067,
801 https://doi.org/10.1016/j.atmosenv.2009.02.029, 2010.

802 Li, H. Y., Zhang, Q., Zhang, Q., Chen, C. R., Wang, L. T., Wei, Z., Zhou, S., Parworth,
803 C., Zheng, B., Canonaco, F., Prevot, A. S. H., Chen, P., Zhang, H. L., Wallington,
804 T. J., and He, K. B.: Wintertime aerosol chemistry and haze evolution in an
805 extremely polluted city of the North China Plain: Significant contribution from
806 coal and biomass combustion, *Atmos. Chem. Phys.*, 17, 4751-4768,
807 http://dx.doi.org/10.5194/acp-17-4751-2017, 2017.

808 Li, J., Xie, S. D., Zeng, L. M., Li, L. Y., Li, Y. Q., and Wu, R. R.: Characterization of
809 ambient volatile organic compounds and their sources in Beijing, before, during,
810 and after Asia-Pacific Economic Cooperation China 2014, *Atmos. Chem. Phys.*,
811 15, 7945-7959, http://dx.doi.org/10.5194/acp-15-7945-2015, 2015.

812 Liakakou, E., Bonsang, B., Williams, J., Kalivitis, N., Kanakidou, M., and
813 Mihalopoulos, N.: C2–C8 NMHCs over the Eastern Mediterranean: Seasonal

814 [variation and impact on regional oxidation chemistry, Atmos. Environ., 43, 5611-5621, https://doi.org/10.1016/j.atmosenv.2009.07.067, 2009.](https://doi.org/10.1016/j.atmosenv.2009.07.067)

815

816 [Lim, S. S et al.: A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010, Lancet, 380, 2224-2260, http://dx.doi.org/10.1016/s0140-6736\(12\)61766-8, 2012.](https://doi.org/10.1016/s0140-6736(12)61766-8)

817

818

819

820 Lim, Y. B., and Ziemann, P. J.: Effects of molecular structure on aerosol yields from OH radical-initiated reactions of linear, branched, and cyclic alkanes in the presence of NO_x, Environ. Sci. Technol., 43, 2328-2334, [http://dx.doi.org/10.1021/es803389s, 2009.](http://dx.doi.org/10.1021/es803389s)

821

822

823

824 Liu, C. T., Zhang, C. L., Mu, Y. J., Liu, J. F., and Zhang, Y. Y.: Emission of volatile organic compounds from domestic coal stove with the actual alternation of flaming and smoldering combustion processes, Environ. Pollut., 221, 385-391, [http://dx.doi.org/10.1016/j.envpol.2016.11.089, 2017.](http://dx.doi.org/10.1016/j.envpol.2016.11.089)

825

826

827

828 Liu, J. F., Mu, Y. J., Zhang, Y. J., Zhang, Z. M., Wang, X. K., Liu, Y. J., and Sun, Z. Q.: Atmospheric levels of BTEX compounds during the 2008 Olympic Games in the urban area of Beijing, Sci. Total Environ., 408, 109-116, [http://dx.doi.org/10.1016/j.scitotenv.2009.09.026, 2009.](http://dx.doi.org/10.1016/j.scitotenv.2009.09.026)

829

830

831

832 Liu, J., Mauzerall, D. L., Chen, Q., Zhang, Q., Song, Y., Peng, W., Klimont, Z., Qiu, X. H., Zhang, S. Q., Hu, M., Lin, W. L., Smith, K. R., and Zhu, T.: Air pollutant emissions from Chinese households: A major and underappreciated ambient pollution source, P. Natl. Acad. Sci. USA., 113, 7756-7761,

833

834

835

836 http://dx.doi.org/10.1073/pnas.1604537113, 2016.

837 Liu, J. G., Xie, P. H., Wang, Y. S., Wang, Z. F., He, H., and Liu, W. Q.: Haze observation
838 and control measure evaluation in Jing-Jin-Ji (Beijing, Tianjin, Hebei) area during
839 the period of the Asia-Pacific Economic Cooperation (APEC) Meeting, Bulletin
840 of Chinese Academy of Sciences., 30, 368-377,
841 http://dx.doi.org/10.16418/j.issn.1000-3045.2015.03.011, 2015b., (in Chinese).

842 Liu, K. K., Quan, J. N., Mu, Y. J., Zhang, Q., Liu, J. F., Gao, Y., Chen, P. F., Zhao, D.
843 L., and Tian, H. J.: Aircraft measurements of BTEX compounds around Beijing
844 city, Atmos. Environ., 73, 11-15,
845 http://dx.doi.org/10.1016/j.atmosenv.2013.02.050, 2013.

846 Liu, K. K., Zhang, C. L., Cheng, Y., Liu, C. T., Zhang, H. X., Zhang, G., Sun, X., and
847 Mu, Y. J.: Serious BTEX pollution in rural area of the North China Plain during
848 winter season, J. Environ. Sci., 30, 186-190,
849 http://dx.doi.org/10.1016/j.jes.2014.05.056, 2015d.

850 Liu, T., Wang, X., Deng, W., Hu, Q., Ding, X., Zhang, Y., He, Q., Zhang, Z., Lü, S., Bi,
851 X., Chen, J., and Yu, J.: Secondary organic aerosol formation from photochemical
852 aging of light-duty gasoline vehicle exhausts in a smog chamber, Atmos. Chem.
853 Phys., 15, 9049-9062, http://dx.doi.org/10.5194/acp-15-9049-2015, 2015c.

854 Liu, Y., Shao, M., Fu, L. L., Lu, S. H., Zeng, L. M., and Tang, D. G.: Source profiles of
855 volatile organic compounds (VOCs) measured in China: Part I, Atmos. Environ.,
856 42, 6247-6260, http://dx.doi.org/10.1016/j.atmosenv.2008.01.070, 2008.

857 Liu, Z. R., Hu, B., Wang, L. L., Wu, F. K., Gao, W. K., and Wang, Y. S.: Seasonal and

858 diurnal variation in particulate matter (PM₁₀ and PM_{2.5}) at an urban site of Beijing:
859 Analyses from a 9-year study, Environ. Sci. Pollut. R., 22, 627-642,
860 <http://dx.doi.org/10.1007/s11356-014-3347-0>, 2015a.

861 Lonati, G., Giugliano, M., Butelli, P., Romele, L., and Tardivo, R.: Major chemical
862 components of PM_{2.5} in Milan (Italy), Atmos. Environ., 39, 1925-1934,
863 <http://dx.doi.org/10.1016/j.atmosenv.2004.12.012>, 2005.

864 Lu, S. H., Liu, Y., Shao, M., and Huang, S.: Chemical speciation and anthropogenic
865 sources of ambient volatile organic compounds (VOCs) during summer in Beijing,
866 2004, Front. Environ. Sci. Engin. China., 1, 147-152,
867 <http://dx.doi.org/10.1007/s11783-007-0026-0>, 2007.

868 Martin, W. J., Glass, R. I., Balbus, J. M., and Collins, F. S.: A Major Environmental
869 Cause of Death, Science, 334, 180-181,
870 <http://dx.doi.org/10.1126/science.1213088>, 2011.

871 McDonald, B. C., Goldstein, A. H., and Harley, R. A.: Long-term trends in California
872 mobile source Emissions and ambient concentrations of black carbon and organic
873 aerosol, Environ. Sci. Technol., 49, 5178-5188,
874 <http://dx.doi.org/10.1021/es505912b>, 2015.

875 Ng, N. L., Kroll, J. H., Chan, A. W. H., Chhabra, P. S., Flagan, R. C., and Seinfeld, J.
876 H.: Secondary organic aerosol formation from m-xylene, toluene, and benzene,
877 Atmos. Chem. Phys., 7, 3909-3922, <http://doi.org/10.5194/acp-7-3909-2007>,
878 2007.

879 O'Dowd, C. D., Aalto, P., Hameri, K., Kulmala, M., and Hoffmann, T.: Aerosol

880 formation - Atmospheric particles from organic vapours, *Nature.*, 416, 497-498,
881 <http://doi.org/10.1038/416497a>, 2002.

882 Odum, J. R., Jungkamp, T. P. W., Griffin, R. J., Flagan, R. C., and Seinfeld, J. H.: The
883 atmospheric aerosol-forming potential of whole gasoline vapor, *Science.*, 276, 96-
884 99, <http://doi.org/10.1126/science.276.5309.96>, 1997.

