Response to reviewer's comments (# 1)

The reviewer said in general comment: The authors greatly improved the quality of the paper. Author Comment: We feel the comments of Reviewer 1 have aided in improving the quality.

Comment # 1. If the authors want to use acronym they should be consistent (e.g. OS vs OSs) and use them. [...] Please go through the article and make it consistent.

Response: This was updated as suggested by the reviewer. We replaced "OSs" with "OS" throughout the manuscript.

Comment # 2. Line 14, page 2. It needs to be rephrased. [...] Instead, they should clearly mention that it is probably due to the re-evaporation of the 2-MT as recently suggested. (Isaacman-VanWertz et al., 2016 ES&T).

Response: We agree with the reviewer's comment. We added the appropriate reference and changed the sentence as suggested:

"While many of these are formed through multiphase chemistry (e.g. IEPOX channel), we cannot exclude their gas phase formation at least for 2-methyltetrols – probably in part through the reevaporation processes (Isaacman-VanWertz et al., 2016) – and for 2-methylglyceric acid, as these compounds have been linked to gas phase reaction products from the oxidation of isoprene (Kleindienst et al., 2009) and in ambient $PM_{2.5}$ (Xie at al., 2014)."

Isaacman-VanWertz, G, Yee, L. D., Kreisberg. N. M, Wernis, R., Moss, J. A, Hering, S. V, de Sá, S. S., Martin, S. T., Alexander, M. L., Palm, B. B., Hu, W., Campuzano-Jost, P., Day, D. A., Jimenez, J. L., Riva, M., Surratt, J. D., Viegas, J., Manzi, A., Edgerton, E., Baumann, K., Souza, R., Artaxo, P., Goldstein, A. H.: Ambient gas-particle partitioning of tracers for biogenic oxidation, Environ. Sci. Technol., 50, 9952–9962, 2016.

Comment # 3. The authors claimed that they cannot estimate the aerosol acidity because they didn't have any particle phase measurement providing the concentrations of inorganic species. [...] In this previous study the same authors estimated the aerosol acidity, so why don't they use their previous study to determine the aerosol acidity if the parameter (besides the RH) were identical?

Response: The aerosol acidity in Lewandowski et al., 2015 was measured (not estimated) as nmol H⁺ per m³ air sample volume, an acidity measure that gives air concentration (nmol m⁻³) rather than an aerosol pH. We did report the aerosol acidity in the main manuscript as nmol H⁺ per m³ in tables 3 and 4 caption for ER667 and ER662 experiments. The average aerosol acidity level estimated for acidic seed and non-acidic seed experiments was 275 nmol m⁻³ and 54 nmol m⁻³, respectively.

As reported in Lewandowski et al., 2015:

"The [H+] air was calculated by dividing the measured aqueous concentration of hydrogen ions by the volume of air collected, as described by Surratt et al. (2007). While this method provides a simple, easily repeatable measure of bulk acidity, it does not fully capture the actual acidity of individual aerosol particles, which is more likely to be of physical significance in these chemical systems. Nevertheless, in the absence of a true aerosol pH measurement, the [H+] air approach appears to provide a useful surrogate measure under sufficiently constrained experimental conditions."

See also our previous response to the same reviewer (comment # 5) that reads:

"We agree with the reviewer that aerosol pH levels or aerosol liquid water concentrations would be of tremendous value to the interpretation of the results. We also generally agree with the reviewer's assessment to use modeling work (i.e., ISORROPIA (Fountoukis and Nenes, 2007); or AIM (Wexler and Clegg, 2002)) of the aerosol acidity and liquid water content, unfortunately, we do not have sufficient composition information to do the modeling with these models (ISORROPIA or AIM) appropriately. While chamber temperature, RH and particle sulfate loading are known for each reaction step, particle phase ammonium and nitrate were not measured in these experiments. And, although not strictly necessary, no gas-phase ammonia or nitric acid concentrations are available (and, as high-NOx experiments, nitric acid concentrations should be non-trivial), further complicating model predictions."

Comment # 4. The experiments performed using AS as seed aerosols are a bit strange. At RH < 40% the seed aerosols should be effloresced and be metastatic (i.e., a crystal). However, the results presented in this study clearly show that the RH matter, which is a bit surprising (e.g., Fig. MS at 9% vs 19%). How do the authors explain such results? [...] One explanation might be the larger wall losses due to humid walls but that would imply that 2mGAd are not formed in particle phase. **Response:** We agree with the reviewer that the aerosol liquid water was probably negligible in the neutral seed case. We attribute this decrease in the 2-methyltetrol, 2-MGA, and 2 MGA dimer to a decrease in the organic aerosol level as observed by Lewandowski et al., 2015. We now include a sentence to state this specifically and mention the possibility that chamber wall-effects may play a role in this decrease as suggested by the reviewer.

We changed the relevant paragraph to improve the readability as given on page 15-16 to:

"The major SOA components detected were 2-methyltetrols, 2-methylglyceric acid and its dimer, whose maximal estimated concentrations exceeded 800, 350 and 300 ng m⁻³ respectively under low-humidity conditions of RH 9% (Figure 2. At the two lowest humidities, aerosol liquid water is expected to be very low and the decrease in these compounds may not be controlled by aerosol liquid water but possibly by the SOC levels associated with the particles (Lewandowski et al., 2015), although chamber-related wall effects due to water vapor might also play some role. Among compounds detected with LC-MS (Figure 3) are organosulfates derived from acid-catalysed multiphase chemistry of IEPOX (MW 216) and MAE/HMML (MW 200) (Surratt et al., 2010; Lin et al., 2012, 2013; Nguyen et al., 2015). Other components were significantly less abundant. In most cases, increasing the humidity resulted in decreased yields of the products detected, although some compounds were observed at higher concentrations at RH 49% compared to RH 9% (i.e. m/z 199: Figure 3). As found in Table 1, total SOC decreased with increased humidity. Generally, the influence of RH on the product yields was modest consistent with Dommen et al. (2006) and Nguyen et al. (2011), who saw a negligible effect of relative humidity on SOA yield in photooxidation of isoprene in the absence of acidic seed aerosol. By contrast, here the 2-methyltetrols, 2-methylglyceric acid, and 2-methylglyceric acid dimer were found in significantly larger quantities at RH 9% compared to RH 49%. Two recent studies (Lin et al., 2014; Riva et al., 2016) reported an increase in aerosol mass with increasing RH. Riva et al., (2016) also reported an increase in 2-methyltetrols concentrations with increasing RH. However, the initial conditions for those two studies differed substantially from that in the present study. Here, isoprene is oxidized in the presence of NOx and seed aerosol (acidic and non-acidic) under a wide range of RH. In contrast, in Riva et al. and Lin et al. studies, the reactants were hydroxyhydroperoxide (ISOPOOH) and IEPOX oxidized under NOx-free conditions at two levels of RH. In addition, organosulfates, 2-methyltetrols and SOA yields derived from isoprene photooxidation typically have been enhanced under acidic conditions (Surratt et al., 2007a,b, 2010; Gomez-Gonzalez et al., 2008; Jaoui et al., 2010; Zhang et al., 2011). Organosulfates were also formed in non-acidic experiments, probably through radicalinitiated reactions in wet aerosol particles containing sulfate moieties (Noziere et al., 2010; Perri et al., 2010). The NOS and OS compounds detected here could have been formed via such a mechanism."

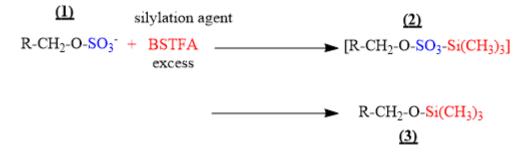
Response to reviewer's comments (# 2)

Comment # 1. Q16: Data in Table 4 and Figures 4-5 should be presented and discussed in more detail. Provided response "The presence of 2-methyltetrols and 2-methylglyceric acid and their sulfated analogues in isoprene SOA at a wide range of RH conditions, suggests that SOA water content does not affect significantly their formation" only partly answers the request, but at least please correct to "does not significantly". **Response:** This was updated as suggested by the reviewer.

Comment # 2. Q20: ISOPROPIA should be ISORROPIA

Response: The name has been corrected in accordance with the reviewer's

Reviewer's comments (# 3)


This reviewer said in the general comments:

"I thank the authors for revising their manuscript and considering some of my initial comments. Unfortunately, there appears to be some major deficiencies remaining that must be addressed before full publication in ACP can be considered. My largest concern relates to the fact that extreme care must be given when applying GC/Ei-MS (or other thermal analytical methods) to the chemical characterization of isoprene SOA (and likely to other types of SOA in general)"

Response. In analytical chemistry, derivatization mainly silylation has been used since the late 1950's in gas chromatography and mass spectrometry for the derivatization of a wide variety of compounds with a wide range of functional groups. Silylation of a polar compound results in reduced polarity, enhanced volatility and increased thermal stability, and enables the GC-MS analysis of many compounds otherwise involatile or too unstable for these techniques. GC/EI-MS analysis of derivatized compounds is not a thermal analytical method as suggested by the reviewer. We showed clearly in our previous revision (see response to comment # 9 from the same reviewer: revision 1)

that thermal degradation of accretion isoprene products does not happen in our system using GC-MS analysis of silvated isoprene reaction products. It is possible that the reviewer may be confusing desulfation with thermal decomposition associated with silvation of organosulfate compounds as shown in Reaction 1 below:

Reaction 1: Desulfation reaction of organosulfates upon silylation

Although, desulfation reaction is used regularly mainly in carbohydrates chemistry on sulfated polysaccharides (e.g. glycosaminoglycans) using a variety of desulfation agents (Takano et al., 1992; Kolender et al., 2004; Bedini et al., 206; Bedini et al. 2017 (review)), we are not aware of any study related to desulfation reaction occurring with small organosulfate molecules found in ambient particulate matter. Takano et al. showed the occurrence of desulfation when a silylation reagent was added to carbohydrate sulfates and observed that only primary sulfated alcohols were desulfated (formation of compound 3 from compound 1: Reaction 1). However, sulfated secondary alcohols and other organosulfates were not desulfated (formation of Compound 2 from Compound 1 by Reaction 1). Although some speculation has been reported in the literature of artifacts associated when PM organosulfates are subjected to derivatization, no literature data could be found because of the absence of organosulfates associated with ambient PM is necessary. (References below.)

The reviewer general comment, and Points 1, 2, and 6 make essentially the same argument. The reviewer appears to use this review to promote the LC-MS technique described by Cui et. 2018 over the method used in this manuscript. It is not clear if the main reviewer argument is with the derivatization only when organosulfate are present, although ambient PM can contain hundreds of non-sulfated organic compounds. In our response below by addressing each of the comments separately, we will hope to highlight the main shortcoming of the reviewer arguments, mainly associated with Cui et al. 2018: purity of the standards used, comparison between GC-MS and LC-MS, CIMS-FIGAERO techniques. That said, to reflect the reviewer comments and concerns, and considering the paper by Cui et al. (2018), we have added the following sentences and references to the manuscript on page 6, line 15:

"Silylations of polar compounds result in reduced polarity, enhanced volatility and increased thermal stability, and enables the GC-MS analysis of many compounds otherwise involatile or too unstable for these techniques. Therefore, appropriate caution should be taken, for example, with desulfation reactions associated with primary organosulfates (Takano et al., 1992; Kolender et al., 2004; Bedini et al., 2006; Bedini et al., 2017; Cui et al., 2018), and corrections might be warranted when analyzing methyltetrols."

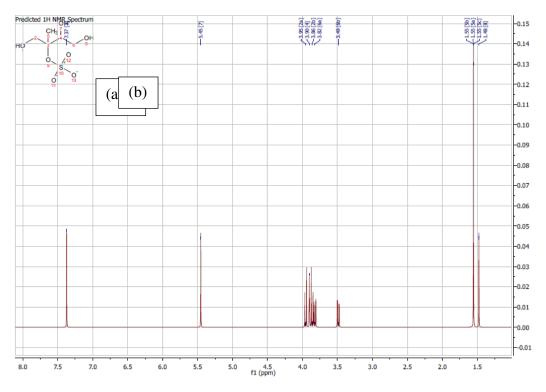
- Takano, R., Matsuo, M., Kamei-Hayashi, K., Hara, S., and Hirase, S. A.: Novel regioselective desulfation method specific to carbohydrate 6-sulfate using silylation reagents, Biosci. Biotech. Biochem., 56 (10), 1577-1580, 1992.
- Kolender, A. A., Matulewicz, M. C.: Desulfation of sulfated galactans with chlorotrimethylsilane. Characterization of b-carrageenan by ¹H NMR spectroscopy, Carbohydr. Res., 339, 1619–1629, 2004.
- Bedini, E., Laezza, A., Ladonisi, A.: Chemical derivatization of sulfated glycosaminoglycans, EurJOC., https://doi.org/10.1002/ejoc.201600108, 2016.
- Bedini, E., Laezza, A., Parrilli, M.: A review of chemical methods for the selective sulfation and desulfation of polysaccharides, Carbohydr. Polym., 174 (15), 1224-1239, 2017.
- Cui, T., Zeng, Z., dos Santos, E. O., Zhang, Z., Chen, Y., Zhang, Y., Rose, C. A., Budisulistiorini, S. H., Collins, L. B., Bodnar, W. M., de Souza, R. A. F., Martin, S. T., Machado, C. M. D., Turpin, B. T., Gold, A., Ault, A. P., and Surratt, J. D.: Development of a hydrophilic interaction liquid chromatography (HILIC) method for the chemical characterization of water-soluble isoprene epoxydiol (IEPOX)-derived secondary organic aerosol, Environ. Sci.: Processes Impacts, DOI: 10.1039/c8em00308d, 2018.

Comment #1. "I would argue we (as a research community) need to get away from using GC/EI-MS with prior derivatization for chemically characterizing isoprene SOA, and possibly for other SOA systems. Importantly, a new HILIC/ESI-HR-QTFOMS recently published by Cui et al. (2018, ESPI) from the Surratt group can measure both 2-methyletrols and organosulfates with the SAME nonthermal analytical method without the need of prior derivatization. Further, this is all done in negative ESI mode. Yes, the 2-methyltetrols can be measured by HILIC/ESI-HR-QTOFMS in the negative ion mode and can be resolved from the organosulfates! This is exciting. Furthermore, they showed that 2-methyltetrols measured by GC/MS with prior derivatization was so much higher than HILIC/ESI-HR QTOFMS, and further showed with authentic standards that the IEPOX-derived organosulfates (i.e., 2-methyltetrol sulfates and 3-methyltetrol sulfates) decomposed into 2methyltetrols and C5-alkene triols!!! This has to be considered here in this study! Thus, artifacts of GC/EI-MS must be acknowledged and this could affect the interpretation of the current results." Response. We disagree with the reviewer regarding the statement "get away from using GC-MS with prior derivatization". The author appears to be using this review as a medium to promote advantages of the LC technique described by Cui et al, 2018 and in the process, recommend the abandonment of a technique used by many researchers over nearly three decades. We believe that the reviewer should show caution in promoting a method published a month ago which has not been tested independently by the scientific community for a broader range of SOA derived organosulfates. We do see the method referenced by the reviewer (Cui et al., 2018) a step forward to analyze a set of ambient aerosol compounds from isoprene methyltetrols and their corresponding organosulfates. However, as we highlight below, several analytical inconsistencies can be associated with this method, and we feel that some of the data presented in Cui et al. paper does not support many of the arguments of the reviewer's comments. The paper of Cui et al. 2018 is dependent on two important compounds synthesized: (1) Methyltetrols (MT) are used as the starting materials to synthesize methyltetrols organosulfates (MT-OS); (2) MT-OS used for comparing GC-MS and LC-MS methods. The data provided in Cui et al. 2018 appears not to support the purity or the standard procedure of organic chemistry synthesis of MT-OS.

