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Abstract. The frequent occurrence of severe air pollution episodes in China has been a great concern 24 

and thus the focus of intensive studies. Planetary boundary layer height (PBLH) is a key factor in the 25 

vertical mixing and dilution of near-surface pollutants. However, the relationship between PBLH and 26 

surface pollutants, especially particulate matter (PM) concentration across China is not yet well 27 

understood. We investigate this issue at ~1600 surface stations using PBLH derived from space-borne 28 

and ground-based lidar, and discuss the influence of topography and meteorological variables on the 29 

PBLH-PM relationship. Albeit the PBLH-PM correlations are roughly negative for most cases, their 30 

magnitude, significance, and even sign vary considerably with location, season, and meteorological 31 

conditions. Weak or even uncorrelated PBLH-PM relationships are found over clean regions (e.g. Pearl 32 

River Delta), whereas nonlinearly negative responses of PM to PBLH evolution are found over polluted 33 

regions (e.g. North China Plain). Relatively strong PBLH-PM interactions are found when the PBLH is 34 

shallow and PM concentration is high, which typically corresponds to wintertime cases. Correlations are 35 

much weaker over the highlands than the plains regions, which may be associated with lighter pollution 36 

loading at higher elevations and contributions from mountain breezes. The influence of horizontal 37 

transport on surface PM is considered as well, manifested as a negative correlation between surface PM 38 

and wind speed over the whole nation. Strong wind with clean upwind sources plays a dominant role in 39 

removing pollutants, and leads to obscure PBLH-PM relationships. A ventilation rate is used to jointly 40 

consider horizontal and vertical dispersion, which has the largest impact on surface pollutant 41 

accumulation over the North China Plain. As such, this study contributes to improved understanding of 42 

aerosol-PBL interactions and thus our capability of forecasting surface air pollutants.  43 



 

 3 

1. Introduction  44 

In the past few decades, China has been suffering from severe air pollution, caused by both 45 

particulate matter (PM) and gaseous pollutants. PM pollutants are of greater concern to the public partly 46 

because they are much more visible than gaseous pollution (Chan and Yao, 2008; J. Li et al., 2016; Guo 47 

et al., 2009), and because they have discernible adverse effects on human health. Moreover, airborne 48 

particles critically impact Earth’s climate through aerosol direct and indirect effects (Ackerman et al., 49 

2004; Boucher et al., 2013; Guo et al., 2017; Kiehl et al., 1993; Li et al., 2016; 2017a).  50 

Multiple factors contribute to the severe air pollution over China. Strong emission due to rapid 51 

urbanization and industrialization is a primary cause. In addition, meteorological conditions and diffusion 52 

within the planetary boundary layer (PBL) play important roles in the exchange between polluted and 53 

clean air. Among the meteorological parameters of importance, the PBL height (PBLH) can be related to 54 

the vertical mixing, affecting the dilution of pollutants emitted near the ground through various 55 

interactions and feedback mechanisms (Emeis and Schäfer. 2006; Seibert et al., 2010; Su et al., 2017a). 56 

Therefore, PBLH is a critical parameter affecting near-surface air quality, and it serves as a key input for 57 

chemistry transport models (Knote et al., 2015; LeMone et al., 2013). The PBLH can significantly impact 58 

aerosol vertical structure, as the bulk of locally generated pollutants tends to be concentrated within this 59 

layer. Turbulent mixing within the PBL can account for much of the variability in near-surface air quality. 60 

On the other hand, aerosols can have important feedbacks on PBLH, depending on the aerosol properties, 61 

especially their light absorption (e.g., black, organic, and brown carbon; Wang et al., 2013). Multiple 62 

studies demonstrate that absorbing aerosols tend to affect surface pollution in China through their 63 

interactions with PBL meteorology (Ding et al., 2016; Miao et al., 2016; Dong et al., 2017; Petäjä et al., 64 

2016). In a recent comprehensive review, Li et al. (2017b) present ample evidence of such interactions 65 
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and characterize their determinant factors . 66 

There are various methods for identifying the PBLH. The gradient (e.g., Johnson et al., 2001; Liu 67 

and Liang, 2010) and Richardson-number methods (e.g., Vogelezang and Holtslag, 1996) are the 68 

traditional and most common ones, both of which are typically based on temperature, pressure, humidity, 69 

and wind speed profiles obtained by radiosondes. Using fine-resolution radiosonde observations, Guo et 70 

al. (2016) obtained the first comprehensive PBLH climatology over China. Ground-based lidars, such as 71 

the micropulse lidar (MPL), are also widely used to derive the PBLH (e.g., Hägeli et al., 2000; He et al., 72 

2008; Sawyer and Li, 2013; Tucker et al., 2009; Yang et al., 2013). The lidar-based PBLH identification 73 

relies on the principle that a temperature inversion often exists at the top of the PBL, trapping moisture 74 

and aerosols (Seibert et al., 2000), which causes a sharp decrease in the aerosol backscatter signal at the 75 

PBL upper boundary. However, using ground-based observations to retrieve the PBLH suffers from poor 76 

spatial coverage and very limited sampling. The Cloud-Aerosol Lidar with Orthogonal Polarization 77 

(CALIOP) on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) 78 

satellite (Winker et al., 2007), an operational spaceborne lidar, can retrieve cloud and aerosol vertical 79 

distributions at moderate vertical resolution, complementing ground-based PBLH measurements. 80 

Several studies already demonstrate both the effectiveness and the limitations of using CALIPSO data 81 

for PBLH detection, showing sound but highly variable agreement with those from radiosonde- and 82 

MPL-based PBLH results (Su et al., 2017b; Leventidou et al., 2013; Liu et al., 2015; Zhang et al., 2016). 83 

 Several studies have explored the relationship between PBLH and surface pollutants in China. Tang 84 

et al. (2016) used ceilometer measurements to derive long-term PBLH behavior in Beijing, further 85 

demonstrating the strong correlation between the PBLH and surface visibility under high humidity 86 

conditions. Wang et al. (2017) classified atmospheric dispersion conditions based on PBLH and wind 87 
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speed, and identified significant surface PM changes that varied with dispersion conditions. Miao et al. 88 