885 Ortega, A. M., Hayes, P. L., Peng, Z., Palm, B. B., Hu, W. W., Day, D. A., Li, R.,
886 Cubison, M. J., Brune, W. H., Graus, M., Warneke, C., Gilman, J. B., Kuster, W.
887 C., de Gouw, J., Gutierrez-Montes, C., and Jimenez, J. L.: Real-time
888 measurements of secondary organic aerosol formation and aging from ambient air
889 in an oxidation flow reactor in the Los Angeles area, *Atmos. Chem. Phys.*, 16,
890 7411-7433, <http://dx.doi.org/10.5194/acp-16-7411-2016>, 2016.

891 Ou, J. M., Guo, H., Zheng, J. Y., Cheung, K., Louie, P. K. K., Ling, Z. H., and Wang,
892 D. W.: Concentrations and sources of non-methane hydrocarbons (NMHCs) from
893 2005 to 2013 in Hong Kong: A multi-year real-time data analysis, *Atmos. Environ.*,
894 103, 196-206, <http://dx.doi.org/10.1016/j.atmosenv.2014.12.048>, 2015.

895 Paatero, P., and Tapper, U.: Positive matrix factorization: A non-negative factor model
896 with optimal utilization of error estimates of data values, *Environmetrics.*, 5, 111-
897 126, <http://dx.doi.org/10.1002/env.3170050203>, 1994.

898 Paatero, P.: Least squares formulation of robust non-negative factor analysis,
899 *Chemometr. Intell. Lab.*, 37, 23-35, [http://dx.doi.org/10.1016/S0169-7439\(96\)00044-5](http://dx.doi.org/10.1016/S0169-7439(96)00044-5), 1997.

900 Parrish, D. D., Kuster, W. C., Shao, M., Yokouchi, Y., Kondo, Y., Goldan, P. D., de

902 Gouw, J. A., Koike, M., and Shirai, T.: Comparison of air pollutant emissions
903 among mega-cities, *Atmos. Environ.*, 43, 6435-6441,
904 <http://dx.doi.org/10.1016/j.atmosenv.2009.06.024>, 2009.

905 Saito, S., Nagao, I., and Kanzawa, H.: Characteristics of ambient C2–C11 non-methane
906 hydrocarbons in metropolitan Nagoya, Japan, *Atmos. Environ.*, 43, 4384-4395,
907 <https://doi.org/10.1016/j.atmosenv.2009.04.031>, 2009.

908 Sari, D., and Bayram, A.: Quantification of emissions from domestic heating in
909 residential areas of Izmir, Turkey and assessment of the impact on local/regional
910 air-quality, *Sci. Total Environ.*, 488-489, 429-436,
911 <https://doi.org/10.1016/j.scitotenv.2013.11.033>, 2014.

912 Sato, K., Takami, A., Isozaki, T., Hikida, T., Shimono, A., and Imamura, T.: Mass
913 spectrometric study of secondary organic aerosol formed from the photo-oxidation
914 of aromatic hydrocarbons, *Atmos. Environ.*, 44, 1080-1087,
915 <http://dx.doi.org/10.1016/j.atmosenv.2009.12.013>, 2010.

916 Shao, M., Lu, S. H., Liu, Y., Xie, X., Chang, C. C., Huang, S., and Chen, Z. M.: Volatile
917 organic compounds measured in summer in Beijing and their role in ground-level
918 ozone formation, *J. Geophys. Res.-Atmos.*, 114, 13,
919 <http://dx.doi.org/10.1029/2008jd010863>, 2009.

920 Shrivastava, M., Easter, R. C., Liu, X. H., Zelenyuk, A., Singh, B., Zhang, K., Ma, P.-
921 L., Chand, D., Ghan, S., Jimenez, J. L., Zhang, Q., Fast, J., Rasch, P. J., and Tiitta,
922 P.: Global transformation and fate of SOA: Implications of low-volatility SOA and
923 gas-phase fragmentation reactions, *J. Geophys. Res.-Atmos.*, 120, 4169-4195,

924 http://dx.doi.org/10.1002/2014jd022563, 2015.
925 Song, Y., Shao, M., Liu, Y., Lu, S. H., Kuster, W., Goldan, P., and Xie, S. D.: Source
926 apportionment of ambient volatile organic compounds in Beijing, Environ. Sci.
927 Technol., 41, 4348-4353, <http://dx.doi.org/10.1021/es0625982>, 2007.
928 Streets, D. G., Fu, J. S., Jang, C. J., Hao, J. M., He, K. B., Tang, X. Y., Zhang, Y. H.,
929 Wang, Z. F., Li, Z. P., Zhang, Q., Wang, L. T., Wang, B. Y., and Yu, C.: Air quality
930 during the 2008 Beijing Olympic Games, Atmos. Environ., 41, 480-492,
931 <https://doi.org/10.1016/j.atmosenv.2006.08.046>, 2007.

932 Subramanian, M.: Deadly dinners, Nature, 509, 548-551,
933 <http://doi.org/10.1038/509548a>, 2014.

934 Suthawaree, J., Kato, S., Okuzawa, K., Kanaya, Y., Pochanart, P., Akimoto, H., Wang,
935 Z., and Kajii, Y.: Measurements of volatile organic compounds in the middle of
936 Central East China during Mount Tai Experiment 2006 (MTX2006): Observation
937 of regional background and impact of biomass burning, *Atmos. Chem. Phys.*, 10,
938 1269-1285, <http://doi.org/10.5194/acp-10-1269-2010>, 2010.

939 Tang, X., Wang, Z. F., Zhu, J., Gbaguidi, A. E., Wu, Q. Z., Li, J., and Zhu, T.: Sensitivity
940 of ozone to precursor emissions in urban Beijing with a Monte Carlo scheme,
941 *Atmos. Environ.*, 44, 3833-3842, [http://dx.doi.org/10.1016/j.atmosenv.](http://dx.doi.org/10.1016/j.atmosenv.2010.06.026)
942 2010.06.026, 2010.

943 Wang, B., Shao, M., Lu, S. H., Yuan, B., Zhao, Y., Wang, M., Zhang, S. Q., and Wu, D.:
944 Variation of ambient non-methane hydrocarbons in Beijing city in summer 2008,
945 Atmos. Chem. Phys., 10, 5911-5923, <http://dx.doi.org/10.5194/acp-10-5911-2010>,

946 2010a.

947 Wang, M., Zhu, T., Zheng, J., Zhang, R. Y., Zhang, S. Q., Xie, X. X., Han, Y. Q., and
948 Li, Y.: Use of a mobile laboratory to evaluate changes in on-road air pollutants
949 during the Beijing 2008 Summer Olympics, *Atmos. Chem. Phys.*, 9, 8247-8263,
950 <http://dx.doi.org/10.5194/acp-9-8247-2009>, 2009.

951 Wang, M., Shao, M., Lu, S. H., Yang, Y. D., and Chen, W. T.: Evidence of coal
952 combustion contribution to ambient VOCs during winter in Beijing, *Chin. Chem.
953 Lett.*, 24, 829-832, <http://dx.doi.org/10.1016/j.cclet.2013.05.029>, 2013.

954 Wang, S. W., Zhao, M., Xing, J., Wu, Y., Zhou, Y., Lei, Y., He, K. B., Fu, L. X., Hao, J.
955 M.: Quantifying the Air Pollution Emission Reduction during the 2008 Olympic
956 Games in Beijing, *Environ. Sci. Technol.*, 44, 2490-2496, doi:10.1021/es9028167,
957 2010b.

958 Wang, X. M., Sheng, G. Y., Fu, J. M., Chan, C. Y., Lee, S. G., Chan, L. Y., and Wang,
959 Z. S.: Urban roadside aromatic hydrocarbons in three cities of the Pearl River Delta,
960 People's Republic of China, *Atmos. Environ.*, 36, 5141-5148,
961 [http://dx.doi.org/10.1016/s1352-2310\(02\)00640-4](http://dx.doi.org/10.1016/s1352-2310(02)00640-4), 2002.

962 Wang, Y. S., Yao, L., Wang, L. L., Liu, Z. R., Ji, D. S., Tang, G. Q., Zhang, J. K., Sun,
963 Y., Hu, B., and Xin, J. Y.: Mechanism for the formation of the January 2013 heavy
964 haze pollution episode over central and eastern China, *Sci. China Earth Sci.*, 57,
965 14-25, <http://dx.doi.org/10.1007/s11430-013-4773-4>, 2014.