Synthesis

MT: There is lack of comprehensive experimental data (¹H NMR, ¹³C NMR) therefore the purity could not be verified in Cui et al. paper of MT. The procedure used should be described, mainly the

purification method since up to four stereoisomers can be formed, in the SI and/or in the main manuscript and ¹H NMR data should be provided for the intermediates as well the MT synthesized (see for example Lessmeier et al. 2018 for methyltetrols synthesis).


Lessmeier J., Dette H. P., Godt A., and Koop T. Physical state of 2-methylbutane-1,2,3,4-tetraol in pure and internally mixed aerosols. Atmos. Chem. Phys., 18, 15841–15857, 2018.

MT-OS: The synthesis of 2-MT-sulfate (from synthesized MT) described by Cui et al. 2018 is a three-step approach. The authors did not provide experimental data (NMR, MS, ...) necessary to confirm (1) the selectivity reported in the acetylation reaction (step 1); (2) for the structure of the intermediates resulted from the sulfation reaction (step 2); and (3) the reaction of tri-acetylated 2-MT sulfate with ammonia (step 3). It appears that the action of ammonia with tri-acetylated 2-MT sulfate gives rise to deacetylation and <u>desulfation</u> of the sulfated group (removal of all groups therefore data should be provided), which would likely explain the origin of additional signals in the ¹H NMR spectrum (two singlets at 1.4 and 1.5 ppm) (Cui et al., 2018). It appears also that 3-MeTHF-3,4-diols formation might occur during any synthetic steps, the most likely during acetylation. This is consistent with Figure 1 reported in Cui et al. 2018 as well as our simulated ¹H NMR for 2MT-OS, 3-MT OS, MT, and methyl-THF-3,4diol (see Figure S1 below).

Purity

MT: Little if any data is presented in Cui et al. 2018 for MT purity.

MT-OS: The analysis of the ¹H NMR spectrum in Figure S1 of Cui et al., 2018, and our simulated ¹H NMR for 2-MT-OS, 3-MT-OS, MT, and 3-MeTHF-3,4diol (see Figure S1 below), it appears impurities are present in the synthesized Cui et al. 2-MT-OS. The ¹H NMR spectrum (Figure S1, Cui et al. 2018) shows a multiplets (singlet) arising at 2.04 ppm, corresponding to the methyl group, which exist in a vicinity of strongly electronegative substituent/group. It is consistent with the presence of OSO₃H moiety in the 2-MT sulfate. However, the existence of the two preceding multiplets at 1.54 and 1.47 ppm (Figure S1, Cui et al. 2018) indicate the presence of impurities bearing methyl group(s). Our simulated ¹H NMR spectra for MT, 2-MT-OS, 2-MT triacetylated, and 3-MeTHF-3,4-diol derivative (see Figure S1), clearly shows that the source of these multiplets are methyl groups which originate from either the 2-MT and/or 3-MeTHF-3,4diol molecule. It is evident that the vicinity of the methyl group in 2-MT is less electronegative than in 2-MT sulfate giving rise to a characteristic shift towards the lesser values. Moreover, the peak integration in the ¹H NMR of the synthesized ammonium 1,3,4-trihydroxy-2-methylbutan-2-yl sulfate (i.e., 2-MT-OS, Figure S1; Cui et al., 2018) is not consistent with the structure of this compound. It is our contention, that Cui et al., 2018 did not provide sufficient analytical data proving the purity and structural assignment (95.5% reported) of the other organosulfate (3-MT-OS) synthesized.

The reviewer main argument is based on Cui et al., 2018 paper. The authors of that paper did not provide consistent analytical data associated with the purity of the methyltetrols as well as the methyltetrols organosulfates. They based their purity on only one ¹H NMR spectrum provided in the SI. They should provide for example ¹³C NMR spectra as well as GCMS data for the methyltetrols (starting materials used to the synthesize of MT-OS) as well as the ¹³C NMR and ¹H NMR spectra for the MT-OS. In addition, the ¹H NMR spectrum provided in the SI show that impurities are present in their synthesized 2-MT-OS and is not consistent with the purity reported in their paper of 99% for 2MT-OS. The size of the two peaks between 1.4 and 1.6 ppm could not be associated with the organosulfates synthesized, therefore, we believe caution should be taken when referring to Cui et al. 2018 and conclusions associated to the discrepancies between GC-MS and LCMS. For example, Cui et al. 2018 conclude that "We also demonstrate that conventional GC/EI-MS analyses overestimate 2-methyltetrols by up to 188%, resulting (in part) from the thermal degradation of methyltetrol sulfates. Lastly, C₅-alkene triols and 3-methyltetrahydrofuran-3,4-diols are found to be largely GC/EI-MS artifacts formed from thermal degradation of 2-methyltetrol sulfates and 3methyletrol sulfates, respectively, and are not detected with HILIC/ESI-HR-QTOFMS." We find this statement as speculative since C5-alkene triols and 3-methyltetrahydrofuran-3,4-diols are also formed when no acid seed is present therefore other pathways leading to these compounds should not be ignored. We should not rule out that the overestimation presented by Cui et al. 2018 could also result from the impurities introduced with the starting materials MT.

We disagree with the reviewer comment related to the "GC/EI-MS for the chemical characterization of isoprene SOA". We are not sure if the reviewer issue is with the GC/EI-MS or with the derivatization itself. We believe that "thermal decomposition" does not occur in our case since silvlated isoprene species are sufficiently volatile and unlikely to decompose in the injector/column of the GC-MS. This method is used for over 30 years by scientists and researchers not only for small molecules but also for high molecular weight species. The derivatization main

purpose is avoiding thermal decomposition of labile species by making them more volatile. We believe that the reviewer refers to the derivatization itself and not the GC/EI-MS, although the Surratt group (since the reviewer refer to this group) used this technique in their published work. We do not come to the same conclusion for the work of Cui et al 2018 that GC-MS thermal decomposition is the main factor contributing to discrepancies between LC-MS and GC-MS. Cui et al. 2018 does not report how the comparison between GC-MS and LC-MS was done. The silylation reaction need to be done under water free condition, since organosulfates were synthesized in aqueous solution and no recoveries were reported on the extraction from the chamber, and C data were also not reported. For example, these compounds when water is evaporated can lead to lactone formation.

Possible shortcomings should not be ignored when using HILIC/LC-MS including: (1) HILIC analysis is often not reproductible and can be time consuming due to long times needed between analyses for column re-equilibration. (2) Lower separation power of LC-MS (ESI/APCI) compared to GC-MS method when complex systems are analyzed. (3) The software often used in the HRMS can assign a number of possibly ambiguous formulae to a given peak.

Comment #2. "Table 2: The C5H10O3 compounds in Table 2 are NOT IEPOX isomers. They are in fact 3-MeTHF-3,4-diols, which are now known to be thermal degradation products from organosuflates (as shown recently in Cui et al., 2018, ESPI). Further, Lin et al. (2012, ES&T) and Zhang et al. (2012, ACP) from the Surratt group showed that GC/MS measures these ions at m/z 262 and 118 as 3-MeTHF-3,4-diols. This was proven with the use of authentic standards. These are not the correct assignments shown here. Furthermore, these compounds are decomposition products of low-volatility products, such as the IEPOX-derived organosulfates (Cui et al., 2018, ESPI)."

Response. These compounds were observed also in isoprene/NOx system (see Figure 1 in the main paper) without acidic seed aerosol used, therefore there is no organosulfates in the system. Therefore, these compounds could not be degradation products of organosulfates as shown above.

Figure S1 suggests possible issues with the purity reported by Cui et al. 2018, therefore other compounds bearing methyl groups are present in the synthesized organosulfates; see the peaks between 1.4 and 1.6 ppm in Figure S1 (Cui et al. 2018). These two peaks are mostly associated with methyltetrols and/or 3-MeTHF-3,4-diols as impurities (note methyltetrols were used in the synthesis of organosulfates). Therefore, 3-MeTHF-3,4-diols are not necessarily degradation products or organosulfates as claimed by the reviewer and Cui et al. 2018 when derivatization/GCMS technique is used. The authors did not detect 3-MeTHF-3,4-diols in the LC-MS method, most probably because ESI in negative ion mode is not the appropriate analysis method for these compounds. (See following response as well.)

We do not dismiss the possible presence of 3-MeTHF-3,4-diols in our samples. In fact, we do detect them in both under acidic and non-acidic seed aerosol based on authentic standards (see mass spectrum below: Figures S2 and S3). We do detect IEPOX peaks in our samples (see Figure 1), which elutes later in our chromatogram while having similar mass spectra to the 3-MeTHF-3,4-diols. However, we felt that this was outside the scope of the paper and we have not reported all isoprene compounds we identified.

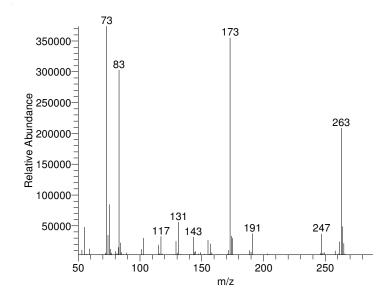


Figure S2. CI-Mass spectrum (methane) of cis-3-MeTHF-3,4-diols (standard).

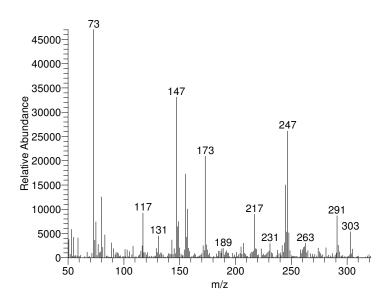


Figure S3. CI-Mass spectrum (methane) of IEPOX in isoprene SOA.

It is our contention that based on our analysis of data reported in Cui et al. 2018, that the 3-MeTHF-3,4-diols are not degradation products of organosulfates, but products from isoprene oxidation.

In addition, Lin et al. 2012, reports that "reactive uptake on the acidified sulfate aerosols through catalyzed intramolecular rearrangement of IEPOX leads to cis- and trans-3-methyltetrahydrofuran-3,4-diols (3-MeTHF-3,4-diols) in the particle phase." Cui et al. 2018, presumptively from the same group, reports that 3-MeTHF-3,4-diols are reaction artifacts from IEPOX derived organosulfates. Although the paper of Cui et al. speculates that 3-MeTHF-3,4-diols are artifacts of GC/EI-MS

analysis. It is not clear which statement is correct. Furthermore, the paper of Hu et al. 2015, shows the presence of C_5 -alkene triols in the Southeast U.S.A. during SOAS field study without invoking decomposition arguments.

For the $C_5H_{10}O_3$ compounds, several structures can be associated with this formula including IEPOX (and isomers), and 3-MeTHF-3,4-diols (and isomers). It is not clear what arguments the reviewer makes in stating that these are 3-MeTHF-3,4-diols. Our results show the presence of both IEPOX and 3-MeTHF-3,4-diols in isoprene SOA as well as in gas phase. Due to the number of products we identify in this system, we report only the main products consistent with the objective of this study. Therefore, we did report IEPOX in Table 2 and not 3-MeTHF-3,4-diols. 3-MeTHF-3,4-diols eluting earlier in the chromatogram than IEPOX. Figures S2 and S3 shows mass spectra associated with 3-MeTHF-3,4-diols (standard) and IEPOX (isoprene SOA). Both IEPOX and 3-MeTHF-3,4-diols do indeed have similar fragmentation patterns.

- Lin YH, Zhang Z, Docherty KS, Zhang H, Budisulistiorini SH, Rubitschun CL, Shaw SL, Knipping EM, Edgerton ES, Kleindienst TE, Gold A, Surratt JD. Isoprene epoxydiols as precursors to secondary organic aerosol formation: acid-catalyzed reactive uptake studies with authentic compounds. Environ Sci Technol., 2011.
- W. W. Hu, P. Campuzano-Jost, B. B. Palm, D. A. Day, A. M. Ortega, P. L. Hayes, J. E. Krechmer, Q. Chen, M. Kuwata, Y. J. Liu, S. S. de Sá, K. McKinney, S. T. Martin, M. Hu, S. H. Budisulistiorini, M. Riva, J. D. Surratt, J. M. St. Clair, G. Isaacman-Van Wertz, L. D. Yee, A. H. Goldstein, S. Carbone, J. Brito, P. Artaxo, J. A. de Gouw, A. Koss, A. Wisthaler, T. Mikoviny, T. Karl, L. Kaser, W. Jud, A. Hansel, K. S. Docherty, M. L. Alexander, N. H. Robinson, H. Coe, J. D. Allan, M. R. Canagaratna, F. Paulot, and J. L. Jimenez. Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements. Atmos. Chem. Phys., 15, 11807-11833, 2015.

Comment #3. "Page 2, Line 6: Again, this statement "although the SOA yield of isoprene tends to be low," is misleading. This is true if you look back at the prior literature from Kroll et al. (2005, GRL), Kroll et al. (2006, ES&T), Edney et al. (2005, AE), but if you consider the multiphase chemistry of its oxidation products (especially IEPOX), then using the SOA yield approach in determining amount of SOA possible from isoprene is not a good way to model it. Specifically, the EPA CMAQ model no longer uses the Odum 2-product model approach to constrain the products from isoprene oxidation. Specifically, it models SOA from isoprene as a multiphase chemical processes by modeling the reactive uptake of IEPOX and other important products."

Response. Isoprene yields (even when heterogenous chemistry is considered) reported in these references are low compared to other important biogenic compounds (i.e. alpha-pinene, d-limonene...), and we do not see this as misleading. We do recognize the possibility of heterogenous chemistry in isoprene SOA formation (our group is still involved in heterogenous isoprene chemistry), although many unresolved difficulties are remaining (i.e. mechanistic, analytical, rate constants...) in the role of heterogenous chemistry in isoprene aerosol formation and presently outside of the scope of this work. We emphasize that isoprene SOA yield (ratio of aerosol mass formed to the isoprene reacted), is a "bulk" property, measured and reports in the literature account for many processes involved in the chemistry leading to the aerosol formation including heterogenous chemistry. Therefore, the role of one compound or other (i.e. IEPOX) tends to be immaterial to the aerosol bulk property (i.e. yield).

Comment #4. "Page 2, Line 11: change "products include" to "products, including...." **Response.** This was updated as suggested by the reviewer.

Comment #5. Page 2, Line 11: change "reported including" to "previously reported include" **Response.** This was updated as suggested by the reviewer.

Comment #6. "Page 2, Lines 14-15: Previous analytical work suggests as you heat isoprene SOA you see the off gassing of 2-MTs and C5-alkene triols, especially in thermodunders and FIGAERO-CIMS (Lopez-Hilfiker et al., 2016, ES&T). As shown in the FIGAERO-CIMS, the 2-methyltetrols and C5-alkene triol peaks didn't make sense due to their location in the low-volatility section of the thermograms. Thus, as this study showed, 2-methyltetrols and C5-alkene triols were likely thermal degradation products of lower volatility compounds in isoprene SOA. Importantly, the Cui et al. (2018, ESPI) from the Surratt Group recently demonstrated with authentic standrads that the 2methyletrol sulfates (2MT-OS) and 3-MT-OS degrade in GC/MS with prior derivatization into C5alkene triols and 2-methyltetrols! This is a huge deal, as it appears that most of the isorpene SOA is in the organosulfate forms of IEPOX (including sulfated oligomers). This has important consequences for the results presented here. Previous statements about artifacts from GC/MS can NO LONGER be neglected and these authors must recognize this now in their analyses." **Response.** Here the reviewer is interpreting the Lopez-Hilfiker et al. (2016) data and trying to apply it to our data having different conditions and analysis method. The relationship of the FIGAERO CIMS instrument and our method is at best tenuous. The FIGAERO inlet is specifically designed to heat a laboratory or ambient sample collected on a specialized filter (Lopez-Hilfiker et al, 2014). The active heating program volatilizes the components of the collected aerosol to produce gas-phase constituents which are then measured by chemical ionization mass spectrometry. The method has been tested against laboratory sample and ambient field samples. The approach has been described in detail by Lopez-Hilfiker et al. (2014).