(2017) investigated the relationship between summertime PBLH and surface PM, and discussed the 89 

impact of synoptic patterns on the development and structure of the PBL. Qu et al. (2017) derived one-90 

year PBLH variations from lidar in Nanjing, and identified a strong correlation between PBLH and PM, 91 

especially on hazy and foggy days.  92 

However, the majority of studies considered data from only a few stations, and as yet, the interaction 93 

between PBLH and surface pollutants under different topographic and meteorological conditions is not 94 

well understood. Assessing the relationship between PM and the PBLH quantitatively over the entire 95 

country is of particular interest. PBL turbulence is not the only factor affecting air quality, so there can 96 

be large regional differences in the interaction between the PBLH and PM. As such, the contributions of 97 

various factors to the PBLH-PM relationship remain uncertain, that thus warrant a further investigation. 98 

Given the above-mentioned limitations, the current study presents a comprehensive exploration of 99 

the relationship between the PBLH and surface pollutants over China, for a wide range of atmospheric, 100 

aerosol and topographic conditions. Since 2012, China has dramatically increased the number of 101 

instruments and implemented rigorous quality control procedures for hourly pollutant concentration 102 

measurements nationally, providing much better quality data than was previously available. The pollutant 103 

data derived from surface observations, along with CALIPSO measurements, offer us an opportunity to 104 

investigate the impact of PBLH on air quality on a nationwide basis. Regional characteristics and 105 

seasonal variations are considered. Moreover, multiple factors related to the interaction between the 106 

PBLH and PM are investigated, including surface topography, horizontal transport, and pollution level. 107 

Accounting for the influences these factors have on the relationships between PBLH and surface 108 

pollutants will help improve our understanding and forecast capability for air pollution, as well as helping 109 
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refine meteorological and atmospheric chemistry models. 110 

 111 

2. Data and Method 112 

2.1. Description of observations 113 

2.1.1. Surface data 114 

The topography of China is presented in Figure 1a, and pink rectangles outline the four regions of 115 

interest (ROI) for the current study: northeast China (NEC), the Yangtze River Delta (YRD), Pearl River 116 

Delta (PRD), and North China Plain (NCP). The environmental monitoring station locations are indicated 117 

with red dots in Figure 1b. They routinely measure PM with diameters ≤ 2.5 μm (PM2.5), which are 118 

released to the public in real-time with relatively high credibility (Liang et al., 2016). The locations of 119 

meteorological stations are indicated in Figure 1c (data source: http://data.cma.cn/en). The wind speed 120 

and wind direction at these stations are quality-controlled and archived by the China Meteorological 121 

Administration. We also utilized the MPL data and sun-photometer data at Beijing, a megacity located 122 

within the NCP. The MPL located at Beijing was operated continuously by Peking University (39.99°N, 123 

116.31°E) from Mar 2016 to Dec 2017, with a temporal resolution of 15s and a vertical resolution of 124 

15m. The near-surface blind zones for both lidars are around 150 meters. Background subtraction, 125 

saturation, after-pulse, overlap, and range corrections are applied to raw MPL data (He et al., 2008, Yang 126 

et al., 2013). In this study, we use Level 1.5 AOD at 550 nm from the Beijing RADI (40°N, 116.38°E) 127 

Aerosol Robotic Network (AERONET) site, with hourly time resolution. As observations from multiple 128 

sources and platforms are used, we present descriptions of these observations in Table 1.  129 

2.1.2. CALIPSO data 130 

CALIOP aboard the CALIPSO platform is the first space-borne lidar optimized for aerosol and 131 
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cloud profiling. As part of the Afternoon satellite constellation, or A-Train (L’Ecuyer and Jiang, 2010), 132 

CALIPSO is in a 705-km Sun-synchronous polar orbit between 82°N and 82°S, with a 16-day repeat 133 

cycle (Winker et al., 2007, 2009). In this study, we used the CALIPSO data to retrieve the daytime PBLH 134 

along its orbit. As shown in Figure 1d, blue lines represent the ground tracks over China for the daytime 135 

overpasses of CALIPSO. To match the CALIPSO retrievals with equator crossings at approximately 136 

1330 local time, we use the surface meteorological and environmental data in early afternoon averaged 137 

from 1300 to 1500 China standard time (CST). During this period, the PBL is well developed with 138 

relatively strong vertical mixing, which is a favorable condition for investigating aerosol-PBL 139 

interactions. 140 

2.1.3. MODIS data 141 

The MODIS instruments on board the NASA Terra and Aqua satellites have 2330-km swath widths, 142 

and provide daily AOD data with near-global coverage. In this study, we use the Collection 6 MODIS-143 

Aqua level-2 AOD products at 550 nm (available at: https://www.nasa.gov/langley), which is a widely 144 

used parameter to represent the columnar aerosol amount. AOD data are archived with a nominal spatial 145 

resolution of 10 km × 10 km, and the data are averaged within a 30 km radius around the environmental 146 

stations to match with surface PM2.5 data. The MODIS land AOD accuracy is reported to be within 147 

±(0.05+15% AERONET AOD) (Levy et al., 2010). Note that aerosol loading is significantly different in 148 

different regions. To account for the background pollution level, we normalize the PM2.5 with MODIS 149 

AOD to qualitatively account for background or transported aerosol that is not concentrated in the PBL.  150 

2.2. Retrieving PBLHs 151 

2.2.1. PBLH derived from MPL 152 

MPL data from Beijing were used to retrieve the PBLH for this study. Multiple methods have been 153 

https://www.nasa.gov/langley
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developed for retrieving the PBLH from MPL measurements, such as signal threshold (Melfi et al., 1985), 154 

maximum of the signal variance (Hooper and Eloranta, 1986), minimum of the signal profile derivative 155 