966 Wang, Z. S., Li, Y. T., Chen, T., Li, L. J., Liu, B. X., Zhang, D. W., Sun, F., Wei, Q.,
967 Jiang, L., and Pan, L. B.: Changes in atmospheric composition during the 2014

968 APEC conference in Beijing, *J. Geophys. Res.-Atmos.*, 120, 12695-12707,
969 <http://dx.doi.org/10.1002/2015jd023652>, 2015.

970 Xu, J. Y., Zhuo, J. K., Zhu, Y. N., Pan, Y., and Yao, Q.: Analysis of volatile organic
971 pyrolysis products of bituminous and anthracite coals with single-photon
972 ionization time-of-flight mass spectrometry and gas chromatography/mass
973 spectrometry, *Energ. Fuel.*, 31, 730-737,
974 <https://doi.org/10.1021/acs.energyfuels.6b02335>, 2017.

975 Xu, W. Q., Sun, Y. L., Chen, C., Du, W., Han, T. T., Wang, Q. Q., Fu, P. Q., Wang, Z.
976 F., Zhao, X. J., Zhou, L. B., Ji, D. S., Wang, P. C., and Worsnop, D. R.: Aerosol
977 composition, oxidation properties, and sources in Beijing: Results from the 2014
978 Asia-Pacific Economic Cooperation summit study, *Atmos. Chem. Phys.*, 15,
979 13681-13698, <http://dx.doi.org/10.5194/acp-15-13681-2015>, 2015.

980 Xue, Y. F., Zhou, Z., Nie, T., Wang, K., Nie, L., Pan, T., Wu, X. Q., Tian, H. Z., Zhong,
981 L. H., Li, J., Liu, H. J., Liu, S. H., and Shao, P. Y.: Trends of multiple air pollutants
982 emissions from residential coal combustion in Beijing and its implication on
983 improving air quality for control measures, *Atmospheric Environment*, 142, 303-
984 312, 10.1016/j.atmosenv.2016.08.004, 2016.

985 Yao, Z. L., Zhang, Y. Z., Shen, X. B., Wang, X. T., Wu, Y., He, K. B.: Impacts of
986 temporary traffic control measures on vehicular emissions during the Asian Games
987 in Guangzhou, China, *J. Air Waste Manag. Assoc.*, 63, 11-19,
988 <https://doi.org/10.1080/10962247.2012.724041>, 2013.

989 Yokelson, R. J., Christian, T. J., Karl, T. G., and Guenther, A.: The tropical forest and
990 fire emissions experiment: Laboratory fire measurements and synthesis of

991 campaign data, Atmos. Chem. Phys., 8, 3509-3527, <http://dx.doi.org/10.5194/acp-8-3509-2008>, 2008.

993 Yu, Q. Q., Yang, W. Q., Zhu, M., Gao, B., Li, S., Li, G. H., Fang, H., Zhou, H. S., Zhang,
994 H. N., Wu, Z. F., Song, W., Tan, J. H., Zhang, Y. L., Bi, X. H., Chen, L. G., and
995 Wang, X. M.: Ambient PM_{2.5}-bound polycyclic aromatic hydrocarbons (PAHs) in
996 rural Beijing: Unabated with enhanced temporary emission control during the
997 2014 APEC summit and largely aggravated after the start of wintertime heating,
998 Environ. Pollut., 238, 532-542, [http://dx.doi.org/10.1016/j.envpol.2018.03.079,](http://dx.doi.org/10.1016/j.envpol.2018.03.079)
999 2018.

1000 Yuan, B., Shao, M., Lu, S. H., and Wang, B.: Source profiles of volatile organic
1001 compounds associated with solvent use in Beijing, China, Atmos. Environ., 44,
1002 1919-1926, <http://dx.doi.org/10.1016/j.atmosenv.2010.02.014>, 2010.

1003 Yuan, Z. B., Lau, A. K. H., Shao, M., Louie, P. K. K., Liu, S. C., and Zhu, T.: Source
1004 analysis of volatile organic compounds by positive matrix factorization in urban
1005 and rural environments in Beijing, J. Geophys. Res., 114, 14,
1006 <http://dx.doi.org/10.1029/2008jd011190>, 2009.

1007 Yuan, Z. B., Zhong, L. J., Lau, A. K. H., Yu, J. Z., and Louie, P. K. K.: Volatile organic
1008 compounds in the Pearl River Delta: Identification of source regions and
1009 recommendations for emission-oriented monitoring strategies, Atmos. Environ.,
1010 76, 162-172, <http://dx.doi.org/10.1016/j.atmosenv.2012.11.034>, 2013.

1011 Zhang, J. K., Sun, Y., Wu, F. K., Sun, J., and Wang, Y. S.: The characteristics, seasonal
1012 variation and source apportionment of VOCs at Gongga Mountain, China, Atmos.

1013 Environ., 88, 297-305, <http://dx.doi.org/10.1016/j.atmosenv.2013.03.036>, 2014c.

1014 Zhang, J. K., Sun, Y., Liu, Z. R., Ji, D. S., Hu, B., Liu, Q., and Wang, Y. S.:

1015 Characterization of submicron aerosols during a month of serious pollution in

1016 Beijing, 2013, Atmos. Chem. Phys., 14, 2887-2903, <http://dx.doi.org/10.5194/acp-14-2887-2014>, 2014a.

1017

1018 Zhang, J. K., Wang, L. L., Wang, Y. H., and Wang, Y. S.: Submicron aerosols during

1019 the Beijing Asia-Pacific Economic Cooperation conference in 2014, Atmos.

1020 Environ., 124, 224-231, <http://dx.doi.org/10.1016/j.atmosenv.2015.06.049>, 2016b.

1021 Zhang, Q., He, K. B., and Huo, H.: Policy: Cleaning China's air, Nature., 484, 161-162,

1022 <http://dx.doi.org/10.1038/484161a>, 2012b.

1023 Zhang, Y. J., Mu, Y. J., Liu, J. F., and Mellouki, A.: Levels, sources and health risks of

1024 carbonyls and BTEX in the ambient air of Beijing, China, J. Environ. Sci., 24,

1025 124-130, [http://dx.doi.org/10.1016/S1001-0742\(11\)60735-3](http://dx.doi.org/10.1016/S1001-0742(11)60735-3), 2012a.

1026 Zhang, Y. J., Mu, Y. J., Meng, F., Li, H., Wang, X. Z., Zhang, W. Q., Mellouki, A., Gao,

1027 J., Zhang, X.M., Wang, S.L., and Chai, F.H.: The pollution levels of BTEX and

1028 carbonyls under haze and non-haze days in Beijing, China, Sci. Total Environ.,

1029 490, 391-396, <http://dx.doi.org/10.1016/j.scitotenv.2014.05.025>, 2014b.

1030 Zhang, Y. S., Shao, M., Lin, Y., Luan, S. J., Mao, N., Chen, W. T., and Wang, M.:

1031 Emission inventory of carbonaceous pollutants from biomass burning in the Pearl

1032 River Delta Region, China, Atmos. Environ., 76, 189-199,

1033 <http://dx.doi.org/10.1016/j.atmosenv.2012.05.055>, 2013c.

1034 Zhang, Y. L., Wang, X. M., Barletta, B., Simpson, I. J., Blake, D. R., Fu, X. X., Zhang,

1035 Z., He, Q. F., Liu, T. Y., Zhao, X. Y., and Ding, X.: Source attributions of hazardous
1036 aromatic hydrocarbons in urban, suburban and rural areas in the Pearl River Delta
1037 (PRD) region, J. Hazard. Mater., 250–251, 403-411,
1038 <http://dx.doi.org/10.1016/j.jhazmat.2013.02.023>, 2013a.

1039 Zhang, Y. L., Wang, X. M., Zhang, Z., Lü, S. J., Shao, M., Lee, F. S. C., and Yu, J. Z.:
1040 Species profiles and normalized reactivity of volatile organic compounds from
1041 gasoline evaporation in China, Atmos. Environ., 79, 110-118,
1042 <http://dx.doi.org/10.1016/j.atmosenv.2013.06.029>, 2013b.

1043 Zhang, Y. L., Wang, X. M., Zhang, Z., Lü, S. J., Huang, Z. H., and Li, L. F.: Sources of
1044 C2–C4 alkenes, the most important ozone nonmethane hydrocarbon precursors in
1045 the Pearl River Delta region, Sci. Total Environ., 502, 236-245,
1046 <http://dx.doi.org/10.1016/j.scitotenv.2014.09.024>, 2015b.