The purported relationship of the real-time FIGAERO CIMS approach for studying ambient aerosol and off-line approach for studying laboratory aerosol is unclear to us. First, our collection process is conducted entirely at ambient temperature unlike the FIGAERO CIMS, which uses an active temperature ramp designed to decompose the constituents volatilized from the aerosol sample. As remarked by Lopez-Hilfiger et al. (2014) regarding the instrument operation, "lower volatility components are likely larger molecular weight dimer, trimers, or other oligomeric or extremely low volatility compounds which thermally decompose during desorption." As best we can tell from the figure of Lopez-Hilfiker et al. (2016), the decomposition temperature for the isoprene-derived organic sulfates in an ambient sample is in the range 100-150 C. The suggestion that there is a temperature decomposition in our collection is unfounded given the collection is conducted at ambient temperature. The derivatization reaction, which occurs in a condensed phase, is extremely rapidly in forming the TMS derivatives leaving little, if any time, for decomposition to occur with the modest heating employed to ensure quantitative conversion. The same derivative conversions have been found when the BSTFA reaction takes place at room temperature over a more extended period (e.g., overnight). As noted by Lopez-Hilfiker et al., (2014), the FIGAERO system is "designed" to enhance decomposition of the analytes. By contrast, our method is designed to retain the analytes in their original (undecomposed) form. Thus, we feel that the reviewer's argument is

unsupported. Again, this is a single paper from which the reviewer wishes to make overly broad statements applied to our paper.

The reviewer's comment that methylketols are degradation products of isoprene organosulfates is not consistent with our data. First, we detect methyltetrols in systems that do not have organosulfates and therefore it is unreasonable to think they are degradation products of organosulfates. Second, we responded to the same reviewer (first revision) that when isoprene SOA was silylated, both methyltetrols and dimers were detected as the silylated derivatives, therefore thermal degradation is unlikely to be occurring.

Comment # 7. "Page 3, Lines 31-33: The authors should note that "Subsquent studies..." is not correct for the fact they cite Zhang et al. 2011 (ACP). Zhang et al. (2011, ACP) was published before Nguyen et al. (2011), right? They were published very close together though." **Response.** To reflect the reviewer concern, "Subsequent" was replaced by "other"

Comment #8. "Page 5, Lines 28-30: What was the average RH? Especially during the day ?" **Response.** We added the RH as suggested by the reviewer.

Comment #9. "Page 5, Line 32: As shown by the many previous studies (e.g., Gaston et al., 2014, ES&T; Riedel et al., 2015, ES&TL; etc.) sulfate aerosol is the most important field parameter to report over SO2 concentrations. Its the sulfate particles that provide the surface for the multiphase chemical reactions to occur on."

Response. Only SO2 were measured in this study.

Chemical composition of isoprene SOA under acidic and nonacidic conditions: Effect of relative humidity

Klara Nestorowicz¹, Mohammed Jaoui², Krzysztof Jan Rudzinski¹, Michael Lewandowski², Tadeusz E. Kleindienst², Grzegorz Spólnik³, Witold Danikiewicz³ and Rafal Szmigielski¹

 ¹Environmental Chemistry Group, Institute of Physical Chemistry Polish Academy of Sciences, 01-224 Warsaw, Poland
 ²US Environmental Protection Agency, 109 T.W. Alexander Drive, RTP NC, USA, 27711.

³Mass Spectrometry Group, Institute of Organic Chemistry, Polish Academy of Science, 01-224 Warsaw, Poland

Correspondence to: Rafal Szmigielski (<u>ralf@ichf.edu.pl</u>); Mohammed Jaoui (<u>jaoui.mohammed@epa.gov</u>)

- 10 Abstract. The effect of acidity and relative humidity on bulk isoprene aerosol parameters has been investigated in several studies, however few measurements have been conducted on individual aerosol compounds. The focus of this study has been the examination of the effect of acidity and relative humidity on secondary organic aerosol (SOA) chemical composition from isoprene photooxidation in the presence of nitrogen oxide (NOx). A detailed characterization of SOA at the molecular level was
- 15 also investigated, Experiments were conducted in a 14.5 m³ smog chamber operated in flow mode. Based on a detailed analysis of mass spectra obtained from gas chromatography-mass spectrometry of silylated derivatives in electron impact and chemical ionization modes, and ultra-high performance liquid chromatography/electrospray ionization/time-of-flight high resolution mass spectrometry, and collision-induced dissociation in the negative ionization modes, we characterized not only typical
- 20 isoprene products, but also new oxygenated compounds. A series of nitroxy-organosulfates (OS) were tentatively identified on the basis of high resolution mass spectra. Under acidic conditions, the major identified compounds include 2-methyltetrols (2MT), 2-methylglyceric acid (2MGA) and 2MT-OS. Other products identified include epoxydiols, mono- and dicarboxylic acids, other organic sulfates, and nitroxy- and nitrosxy-OS. The contribution of SOA products from isoprene oxidation to PM_{2.5} was
- 25 investigated by analysing ambient aerosol collected at rural sites in Poland. Methyltetrols, 2MGA and several organosulfates and nitroxy-OS were detected in both the field and laboratory samples. The influence of relative humidity on SOA formation was modest in non-acidic seed experiments, and <u>stronger under acidic seed aerosol. Total secondary organic carbon decreased with increasing relative</u> humidity under both acidic and non-acidic conditions. While the yields of some of the specific organic
- 30 compounds decreased with increasing relative humidity others varied in an indeterminate manner from changes in the relative humidity.

Keywords: Isoprene, relative humidity, acidity, SOA, organosulfates

-	{	Deleted: While t
	{	Deleted: , a
	{	Deleted: have been also conducted
;		
		Deleted: c
l		
l		

Deleted: robust

1 Introduction

Secondary organic aerosol (SOA) is formed through complex physico-chemical reactions of volatile organic compounds which are emitted into the atmosphere from biogenic and anthropogenic sources and can constitute a substantial portion of the continental aerosol mass (Goldstein and Galbally, 2007; Hallquist et al.

- 5 2009). Of the volatile organic compounds, isoprene is the most abundant non-methane hydrocarbon emitted to the atmosphere (Guenther et al., 1995, 2006). Although the SOA yield of isoprene tends to be low, its sizable emissions can contribute to a high organic aerosol loading making it one of the most studied compounds for aerosol formation (Guenther et al., 1995; Henze and Seinfeld, 2006; Fu et al., 2008; Carlton et al., 2009; Hallquist et al., 2009). The primary removal mechanism for isoprene is by gas-phase reactions with hydroxyl radicals (OH),
- 15 evaporation processes (Issacman-VanWertz et al. 2016), and for 2-methylglyceric acid, as these compounds have been linked to gas phase reaction products from the oxidation of isoprene (Kleindienst et al., 2009) and in ambient PM_{2.5} (Xie at al., 2014). Moreover, these compounds were identified in ambient PM_{2.5} in several places around the world, and SOA from isoprene often accounts for 20–50% of the overall SOA budget (Claeys et al., 2004a; Wang et al., 2005; Henze and Seinfeld, 2006; Kroll et al., 2006; Surratt et al., 2006; Hoyle et al., 2007).
- 20 An enhancement of isoprene (ISO)-SOA yields is controlled by various factors including NO_X concentration (Kroll et al., 2006; Chan et al., 2010; Surratt et al., 2006, 2010) and the acidity of preexisting aerosol (Jang et al., 2002; Czoschke et al., 2003; Edney et al., 2005; Kleindienst et al., 2006; Surratt et al., 2007a, 2010; Jaoui et al., 2010; Szmigielski et al., 2010). The strength of the acidity depends on the aerosol liquid water content and the relative humidity (Nguyen et al., 2011; Zhang et al., 2011; Lewandowski et al., 2015; Wong et al., 2015)
- 25 which are coupled. Smog chamber experiments have revealed that the yield of isoprene SOA increases under acidic conditions through an enhanced formation of isoprene-derived oxygenates by acid-catalyzed reactions (Surratt et al., 2007b, 2008, 2010; Gomez-Gonzalez et al., 2008; Offenberg et al., 2009). By one mechanism, isoprene reactions with OH under low- or high-NO_x conditions can form epoxydiols (IEPOX) in high yields followed by their uptake by SOA and subsequent acid-catalyzed particle reactions (Paulot et al., 2009; Surratt et al.,
- 30 al., 2010; Lin et al., 2013; Budisulistiorini et al., 2015; Rattanavaraha et al., 2016; Gaston et al., 2014a,b; Riedel et al., 2015; Zhang et al., 2018). However, this type of multiphase chemistry following the uptake of IEPOX can be highly dependent on the aerosol phase state and the presence of aerosol coatings from viscous SOA constituents (Zhang et al., 2018). Such coatings can cause a substantial diffusion barrier to the availability to an acidic core.

Atmospheric organosulfates are another class of organic compounds formed from atmospheric

35 reactions of various precursors, including isoprene, and have been identified as components of ambient PM

Deleted: e Deleted: ing Deleted: (OSs

(Surratt et al., 2008; Froyd et al. 2010; Stone et al., 2012; Tolocka and Turpin, 2012). The most common isoprene organosulfates have been identified both in smog chamber experiments and in field studies (Surratt et al., 2007a; 2008, 2010; Gomez-Gonzalez et al., 2008; Shalamzari et al., 2013; Tao et al., 2014; Hettiyadura et al., 2015; Szmigielski, 2016; Spolnik et al., 2018). For many of these polar oxygenated compounds, chemical

- 5 structures, MS fragmentation patterns and formation mechanisms have been tentatively proposed (Surratt et al., 2007a,b; 2008, 2010; Gomez-Gonzalez et al., 2008; Zhang et al., 2011; Shalamzari et al., 2013; Schindelka et al., 2013; Nguyen et al., 2014; Tao et al., 2014; Hettiyadura et al., 2015; Riva et al., 2016; Spolnik et al., 2018). The commonly detected components of isoprene SOA attributed to processing of isoprene oxidation products (e.g., IEPOX, methacrolein and methyl vinyl ketone) have the reported molecular weights of 154, 156, 184, 198,
- 10 200, 212, 214, 216, 260, and 334 (Surratt et al., 2007b, 2008, 2010; Gomez-Gonzalez et al., 2008; Kristensen et al., 2011; Zhang et al., 2011; Shalamzari et al., 2013; Schindelka et al., 2013; Nguyen et al., 2014; Hettiyadura et al., 2015; Riva et al., 2016). The mechanisms of OS formation were proposed for the conditions of either acidified or non-acidified sulfate aerosol seeds (e.g. 2-methyltetrol organosulfates proposed by Surratt et al. (2007a) and Riva et al. (2016)). Whereas Kleindienst et al. (2006) reported the formation of highly oxygenated
- 15 products through OH radical oxidation, Riva et al. (2016) proposed an alternative route through acid-catalyzed oxidation by organic peroxides. Isoprene organosulfates were also reported to occur in the aqueous-phase through the photooxidation or dark reactions of isoprene in aqueous solutions containing sulfate and sulfite moieties (Rudzinski et al., 2004, 2009; Noziere et al., 2010). A detailed mechanism of this transformation has been tentatively proposed based on chain reactions propagated by sulfate and sulfite radical anions (Rudzinski et al., 2004).
- al., 2009) and confirmed by mass spectrometric studies (Szmigielski, 2016). The acid-catalyzed formation of 2methyltetrols has also been suggested in aqueous phase oxidation of isoprene with H₂O₂ (Claeys et al., 2004b). To date, few smog-chamber studies have examined the effect of relative humidity on ISO-SOA formation (Dommen et al., 2006; Nguyen et al., 2011; Zhang et al., 2011; Lewandowski et al., 2015; Wong et al., 2015; Riva
- et al., 2016). However, the impact of relative humidity may be an important parameter, in that, it may influence the mechanism of SOA formation and hence the chemical composition, physical properties and yield of isoprene SOA (de P. Vasconcelos et al., 1994; Poulain et al., 2010; Guo et al., 2014). The chamber studies conducted by Dommen et al. (2006) and Nguyen et al. (2011) showed a negligible effect of relative humidity on the SOA yield, from the photooxidation of isoprene in the absence of sulfate aerosol. <u>Other studies suggested that ISO-SOA</u> formation yields under high-NO_x conditions with acidified and non-acidified sulfate aerosol decreased with an
- 30 increase in relative humidity while simultaneously the yield of organosulfates was enhanced (Zhang et al., 2011; Lewandowski et al., 2015). The latter observation can be explained by transformation of isoprene propagated by sulfate/sulfite radical-anions in the aqueous particle phase or on the aqueous surface of aerosol particles (Zhang et al., 2011; Rudzinski et al., 2016; Szmigielski, 2016). The results obtained from the chamber experiments have been in agreement with recent model approaches, when reactive uptake to aqueous aerosol is used rather than a

35 reversible partitioning approach (Pye et al., 2013; Marais et al., 2016). A recent study conducted in our laboratory

Deleted: formation
Deleted: Subsequent

focused on the effects of relative humidity on secondary organic carbon (SOC) formation from isoprene photooxidation in the presence of NO_x (Lewandowski et al., 2015). The study indicated that relative humidity can have a profound effect on the acid-derived enhancement of isoprene SOC, while an increasing content of aerosol liquid water suppressed the level of enhancement.

5

The focus of the present study is to investigate at a molecular level the role of relative humidity on the chemical composition of isoprene SOA obtained under acidic and non-acidic conditions. Organosulfate compounds were analysed using LC/MS measurements (Szmigielski, 2016; Rudzinski et al., 2009; Darer et al., 2011; Surratt et al., 2007a), while non-sulfate oxygenated compounds were examined using derivatization followed by GC-MS analysis (Jaoui et al., 2004). Here we explored the RH effect of a wide range on isoprene

10 polar oxygenated products, including, 2-methyltetrols, 2-methylglyceric acid, IEPOX, organosulfates, <u>nitroxy-</u>, organosulfates (NOS) and other selected oxygenates in the presence of acidified and non-acidified sulfate aerosol. In addition, a chemical analysis of PM_{2.5} field samples has been conducted to assess the possible relationship between the laboratory findings and their role in ambient SOA formation.

15 2 Experimental Methods

2.1 Smog chamber experiments

Chamber experiments were conducted in a stainless-steel, 14.5 m³ fixed volume chamber with interior walls fused with a 40-µm PTFE Teflon coating. Details of chamber operation, sample collection, derivatization procedure, and gas chromatography–mass spectrometry (GC-MS) analysis method are described in more detail in
Lewandowski et al. (2015), and Jaoui et al. (2004). A combination of UV-fluorescent bulbs was used in the chamber as source of radiation from the 300-400 nm with a distribution photolytically comparable to that of solar radiation (Black et al., 1998). The reaction chamber was operated as a flow reactor with a residence time of 4 h, to produce a steady-state, constant aerosol distribution which could be repeatedly sampled at different seed aerosol acidities.