(Flamant et al., 1997), and wavelet transform (Cohn and Angevine, 2000; Davis et al., 2000). To derive 156 

the PBLH from MPL data, we implement a well-established method developed by Yang et al. (2013) and 157 

adopted in multiple studies (Lin et al., 2016; Su et al., 2017a, 2017b). This method is tested to be suitable 158 

for processing long-term lidar data. Initially, the first derivative of a Gaussian filter with a wavelet 159 

dilation of 60 m is applied to smooth the vertical profile of MPL signals, and to produce the gradient 160 

profile. The aerosol stratification structure is indicated by multiple valleys and peaks in the gradient 161 

profile. To exclude misidentified elevated aerosol layers above the PBL, the first significant peak in the 162 

gradient profile (if one exists) is considered the upper limit in searching for the PBL top. Then, the height 163 

of the deepest valley in the gradient profile is attributed to the PBLH; discontinuous or false results 164 

caused by clouds are subsequently eliminated manually. Moreover, we further estimated the shot noise 165 

(σ) induced by background light and dark current for each profile, and then added threshold values of 166 

±3σ to the identified peaks and valleys of this profile to reduce the impact of noise. Figure S1 presents 167 

an example of the PBLH retrievals derived from MPL backscatter over Beijing. To validate MPL-derived 168 

PBLH, the values are compared with summertime radiosonde PBLH results retrieved by the Richardson 169 

number method (e.g., Vogelezang and Holtslag, 1996) from potential temperature profiles acquired at 170 

Beijing station (39.80°N, 116.47°E) at 14:00 CST. Figure S2a shows good agreement (R=~0.7) between 171 

MPL- and radiosonde-derived PBLHs over Beijing.  172 

2.2.2. PBLH derived from CALIPSO 173 

CALIOP aboard the CALIPSO platform measures the total attenuated backscatter-coefficient (TAB) 174 

with a horizontal resolution of 1/3 km and a vertical resolution of 30 m in the low and middle troposphere, 175 
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and has two channels (532 and 1064 nm). As the nighttime heavy surface inversion and residual layers 176 

tend to complicate the identification of the PBLH, we only utilize daytime TAB data (Level 1B) in this 177 

study. For retrieving the PBLH from CALIPSO, we typically use the maximum standard deviation (MSD) 178 

method, which was first developed by Jordan et al. (2010) and then modified by Su et al. (2017b). In 179 

general, it determines the PBLH as the lowest occurrence of a local maximum in the standard deviation 180 

of the backscatter profile, collocated with a maximum in the backscatter itself. The PBLH retrieval range 181 

(0.3~4km), surface noise check, and removal of attenuating and overlying clouds are subsequently 182 

included in this method. In addition, due to the viewing geometry of the instrument, we define a constraint 183 

function: 184 

β(i) = max{𝑓(i + 2), 𝑓(i + 1)} − min{𝑓(i), 𝑓(i − 1)} ,       (1) 185 

where 𝑓(i + 2), 𝑓(i + 1), 𝑓(i), 𝑓(i − 1) are four adjacent altitude bins in the 532-nm TAB and where 186 

the altitude decreases with increasing bin number i. To eliminate the local standard deviation maximum 187 

caused by signal attenuation, we add the constraint β > 0, and locate the PBLH at the top of the aerosol 188 

layer. We also apply the wavelet covariance transform (WCT) method to retrieve the PBLH, and this 189 

retrieval serves as a constraint. We eliminate cases when the difference between the MSD and WCT 190 

retrievals exceeds 0.5 km, to increase the reliability of the MSD retrievals. The processes and steps for 191 

retrieving PBLH from CALIPSO are summarized in Figure 2. We only analyze CALIPSO PBLH 192 

retrievals that pass all the indicated tests and constraints. An example of PBLH retrievals derived from 193 

CALIPSO is presented in Figure S1. 194 

Due to the high signal-to-noise ratio and reliability of MPL measurements, we use MPL-derived 195 

PBLH to test the CALIPSO retrievals. The comparison between CALIPSO- and MPL-derived PBLH at 196 
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Beijing and Hong Kong (result from Su et al., 2017b) are shown in Figure S2b-c. Reasonable agreement 197 

between CALIPSO- and MPL-derived PBLHs at these two sites is shown. The correlation coefficients 198 

are above 0.6, which is similar to results from previous studies (e.g., Liu et al., 2015; Su et al., 2017b; 199 

Zhang et al., 2016). Besides the differences in signal-to-noise ratio, the 0-50 km distance between the 200 

MPL station and CALIPSO orbit also contributes to the differences between MPL- and CALIPSO-201 

derived PBLH. 202 

2.2.3. PBLH obtained from MERRA reanalysis data 203 

We also use the PBLH data obtained from the Modern Era-Retrospective Reanalysis for Research 204 

and Applications (MERRA) reanalysis dataset to generate the PBLH climatology with a spatial resolution 205 

of 2/3°×1/2° (longitude-latitude). The MERRA reanalysis data uses a new version of the Goddard Earth 206 

Observing System Data Assimilation System Version 5 (GEOS-5), which is a state-of-the-art system 207 

coupling a global atmospheric general circulation model (GEOS-5 AGCM) to NCEP's Grid-point 208 

Statistical Interpolation (GSI) analysis (Rienecker et al., 2011). Compared with other reanalysis products 209 

(e.g., ECMWF), MERRA PBLHs have relatively high temporal and spatial resolution, and are widely 210 

used by multiple studies (e.g., Jordan et al., 2010; McGrath-Spangler and Denning., 2012; Kennedy et 211 

al., 2011). As the reanalysis data take account of large-scale dynamical forcing, we use MERRA data to 212 

generate the PBLH climatology, which further compare with that derived from CALIPSO in this study. 213 