1047 Zhang, Y. L., Wang, X. M., Blake, D. R., Li, L. F., Zhang, Z., Wang, S. Y., Guo, H.,
1048 Lee, F. S. C., Gao, B., Chan, L. Y., Wu, D., and Rowland, F. S.: Aromatic
1049 hydrocarbons as ozone precursors before and after outbreak of the 2008 financial
1050 crisis in the Pearl River Delta region, south China, J. Geophys. Res.-Atmos., 117,
1051 16, <http://dx.doi.org/10.1029/2011jd017356>, 2012c.

1052 Zhang, Z., Wang, X. M., Zhang, Y. L., Lü, S. J., Huang, Z. H., Huang, X. Y., and Wang,
1053 Y. S.: Ambient air benzene at background sites in China's most developed coastal
1054 regions: Exposure levels, source implications and health risks, Sci. Total Environ.,
1055 511, 792-800, <http://dx.doi.org/10.1016/j.scitotenv.2015.01.003>, 2015a.

1056 Zhang, Z., Zhang, Y. L., Wang, X. M., Lü, S. J., Huang, Z. H., Huang, X. Y., Yang, W.

1057 Q., Wang, Y. S., and Zhang, Q.: Spatiotemporal patterns and source implications
1058 of aromatic hydrocarbons at six rural sites across China's developed coastal
1059 regions, J. Geophys. Res.-Atmos., 121, 6669-6687,
1060 <http://dx.doi.org/10.1002/2016jd025115>, 2016a.

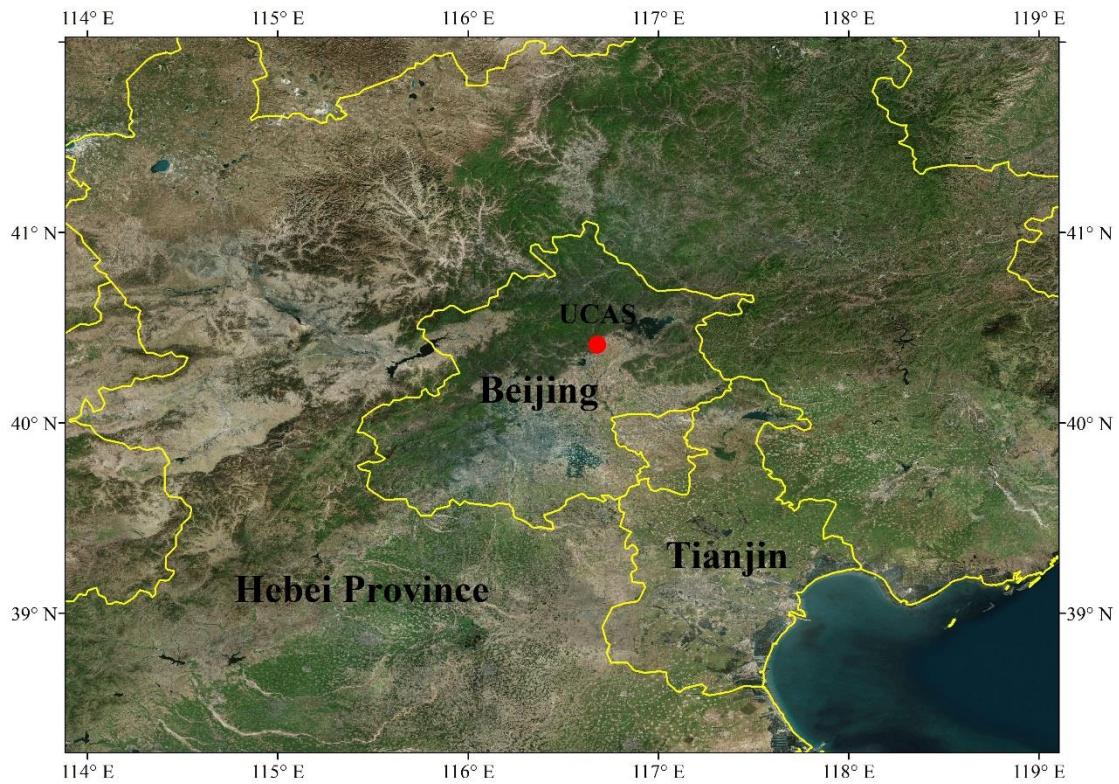
1061 Zhao, Y. L., Hennigan, C. J., May, A. A., Tkacik, D. S., de Gouw, J. A., Gilman, J. B.,
1062 Kuster, W. C., Borbon, A., and Robinson, A. L.: Intermediate-volatility organic
1063 compounds: a large source of secondary organic aerosol, Environ. Sci. Technol.,
1064 48, 13743-13750, doi:10.1021/es5035188, 2014.

1065 Zhao, Y. L., Nguyen, N. T., Presto, A. A., Hennigan, C. J., May, A. A., and Robinson,
1066 A. L.: Intermediate volatility organic compound emissions from on-road diesel
1067 vehicles: Chemical composition, emission factors, and estimated secondary
1068 organic aerosol production, Environ. Sci. Technol., 49, 11516-11526,
1069 doi:10.1021/acs.est.5b02841, 2015.

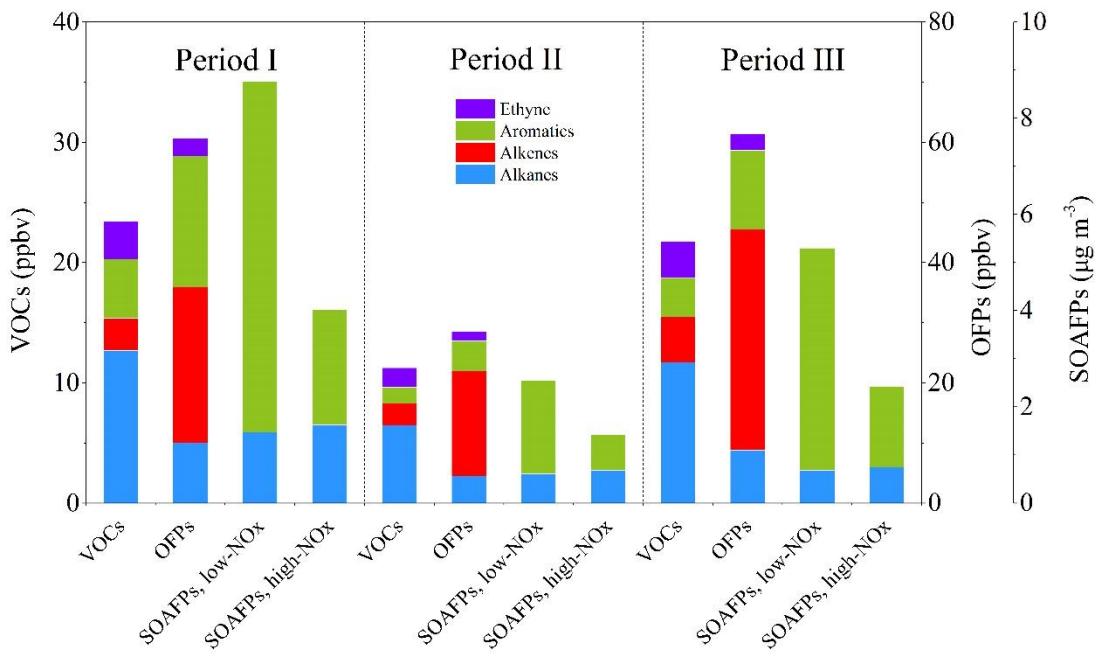
1070 Zheng, J. Y., Yu, Y. F., Mo, Z. W., Zhang, Z., Wang, X. M., Yin, S. S., Peng, K., Yang,
1071 Y., Feng, X. Q., and Cai, H. H.: Industrial sector-based volatile organic compound
1072 (VOC) source profiles measured in manufacturing facilities in the Pearl River
1073 Delta, China, Sci. Total Environ., 456-457, 127-136,
1074 <http://dx.doi.org/10.1016/j.scitotenv.2013.03.055>, 2013.

1075 Zou, Y., Deng, X. J., Zhu, D., Gong, D. C., Wang, H., Li, F., Tan, H. B., Deng, T., Mai,
1076 B. R., Liu, X. T., and Wang, B. G.: Characteristics of 1 year of observational data
1077 of VOCs, NOx and O₃ at a suburban site in Guangzhou, China, Atmos. Chem.
1078 Phys., 15, 6625-6636, 10.5194/acp-15-6625-2015, 2015.