- 25
 - Isoprene and nitric oxide (NO) were taken from high-pressure cylinders each diluted with N₂. Isoprene was obtained from <u>Sigma-</u>Aldrich Chemical Co. (Milwaukee, WI, USA) at the highest purity available and used without further purification. Isoprene and NO were added to the chamber through flow controllers. The temperature in all experiments was ~ 27 °C (Table 1). Dilute aqueous solutions of ammonium sulfate and sulfuric acid as inorganic seed aerosol were nebulized to the chamber with total sulfate concentration of the combined
- 30 solution held constant to maintain stable inorganic concentrations in the chamber (Lewandowski et al., 2015). NO and total oxides of nitrogen (NO_X) were measured with a ThermoElectron NO_X analyzer (Model 8840, Thermo Environmental, Inc., Franklin, MA). Ozone formed during the irradiation was measured with a Bendix ozone monitor (Model 8002, Lewisburg, WV). Temperature and relative humidity were measured with an Omega Digital Thermo-Hydrometer (Model RH411, Omega Engineering, Inc., Stamford, CT). Isoprene concentrations were

- - Deleted: z

Deleted: (OS

measured by gas chromatography with flame ionization detection (Hewlett-Packard, Model 5890 GC). Chamber filter samples were collected for 24 h at 16.7 L min⁻¹ using 47-mm glass fiber filters (Pall Gelman Laboratory, Ann Arbor, MI, USA).

Two sets of experiments were conducted (Table 1) to explore the effect of humidity and acidity on 5 isoprene SOA products. The non-acidic experiment (ER667) was conducted at four different humidity levels in the presence of isoprene, NO_x and ammonium sulfate as seed aerosol (1 µg m⁻³). It <u>served as a base case for</u>, exploring the changes and nature of SOA products in the absence of significant aerosol acidity. The second experiment ER662 (acidic) was similar but run in the presence of acidic seed aerosol at constant concentration. It, included 5 and 4 stages differing in humidity levels for ER667 (9%; 19%; 30%; 39%; and 49%) and ER662 (8%;

10 18%; 28%; and 44%) respectively. Aerosol concentrations are those from Lewandowski et al. (2015).

2.2 Ambient aerosol samples.

Twenty ambient PM_{2.5} samples were collected, onto pre-baked quartz filters using a high-volume aerosol sampler (DH-80, Digitel), from two sites (ten samples each) having strong isoprene emissions: (1) a regional background monitoring station in Zielonka, in the Kuyavian-Pomeranian Province in the northern Poland (PL; 53°39' N, 17°55' E) during summer 2016 campaign, and (2) a regional background monitoring station in Godow, PL located in the Silesian Province (49°55' N, 18°28' E) in summer 2014 campaign. Sampling times were 12 and 24 hours, respectively. Major tree species at both sites are European oak (*Quercus robur*, L.); European hornbeam (*Carpinus betulus*, L.); Tilia cordata (*Tilia cordata*, Mill); European white birch (*Betula pubescens*, Ehrh); and

20 European alder (*Alnus glutinosa*, Gaertn). The Zielonka station is in a forested area while the Godow station is located near a coal-fired power station in Detmarovice (Czech Republic). Godow is also close to the major industrial cities of the Silesian region in Poland, and thus aerosol samples collected in Godow were influenced by anthropogenic sources.

Several chemical and physical parameters were measured at the two sites. The temperature during sampling at both sites ranged from 25-28 °C. The relative humidity during sampling was up to 86% in Zielonka and 94% at Godow. Both locations were influenced by NO_x concentration, modestly in Zielonka at 1.3 µg m⁻³ and at a level of 30 µg m⁻³ in Godow, represented by the nearest monitoring station at Zywiec, PL. The SO₂ levels at Zielonka were approximately 0.6 µg m⁻³ and 3.0 µg m⁻³ at Godow. At each site, OC/EC values was determined for each filter using a thermo-optical method (Birch and Cary, 1996). The organic carbon value at Zielonka was approximately 1.7 µg m⁻³ and 5.4 µg m⁻³ at Godow, although aerosol masses were not determined.

2.3 Instrumentation and analysis methods.

Chemicals for extraction and derivatization were obtained from Sigma-Aldrich Chemical Company. N,O-bis(trimethylsilyl)-trifluoroacetamide (BSTFA) used as the derivatizing agent included 1% trimethylchlorosilane as a catalyst. For the GC-MS analysis, filters were sonicated for one hour with methanol.

- Deleted: provided

Deleted: They

Deleted: range

Prior to extraction, 20 μ g each of *cis*-ketopinic acid and d₅₀-tetracosane were added as internal standards. Following sonication, the methanol extracts were dried and then derivatized with 200 μ L BSTFA and 100 μ L pyridine. Samples were then heated at 70 °C to complete the reaction (Jaoui et al., 2004). The derivatized extracts were analyzed using a ThermoQuest (Austin, TX, USA) GC coupled to an ion trap mass spectrometer (ITMS).

- 5 The injector, heated to 270 °C, was operated in splitless mode. Compounds were separated on a 60-m-long, 0.25-mm-i.d. RTx-5MS column (Restek, Inc., Bellefonte, PA, USA) with a 0.25-μm film thickness. The GC oven temperature program for the analysis started isothermally at 84 °C for 1 min, followed by a temperature ramp of 8 °C min⁻¹ to 200 °C, followed by a 2-min hold, then ramped at 10 °C min⁻¹ to 300 °C. The ion source, ion trap, and interface temperatures were 200, 200, and 300 °C, respectively. Mass spectra were collected in both the
- 10 chemical ionization (CI) and electron ionization (EI) modes (Jaoui et al., 2004). A semi-continuous organic carbon/elemental carbon (OC/EC) analyzer (Sunset Laboratories, Tigard, OR) measured total organic carbon of the aerosol given the absence of elemental carbon in the reaction system. Immediately upstream of the analyzer, a carbon-strip denuder was placed in line to remove gas-phase organic components which could bias the measurements. The analyses for total OC were made on a 15-min duty cycle. Silvlations of polar compounds.
- 15 result in reduced polarity, enhanced volatility and increased thermal stability, and enables the GC-MS analysis of many compounds otherwise involatile or too unstable for these techniques. Therefore, appropriate caution should be taken, for example, with desulfation reactions associated with primary organosulfates (Takano et al., 1992; Kolender et al., 2004; Bedini et al., 2006; Bedini et al., 2017; Cui et al., 2018), and corrections might be warranted when analyzing methyltetrols.
- 20 For the LC/MS analysis, from each filter, two 1 cm² punches were taken and twice extracted for 30 min with 15 mL aliquots of methanol using a Multi-Orbital Shaker (PSU-20i, BioSan). High purity methanol (LC-MS ChromaSolv-Grade; Sigma-Aldrich, PL) was used for the extraction of SOA filters, reconstitution of aerosol extracts, and preparation of the LC mobile phase. The two extracts were combined and concentrated to 1 mL using a rotary evaporator operated at 28 °C and 150 mbar (Rotavapor® R215, Buchi). They were then filtered with 0.2
- 25 μm PTFE syringe and taken to dryness under a gentle stream of nitrogen. High-purity water (resistivity 18.2 MΩ·cm⁻¹) from a Milli-Q Advantage water purification system (Merck, Poland) was used for the reconstitution of aerosol extracts and preparation of the LC mobile phase. The residues were reconstituted with 180 µL of 1:1 high purity methanol/water mixture (v / v), then agitated for 1 min. Recoveries were not taken for compounds analysed in this study, due to lack of authentic standards, however recovery of 94 -101% were measured for 30 appropriate surrogate compounds.

Extracts were analyzed by ultra-high performance liquid chromatography/electrospray ionization/timeof-flight high resolution mass spectrometry (UHPLC / ESI (-) QTOF) HRMS equipment consisting of a Waters Acquity UPLC I-Class chromatograph coupled to a Waters Synapt G2-S high resolution mass spectrometer. The chromatographic separations were performed using an Acquity HSS T3 column (2.1×100 mm, 1.8 µm particle

35 size) at room temperature. The mobile phases consisted of 10 mM ammonium acetate (eluent A) and methanol

Deleted: i

(eluent B). To obtain appropriate chromatographic separations and responses, a gradient elution program 13 min in length was used. The chromatographic run commenced with 100% eluent A over the first 3 min. Eluent B increased from 0-100% from 3 to 8 min, held constant at 100 % from 8 to 10 min, and then decreased back from 100-0% from 10 to 13 min. The initial and final flow was 0.35 mL min⁻¹ while the flow from 3 to 10 min was

5 0.25 mL min⁻¹. An injection volume of 0.5 µL was used. The Synapt G2-S spectrometer equipped with an ESI source was operated in the negative ion mode. Optimal ESI source conditions were 3 kV capillary voltage, 20 V sampling cone at a FWHM mass resolving power of 20,000. High resolution mass spectra were recorded from *m*/z 50-600 in the MS or MS/MS modes. All data were recorded and analyzed with the Waters MassLynx V4.1 software package. During the analyses, the mass spectrometer was continuously calibrated by injecting the 10 reference compound, leucine enkephalin, directly into the ESI source.

3 Results and discussion

3.1 Chemical characterization

- Table 1 shows the input and steady state conditions for all stages of the chamber experiments, including the values determined for carbon yield, secondary organic carbon, and organic mass to carbon mass ratio (OM/OC). The data indicate that with increasing RH, the formation of SOC and carbon yield is reduced, both under acidic and non-acidic conditions. The results obtained are consistent with those of Zhang et al. (2011). Secondary organic aerosol formed under non-acidic conditions was additionally analyzed for OM/OC and SOA yield. The average OM/OC ratio was 1.92 ± 0.13, and the average laboratory SOA yield measured in this experiment was 0.0032 ± 0.0004. For the non-acidic experiment, the carbon yield values range from a low 0.001 (stage 5, Table 1) at the highest relative humidity to a high of 0.004 at the lowest relative humidity (stage 1, Table 1). For the acidified experiment, carbon yield declined from above 0.011 at the lowest relative humidity (8%) to 0.001<u>3</u> at the highest relative humidity (44%). Although the relative humidity considered for both acidic and non-
- 25 approximately the same relative humidity. The values of SOA yields agree with previous chamber studies reported in the literature under the same nominal conditions in the presence of NOx (Edney et al., 2005; Dommen et al., 2006; Surratt et al., 2007; Zhang et al., 2011).

acidic experiments do not correspond precisely, an increase of SOC was observed under acidic conditions at

Table 1. Initial and steady state conditions, yields and OM/OC data for chamber experiments on isoprene photooxidation in the presence of acidic and non-acidic seed aerosol. The initial NOx was entirely nitric oxide. The non-acidic experiment was conducted at a low-concentration ammonium sulfate seed (\sim 1 µg m⁻³). The acidic experiment was conducted with a higher concentration of inorganic seed (\sim 30 µg m⁻³) generated from a nebulized solution for which half the sulfate mass was derived from sulfuric acid and the other half from ammonium sulfate

5

(Lewandowski et al., 2015).

Experiment ER662: Acidic seed aerosol (1/2 ammonium sulfate, 1/2 sulfuric acid by sulfate mass in precursor
solution)

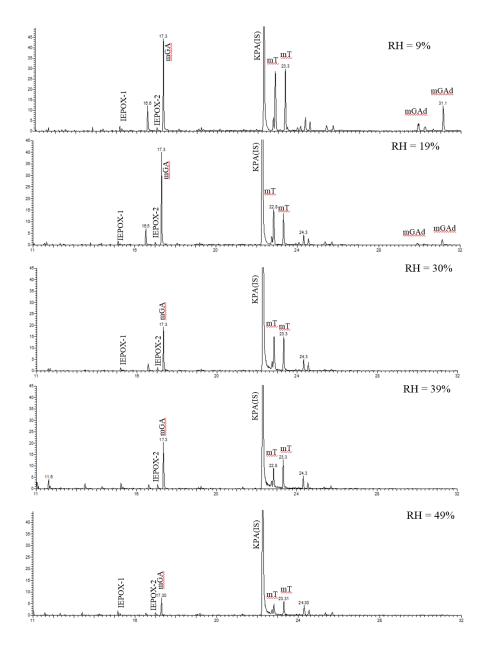
solution)					
	Stage 1	Stage 2	Stage 3	Stage 4	
RH (%)	8	28	44	18	
Temperature (C)	27.0	27.3	26.9	27.5	
Initial Isoprene (ppmC)	6.82	6.92	7.01	7.03	
Initial NO (ppm)	0.296	0.296	0.296	0.296	
	Steady stat	e conditions	1	l	
O ₃ (ppm)	0.303	0.292	0.245	0.339	
NO _x (ppm)	0.220	0.213	0.205	0.234	
ΔHC (µg m ⁻³)	3266	3318	3357	3472	
Carbon Yield	0.011 <u>2</u>	0.00 <u>27</u>	0.001 <u>3</u>	0.005 <u>1</u>	
SOC (µgC m ⁻³)	32.3	7.9	3.8	15.7	
Experin	ent ER667: Non-acidic	seed aerosol (ammo	nium sulfate)		

	Stage 1	Stage 2	Stage 3	Stage 4	Stage 5
RH (%)	9	19	30	39	49
Temperature (C)	28.2	28.5	27.9	27.8	27.6
Initial Isoprene (ppmC)	8.11	8.29	8.25	8.25	8.19
Initial NO (ppm)	0.347	0.347	0.347	0.347	0.347
	Steady s	tate conditions	1		1
O ₃ (ppm)	0.331	0.305	0.329	0.393	0.281
NO _x (ppm)	0.260	0.247	0.241	0.229	0.226
ΔHC (µg m ⁻³)	3518	3556	3558	3515	3484
SOA yield	0.007	0.004	0.002	0.002	0.001
Carbon Yield	0.00 <u>38</u>	0.002 <u>2</u>	0.001 <u>3</u>	0.00 <u>09</u>	0.001 <u>0</u>
SOC (µgC m ⁻³)	13.3	7.7	4.6	3.2	3.5
OM/OC	1.96	2.00	2.02	2.03	1.59

The analysis of isoprene SOA from chamber experiments and field samples is based on the interpretation of mass spectra of the derivatized and underivatized isoprene SOA products by GC-MS (in EI and CI) and by LC-MS (negative ion mode with electrospray ionization), respectively. The characteristic ions for all BSTFA derivatives are m/z 73, 75, 147, and 149. In CI mode, adduct ions from the derivatives included m/z: M^{++} + 73, M^{++} + 41, M^{++} + 29, and M^{++} + 1 while fragment ions included m/z: M^{++} - 15, M^{++} - 73, M^{++} - 89, M^{++} - 117, M^{++} - 105, M^{++} - 133, or M^{++} - 207 (Jaoui et al., 2004). The LC-MS analysis, used to identify organosulfates, nitroxyand nitrosoxy-organosulfates, are based on the deprotonated ions $[M - H]^{-}$ and the corresponding fragmentation

- 5 pathways. Organosulfates were recognized by the loss of characteristic ions of *m/z*: 80 (SO₃⁻), 96 (SO₄⁻) and 97 (HSO₄⁻); (Darer et al., 2011; Szmigielski 2016). The nitroxy-organosulfates and nitrosoxy-organosulfates were identified from additional neutral losses of *m/z* 63 (HNO₃) and *m/z* 47 (HNO₂), respectively. Table 2 presents the list of compounds tentatively identified in the present study along with proposed structures, molecular weights (MWs) and main fragmentation ions (*m/z*). Additional organic acids were tentatively identified in this study and
- 10 further work is being conducted to understand their role in isoprene SOA. At the present time, the organosulfate (MW 230), 2-methyltartaric acid organosulfate (MW 244), and 2-methyltartaric acid nitroxy-organosulfate (MW 275) appear not to have been reported before. An organosulfate with MW 230, but with a distinct structure, was recently reported in the literature from the photooxidation of 2-E-pentanal (Shalamzari et al., 2016).