The detail discussions can be found in section 3.1. 214 

 215 

2.3. Statistical Analysis Methods 216 

As a widely used parameter, the Pearson correlation coefficient derived from linear regression 217 

analysis measures the degree to which the data fit a linear relationship. This approach is less meaningful 218 
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for characterizing nonlinear relationships. We find that the PBLH and PM2.5 are correlated but not linearly 219 

under most conditions. We found by trial-and-error that an inverse function (𝑓(𝑥) = 𝐴
𝑥⁄ + 𝐵) fits our 220 

data well. Following Winship and Radbill (1994), we derived the fitting parameters (A and B) and the 221 

coefficient of determination (R2) of the PBLH-PM relationship using this inverse fitting function. Similar 222 

to the concept in the linear fitting, we define the slope in the inverse fit as – 𝐴. Thus, the slope in linear 223 

fit represents the linear slope between PBLH and PM2.5, while the slope in inverse fit represents the linear 224 

slope between −
1

PBLH
 and PM2.5. The sign of correlation coefficient for the inverse fit is the same as 225 

that of the slope. Obviously, the correlation coefficient and slope of the inverse fit for a positive 226 

relationship will be positive. Moreover, the normalized sample density at each location in a scatter plot 227 

represents the probability distribution in two dimensions (Scott, 2015). Then setting the weighting 228 

function in the inverse fit equal to the normalized density produces the best-fitting results representing 229 

the majority cases. In general, we attempt both regular linear regression and inverse fit to characterize 230 

the PBLH-PM relationships, and we provide the correlation coefficients and slopes for both fitting 231 

methods. In each case, the magnitude of correlation coefficient represents how well the observations are 232 

replicated by the fitting model, and the magnitude of slope represents the sensitivity of PM2.5 to PBLLH 233 

changes. 234 

In addition, the statistical significance of the PBLH-PM relationships is tested by two independent 235 

statistical methods, namely the least squares regression and the Mann-Kendall (MK) test (Mann, 1945; 236 

Kendall, 1975). Least squares regression typically assumes a Gaussian data distribution in the trend 237 

analysis, whereas the MK test is a nonparametric test without any assumed functional form, and is more 238 

suitable for data that do not follow a certain distribution. To improve the robustness of the analysis, a 239 

correlation is considered to be significant when the confidence level is above 99% for both least squares 240 
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regression and the MK test. Hereafter, “significant” indicates the correlation is statistically significant at 241 

the 99% confidence level. 242 

3. Results 243 

3.1. Climatological patterns of PBLH and surface pollutants 244 

The climatology of the PBLH, especially its seasonal variability, is very important for air-pollution-245 

related studies. We utilized the CALIPSO measurements from 2006 through 2017 to represent the spatial 246 

distribution of seasonal mean PBLH with interpolation, as shown in Figure 3a-d. A smoothing window 247 

of 20 km was applied to the original PBLH data at 1/3 km horizontal resolution. The seasonal 248 

climatological patterns of MERRA-derived PBLH are presented in Figure 3e-h for the same period. In 249 

general, the climatological pattern of MERRA PBLH is similar to that of CALIPSO, though the MERRA 250 

values are higher in spring and summer, and the peak values are lower in autumn and winter. Both 251 

CALIPSO and MERRA PBLHs are generally shallower in winter, when the development of the PBL is 252 

typically suppressed by the weaker solar radiation reaching the surface, and are generally higher in 253 

summer, especially for inland regions.  254 

Note that there are still considerable differences between the CALIPSO- and MERRA-derived 255 

PBLH climatological patterns, which can be attributed to sampling biases, different definitions, and 256 

model uncertainties. First, since the spatial coverage and time resolution are quite different between the 257 

CALIPSO and MERRA datasets, the sampling used to calculate the climatologies are quite different. 258 

Moreover, MERRA PBLHs are derived from turbulent fluxes computed by the model, whereas 259 

CALIPSO usually identifies the top height of an aerosol-rich layer. Although turbulent fluxes would 260 

significantly affect aerosol structures, the different definitions still can cause differences between 261 

CALIPSO and MERRA PBLHs. The detailed relationship between of CALIPSO- and MERRA PBLHs 262 
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is presented in Figure S2d. Quantitatively, CALIPSO PBLH values exhibit considerable differences from 263 

MERRA results; the correlation coefficient of ~0.4, indicates that the observations presented here will 264 

likely be useful for future model refinement. The reanalysis data do take into account large-scale 265 

dynamical forcing, and have the ability produce the general PBLH climatology pattern (Guo et al., 2016). 266 

However, the reanalysis data do not consider the impact of aerosols except with limited upper 267 

atmospheric measurement data assimilated, so the effects of aerosol-PBL interactions are poorly 268 

represented (Ding et al., 2013; Simmons, 2006; Huang et al., 2018). Thus, the current reanalysis data 269 

have limited ability to support a detailed investigation of PBLH-PM relationships. 270 

Correspondingly, Figure 4 presents the spatial distributions of seasonal mean PM2.5 as measured at 271 

the surface stations. Both the PBLH and PM2.5 over China exhibit large spatial and seasonal variations. 272 

The PM2.5 seasonal pattern is generally coupled to that of PBLH; the lowest values occur in summer and 273 

the highest in winter. As a high PBLH facilitates the vertical dilution and dissipation of air pollution, the 274 

contrasting patterns of PBLH and PM2.5 are consistent with expectation. NCP is a major polluted region, 275 

with mean PM2.5 concentrations overwhelmingly above 100 μg m-3 during winter. Both the PBLH and 276 

PM2.5 also show strong seasonality over NCP. PRD is a relatively clean region, and PM2.5 maintains low 277 

values (<50 μg m-3) through all seasons. As a reference, the seasonal means and standard deviations of 278 

PBLH and PM2.5 over four ROIs are listed in Table S1.  279 

From the seasonal climatologies, we find a coupling pattern between PBLH and PM2.5, although 280 

one cannot assume a causal relationship from these plots alone. In subsequent sections, we use the lidar 281 

PBLH retrievals to investigate the PBLH-PM relationships in more detail. 282 

 283 

 284 
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3.2. Regional relationships between PM and PBLH 285 

If the common factor driving large-scale variations in both PM and PBLH is meteorology, a regional 286 

analysis of their relationship could elucidate the meteorological impacts. We investigate the CALIPSO-287 

PBLH and surface PM2.5 data case by case. By matching the available CALIPSO retrievals within 35 km 288 

of the surface PM2.5 observations, we show the scatterplots for PBLH versus surface PM2.5 for the four 289 