1080 Table 1. Enhanced temporary air pollution control measures during the 2014 Asian-
 1081 Pacific Economic Cooperation (APEC) summit

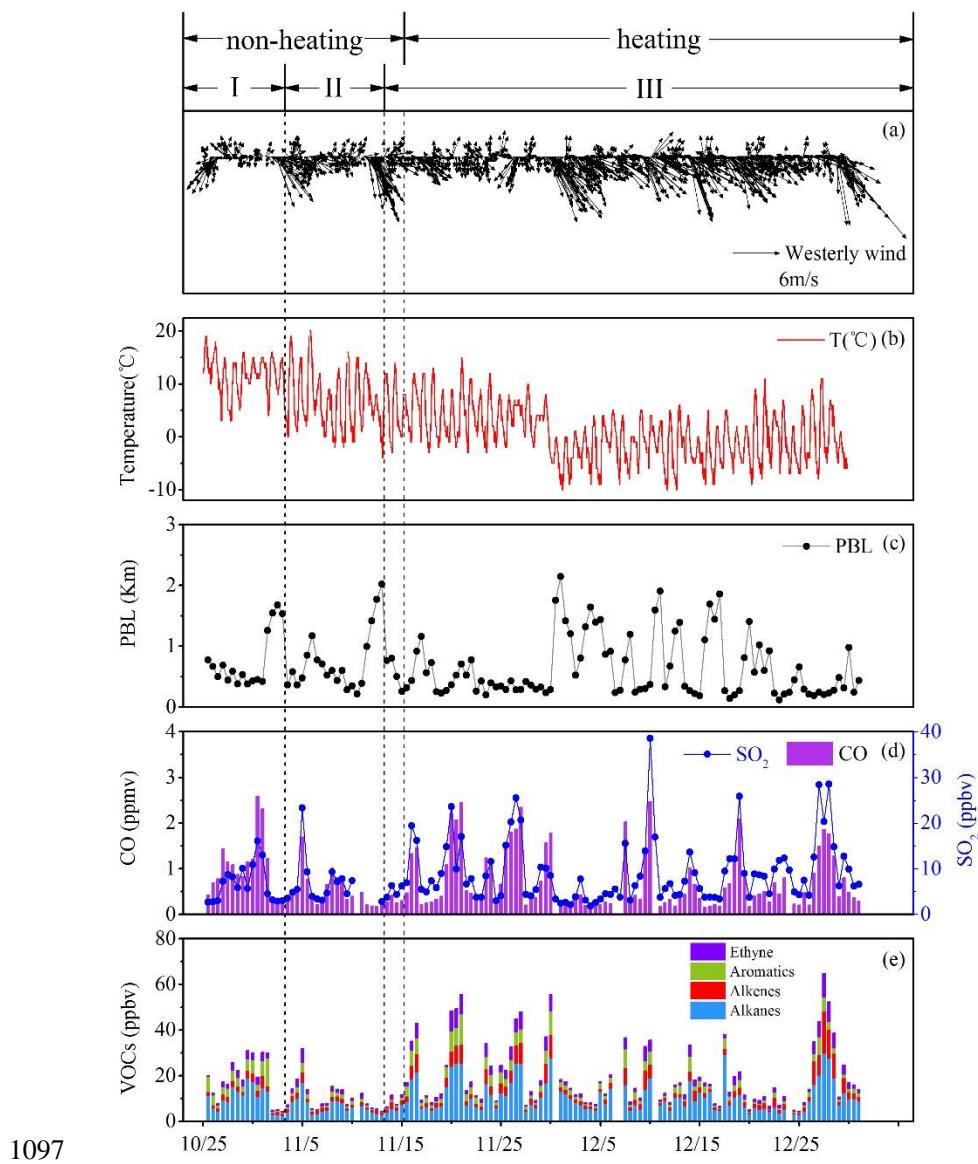

Control types	Details	Control areas
Traffic	1. Yellow label vehicles were banned to run inside the sixth ring of Beijing and the Huairou urban area; 2. The number of private vehicles in operation reduced by 50% through an odd/even-number-plate rule throughout Beijing; 3. Trucks were limited to drive inside the sixth ring of Beijing between 6 am and 24 pm; 4. 70% of government cars also ordered off the roads in Beijing.	Inside the sixth ring of Beijing and the Huairou urban area
Industrial	1. 9289 enterprises were suspended, 3900 enterprises were ordered to limit production; 2. More than 40000 construction sites were shut down.	Beijing, some areas of Tianjin, Hebei, Shanxi, Shandong and Inner Mongolia
Other fields	1. Open fire was completely controlled at North China Plain; 2. Increasing road cleaning and water spraying in Beijing; 3. Other relate control measures carried out in surrounding areas.	North China Plain Tianjin, Hebei, Shanxi, Shandong and Inner Mongolia

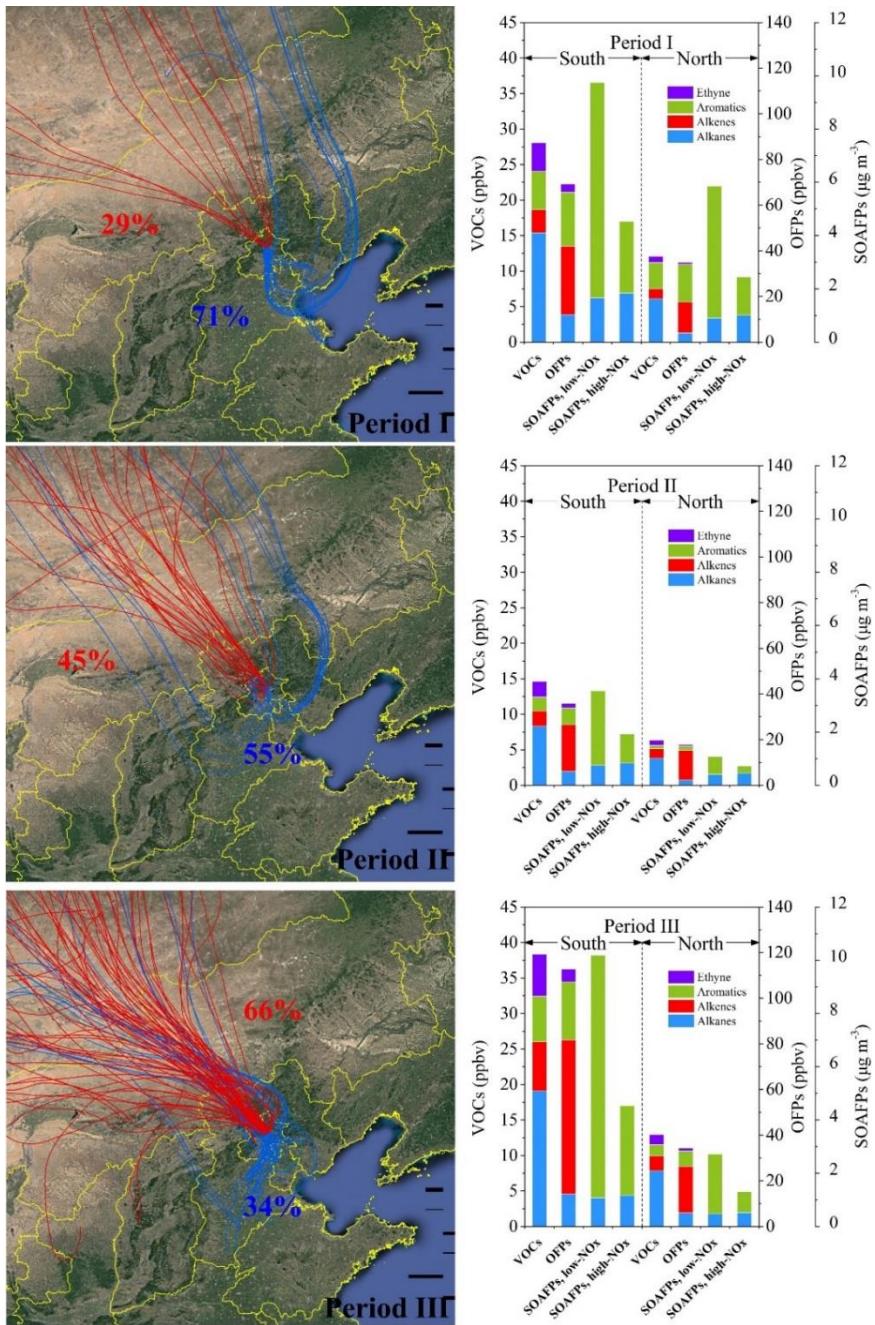
1082


1083 Table 2. The mixing ratios, ranges and 95% confidence intervals (95% C.I.) of VOCs
 1084 during period I, II and III at the rural site inside UCAS (in parts per trillion by volume,
 1085 pptv).