Chemical Formula	<i>m/z</i> BSTFA Derivative (methane-CI)	MW MW _{BSTFA} (g mol ⁻¹)	Tentative Structure* and Chemical Name	References	
C ₅ H ₁₀ O ₂	247, 231, 157, 147, 73	102 246	HO OH 3-methyl-3-butene-1,2-diol (Cs-diol-1)	Wang et al. 2005 Surratt et al., 2006	
C5H10O3	263, 247, 173, 83, 73,	118 262	HO OH 2-methyl-2,3-epoxy-but-1,4- diol (IEPOX-1)	Paulot et al., 2009 Surratt et al., 2010 Zhang et al., 2012	
C5H1803_	263, 247, 173, 83, 73 _	118 	HO HO 2-methyl-3,4-epoxy-but-1,2- diol (IEPOX-2)		De


15 Table 2. Products detected in SOA samples from chamber experiments using GC-MS and LC-MS.

C4H8O4	337, 321, 293, 219, 203	120 336	HO OH 2-methylglyceric acid (2-MG)	Claeys et al., 2004a Surratt et al., 2006 Edney et al., 2005 Szmigielski et al. 2007
C5H12O4 C5H12O4	409, 319, 293, 219, 203 409, 319, 293, 219, 203	136 424 136 424	HO OH 2-methylthreitol (2-MT) HO OH	Claeys et al., 2004a Wang et al., 2004 Edney et al., 2005 Surratt et al., 2006 Nozière et al., 2011
	200	.2.	2-methylerythritol (2-MT)	
C8H14O7	495, 321, 219, 203, 73	222 510	HO O O O HO O HO O H O O H O O H O O H O O H O O H H O H O H O H O H H O H H O H H O H H O H H O H H O H H O H H O H H H O H	Surratt et al., 2006 Szmigielski et al. 2007

			C-M5	
Chemical Formula	m∕z Main Ions	MW (g mol ⁻¹)	Tentative Structure and Chemical Name*	References
C5H10O6S	197, 167, 97, 81	198	O OH OSO ₃ H IEPOX-derived organosulfate	Tao et al., 2014
C4H8O7S	199, 119, 97, 73	200	OH OSO ₃ H O 2-methylglyceric acid organosulfate (2-MG OS)	Surratt et al., 2007a Gomez-Gonzalez et al., 2008 Shalamzari et al., 2013 Riva et al., 2016
C ₅ H ₈ O ₇ S	211, 193, 113, 97	212	2(3 <i>H</i>)-furanone, dihydro-3,4- dihydroxy-3-methyl organosulfate	Surratt et al., 2008 Hettiyadura et al., 2015 Spolnik et al., 2018

	T			
C5H10O7S	213, 183, 153, 97	214	HOOSO ₃ H HOOSO ₃ H 2,3,4-furantriol, tetrahydro-3- methyl-organosulfate	Hettiyadura et al., 2015 Spolnik et al., 2018
C5H12O7S	215,97	216	OH OH OSO ₃ H 2-methyltetrol organosulfate (2- MT OS)	Surratt et al., 2007a Gomez-Gonzalez et al., 2008 Surratt et al., 2010
C5H10O8S	229, 149, 97, 75	230	HO ₃ SO OH 2-methylthreonic acid organosulfate	This study
C5H9O9S	243, 163, 145, 101	244	HO \rightarrow	This study
C5H11NO8S	244, 226, 197, 183, 153, 97	245	HO ₃ SO OH OH 2-methyltetrol nitrosoxy- organosulfate	This study
C5H11NO9S	260, 197, 183, 153, 97	261	OH OH OH OSO ₃ H 2-methyltetrol nitroxyorganosulfate	Surratt et al., 2007a Surratt et al., 2008
C3H9NO10S	274, 211, 193, 153, 97	275	HO OH O OSO ₃ H 2-methylthreonic acid nitroxy- organosulfate	This study

* For more stereo-chemically complex molecules a representative isomer is shown.

Figure 1. Extracted Ion Chromatograms (KPA: *m/z* 165; ketopinic acid (IS)); (IEPOX: *m/z* 173, 2 isomers), (mGA: 321; 2methylglyceric acid), (mT: *m/z* 409; 2-methyltetrols, 4 isomers), (mGAd: *m/z* 495; 2-methylglyceric acid dimer, 3 isomers) for non-acidic isoprene/NOx photooxidation experiments as a function of RH. Compounds detected as silylated derivatives. For clarity of the figure, not all isomers are shown.

5

10

20

Figure 1 presents GC-MS Extracted Ion Chromatograms (EIC) from the aerosol obtained during the nonacidic experiment (isoprene non-acidic seed irradiation) at a wide range of relative humidities. According to acquired chromatograms shown in Figure 1, several isomers associated with the compounds analyzed can be distinguished, i.e. IEPOX-1 and IEPOX-2, 4 isomers of 2-methyltetrols and their relative contributions to SOA masses at various relative humidity levels.

The formation of isoprene SOA products such as 2-methyltetrols (mT) and 2-methylglyceric acid is well documented in the literature. These compounds are isoprene SOA markers and have been reported in numerous field and chamber studies under low- and high-NO_x conditions (Claeys et al., 2004a; Edney et al., 2005; Kroll et al., 2006; Surratt et al., 2006, 2010). The formation mechanism under low-NO_x conditions has been explained by

15 the reactive uptake of isoprene epoxydiols (IEPOX) onto acidic aerosol seeds (Paulot et al., 2009; Surratt et al., 2010) and under high-NO_x conditions by the further oxidation of methacryloyl peroxynitrate (MPAN) (Chan et al., 2010; Surratt et al., 2010; Nguyen et al., 2015).

The LC-MS analyses focused mainly on the formation of the variety of organosulfates, nitroxy- and nitrosoxy-organosulfates. Mass spectra and proposed fragmentation pathways of newly identified components are presented in section 3.4.

3.2 Effect of relative humidity and acidity on products formation

3.2.1 Non-acidic aerosol

Table 3 and Figures 2 – 3 present the estimated amounts of polar oxygenated products detected with GC-25 MS and LC-MS techniques in samples from non-acidic photooxidation experiments with non-acidic aerosol seeds under various RH conditions. Six products were quantified (as sums of respective isomers) based on the response factor of ketopinic acid using GS-MS. Nine other compounds were detected qualitatively using LC-MS, with chromatographic responses representing the amounts of respective analytes. Therefore, the results should be understood as a tendency of product occurrence in the chamber experiments rather than the real amounts formed.

30 Table 3 does not contain data on 2-methyltartaric acid organosulfate (MW 244) because it occurred in the samples merely in trace amounts.

	RH 9 (%)	RH 19 (%)	RH 30 (%)	RH 39 (%)	RH 49 (%)			
GC-MS data *								
2-methylglyceric acid	379	255	155	171	70			
2-methyltetrols	811	384	371	257	157			
2-methylglyceric acid dimer	308	68	0	0	0			
IEPOX-1	5	3	2	0	3			
IEPOX-2	37	21	23	12	19			
C5-diol-1	9	6	3	0	0			
		LC-MS data **			1			
$m/z [M - H]^{-}$								
197	0.28	0.22	0.19	0.37	0.33			
199	3.22	2.46	3.60	4.66	4.01			
211	0.44	0.20	0.06	0.09	0			
213	2.21	1.87	1.52	1.48	0.83			
215	17.80	12.30	10.20	9.83	7.24			
229	0.70	0.78	1.11	1.29	0.83			
244	0.35	0.14	0	0	0.08			
260	0.49	0.35	0.32	0.28	0.18			
274	0.08	0.10	0.08	0.08	0.07			

Table 3. Estimated concentrations of reaction products (ng m $^{-3}$) from the non-acidic photooxidation experiments (neutral seed $[H^*] = 54$ nmol m $^{-3}$ air: Lewandowski et al., 2015).

* MW as BSTFA derivative

** chromatographic responses of organosulfates [104]

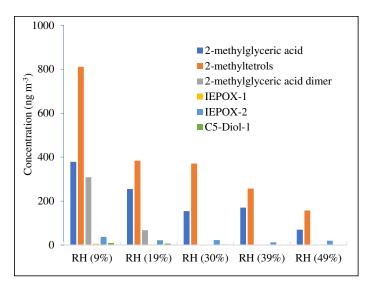
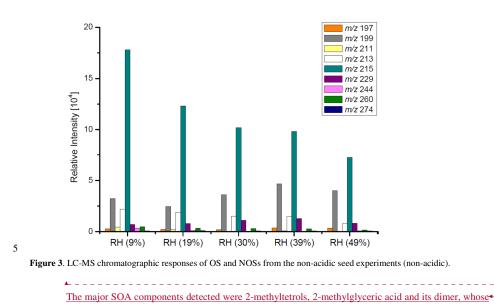



Figure 2. Concentrations of particle phase products from the non-acidic seed experiments (non-acidic) estimated with GC-MS.

Formatted: Font: Not Italic)
Formatted: Indent: First line: 0.5")
Formatted: Font: Not Italic)

maximal estimated concentrations exceeded 800, 350 and 300 ng m⁻³ respectively under low-humidity conditions

of RH 9% (Figure 2. At the two lowest humidities, aerosol liquid water is expected to be very low and the decrease in these compounds may not be controlled by aerosol liquid water but possibly by the SOC levels associated with the particles (Lewandowski et al., 2015), although chamber-related wall effects due to water vapor might also play some role. Among compounds detected with LC-MS (Figure 3) are organosulfates derived from acid-

- 5 catalysed multiphase chemistry of IEPOX (MW 216) and MAE/HMML (MW 200) (Surratt et al., 2010; Lin et al., 2012, 2013; Nguyen et al., 2015). Other components were significantly less abundant. In most cases, increasing the humidity resulted in decreased yields of the products detected, although some compounds were observed at higher concentrations at RH 49% compared to RH 9% (i.e. m/z 199: Figure 3). As found in Table 1, total SOC decreased with increased humidity. Generally, the influence of RH on the product yields was modest
- 10 consistent with Dommen et al. (2006) and Nguyen et al. (2011), who saw a negligible effect of relative humidity on SOA yield in photooxidation of isoprene in the absence of acidic seed aerosol. By contrast, here the 2methyltetrols, 2-methylglyceric acid, and 2-methylglyceric acid dimer were found in significantly larger quantities at RH 9% compared to RH 49%. Two recent studies (Lin et al., 2014; Riva et al., 2016) reported an increase in aerosol mass with increasing RH. Riva et al., (2016) also reported an increase in 2-methyltetrols concentrations
- 15 with increasing RH. However, the initial conditions for those two studies differed substantially from that in the present study. Here, isoprene is oxidized in the presence of NOx and seed aerosol (acidic and non-acidic) under a wide range of RH. In contrast, in Riva et al. and Lin et al. studies, the reactants were hydroxyhydroperoxide (ISOPOOH) and IEPOX oxidized under NOx-free conditions at two levels of RH. In addition, organosulfates, 2-methyltetrols and SOA yields derived from isoprene photooxidation typically have been enhanced under acidic
- 20 conditions (Surratt et al., 2007a,b, 2010; Gomez-Gonzalez et al., 2008; Jaoui et al., 2010; Zhang et al., 2011). Organosulfates were also formed in non-acidic experiments, probably through radical-initiated reactions in wet aerosol particles containing sulfate moieties (Noziere et al., 2010; Perri et al., 2010). The NOS and OS compounds detected here could have been formed via such a mechanism.

25 3.2.2 Acidic seed aerosol

30

Table 4 and Figures 4 - 5 present the estimated amounts of polar oxygenated products detected using GC-MS and LC-MS techniques in samples from the acidic photooxidation experiments with acidic aerosol seed under various RH conditions. We detected the same compounds as in the non-acidic seed experiments, with the same analytical limitations of the quantitation. The presence of 2-methyltetrols and 2-methylglyceric acid and their sulfated analogues in isoprene SOA at a wide range of RH conditions, suggests that SOA water content does not significantly affect their formation.

Table 4. Estimated concentrations of reaction products (ng m⁻³) from the acidic photooxidation experiments (acidic seed [H⁺]= 275 nmol m⁻³ air: Lewandowski et al., 2015).

RH 8 (%)	RH 18 (%)	RH 28 (%)	RH 44 (%)

Formatted: Font: Not Italic, Not Highlight

Formatted: Font: Not Italic

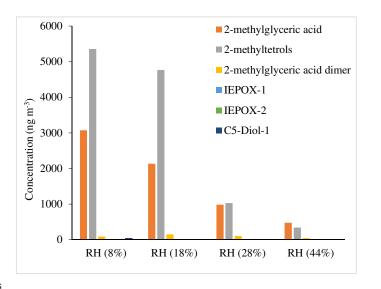
 De	leted	RH

Deleted: Total

Deleted: RH (Table 1).

Deleted: mild, with the exception of 2-methyltetrols, 2methylglyceric acid, and 2-methylglyceric acid dimer which were produced in significantly larger amounts at RH 9% compared to RH 49%. This is generally

Formatted: Font: Not Italic


Deleted: reported					
Formatted: Font: Not Italic Deleted: These					
Deleted: In our study					
Deleted: was					
Formatted: Font: Not Italic					
Deleted: humidity, however					
Formatted: Font: Not Italic					
Deleted:),					
Deleted: were used as reactant in Riva et al.,					
Deleted: and Lin et al. studies					
Deleted: two RH and					
Deleted: -NOx conditionsUsually					
Deleted: , 2-methyltetrols and SOA yield	1 were				
Formatted: Font: Not Italic					
Deleted: we					
Deleted: also occur					
Deleted: this					

Formatted: Font: Not Italic

GC-MS data *									
2-methylglyceric acid	3070	2136	982	473					
2-methyltetrols	5357	4767	1029	341					
2-methylglyceric acid dimer	90	90 144 1		43					
IEPOX-1	1	13	6	0					
IEPOX-2	10	3	0	0					
C5-diol-1	53	0	0	0					
LC-MS data **									
$m/z [M - H]^{-}$									
197	0.88	0.30	0.21	0.10 1.12 0.48 1.96 3.23					
199	3.44	1.49	2.62						
211	1.78	0.50	0.76						
213	5.41	1.94	3.40						
215	59.00	18.40	12.30						
229	0.41	0.31	0.39	0.27					
244	4.50	1.16	0.72	0.42					
260	0.92	0.88	0.45	0.29					
274	0.60	0.58	0.36	0.12					

* MW as BSTFA derivative

** chromatographic responses of selected main organosulfates [104]

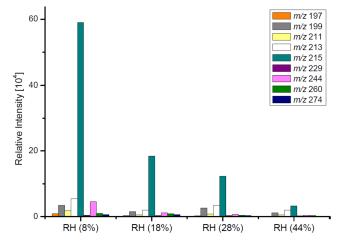


Figure 4. Concentrations of particle phase products from the acidic seed experiments estimated with GC-MS.

Figure 5. LC-MS chromatographic responses of OS and NOS products from the acidic seed experiments.