ROIs in Figure 5. Despite the overall negative correlations, the correlations between PBLH and PM2.5 290 

have large spreads and differences. Both regular linear regression and inverse fit are applied to 291 

characterize the PBLH-PM relationships. Significant negative correlations between PM2.5 and PBLH are 292 

found over NCP with a Pearson correlation coefficient of -0.36. In addition, the nonlinear inverse function 293 

shows high consistency with the average values for each bin, and characterizes the PBLH-PM 294 

relationship with a somewhat higher correlation coefficient (-0.49). PBLH also shows significant 295 

negative correlation with PM2.5 over YRD and NEC, whereas the weak PBLH correlation with PM2.5 296 

over the PRD is not statistically significant. The correlation coefficients for the inverse fit are generally 297 

larger than the Pearson correlation coefficients, indicating that the nonlinear fit may be more suitable for 298 

characterizing the PBLH-PM relationships. Such improvements are obvious for NCP and YRD, but are 299 

not significant over YRD and NEC. 300 

We note that the ranges of PM2.5 for these ROIs are significantly different; therefore, the background 301 

pollution level is likely to be an important factor for the PBLH-PM relationship. We thus normalize the 302 

PM2.5 by MODIS AOD, a widely used parameter to represent the total-column aerosol amount, to 303 

qualitatively account for background or transported aerosol that is not concentrated in the PBL. The 304 

relationships between PBLH and PM2.5/AOD over four ROIs are presented in Figure 6. Clearly, after 305 

normalizing PM2.5 by AOD, the spread of these scatter plots and the regional differences are significantly 306 
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reduced, and the correlations become more significant for all ROIs, especially for PRD. This is because 307 

transported aerosol aloft can contribute to variability in total column AOD that is unrelated to the PBLH. 308 

Compared to CALIPSO data, the MPL has a much higher signal-to-noise ratio and can continuously 309 

observe at one location. Therefore, Figure 7 shows the relationship between MPL-derived PBLH and 310 

PM2.5 over Beijing (a major city in the NCP), as well as the relationship between PBLH and normalized 311 

PM2.5. We find the PBLH-PM relationships derived from MPL over Beijing are similar with those derived 312 

from CALIPSO over NCP. Probably because of higher data quality, the correlation coefficients for both 313 

fitting methods are slightly higher for the relationships derived from surface observations than those from 314 

CALIPSO. Consistent with the results over NCP, the PBLH shows a significantly nonlinear relationship 315 

with PM2.5 over Beijing. As the inverse fitting method better characterizes the PBLH-PM relationships 316 

than the regular linear fitting, we only use the inverse fitting method for the PBLH-PM relationships in 317 

the main text.  318 

The most negative correlations between PBLH and PM2.5 appear over the NCP, likely a testament 319 

to intense PBL-aerosol interactions, which may be caused by concentrated local sources. Comparing with 320 

southeast China, absorbing aerosol loading is much greater over NCP, and may have strong interaction 321 

with PBL through the positive feedback (Dong et al., 2017), which may contribute to the significant 322 

nonlinear relationships over NCP. Note that the PBLH-PM2.5 correlations are apparently stronger for 323 

heavily polluted regions than for clean regions. However, after normalizing PM2.5 by AOD, the 324 

correlations are improved preferentially for clean regions (where aerosol aloft makes a larger fractional 325 

contribution to the total AOD), and thus, the differences between clean and polluted regions are reduced 326 

(Figure S3). It further indicates that the background pollution level plays a critical role in interpreting the 327 

PBLH-PM observations.  328 
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As the NCP experiences the most pronounced seasonality in both PBLH and PM2.5, the relationship 329 

over this region also shows the most prominent seasonal differences (Figure S4). Figure 8 focuses on the 330 

seasonal dependence of the PBLH and PM2.5 relationship over the NCP. The magnitude of the slope 331 

between 
1

PBLH
 and PM2.5 for this region is ~90 (unit: km*ug m-3) with a correlation coefficient of -0.55 332 

during winter, and is only ~40 in summer. For comparison, the seasonally aggregated relationship 333 

between PBLH and PM2.5 is presented in Figure 8e. PM2.5 concentrations do not increase linearly with 334 

decreasing PBLH. Specifically, PM2.5 increases rapidly with decreasing PBLH when PBLH is lower than 335 

1 km, but changes much more slowly for PBLH > 1.5 km. The seasonal mean values for PM2.5 and PBLH 336 

are presented as colored dots in Figure 8e, and the whiskers represent the standard deviations. For winter, 337 

the PBLH is generally shallow, PM2.5 concentrations are high, and thus PBLH shows the most significant 338 

negative correlation with PM2.5. Conversely, in summer, the PBLH is generally higher, PM2.5 339 

concentrations are lower, and the PBLH-PM2.5 relationship is virtually flat. Such seasonally distinct 340 

PBLH-PM2.5 relationships have not previously been studied quantitatively, and have the potential for 341 

improving PM2.5 monitoring and predictions.  342 

 343 

3.3. Association with horizontal transport 344 

The PBLH affects mainly the vertical mixing and dispersion of air pollution, but horizontal transport 345 

also plays a critical role in surface air quality. Figure 9a-b present the PBLH-PM2.5 relationships over 346 

China under strong wind (WS>4m s-1) and weak wind (WS<4m s-1) conditions. Under strong wind 347 

conditions, PM2.5 is found to be much less sensitive to PBLH than for weak wind. In addition, Figure 9c-348 

d show the aerosol extinction profiles as a function of PBLH under strong and weak wind conditions, as 349 

retrieved by the MPLs at Beijing, with the Klett method applied (Klett, 1985). In both strong and weak 350 
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wind conditions, we found clear aerosol extinction gradients appear at the top of the PBL. Nonetheless, 351 

under strong wind, the aerosol extinction is typically low in the PBL, and the surface extinction do not 352 

change significantly with different PBLH. In this situation, the strong wind likely plays a dominant role 353 

in affecting PM2.5 concentration by ventilating the PBL. Under weak wind, the response of near-surface 354 

pollutants to PBLH is more nonlinear, and both aerosol extinction and PM2.5 fall rapidly as the PBLH 355 

increases from 600m to 1200m.  356 

We further consider the relationship between PBLH-PM2.5 under different wind-direction regimes 357 

for Beijing. Two different regimes are easy to identify: a northerly wind and a southerly wind; these are 358 

divided by the red line in Figure 10a. The northerly air comes from arid and semiarid regions in northwest 359 