Species	MDL ^a	Period I		Period II		Period III	
		Range	Mean (95% C.I.)	Range	Mean (95% C.I.)	Range	Mean (95% C.I.)
Ethane	39	1172-7855	3254(743)	910-5511	2442(491)	1082-12714	3674(465)
Propane	31	427-6145	2880(720)	270-4138	1296(384)	598-7604	2479(329)
i-Butane	14	53-2755	1121(312)	59-1400	474(187)	106-2741	754(129)
n-Butane	21	158-2947	1283(302)	83-1735	562(196)	174-3047	841(136)
i-Pentane	14	94-3729	1425(354)	39-1388	561(167)	72-12590	1018(279)
n-Pentane	8	47-1697	615(182)	30-910	247(106)	26-4808	456(112)
2,2-Dimethylbutane	14	15-68	30(6)	17-32	24(3)	BDL ^b -75	26(2)
Cyclopentane	12	13-135	64(15)	BDL-64	35(7)	13-274	50(8)
2,3-Dimethylbutane	12	13-140	45(15)	22-51	32(4)	13-235	38(6)
2-Methylpentane	8	13-679	171(68)	12-257	77(31)	9-1077	124(27)
3-Methylpentane	7	12-548	150(54)	14-220	68(26)	16-792	104(20)
n-Hexane	6	115-1033	505(97)	102-921	324(89)	108-7393	1400(257)
Methylcyclopentane	9	10-283	100(30)	13-195	59(23)	BDL-535	88(17)
2,4-Dimethylpentane	4	BDL-43	15(5)	BDL-15	10(2)	BDL-90	16(2)
Cyclohexane	6	10-458	167(51)	10-107	43(14)	7-646	76(17)
2-Methylhexane	6	10-304	68(27)	7-56	22(6)	7-318	51(10)
2,3-Dimethylpentane	9	BDL-139	31(12)	BDL-24	15(2)	BDL-102	28(3)
3-Methylhexane	6	12-436	93(38)	8-97	41(11)	9-367	70(12)
2,2,4-Trimethylpentane	9	12-126	44(12)	BDL-41	25(4)	BDL-127	38(5)
n-Heptane	10	12-358	89(33)	12-71	30(8)	13-441	82(14)
Methylcyclohexane	5	BDL-162	51(17)	BDL-66	21(7)	BDL-162	44(8)
2,3,4-Trimethylpentane	6	BDL-38	14(4)	BDL-12	9(1)	BDL-59	16(2)
2-Methylheptane	4	8-175	31(16)	BDL-31	13(3)	BDL-91	22(3)
3-Methylheptane	5	BDL-231	26(20)	BDL-15	8(1)	BDL-74	17(2)
n-Octane	6	8-104	42(11)	BDL-31	18(3)	BDL-160	40(6)
n-Nonane	6	9-99	40(11)	BDL-37	18(4)	BDL-171	38(6)
n-Decane	6	14-777	129(74)	8-110	36(14)	BDL-600	73(17)
n-Undecane	7	47-317	151(35)	27-206	66(20)	11-374	94(12)
n-Dodecane	7	9-646	129(57)	25-313	75(30)	8-316	63(9)
Ethylene	41	367-3495	1788(391)	553-3572	1254(352)	319-13911	2313(428)
Propene	31	117-1264	430(118)	170-766	371(67)	176-3222	820(128)
1-Butene	17	19-161	107(18)	BDL-100	55(12)	19-581	137(22)
1,3-Butadiene	20	21-403	154(44)	23-234	79(27)	BDL-2140	252(74)
trans-2-Butene	5	BDL-41	18(4)	BDL-35	12(4)	BDL-425	39(10)
cis-2-Butene	7	9-50	23(4)	BDL-38	14(5)	BDL-276	37(7)
1-Pentene	20	BDL-47	33(3)	21-25	23(1)	BDL-127	52(6)
Isoprene	13	BDL-623	163(56)	16-143	62(15)	17-765	200(24)
trans-2-Pentene	10	BDL-37	17(4)	BDL-19	15(3)	BDL-65	23(3)
cis-2-Pentene	6	BDL-24	11(3)	BDL-9	8(0)	BDL-46	15(2)
2-Methyl-2-butene	12	13-50	21(4)	17-20	18(1)	BDL-61	24(2)
Benzene	14	75-2695	868(279)	43-1465	410(179)	72-2916	795(151)
Toluene	9	120-3585	1273(419)	47-1186	343(126)	62-3425	840(146)
Ethylbenzene	6	25-2210	684(240)	12-611	145(67)	23-2450	317(75)
m/p-Xylene	9	39-2106	765(248)	16-620	149(67)	25-3285	422(91)
Styrene	8	15-578	167(71)	BDL-99	32(11)	10-1267	151(38)
o-Xylene	4	11-965	334(104)	9-284	71(31)	15-1224	178(36)
Isopropylbenzene	4	5-66	24(7)	BDL-21	11(2)	BDL-77	18(3)
n-Propylbenzene	4	6-231	71(27)	BDL-55	20(7)	5-239	38(8)
m-Ethyltoluene	3	13-593	136(67)	4-91	28(11)	4-854	85(23)
p-Ethyltoluene	3	6-295	61(29)	4-59	17(6)	4-245	41(9)
1,3,5-Trimethylbenzene	3	7-217	48(21)	BDL-35	12(4)	4-179	38(6)
o-Ethyltoluene	3	5-246	64(26)	4-58	17(6)	5-230	40(8)
1,2,4-Trimethylbenzene	6	22-984	220(93)	13-219	58(22)	8-803	127(26)
1,2,3-Trimethylbenzene	5	12-442	82(37)	BDL-92	24(9)	6-300	56(11)
1,3-Diethylbenzene	4	11-135	35(12)	BDL-26	15(3)	BDL-126	26(4)
1,4-Diethylbenzene	4	14-461	80(40)	5-69	23(7)	BDL-292	51(10)
1,2-Diethylbenzene	4	BDL-30	15(4)	BDL-8	6(1)	BDL-76	15(2)
Ethyne	57	406-10539	3128(1043)	290-6260	1625(615)	584-10378	3008(509)

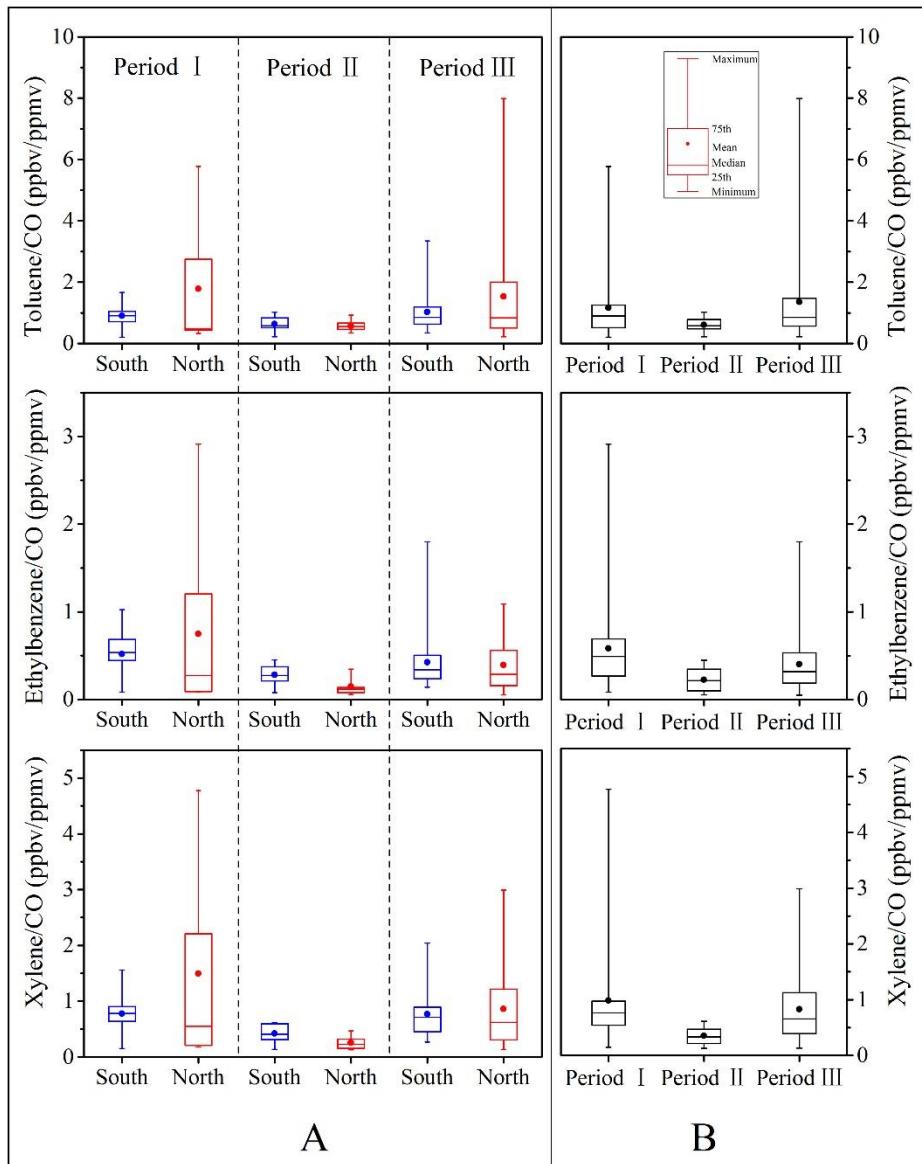
^a MDL, method detection limits, pptv; ^b BDL, bellowed detection limit.