5

10

Early chamber studies on isoprene ozonolysis by Jang et al. (2002) and Czoschke et al. (2003) showed enhanced SOA yields in the presence of acidified aerosol seeds. Recent laboratory results showed that the acidity of aerosol seeds plays a major role in the reactive uptake of isoprene oxidation products by particle phases (Paulot et al., 2009; Surratt et al., 2010; Lin et al., 2012; Gaston et al., 2014a,b; Riedel et al., 2015). In our study, SOC produced in acidic-seed experiments was always higher than in non-acidic seed ones under the corresponding RH conditions, while the difference diminished with increasing RH to a negligible value of 0.3 μ g C m⁻³ at RH 44 – 49% (Table 1 and Figure S1, Supplementary Information; Surratt et al., 2007a). However, the formation of the individual organic compounds did not follow the same pattern. As an example, Figure 6 shows a comparison of the concentrations of 2-methylglyceric acid under acidic and non-acidic condition as a function of relative humidity. Acidic seed aerosol has a greater effect on 2-methylglyceric acid at lower relative humidity. Some of 15 the compounds produced in higher quantities in the acidic seed experiments included 2-methylglyceric acid, 2-

- methyltetrols, furanetriol-OS, 2-methyltetrol-NOS, 2-methylthreonic acid NOS, furanone-OS, while some other in the non-acidic seed experiments including IEPOX-2, 2-methylglyceric acid OS, 2-methylthreonic acid OS. Yields of the remaining compounds followed an inconclusive pattern (SI: Figures S1, S2, and S3; Table S1). Thus,
- this study shows the effect of relative humidity on the formation of a wide range of isoprene SOA products cannot 20 easily be predicted, although the majority increases with decreasing relative humidity both under acidic and nonacidic conditions.

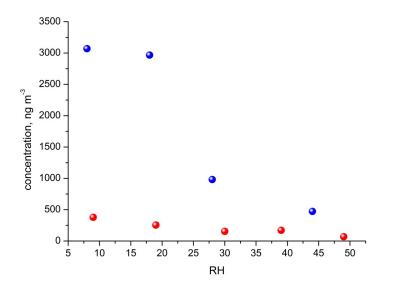
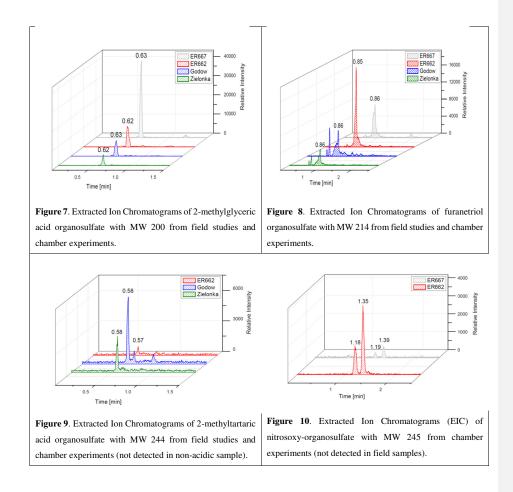


Figure 6. Influence of RH and seed acidity on the estimated concentration of 2-methylglyceric acid produced in chamber experiments with non-acidic seeds (red) and with acidic seeds (blue). See Figure S3 for additional compounds.

5

3.3 Chromatographic comparison of chamber experiments and field samples


these compounds. These findings will require further confirmation.

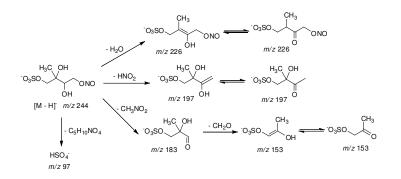
We compared the results of chamber experiments to samples of $PM_{2.5}$ collected at the two rural sites, Zielonka and Godow. To keep the experimental and ambient conditions as similar as possible, we selected the experiments carried under the highest relative humidities: ER662 at RH 44% (acidic seeds) and ER667 at RH 49% (non-acidic

- 10 seeds). Figures 7–10 show the extracted ion chromatograms of selected components detected in the respective filter extracts. Several compounds occurred both in the chamber SOA and in the ambient samples: 2-methylglyceric acid OS (MW 200), furanetriol OS (MW 214), 2-methyltetrol OS (MW 216), 2-methylthreonic acid OS (MW 230), 2-methylthreonic acid NOS (MW 275). The 2-methyltartaric acid OS (MW 244) was also found in ambient samples with only trace amounts in acidic seed aerosol (Figure 9). However, 2-methyltetrol
- 15 nitrosoxy-organosulfate (MW 245) was detected in the chamber SOA (Figure 10). The extracted ion chromatograms of 2-methyltetrol nitroxy-organosulfate (MW 261) were insufficient to provide reasonable fragmentation (Figure S4). The comparison shows that isoprene SOA in the presence of acidic seed aerosol and NO_x from the chamber studies provide a reasonable approximation to the ambient processes at both sites even though only Godow is strongly influenced by anthropogenic pollutants, mainly nitrogen oxides due to a nearby
- 20

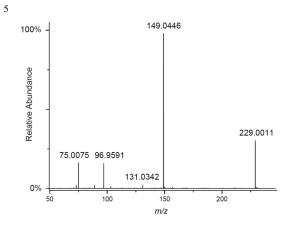
Deleted: is

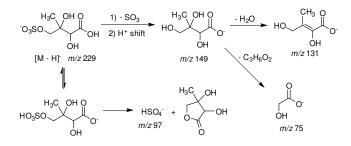
coal-fired power station. It appears that minor amounts of NO_X in the ambient atmosphere are sufficient to produce

5 3. 4 Mass spectra and proposed fragmentation pathways of newly identified organosulfates, nitroxy- and nitrosoxyorganosulfates


Based on the high-resolution mass data and fragmentation spectra recorded for HPLC-resolved peaks, it is difficult to distinguish between isomers of the same molecular structure. Moreover, some of the peaks for selected m/z values in the extracted ion chromatograms may correspond to more than one compound. Therefore, identifications for the structures

10 proposed are tentative. This ambiguity results in the fragmentation spectra having the fragment ions coming from different

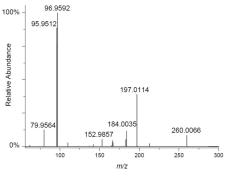

	precu	ırsc	or ions with the same m/z . Our proposed structures for the newly identified organosulfates, nitroxy- and nitrosoxy-	
	organ	los	sulfates are based on the accurate mass measurements and the following assumptions:	 Deleted: is
-				
	а	a)	all studied compounds have the same carbon backbone of 2-methylbutane;	
5	t	5)	the presence of the abundant $m/2$ 97 peak corresponding to the HSO ₄ ⁻ ion indicates that the hydrogen atom is present	
			at the carbon atom next to that bearing HO-SO2-O- moiety (Attygalle et al., 2001). There are, however, exceptions	
			seen in Figures 11 and 12;	
	c	2)	when the condition given in (b) is not fulfilled, elimination of sulfur trioxide molecule from the precursor ion can be	
			detected (Szmigielski, 2013);	
10	ć	d)	_elimination of the HONQ and HNO3 molecules from the precursor ion is a diagnostic for the presence of the nitrous	 Deleted: 2
I			(-ONO) and nitric (-ONO ₂) esters, respectively. Similar to assumption (a), a β-hydrogen must be present to enable	


ך 100% 244.0123 197.0118 Relative Abundance 226.0015 96.9591 152.9895 182.9958 0% 200 100 150 250 m/z

the β -elimination (Tovstiga et al., 2014).

Figure 11. (-)Electrospray product ion mass spectrum of 2-methyltetrol nitrosoxy-organosulfate (MW 245) of the RT = 1.35 min peak (Figure 10) acquired for the acidic seed aerosol along with the proposed fragmentation pathway.

Figure 12. (-)Electrospray product ion mass spectrum of 2-methylthreonic acid organosulfate (MW 230) at RT = 0.63 min. (Figure S4) acquired for Zielonka PM₂aerosol along with the proposed fragmentation pathway.


5

10

The 2-methyltetrol nitroxy-organosulfate detected at *m/z* 260 corresponds to the major early eluting compounds for the chamber and PM_{2.5} as seen in Figure S4. The minor shifts in retention times of eluting compounds are generally due to matrix effects (Spolnik et al., 2018). Two partially resolved peaks with identical MS profiles typically indicate diastereoisomeric forms. This finding is consistent with earlier studies (Gomez-Gonzalez et al., 2008; Surratt et al., 2007a). A detailed interpretation of negative ion electrospray mass spectra led to a proposed structure for 2-methyltetrol nitroxy-organosulfates bearing a nitroxy moiety at the primary hydroxyl group of 2-methyltetrol skeleton and sulfate group at the secondary hydroxyl

group seen in Figure 13. The main fragmentation pathways correspond to a neutral loss of 63 u. (HNO₃) resulting in *m/z* 197 as a base peak and to bisulfate ion at *m/z* 97. Another diagnostic ion at *m/z* 184 can be attributed to a combined loss of NO₂ and CH₂O, suggesting the presence of hydroxymethyl group in the molecule. The presence of *m/z* 213 and 183 ions supports
the interpretation given above due to a characteristic neutral loss of a CH₂O fragment. A revised structure for the MW 261

SOA component along with the proposed fragmentation scheme is given in Figure 13, where only the mass spectrum of one diastereoisomer is shown.

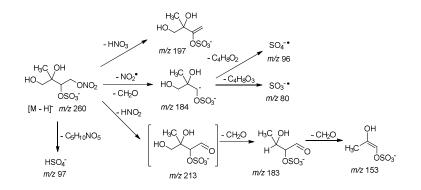
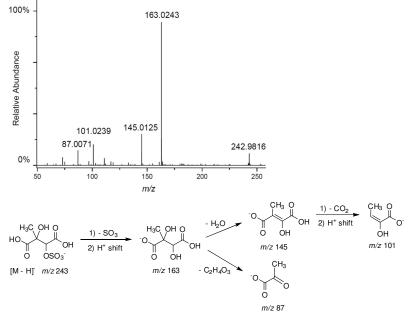


Figure 13. (-)Electrospray product ion mass spectrum of 2-methyltetrol nitroxy-organosulfate (MW 261) eluting at RT = 2.44 min. (Figure 5 S4) registered for the acidic seed aerosol along with proposed fragmentation pathway.

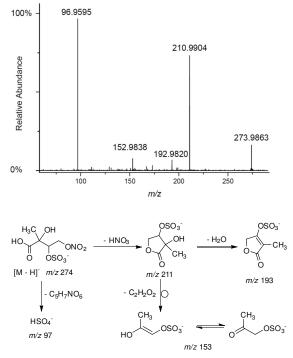

A second abundant chamber-generated SOA component was detected at m/z 244. In contrast to 2-methyltetrol nitroxyorganosulfate, the MW 245 unknown was not detected in PM_{2.5} which would suggest the compound could play a relevant role as a reactive reaction intermediate in route to particle formation through isoprene-SOA chains. Two base line-resolved peaks

- 10 of identical electrospray product ion mass spectra could be attributed to diastereoisomers with an isoprene-retained backbone (Figures 10). Surratt and co-workers observed the formation of this compound in the isoprene photooxidation experiment under high-NO_x conditions and proposed the structure to 2-methylglyceric acid nitroxy-organosulfate (Surratt et al., 2007a). However, in the light of our mass spectral data we <u>assign</u> the MW 245 unknown to C₅ organosulfate, namely 2-methyltetrol nitrosoxy-organosulfates. The m/z 244 $\rightarrow m/z$ 226 transition in the product ion mass spectrum (Figure 11) points to the intact
- 15 secondary hydroxyl moiety of the 2-methyltetrol skeleton. The lack of HNO₃ elimination from [M H]⁻ (*m/z* 244) precursor ion clearly excludes the presence of nitroxy group. However, an abundant *m/z* 197 ion, which forms through the HNO₂ loss, could be associated with the existence of the -O-NO residue. The structure assigned to the abundant MW 245 component from ER662 (acidic seed aerosol) along with its proposed fragmentation scheme is presented in Figure 11.
- Additional abundant SOA organosulfates were determined at m/z 229 and 243 for the chamber and PM_{2.5} as shown 20 in Figures 12 and 14, respectively, which does not appear to have previously been detected. The accurate mass data was recorded for the Godow sample with the following characteristics: RT = 0.58 min in Figure 9, C₅H₇O₉S: 242.9816 Da, error + 0.2 mDa (Figure 14) and RT = 0.63 min in Figure S4, C₅H₉NO₈S: 229.0011 Da, error + 0.2 mDa (Figure 12) suggested greater oxidation pathways for these unknown organosulfates compared that for the formation the of sulfated-2-methyltetrols. Two partially resolved peaks of identical mass spectrometric signatures can be noted for these organosulfates indicating the presence
- 25 of two chiral centres in their molecules (Figure 9 and S4). In either case, first eluting diastereoisomers give rise to peaks having 24

Deleted: evidence

high abundances, while the second <u>peak</u> is of a more minor intensity suggesting the formation of less hindered compounds both in the chamber experiments and PM_{2.5}. A detailed interpretation of product ion mass spectra permitted assignment of structures of the MW 244 and MW 230 unknowns to 2-methyltartaric acid organosulfate and 2-methylthreonic acid organosulfate, respectively (Figures 14 and 12 with the mass spectrum of the minor diastereoisomer not shown). Either spectrum displays abundant fragment ions at m/z 163 and 149, respectively, which could be explained by the SO₃ elimination

- 5 spectrum displays abundant fragment ions at *m/z* 163 and 149, respectively, which could be explained by the SO₃ elimination from their precursor ions. Further fragmentations of *m/z* 163 ions, i.e., a neutral loss of water followed by decarboxylation, reveals the simultaneous presence of -O-SO₃H and -CO₂H residues in the MW 230 diastereoisomeric organosulfates. However, the absence of the bisulfate ion in the spectrum of the MW 244 organosulfate clearly indicates a lack of a proton adjacent to the sulfated group, and thus suggests the sulfation of a secondary hydroxyl group. MW 230 organosulfate and the
- 10 presence of the bisulfate ion in the MS/MS spectrum does not necessarily reveal unambiguously the sulfation at a primary hydroxyl group in the molecule. The proposed fragmentation schemes for the MW 244 and 230 novel organosulfates are depicted in Figures 14 and 12. Again, the mass spectra of related diastereoisomeric organosulfates are not presented.



15

Figure 14. (-)Electrospray product ion mass spectrum of 2-methyltartaric acid organosulfate (MW 244) recorded for the RT = 0.58 min peak (Figure 9) from Godow fine aerosol along with the proposed fragmentation pathway.

Deleted: one Deleted: preference of the

A final related organosulfate was detected at *m/z* 274 in substantial quantities for isoprene SOA from the chamber and rural PM_{2.5} (Figure S4). To our knowledge this compound has previously not been reported. The compound has transitions of *m/z* 274 → *m/z* 211 (a loss of HNO₃) and *m/z* 274 → *m/z* 97 (a loss of C₅H₇NO₆) from the product ion mass spectrum from
the Zielonka PM_{2.5} as seen in Figure 15. The high-resolution data for this organosulfate renders the following characteristics, RT = 0.83 min., C₅H₇NO₁₀S: 273.9873 Da, error +0.4 mDa, which clearly points to nitroxy-organosulfate from isoprene. A detailed explanation of other diagnostic ions led to a proposed structure of 2-methylthreonic acid nitroxy-organosulfate (Figure 15). It could be assumed that due to a high oxidation state (C/O = 0.5) the MW 275 organosulfate could serves as an identifying marker of highly processed isoprene aerosol. However, the further study is warranted to rationalize its formation mechanism
and reactivity in the atmosphere.