China and Mongolia, and is usually strong and clean. The southerly wind comes from the southern part 360 

of the NCP, with high humidity and aerosol content. To relate the connections between WS, PBLH, and 361 

surface air quality, at least qualitatively, the ventilation rate (VR) can be represented as VR = WS × PBLH 362 

(Tie et al., 2015). Figures 10b-c and d-e present the PBLH-PM2.5 and VR-PM2.5 relationships under 363 

southerly wind and northerly wind conditions, respectively. For all wind conditions, VR shows reciprocal 364 

relationship with surface PM2.5. Under northerly wind conditions, both PBLH-PM2.5 and VR-PM2.5 365 

relationships are flatter and have lower correlation coefficients. The northerly wind is apparently 366 

effective in removing pollutants and may play a dominant role in affecting air quality. For the southerly 367 

wind, the PM2.5 concentration is highly sensitive to PBLH and VR values.  368 

To further illustrate the coupling effects of PBLH and WS on surface pollutants, Figure 11a presents 369 

the relationship between early-afternoon WS and PM2.5 concentration across China. Overall, WS is 370 

negatively correlated with PM2.5, although a few stations over southwest China show positive correlations. 371 

A negative correlation might be expected in general, as strong winds can be effective at removing air 372 
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pollutants; however, other factors such as wind direction must also be considered, as, for example, 373 

upwind sources could increase pollution under higher wind conditions. There are positive correlations 374 

between PBLH and near-surface WS in most cases (Figure S5a), and thus, low PBLH and weak WS tend 375 

to occur together over much of China. These unfavorable meteorological conditions for air quality would 376 

exacerbate severe pollution episodes.  377 

To consider horizontal and vertical dispersion jointly, we investigate the nationwide relationships 378 

between VR and PM2.5. In general, VR is overwhelmingly negative correlated with surface PM2.5 (Figure 379 

S5b). Based on Figure 10, VR is typically reciprocal to PM2.5 for different wind conditions, and thus, we 380 

use the function 𝑉𝑅 = 𝐴
𝑃𝑀2.5
⁄  to characterize the relationship between VR and PM2.5, with A as the 381 

fitting parameter. The spatial distribution of A, presented in Figure 11b, shows the largest values over the 382 

NCP, indicating that the PM2.5 concentration is highly sensitive to the VR there. Moreover, VRs are 383 

relatively large over the coastal areas, where sea-land breezes could play a role in dispersing air pollution. 384 

The detailed relationships and fitting functions for four ROIs are presented in Figure S6. We note that 385 

although there are large regional differences in the PBLH-PM2.5 relationship (Figure 5), the VR-PM2.5 386 

relationships are similar for the different study regions. Therefore, by combining vertical and horizontal 387 

dispersion conditions, the overall VR apparently has a similar effect on PM2.5 for all four ROI. 388 

 389 

3.4. Correlations with topography  390 

The PBL structure and PM2.5 concentration can both be affected by topography. We divided the sites 391 

into two categories based on elevation: plains (elevation < 0.5 km) and highland (elevation > 1 km). 392 

Figure 12a-d presents the correlation coefficients and slopes in the inverse fit between PM2.5 and PBLH 393 

for the plains and highland areas. For calculating the correlation coefficient and slope, we require that 394 
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the number of matched CALIPSO PBLH and PM2.5 samples is larger than 15 for each site. Much higher 395 

correlation coefficients are found in the plains than the highlands, and the slope (i.e. linear slopes between 396 

−
1

PBLH
 and PM2.5) in the plains is ~3 times that in highlands. A reciprocal relationship is shown between 397 

station elevation and the slope between −
1

PBLH
  and PM2.5 (Figure 12e). The magnitudes of slopes 398 

decrease dramatically with elevation increase, for elevations between 0 and 500 m. Local emissions also 399 

affect aerosol loading, and differences between plains and highland areas regarding local source activity 400 

could be important here as well. Figure 12e shows that the low-elevation regions are typically more 401 

polluted than highland areas, and the magnitudes of the slopes tend to be higher. Here, we utilized the 402 

inverse fitting method to reveal the different PBLH-PM relationships for the plains and highland areas, 403 

and we can find the similar conclusion by using the linear fitting method (Figure S7). 404 

 Returning to Figure S3, stronger correlations for PBLH-PM2.5 relationships are found over polluted 405 

regions, which also correspond to the plains areas, due to strong local emissions. Therefore, high aerosol 406 

loading is likely to be another factor contributing to the strong correlation between PBLH and PM2.5 over 407 

the plains, whereas the low PM2.5 concentration may contribute to the weak PBLH- PM2.5 correlation 408 

over the highlands. 409 

In addition, horizontal transport is associated with topography. Thus, we illustrate the distribution 410 

of WS for plains and highland areas in Figure 12f.  WS is generally larger for highland areas, especially 411 

for the strongest wind cases. In fact, the 10% and 25% quantiles of WS are nearly the same between 412 

plains and highland areas, whereas there are clear differences in the 75% and 90% quantiles. Strong wind 413 

cases account for 37% of the total over highland areas, but only 27% of the total over the plains. As 414 

discussed in section 3.3, strong wind can effectively remove surface pollutants, and can play a dominant 415 

role in determining local pollution levels. In this situation, PBLH might not play as critical a role in PM2.5 416 
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concentration. Thus, mountain winds, along with less local emission, are likely to be leading factors 417 

accounting for the differences in PBLH-PM2.5 correlations between plains and highland areas.  418 