1088
1089 Figure1. Location of sampling site at a rural inside the campus of University of Chinese
1090 Academy of Science (UCAS).
1091


1092

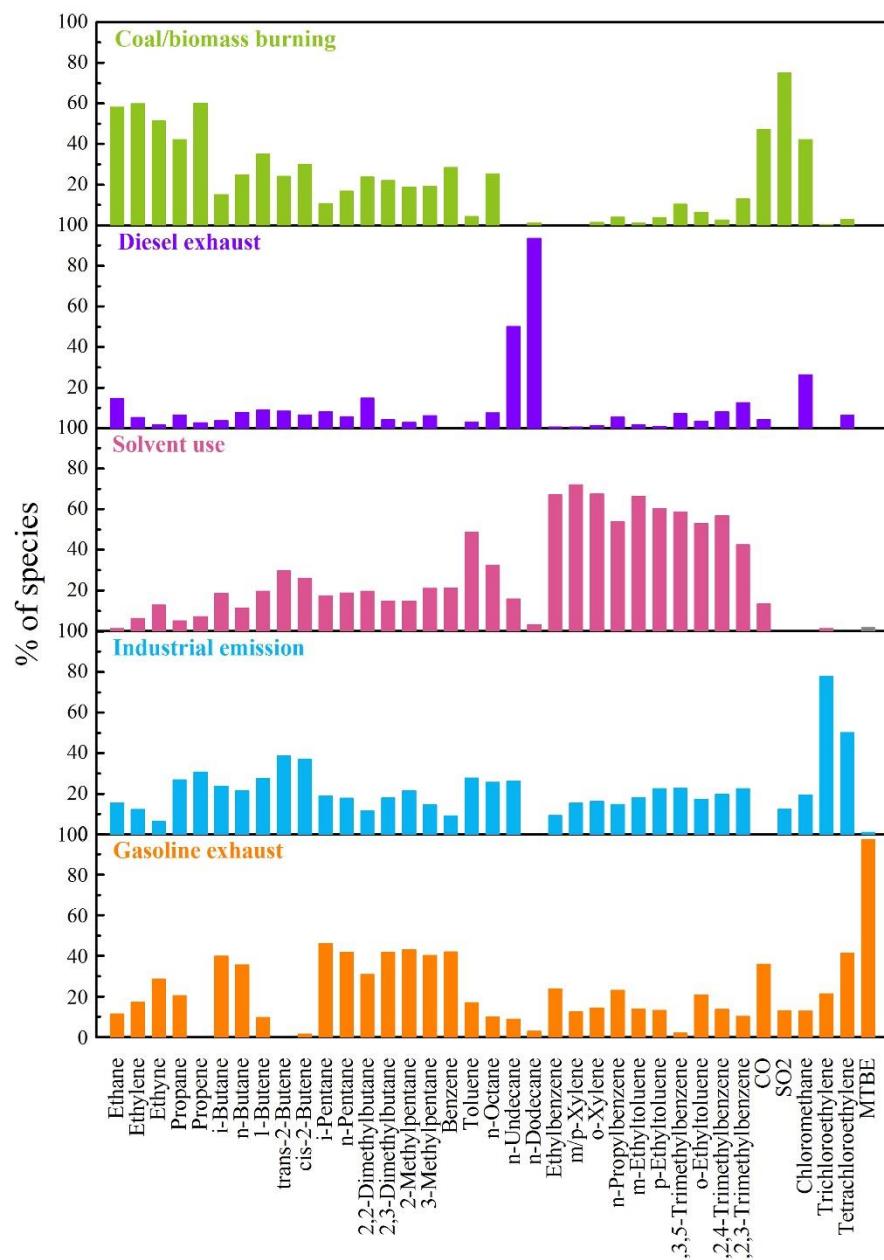
1093 Figure 2. Mixing ratios of VOCs, ozone formation potentials (OFPs) and secondary
 1094 organic aerosol formation potentials (SOAOPPs) during period I, II and III at UCAS,
 1095 respectively.

1096



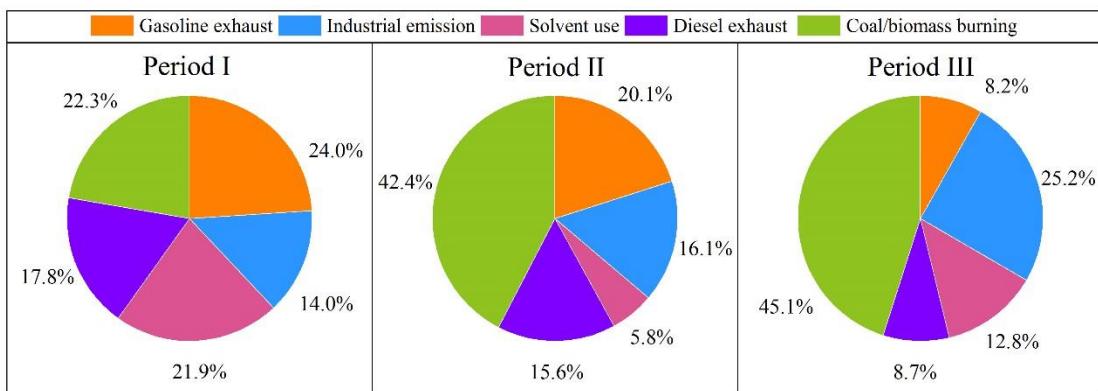
1097
1098 Figure 3. Time series of (a) wind speed and wind direction, (b) temperature,
1099 (c) planetary boundary layer height, (d) mixing ratios of CO and SO₂, (e) mixing ratios of
1100 VOCs, at the sampling site inside UCAS. The heating periods started on 15 November.
1101 Period I: 25 October-2 November; Period II: 3-12 November; Period III: 13 November-
1102 31 December.
1103

1104


1105 Figure 4. Mixing ratios of VOCs, ozone formation potentials (OFPs)
 1106 and secondary organic aerosol formation potentials (SOAFPs) in the air masses from the south and
 1107 north regions (right) and corresponding back trajectories at 100 meters above the
 1108 ground level during period I, II and III, respectively (Left).
 1109

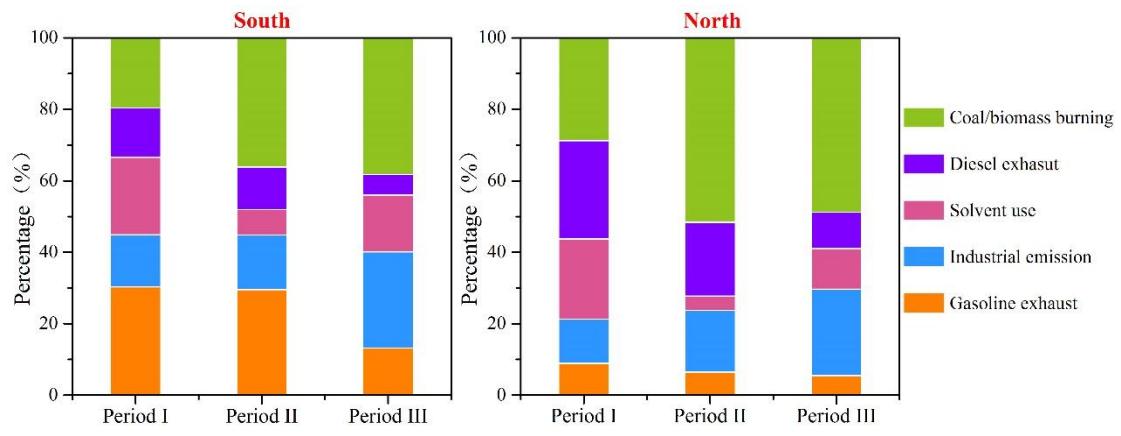
1110

1111 Figure 5. Ratios of aromatic hydrocarbons to carbon monoxide (CO) (A) in the air
 1112 masses from the south and north regions and (B) in all samples during period I, II and
 1113 III. (The lower and upper boundaries of the box represent the 25th and 75th percentiles,
 1114 respectively; the whiskers below and above the box indicate the minimum and
 1115 maximum, respectively; the line within the box marks the median; the dot represent the
 1116 mean).