- 15 Figure 15. (-)Electrospray product ion mass spectrum of 2-methylthreonic acid nitroxy-organosulfate (MW 275) of the RT = 0.83 min peak (Figure S4) recorded for Zielonka PM_{2.5} aerosol along with the proposed fragmentation pathway.
 - 26

While these experiments provide an analysis of a wide range of isoprene reaction products in the aerosol phase as a function of RH and acidity, they also include a number of shortcomings that need to be addressed in future work. Perhaps the most significant is the use of authentic standards to assess the contribution of these products to SOA mass at different RH. In addition, when the relative humidity is varied, it is important to measure aerosol liquid water content directly or estimated using thermodynamic models, such as ISO<u>PROPIA</u> (Fountoukis and Nenes, 2007) or AIM (Wexler and Cregg, 2002), and other gas and particle composition (e.g. inorganic species). Liquid water inorganic species measurements were not available for this study.

The use of these marker compounds for ambient air quality models can follow the approach of Pye et al. (2013). In such an approach, the model is run using a base case chemical mechanism for isoprene, where there is no adjustment for acidity and relative humidity. A comparison can then be made with the same model having such an adjustment incorporated within the isoprene mechanism. The markers can then serve as constraints to the PM observations. For the U.S. the Community Multiscale Air Quality (CMAQ) model is frequently used for ozone and PM ambient concentrations (Pye et al., 2013). For Poland, a similar approach can be used with a European model having the appropriate meteorology and chemical mechanism (Miranda et al., 2015).

5

4. Summary

In this work, we have characterized several organic components from isoprene SOA, some of which have been reported in the literature. Several compounds were identified for the first time, including 2-methylthreonic acid organosulfate (MW 230), 2-methyltartaric acid organosulfate (MW 244) and 2-methyltartaric acid nitroxy-organosulfate (MW 275). The quantitative data showed that the 2-methyltetrols, 2-methylglyceric acid and 2-methyltetrol organosulfates as the most abundant components of isoprene SOA. Other molecular components contributing to SOA mass were epoxydiols, mono- and dicarboxylic acids, organosulfates as well as nitroxy- and nitrosoxy-organosulfates. Several organosulfates and nitroxy-organosulfates identified in chamber samples were also detected in samples of ambient aerosol collected at rural sites in Poland. Such consistency reinforces the relevance of the chamber findings although 2-methyltetrol nitrosoxy-organosulfate (MW 245)

25 was found only in chamber experiments.

The effect of relative humidity on SOA formation was minor in the non-acidic seed experiments, and <u>strong under</u> acidic seed aerosol. Total SOC decreased with increasing relative humidity but the individual components were influenced diversely. The yields of most compounds decreased, but increased levels of IEPOX-OS, 2-methylglyceric acid OS and 2-methylthreonic acid OS were produced at medium to high relative humidity values. The acidic seed experiments enhanced

30 SOC production more than the non-acidic conditions under all RH conditions. However, at high humidity (44–49%), the difference was relatively small. Some of the individual SOA components followed the same pattern as the SOC while others

27

Deleted: P

Deleted: robust

were more abundant in non-acidic experiments or behaved in inconsistent manner. Further research is warranted to rationalize the mechanisms of their formation in the atmosphere.

Author contributions. MJ, ML, KN, and RS designed the study; KN, GS, MJ, and ML conducted experiments and analyzed
the samples; KN, GS, WD, KR, MJ, RS, and ML analyzed the data and created figures and tables; all authors interpreted data and provided guidance for writing the paper; KN, RS, MJ, and TK wrote the paper.

Disclaimer. The views expressed in this journal article are those of the author(s) and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency. Mention of trade names or commercial products does not constitute
 endorsement or recommendation for use. The work of Polish researchers was partially supported by funds from National Science Centre, Poland (Grant Nr OPUS8-2014/15/B/ST10/04276). The authors would like to thank Mr. Grzegorz Spolnik for his technical assistance during LC/MS measurements and Mr. Krzysztof Skotak for his assistance in field campaigns.

References

Attygalle, A., García-Rubio S., Ta J. and Meinwald J.: Collisionally-induced dissociation mass spectra of organic sulfate anions, J. Chem. Soc., Perkin Trans. 2, 4, 498-506, 2001.

Bedini, E., Laezza, A., Ladonisi, A.: Chemical derivatization of sulfated glycosaminoglycans, EurJOC., https://doi.org/10.1002/ejoc.201600108, 2016.

Bedini, E., Laezza, A., Parrilli, M.: A review of chemical methods for the selective sulfation and desulfation of polysaccharides, Carbohydr. Polym., 174 (15), 1224-1239, 2017.

20 Birch, M.E., and Cary, R.A.: Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust, Aerosol Sci. Technol. 25(3), 221-24, 1996.

Black, F., Tejada, S., and Kleindienst, T.: Preparation of automobile organic emission surrogates for photochemical model validation. Atmos. Environ., 32, 2443–2451, 1998.

Budisulistiorini S.H., Baumann K., Edgerton E.S., Bairai S.T., Mueller S., Shaw S.L., Eladio M. Gold K.A. and Surratt J.D.: Seasonal characterization of submicron aerosol chemical composition and organic aerosol sources in the southeastern United States: Atlanta, Georgia, and Look Rock, Tennessee, Atmos. Chem. Phys., 16, 5171–5189, 2016.

Carlton, A. G., Wiedinmyer, C., and Kroll, J. H.: A review of Secondary Organic Aerosol (SOA) formation from isoprene, Atmos. Chem. Phys., 9, 4987–5005, 2009.

Chan, A.W.H., Chan, M.N., Surratt, J.J., Chhabra, P.S., Loza, C.L., Crounse, J.D., Yee, L.D., Flagan, R.C.,
Wennberg, P.O., and Seinfeld, J.H.: Role of aldehyde chemistry and NO_x concentrations in secondary organic aerosol formation, Atmos. Chem. Phys., 10, 7169-7188, 2010.

Claeys, M.; Graham, B.; Vas, G.; Wang, W.; Vermeylen, R.; Pashynska, V.; Cafmeyer, J.; Guyon, P.; Andreae, M. O.; Artaxo, P.and Maenhaut, W.: Formation of secondary organic aerosols through photooxidation of isoprene. Science, 303, 1173–1176, 2004a.

Claeys, M., Wang, W., Ion, A.C., Kourtchev, I., Gelencser, A., and Maenhaut, W.: Formation of secondary organic aerosols from isoprene ant its gas-phase oxidation products through reaction with hydrogen peroxide, Atmos. Environ., 38, 4093-4098, 2004b.

Cui, T., Zeng, Z., dos Santos, E. O., Zhang, Z., Chen, Y., Zhang, Y., Rose, C. A., Budisulistiorini, S. H., Collins, L. B., Bodnar, W. M., de Souza, R. A. F., Martin, S. T., Machado, C. M. D., Turpin, B. T., Gold, A., Ault, A. P., and Surratt, J. D.: Development of a hydrophilic interaction liquid chromatography (HILIC) method for the chemical characterization of

10 water-soluble isoprene epoxydiol (IEPOX)-derived secondary organic aerosol, Environ. Sci.: Processes Impacts, DOI: 10.1039/c8em00308d, 2018.

Czoschke, N. M., Jang, M., and Kamens, R. M.: Effect of acidic seed on biogenic secondary organic aerosol growth, Atmos. Environ., 37, 4287–4299, 2003.

- Darer, A.I., Cole-Filipiak N.C., O'Connor A.E. and Elrod M.J.: Formation and stability of atmospherically relevant
 isoprene-derived organosulfates and organonitrates. Environ. Sci. Technol. 45, 1895-1902, 2011. Dommen, J., Metzger, A., Duplissy, J., Kalberer, M., Alfarra, M.R., Gascho, A., Weingartner, E., Prevot, A. S. H., Verheggen, B., and Baltensperger, U.: Laboratory observation of oligomers in the aerosol from isoprene/NOx photooxidation, Geophys. Res. Lett., 33(13), L13805, 2006.
- Edney, E. O., Kleindienst, T. E., Jaoui, M., Lewandowski, M., Offenberg, J. H., Wang, W., and Claeys, M.: Formation of 2-methyltetrols and 2-methylglyceric acid in secondary organic aerosol from laboratory irradiated isoprene/NO_x/SO₂/air mixtures and their detection in ambient PM_{2.5} samples collected in the eastern United States, Atmos. Environ., 39, 5281–5289, 2005.

Fountoukis, C., and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic equilibrium model for $K^+ - Ca^{2+} - Mg^{2+} - NH_4^+ - Na^+ - SO_4^{2-} - NO_3^- - Cl^- - H_2O$ aerosols. Atmos. Chem. Phys., 7, 4639–4659, 2007.

- 25 Froyd, K. D., Murphy, S. M., Murphy, D. M., de Gouw, J. A., Eddingsaas, N. C., and Wennberg, P. O.: Contribution of isoprene-derived organosulfates to free tropospheric aerosol mass, Proc. Natl. Acad. Sci. USA, 107, 21360–21365, 2010.
 - Fu, T. M., Jacob, D. J., Wittrock, F., Burrows, J. P., Vrekoussis, M., and Henze, D. K.: Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols, J. Geophys. Res., D15303, 2008.
- Gaston, C.J., Riedel, T.P., Hang, Z., Gold., A., Surratt, J.D., and Thornton, J.A.: Reactive uptake of an isoprene-30 derived epoxydiol to submicron aerosol particles, Environ. Sci. Technol., 48, 11178-11186, 2014a.

Gaston C. J., Thornton J. A. and Ng N. L.: Reactive uptake of N₂O₅ to internally mixed inorganic and organic particles: the role of organic carbon oxidation state and inferred organic phase separations, Atmos. Chem. Phys., 14, 5693-5707, 2014b.

Goldstein, A.H., and Galbally, I.E.: Known and unexplored organic constituents in the earth's atmosphere. Environ. Sci. Technol., 41, 1514-1521, 2007.

Gomez-Gonzalez, Y., Surratt, J. D., Cuyckens, F., Szmigielski, R., Vermeylen, R., Jaoui, M., Lewandowski, M., Offenberg, J. H., Kleindienst, T. E., Edney, E. O., Blockhuys, F., Van Alsenoy, C., Maenhaut, W., and Claeys, M.:

Characterization of organosulfates from the photooxidation of isoprene and unsaturated fatty acids in ambient aerosol using liquid chromatography/(-) electrospray ionization mass spectrometry, J. Mass Spectrom., 43, 371–382, 2008.

Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W. A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., and Zimmerman, P.: A global model of natural volatile organic compound emissions, J. Geophys. Res., 100, 8873–8891, 1995.

Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay,
 W. A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., and Zimmerman, P.: A global model of natural volatile organic compound emissions, J. Geophys. Res., 100, 8873–8891, 2006.

Guo, H., Xu, L., Bougiatioti, A., Cerully, K. M., Capps, S. L., Hite, J. R., Carlton, A. G., Lee, S.-H., Bergin, M. H., Ng, N. L., Nenes, A., and Weber, R. J.: Particle water and pH in the southeastern United States, Atmos. Chem. Phys.

15 Discuss., 14, 27143–27193, 2014.

5

20

Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J.F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M.E., Jimenez, J.L., Kiendler-Scharr, A., Maenhaut, W., McFiggins, G., Mentel, T.F., Monod, A., Prevot, A.S.H., Sienfeld, J.H., Surratt, J.D., Szmigielski, R. and Wildt, J.: The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos. Chem. Phys., 9, 5155–5236, 2009.

Henze, D. K. and Seinfeld, J. H.: Global secondary organic aerosol from isoprene oxidation, Geophys. Res. Lett., 33(9), L09812, 2006.

Hettiyadura, A. P. S., Stone, E. A., Kundu, S., Baker, Z., Geddes, E., Richards, K. and Humphry, T.: Determination of atmospheric organosulfates using HILIC chromatography with MS detection, Atmos. Meas. Tech, 8, 2347–2358, 2015.

25 Hoyle, C. R., Berntsen, T., Myhre, G., and Isaksen, I. S. A.: Secondary organic aerosol in the global aerosol chemical transport model Oslo CTM2, Atmos. Chem. Phys., 7, 5675–5694, 2007.

Isaacman-VanWertz, G, Yee, L. D., Kreisberg. N. M, Wernis, R., Moss, J. A, Hering, S. V, de Sá, S. S., Martin, S. T.,

Alexander, M. L., Palm, B. B., Hu, W., Campuzano-Jost, P., Day, D. A., Jimenez, J. L., Riva, M., Surratt, J. D., Viegas, J., Manzi, A., Edgerton, E., Baumann, K., Souza, R., Artaxo, P., Goldstein, A. H.: Ambient gas-particle partitioning of tracers for

30 biogenic oxidation, Environ. Sci. Technol., 50, 9952–9962, 2016.

Jang, M., Czoschke, N. M., Lee, S., and Kamens, R. M.: Heterogeneous atmospheric aerosol production by acidcatalyzed particle-phase reactions, Science, 298, 814–817, 2002.

Jaoui, M., Corse, E. W., Lewandowski, M., Offenberg, J. H., Kleindienst, T. E., and Edney, E. O.: Formation of organic tracers from isoprene SOA under acidic conditions, Atmos. Environ., 44, 1798–1805, 2010.

Jaoui, M., Kleindienst, T. E., Lewandowski, M. and Edney, E.O.: Identification and quantification of aerosol polar oxygenated compounds bearing carboxylic or hydroxyl groups. 1. Method development, Anal. Chem., 76, 16, 4765-4778, 2004.

Kleindienst, T. E., Jaoui, M., Lewandowski, M., Offenberg, J. H., Lewis, C. W., Bhave, P. V., Edney, E. O.: Estimates
of the contributions of biogenic and anthropogenic hydrocarbons to secondary organic aerosol at a southeastern US location, Atmos. Environ., 41, 37, 8288-8300, 2007.

Kleindienst, T. E., Edney, E. O., Lewandowski, M., Offenberg, J. H., and Jaoui, M.: Secondary organic carbon and aerosol yields from the irradiations of isoprene and α -pinene in the presence of NO_X and SO₂, *Environ. Sci. Technol.*, 40 (12), 3807–3812, 2006.

10 Kleindienst T.E., Lewandowski M., Offenberg J.H., Jaoui M. and Edney E.O.: The formation of secondary organic aerosol from the isoprene + OH reaction in the absence of NOx., Atmos. Chem. Phys., 9, 6541–6558, 2009.

Kolender, A. A., Matulewicz, M. C.: Desulfation of sulfated galactans with chlorotrimethylsilane. Characterization of b-carrageenan by ¹H NMR spectroscopy, Carbohydr. Res., 339, 1619–1629, 2004.

Kristensen, K., Bilde, M., Aalto, P. P., Petaja, T. and Glasius, M.: Denuder/filter sampling of organic acids and

organosulfates at urban and boreal forest sites: Gas/particle distribution and possible sampling artefacts, Atmos. Environ., 45, 4546-4556, 2011.

15

Kroll, J.H., Ng, N.L., Murphy, S.M., Flagan, R.C., and Seinfeld, J.H.: Secondary organic aerosol formation from isoprene photooxidation, Environ. Sci. Technol., 40, 1869-1877, 2006.

Lewandowski, M., Jaoui, M., Offenberg, J.H., Krug, J.D., and Kleindienst, T.E.: Atmospheric oxidation of isoprene and 1,3-butadiene: influence of aerosol acidity and relative humidity on secondary organic aerosol, Atmos. Chem. Phys., 15, 3773–3783, 2015.

Lin Y.-H., Zhang Z., Docherty K.S., Zhang H., Budisulistiorini S.H., Rubitschun C.L., Shaw S.L., Knipping E.M., Edgerton E.S., Kleindienst T.E., Gold A. and Surratt J.D.: Isoprene Epoxydiols as Precursors to Secondary Organic Aerosol Formation: Acid-Catalyzed Reactive Uptake Studies with Authentic Compounds, Environ Sci Technol., 3; 46, 250–258, 2012.