Other factors could come into play as well, such as the vertical distribution of aerosol, the insolation, 419 

and the actual SSA of the particles; further examination of these phenomena is beyond the scope of the 420 

current paper. 421 

 422 

4. Discussion and conclusions  423 

Based on ten years of CALIPSO measurements and other environmental data obtained from more 424 

than 1500 stations, large-scale relationships between PBLH and PM2.5 are assessed over China. Although  425 

the PBLH-PM2.5 correlations are generally negative for the majority of conditions, the magnitude, 426 

significance, and even sign, vary greatly with location, season, and meteorological conditions. Nonlinear 427 

responses of PM2.5 to PBLH evolution are found under some conditions, especially for NCP, the most 428 

polluted region of China. We further applied an inverse function (𝑓(𝑥) = 𝐴
𝑥⁄ + 𝐵) to characterize the 429 

PBLH-PM2.5 relationships with overall better performance than a linear regression. The nonlinear 430 

relationship between PBLH and PM2.5 shows stronger interaction when the PBLH is shallow and PM2.5 431 

concentration is high, which typically corresponds to the wintertime cases. Specifically, the negative 432 

correlation between PBLH and PM2.5 is most significant during winter. Moreover, we find that regional 433 

differences in the PBLH-PM2.5 relationships are correlated with topography. The PBLH-PM2.5 434 

correlations are found to be more significant in low-altitude regions. This might be related to the more 435 

frequent air stagnation and strong local emission over China’s plains, as well as a greater concentration 436 

of emission sources. The mountain breezes and a larger fraction of transported aerosol above the PBL 437 

contribute to weakening the PBLH-PM2.5 correlation over highland areas.  438 
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Note that the PBLH-PM2.5 relationships are not always significant nor negative (Geiß et al., 2017). 439 

In addition to PBLH, PM2.5 is also affected by other factors, such as emissions, wind, synoptic patterns, 440 

atmospheric stability, etc. In some situations (e.g. strong wind and low aerosol loading), PBLH does not 441 

play a dominant role in modulating surface pollutants, and result in weak or uncorrelated relationships 442 

between PBLH and PM2.5. Weak PBLH-PM2.5 correlations is a common feature over relatively clean 443 

regions. Due to the importance of regional pollution levels, we normalized PM2.5 by MODIS total-column 444 

AOD to account for the background aerosol in different regions. Comparing to PBLH-PM2.5 correlations, 445 

the correlations between PBLH and normalized PM2.5 (PM2.5/AOD) increased significantly for clean 446 

regions, resulting in smaller regional differences overall. Retrieving surface PM2.5 from AOD constraints 447 

has been investigated in many studies. The detailed relationships between PBLH and PM2.5/AOD over 448 

different ROIs are also expected to be significant for relating PM2.5 to remotely sensed AOD, due to the 449 

way PBLH affects near-surface aerosol concentration. 450 

Horizontal transport also shows significant inverse correlation with PM2.5 concentrations. WS and 451 

PBLH tend to be positively correlated in the study regions, which means meteorologically favorable 452 

horizontal and vertical dispersion conditions are likely to occur together. Wind direction can also 453 

significantly affect the PBLH-PM2.5 relationship. Strong wind with clean upwind sources plays a 454 

dominant role in improving air quality over Beijing, for example, and leads to weak PBLH-PM2.5 455 

correlation. The combination of WS and PBLH, representing a “ventilation rate” shows a reciprocal 456 

correlation with surface PM2.5 in all the regions studied. VR also is found to have the largest impact on 457 

surface pollutant accumulation over the NCP. 458 

The feedback of absorbing aerosol also is a potential factor affecting the PBLH-PM2.5 relationships. 459 

Compared with southeast China (e.g. PRD), absorbing aerosol loading is much higher over NCP, and is 460 



 

 22 

reported to have strong interaction with PBL via a positive feedback in this region (Dong et al., 2017; 461 

Ding et al., 2016; Huang et al., 2017). Such conclusions are consistent with our results, that show 462 

significant PBLH-PM2.5 correlations over NCP and weak correlations over PRD. The important feedback 463 

of absorbing aerosols may also contribute to the nonlinear relationship between PBLH and PM2.5. This 464 

issue merits further analysis using comprehensive measurements from field experiments, from which 465 

integrated aerosol conditions and model simulations can account for aerosol radiative forcing while 466 

controlling for the other relevant variables. 467 

Our work comprehensively covers the relationships between PBLH and surface pollutants over 468 

large regional spatial scales in China. Multiple factors, such as background pollution level, horizontal 469 

transport, and topography, are found to be highly correlated with PBLH and near-surface aerosol 470 

concentration. Such information can help improve our understanding of the complex interactions 471 

between air pollution, boundary layer depth, and horizontal transport, and thus, can benefit policy making 472 

aimed at mitigating the air pollution at both local and regional scales. Our findings provide deeper insight, 473 

and contribute to the quantitative understanding of aerosol-PBL interactions, which could help in refining 474 

meteorological and atmospheric chemistry models. Further, this work may enhance surface pollution 475 

monitoring and forecasting capabilities. 476 
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Table 1. Description of data. 701 

Observations Variables Location Temporal 

resolution 

Time period 

Environmental Stations PM2.5 ~1600 sites* Hourly 01/2012-06/2017 

Meteorological Stations WS/WD ~900 sites** Hourly 01/2012-06/2017 

MPL PBLH, extinction Beijing 15seconds 03/2016-12/2017 

AERONET AOD (550nm), Beijing ~Hourly 01/2016-12/2017 

MODIS AOD Whole China Daily 01/2006-12/2017 

CALIPSO PBLH Orbits in Figure 1d Daily 06/2006-12/2017 

MERRA PBLH Whole China Hourly 01/2006-12/2017 

* 224 sites over NCP; 105 sites over PRD; 215 sites over YRD; 159 sites over NEC 702 

** 37 sites over NCP; 92 sites over PRD; 34 sites over YRD; 76 sites over NEC  703 
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 704 

Figure 1. (a) Topography of China. The black rectangles outline the five regions of interest: northeast 705 