1117

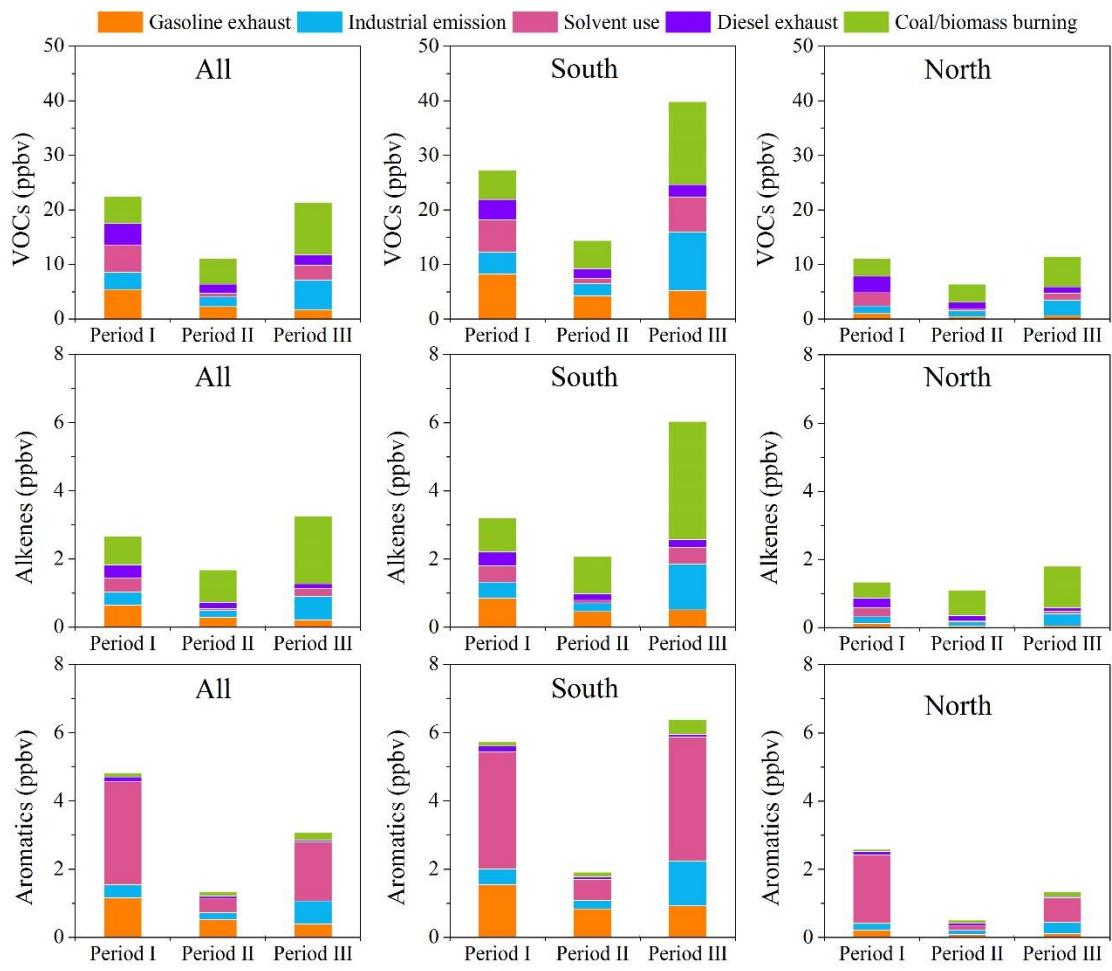
1118

1119 Figure 6. Source profiles revolved by PMF.

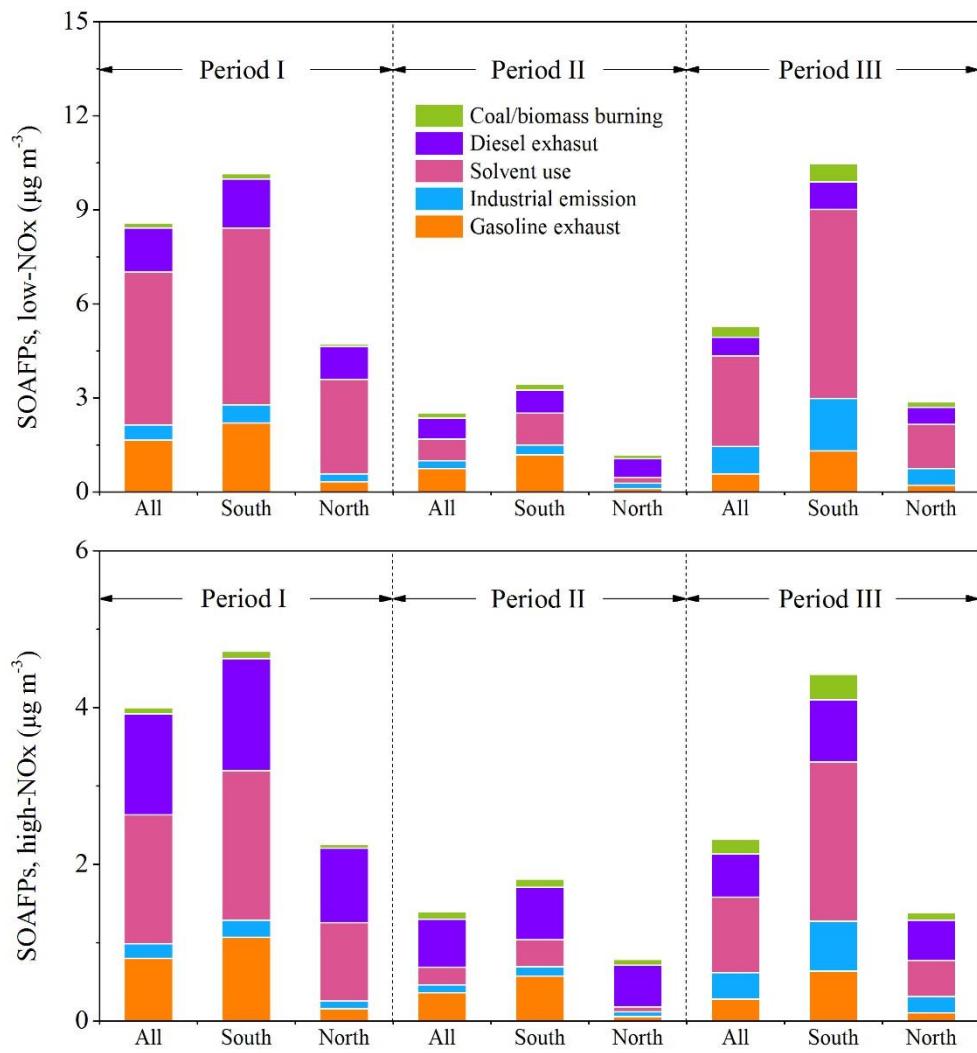

1120

1121

1122 Figure 7. Contributions to VOCs in percentages (%) by different sources during period
1123 I, II and III.


1124

1125


1126 Figure 8. Sources contributions (%) to VOCs in the air masses from the south and north
 1127 regions during period I, II and III.

1128

1129

1130 Figure 9. Sources contributions of VOCs and reactive alkenes/aromatics at UCAS, in
 1131 all samples and in air masses from the south and north regions during period I, II and
 1132 III.
 1133

1134

1135 Figure 10. Contributions to SOAFPs by different sources in the air masses from the
 1136 south and north regions during period I, II and III.