25 Lin Y.-H., Knipping E. M., Edgerton E. S., Shaw S. L., and Surratt J. D.: Investigating the influences of SO₂ and NH₃ levels on isoprene-derived secondary organic aerosol formation using conditional sampling approaches, Atmos. Chem. Phys., 13, 8457–8470, 2013.

 Lin Y.H., Budisulistiorini S. H., Chu K., Siejack R.A., Zhang H., Riva M., Zhang Z., Gold A., Kautzman K.E. and Surratt J.D.: Light-Absorbing Oligomer Formation in Secondary Organic Aerosol from Reactive Uptake of Isoprene
 Epoxydiols. Environ. Sci. Technol., 48, 12012–12021, 2014.

Marais, E. A., Jacob, D. J., Jimenez, J. L., Campuzano-Jost, P., Day, D. A., Hu, W., Krechmer, J., Zhu, L., Kim, P. S., Miller, C. C., Fisher, J. A., Travis, K., Yu, K., Hanisco, T. F., Wolfe, G. M., Arkinson, H. L., Pye, H. O. T., Froyd, K. D., Liao, J. and McNeill, V. F.: Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: application to the southeast United States and co-benefit of SO₂ emission controls, Atmos. Chem. Phys., 16,

1603–1618, 2016.Mingjie X., Hannigan M.P. and Barsanti K.C.: Gas/Particle Partitioning of 2-Methyltetrols and Levoglucosan at an Urban Site in Denver, Environ. Sci. Technol., 48, 2835–2842, 2014.

5

Miranda, A., Silveira, C., Ferreira, J., Montheiro, A., Lopes, D., Relvas, H., Borrego, C., and Roebeling, P.: Current air quality plans in Europe designed to support air quality management policies. Atmospheric Pollution Research, 6, 434-443, 2015.

Noziere, B., Ekstrom, S., Alsberg, T., and Holmstrom, S.: Radical-initiated formation of organosulfates and surfactants in atmospheric aerosol, Geophys. Res. Lett., 37, L0580, 2010.

Nguyen, T.B., Roach, P.J., Laskin, J., Laskin, A., and Nizkorodov, S.A.: Effect of humidity on the composition of isoprene photooxidation secondary organic aerosol, Atmos. Chem. Phys., 11, 6931-6944, 2011.

10 Nguyen, Q. T., Christensen, M. K., Cozzi, F., Zare, A., Hansen, A. M. K., Kristensen, K., Tulinius, T. E., Madsen, H. H., Christensen, J. H., Brandt, J., Massling, A., Nojgaard, J. K. and Glasius ,M.: Understanding the anthropogenic influence on formation of biogenic secondary organic aerosols in Denmark via analysis of organosulfates and related oxidation products, Atmos. Chem. Phys., 14, 8961–8981, 2014.

Nguyen T. B., Bates K. H., Crounse J. D., Schwantes R. H., Zhang X., Kjaergaard H. G., Surratt J. D., Lin P.,

15 Laskin A., Seinfeld J. H., and Wennberg P. O.: Mechanism of the hydroxyl radical oxidation of methacryloyl peroxynitrate (MPAN) and its pathway toward secondary organic aerosol formation in the atmosphere, Phys. Chem. Chem. Phys., 17, 17914-17926, 2015.

Offenberg, J. H., Lewandowski, M., Edney, E. O., Kleindienst, T. E., and Jaoui, M.: Influence of aerosol acidity on the formation of secondary organic aerosol from biogenic precursors hydrocarbons, Environ. Sci. Technol., 43, 7142-7147, 20 2009.

Perri, M. J., Lim, Y. B., Seitzinger, S. P. and Turpin, B. J.: Organosulfates from glycolaldehyde in aqueous aerosols and clouds: Laboratory studies Atmos. Environ., 44, 2658- 2664, 2010.

Poulain, L., Wu, Z., Petters, M. D., Wex, H., Hallbauer, E., Wehner, B., Massling, A., Kreidenweis, S. M., and Stratmann, F.: Towards closing the gap between hygroscopic growth and CCN activation for secondary organic aerosols –

25 Part 3: Influence of the chemical composition on the hygroscopic properties and volatile fractions of aerosols, Atmos. Chem. Phys., 10, 3775–3785, 2010.

Paulot, F., Crounse, J. D., Kjaergaard, H. G., Kurten, A., St. Clair, J. M., Seinfeld, J. H., and Wennberg, P. O.: Unexpected epoxide formation in the gas-phase photooxidation of isoprene, Science, 325, 730–733, 2009.

Pye, H. O. T., Pinder, R. W., Piletic, I. R., Xie, Y., Capps, S. L., Lin, Y-H., Surratt, J. D., Zhang, Z., Gold, A.,

30 Luecken, D. J., Hutzell, W. T., Jaoui, M., Offenberg, J. H., Kleindienst, T. E., Lewandowski, M., and Edney, E. O.: Epoxide Pathways Improve Model Predictions of Isoprene Markers and Reveal Key Role of Acidity in Aerosol Formation, Environ. Sci. Technol. Lett., 2, 38–42, 2013.

Rattanavaraha, W., Chu, K., Budisulistiorini, S. H., Riva, M., Lin, Y.-H., Edgerton, E. S., Baumann, K., Shaw, S. L., Guo, H., King, L., Weber, R. J., Neff, M. E., Stone, E. A., Offenberg, J. H., Zhang, Z., Gold, A. and Surratt, J. D.:

Assessing the impact of anthropogenic pollution on isoprene-derived secondary organic aerosol formation in PM_{2.5} collected from the Birmingham, Alabama, ground site during the 2013 Southern Oxidant and Aerosol Study, Atmos. Chem. Phys., 16, 4897–4914, 2016.

Riedel, T. P., Lin, Y., Budisulistiorini, S. H., Gaston, C. J., Thornton, J. A., Zhang, Z., Vizuete, W., Gold, A., and Surratt, J. D.: Heterogeneous reactions of isoprene-derived epoxides: reaction probabilities and molar secondary organic aerosol yield estimates, Environ. Sci. Technol. Lett., 2, 38–42, 2015.

Riva, M.; Budisulistiorini, S. H.; Zhang, Z.; Gold, A.; Surratt, J. D.: Chemical characterization of secondary organic aerosol constituents from isoprene ozonolysis in the presence of acidic aerosol. Atmos. Environ., 130,5–13, 2016.

Riva, M., Budisulistiorini, S.H., Zhang, Z., Gold, A. and Surratt, J.D: Chemical characterization of secondary organic aerosol constituents from isoprene ozonolysis in the presence of acidic aerosol. Atmos. Environ. 130, 5-13, 2016.

10

15

Riva M.P., Budisulistiorinia S.H., Zhang Z., Golda A., Thornton J.A., Turpin B.J. and Surratt J.D.: Multiphase reactivity of gaseous hydroperoxide oligomers produced from isoprene ozonolysis in the presence of acidified aerosols, Atmos. Environ., 152, 314-322, 2017.

Rudzinski, K.J.: Heterogeneous and Aqueous-Phase Transformations of Isoprene In Environmental Simulation Chambers: Application to Atmospheric Chemical Processes, Springer, ISBN: 978-1-4020-4230-0, 261-277, 2004.

Rudzinski, K. J., Gmachowski, L., and Kuznietsova, I.: Reactions of isoprene and sulphoxy radical-anions – a possible source of atmospheric organosulphites and organosulphates, Atmos. Chem. Phys., 9, 2129–2140, 2009.

Rudzinski, K. J.; Szmigielski, R.; Kuznietsova, Inna; Wach, P.; and Staszek, D.: Aqueous-phase story of isoprene - A mini-review and reaction with HONO, Atmos. Environ., 130, 163–171, 2016.

20 Schindelka, J., Iinuma, Y., Hoffmann, D. and Herrmann, H.: Sulfate radical-initiated formation of isoprene-derived organosulfates in atmospheric aerosols. Faraday Discuss. 165,237-259, 2013.

Shalamzari, M. S., Ryabtsova, O., Kahnt, A., Vermeylen, R., Herent, M. F., Quentin-Leclercq, J., Van de Veken, P., Maenhaut, W. and Claeys, M.: Mass spectrometric characterization of organosulfates related to secondary organic aerosol from isoprene, Rapid Commun. Mass Spectrom., 27, 78, 2013.

25 Shalamzari M., Vermeylen R., Blockhuys F., Kleindienst T.E., Lewandowski M., Szmigielski R., Rudzinski K.J., Spolnik G., Danikiewicz W., Waenhaut W. and Claeys M.: Characterization of polar organosulfates in secondary organic aerosol from the unsaturated aldehydes 2-E-pentenal, 2-E-hexenal, and 3-Z-hexenal, Atmos. Chem. Phys., 16, 7135–7148, 2016.

Spolnik G., Wach P., Rudzinski K.J., Skotak K., Danikiewicz W. and Szmigielski R.: Improved UHPLC-MS/MS 30 Methods for Analysis of Isoprene-Derived Organosulfates, Anal. Chem., 90 (5), 3416-3423, 2018.

Stone, E. A., Yang, L., Yu, L. E., and Rupakheti, M.: Characterization of organosulfates in atmospheric aerosols at four Asian locations, Atmos. Environ., 47, 323–329, 2012.

Surratt, J. D., Murphy, S. M., Kroll, J. H., Ng, N. L., Hildebrandt, L., Sorooshian, A., Szmigielski, R., Vermeylen, R., Maenhaut, W., Claeys, M., Flagan, R. C. and Seinfeld, J. H. Chemical composition of secondary organic aerosol formed from the photooxidation of isoprene. J. Phys. Chem. A, 110, 9665–9690, 2006.

Surratt, J. D., Kroll, J. H., Kleindienst, T. E., Claeys, M., Sorooshian, A., Ng, N. L., Offenberg, J. H., Lewandowski,
 M., Jaoui, M., Flagan, R. C., and Seinfeld, J. H.: Evidence for organosulfates in secondary organic aerosol, Environ. Sci. Technol., 41, 517–527, 2007a.

Surratt, J. D., Lewandowski, M., Offenberg, J. H., Jaoui, M., Kleindienst, T. E., Edney, E. O., and Seinfeld, J. H.: Effect of acidity on secondary organic aerosol formation from isoprene, Environ. Sci. Technol., 41, 5363–5369, 2007b.

Surratt, J. D., Gomez-Gonzalez, Y., Chan, A. W. H., Vermeylen, R., Shahgholi, M., Kleindienst, T. E., Edney, E. O., Offenberg, J. H., Lewandowski, M., Jaoui, M., Maenhaut, W., Claeys, M., Flagan, R. C., and Seinfeld, J. H.: Organic sulfate

10 Offenberg, J. H., Lewandowski, M., Jaoui, M., Maenhaut, W., Claeys, M., Flagan, R. C., and Seinfeld, J. H.: Organic sulfate formation in biogenic secondary organic aerosol, J. Phys. Chem., 112, 8345–8378, 2008.

Surratt, J. D., Chan, A. W. H., Eddingsaas, N. C., Chan, M., Loza, C. L., Kwan, A. J., Hersey, S. P., Flagan, R. C., Wennberg, P.O., and Seinfeld, J. H.: Reactive intermediates revealed in secondary organic aerosol formation from isoprene, P. Natl. Acad. Sci. USA, 107, 6640–6645, 2010.

- 15 Szmigielski R., Vermeylen R., Dommen J., Metzger A., Maenhaut W., Claeys M. and Baltensperger U.: The acid effect in the formation of 2-methyltetrols from the photooxidation of isoprene in the presence of NO_x, 98, 183-189, 2010.
 - Szmigielski R.: Evidence for C₅ organosulfur secondary organic aerosol components from in-cloud processing of isoprene: Role of reactive SO₄ and SO₃ radicals, Atmos. Environ., 130, 14-22, 2016.
- Szmigielski R.: The chemistry of organosulfates and organonitrates. In Disposal of dangerous chemicals in urban areas and mega cities: role of oxides and acids of nitrogen in atmospheric chemistry, Barnes, I. Rudzinski, K. J., Eds., Springer, ISBN 978-94-007-5036-4, 211-226, 2013.

Takano, R., Matsuo, M., Kamei-Hayashi, K., Hara, S., and Hirase, S. A.: Novel regioselective desulfation method specific to carbohydrate 6-sulfate using silylation reagents, Biosci. Biotech. Biochem., 56 (10), 1577-1580, 1992.

Tolocka, M. P. and Turpin, B.: Contribution of organosulfur compounds to organic aerosol mass, Environ. Sci. 25 Technol., 46, 7978–7983, 2012.

Tovstiga, T. E., Gillis, E. A., Grossert, S., White, R. L.: Characterization of multiple fragmentation pathways initiated by collision-induced dissociation of multifunctional anions formed by deprotonation of 2-

nitrobenzenesulfonylglycine. J. Mass Spectrom., 49, 168-177, 2014.

Wang, W., Kourtchev, I., Graham, B., Cafmeyer, J., Maenhaut, Wand Claeys, M.: Characterization of oxygenated
 derivatives of isoprene related to 2-methyltetrols in Amazonian aerosols using trimethylsilylation and gas chromatography/ion
 trap mass spectrometry. Rapid Commun. Mass Spectrom., 19, 1343–1351, 2005.

Wexler, A. S. and Clegg, S. L.: Atmospheric aerosol models for systems including the ions H⁺, NH₄⁺, Na⁺, SO₄²⁻, NO₃⁻, Cl⁻, Br⁻, and H₂O, J. Geophys. Res., 107, 4207, doi:10.1029/2001JD000451, 2002.

Wong, J.P.S., Lee, A.K.Y., and Abbatt J.P.D.: Impacts of Sulfate Seed Acidity and Water Content on Isoprene Secondary Organic Aerosol Formation, Environ. Sci. Technol., 49, 13215–13221, 2015.

Vasconcelos, L. A., Macias, E. S., and White, W. H.: Aerosol composition as a function of haze and humidity levels in the Southwestern US, Atmos. Environ., 28, 3679–3691, 1994.

- 5 Xie M., Hannigan M.P. and Barsanti K.C.: Gas/Particle Partitioning of 2-Methyltetrols and Levoglucosan at an Urban Site in Denver, Environ. Sci. Technol., 48, 2835–2842, 2014.Zhang, H., Surratt, J. D., Lin, Y-H., Bapat, J. and Kamens, R. M.: Effect of relative humidity on SOA formation from isoprene/NO photooxidation: enhancement of 2methylglyceric acid and its corresponding oligoesters under dry conditions, Atmos. Chem. Phys., 11, 6411–6424, 2011. Zhang, H., Surratt, J. D., Lin, Y-H., Bapat, J. and Kamens, R. M.: Effect of relative humidity on SOA formation
- 10 from isoprene/NO photooxidation: enhancement of 2-methylglyceric acid and its corresponding oligoesters under dry conditions, Atmos. Chem. Phys., 11, 6411–6424, 2011.

Zhang Y., Chen Y., Lambe A.T., Olson N.E., Lei Z., Craig R.L., Zhang Z., Gold A., Onasch T.B., Jayne J.T., Worsnop D.R., Gaston C.J., Thornton J.A., Vizuete W., Ault A.P. and Surratt J.D.: Effect of the Aerosol-Phase State on Secondary Organic Aerosol Formation from the Reactive Uptake of Isoprene-Derived Epoxydiols (IEPOX), Environ. Sci. Technol. Lett.,

15 5, 167–174, 2018.