China (NEC): 40.5-50.2°N, 120.1-135°E; North China Plain (NCP): 33.8-40.3°N, 114.1-120.8°E; Pearl 706 

River Delta (PRD): 22.2-24°N, 111.9-115.4°E; and Yangtze River Delta (YRD): 27.9-33.5°N, 116.5-707 

122.7°E. Locations of (b) environmental stations and (c) meteorological stations. (d) Blue lines indicate 708 

CALIOP daytime orbits (in ascending node). Ground-based lidar and sun-photometer are deployed at 709 

Beijing (red triangle). 710 

 711 

 712 

 713 
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 714 

Figure 2. The schematic diagram of retrieving the PBLH from CALIPSO.  715 

 716 

 717 

 718 

 719 

 720 
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 721 

Figure 3. Spatial distributions of climatological mean PBLH derived from CALIPSO for (a) March-722 

April-May (MAM), (b) June-July-August (JJA), (c) September-October-November (SON), and (d) 723 

December-January-February (DJF) during the period 2006–2017. Spatial distributions of climatological 724 

mean of early-afternoon PBLH obtained from MERRA for (e) MAM, (f) JJA, (g) SON, and (h) DJF 725 

during the same period. 726 

 727 

 728 

 729 
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 730 

Figure 4. Spatial distributions of climatological mean of early-afternoon PM2.5 concentration (in μg m-3) 731 

for (a) MAM, (b) JJA, (c) SON, and (d) DJF during the period 2012–2017. 732 

 733 

 734 

 735 

 736 

 737 
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 738 

Figure 5. The relationship between CALIPSO-derived PBLH and early-afternoon PM2.5 over (a) NCP, 739 

(b) PRD, (c) YRD, and (d) NEC. The black dots and whiskers represent the average values and standard 740 

deviation for each bin. The red dash lines indicate the regular linear regressions, and the black lines 741 

represent the inverse fit (𝑓(𝑥) = 𝐴
𝑥⁄ + 𝐵). The detailed fitting functions are given at the top of each 742 

panels, along with the Pearson correlation coefficient (red) and the correlation coefficient for the inverse 743 

fit (black). Here and in the following analysis, R with asterisks indicates the correlation is statistically 744 

significant at the 99% confidence level. The color-shaded dots indicate the normalized sample density.  745 

 746 
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 747 

Figure 6. Similar to Figure 5, but for the relationship between CALIPSO PBLH and early-afternoon 748 

PM2.5/AOD (unit: μg m-3 per AOD) over four ROIs. Here, the AOD data are obtained from MODIS. 749 

 750 

 751 

 752 

 753 

 754 

 755 
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 756 

Figure 7. (a) Relationship between MPL-derived PBLH and PM2.5 over Beijing. (b) Relationship 757 

between MPL-derived PBLH and PM2.5/AOD (unit: μg m-3 per AOD) over Beijing. The AOD data are 758 

obtained from AERONET. Here, linear (red) and inverse fits (black) are both utilized. We use only data 759 

acquired during 1000–1500 local time, when the PBL is well developed. 760 

 761 

 762 

 763 

 764 

 765 
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 766 

Figure 8. The relationship between CALIPSO PBLH and PM2.5 over the NCP for (a) MAM, (b) JJA, (c) 767 

SON, and (d) DJF. (e) General relationship between PM2.5 and PBLH aggregated over all seasons, with 768 

individual observations for each day plotted as gray dots. The box-and-whisker plots showing 10th, 25th, 769 

50th, 75th, and 90th percentile values of PM2.5 for each bin. The green, blue, pink, and red dots present 770 

the mean values for MAM, JJA, SON, and DJF, respectively.  771 

 772 

 773 
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 774 

Figure 9. The relationship between CALIPSO PBLH and PM2.5 over China for (a) strong wind (WS>4m 775 

s-1) and (b) weak wind (WS<4m s-1). The aerosol extinction profiles at ~550 nm derived from MPL at 776 

Beijing change with different MPL-derived PBLH under (c) strong wind and (d) weak wind conditions. 777 

In (c, d), the black dots indicate the location of PBL top.  778 
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 779 

Figure 10. (a) Relationship between wind direction/wind speed and PM2.5 over Beijing. The red line 780 

divides the northerly wind and southerly wind. (b-c) The relationship between PM2.5 and MPL-781 

PBLH/ventilation rate (VR = WS × PBLH, unit: km*m s-1), for southerly winds over Beijing. (d-e) The 782 

relationship between PM2.5 and MPL-PBLH/VR, for northerly winds over Beijing.  783 

 784 

 785 

 786 

 787 
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 788 

Figure 11. (a) Spatial distribution of linear correlation coefficients (R) for the WS-PM2.5 relationship. (b) 789 

Spatial distribution of fitting parameter (A) for the VR-PM2.5 relationship. The function 𝑃𝑀2.5 = 𝐴
𝑉𝑅⁄  790 

is used to characterize the relationship between VR and PM2.5, with A (unit: km*ug m-3) as the fitting 791 

parameter. Both WS and PM2.5 are obtained from surface data, and PBLH are derived from CALIPSO. 792 

Here and in the following analysis, dots marked with black circles indicate where the relationship is 793 

statistically significant at the 99% confidence level. 794 
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  795 

Figure 12. Stratification by terrain elevation. The correlation coefficients (R) and slopes (unit: km*ug 796 

m-3) between CALIPSO PBLH and PM2.5 for the inverse fit (𝑓(𝑥) = 𝐴
𝑥⁄ + 𝐵) are shown for the (a-b) 797 

plains and (c-d) highland areas. Noted the slope in the inverse fit is defined as – 𝐴. (e) The slopes in the 798 

inverse fit (i.e. linear slopes between −
1

PBLH
 and PM2.5) under different station elevations, with color-799 

shading indicating station mean PM2.5 concentration. (f) Box-and-whisker plots showing the 10th, 25th, 800 

50th, 75th, and 90th percentile values of the early-afternoon WS for plain and highland regions. The dots 801 

indicate the mean values. 802 
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