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Abstract. An evaluation of the ERA-Interim clouds using satellite observations is presented. To facilitate such an evaluation in

a proper way, a simplified satellite simulator has been developed and applied to six-hourly ERA-Interim reanalysis data cover-

ing the period 1982 to 2014. The simulator converts modelled cloud fields, for example those of the ERA-Interim reanalysis, to

simulated cloud fields by accounting for specific characteristics of passive imaging satellite sensors such as the Advanced Very

High Resolution Radiometer (AVHRR), which form the basis of many long-term observational datasets of cloud properties. It5

is attempted to keep the simulated cloud fields close to the original modelled cloud fields to allow a quality assessment of the

latter based on comparisons of the simulated clouds fields with the observations.

Applying the simulator to ERA-Interim data, this study firstly focuses on spatial distribution and frequency of clouds (total

cloud fraction) and on their vertical position, using cloud top pressure to express the cloud fraction of high, mid-level and low

clouds. Furthermore, the cloud-top thermodynamic phase is investigated. All comparisons incorporate knowledge of systematic10

uncertainties in the satellite observations and are further stratified by accounting for the limited sensitivity of the observations

to clouds with very low cloud optical thickness (COT).

The comparisons show that ERA-Interim has generally too low cloud fraction - nearly everywhere on the globe except in the

polar regions. This underestimation is caused by a lack of mid-level and/or low clouds - for which the comparisons only show

a minor sensitivity to cloud optical thickness thresholds applied. The amount of ERA-Interim high clouds, being higher than in15

the observations, agrees to the observations within their estimated uncertainties. Removing the optically very thin clouds (COT

< 0.15) from the model fields improves the agreement to the observations for high cloud fraction locally (e.g. in the Tropics)

while for the mid-latitude regions best agreement of high cloud fraction is found when removing all clouds with COT < 1.0.

Comparisons of the cloud thermodynamic phase at the cloud top reveals a too high relative ice cloud frequency in ERA-Interim

being most pronounced in the higher latitudes. Indications are found that this is due to the suppression of liquid cloud existence20

for temperatures below -23◦C in ERA-Interim.

The application of this simulator facilitates a more effective use of passive satellite observations of clouds in the evaluation

of modelled cloudiness, for example in reanalyses.
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1 Introduction

In the last two decades major progress has been achieved in improving the representation of clouds in regional and global

atmospheric models. Nevertheless, clouds are still one of the largest uncertainties in estimating and interpreting the changes

of the Earth’s energy budget (Boucher et al., 2013). One of the main problems is that many atmospheric processes cannot be

resolved by the current models, which operate on spatial scales ranging from tens to hundreds of kilometres. The small-scale5

processes related to clouds (e.g., cloud formation and glaciation) are implemented by means of parametrizations that connect

grid box mean variables to sub-grid processes. Imperfect parametrizations of clouds will have a significant impact on other

model variables and, hence, on the modelled climate sensitivity, which contributes the the large spread among present day

climate models in this respect (Dufresne and Bony, 2008). Thus, it is evident that cloud modelling needs to be carefully evalu-

ated and improved to increase our confidence in atmospheric model results. One way to further enhance our understanding of10

cloud processes is to use high-resolution models (cloud-resolving models, CRMs). They are important tools for testing and im-

proving the parametrizations of cloud-controlling processes, such as cumulus convection, turbulent mixing, and aerosol-cloud

interaction (Boucher et al., 2013). However, global and long-term simulations are not feasible with CRMs due to computational

cost.

Besides climate general circulation models (GCMs), present day numerical weather prediction models (NWP) also rely15

on parametrizations to describe subgrid cloud processes. NWP models are also used to generate reanalyses as for example

the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2; Gelaro et al., 2017) and ERA-

Interim (Dee et al., 2011). As reanalyses are on the one hand closely tied to observations through data assimilations cycles, they

can be considered to represent the atmospheric state of the past decades very accurately. On the other hand, discontinuities in

assimilated observation systems can create inhomogeneities in reanalysis data, which need to be paid attention to in particular20

in trend studies. Another inherent shortcoming of reanalyses such as MERRA-2 and ERA-Interim are that cloud properties

are still exclusively modelled, due to difficulties in assimilating cloud affected satellite radiances or properly assimilating the

cloud properties themselves. The parametrizations in NWP are similar if not identical to the ones used in GCMs. Even though

reasonable parameterizations have been developed it remains challenging to balance the system regarding simplicity, realism,

computational stability and efficiency in NWP, reanalysis and GCM models.25

Indispensable for establishing or increasing confidence in atmospheric modelling is the evaluation of the modelled cloud

fields using observations. Satellite measurements are the only source for facilitating this on global scales and corresponding

model evaluations using satellite-based datasets have been done in the past for example for columnar-integrated water path

(e.g., Waliser et al., 2009; Eliasson et al., 2011), cloud fraction (e.g., Dai et al., 2006; Sun et al., 2015) and cloud top phase

(e.g., Cesana et al., 2012; Weidle and Wernli, 2008). Using the standard output fields of models, these studies have already30

helped evaluating models as well as evaluating long-term monitoring of cloudiness, also in consideration of alternative obser-

vation systems. However, for most cloud properties such evaluations often remain difficult due to significant differences in the

representativeness of modelled clouds compared to clouds obtained from satellite observations. These differences are most sig-

nificant in horizontal and vertical resolution, temporal sampling as well as deviating definitions of some geophysical quantities.
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While model horizontal resolutions could theoretically match those of satellite observations if enough computational power

would be available, with current and past satellite missions at hand it is not feasible to describe the complete, three-dimensional

atmospheric state at high temporal resolution with high accuracy and at the same time covering multiple decades.

Satellite retrievals use the measured intensity of radiation from a particular area and direction at a particular wavelength and

infer cloud properties by solving an inverse problem. This implies that several assumptions and ancillary data are required in5

the forward modelling causing limitations in deriving the geophysical quantities. In addition, passive space-borne instruments

usually observe only the top layer of a cloud, while active sensors are able to resolve a cloud vertically to some extent but at the

expense of a coarse spatial and temporal global coverage. Consequently, it is plausible that a direct comparison of modelled

with observed clouds is suboptimal without building a bridge between the two data sources.

So-called satellite simulators give the opportunity to reduce this problem. They aim for simulating space-borne observations10

from model fields, which can comprise both simulating derived geophysical properties as well as observed raw measurements.

For the remaining part of the paper the focus lies on simulating derived geophysical properties. Figure 1 shows the general

concept of such a simulator, which basically covers three steps: (1) adjustment of spatial resolution, observation coverage

and frequency, thus the model fields are downscaled and sampled according to the characteristics of the satellite observations,

(2) a pseudo retrieval applied to un-averaged model fields mimicking an actual satellite retrieval also accounting for specific15

limitations, and (3) statistical aggregation to daily or monthly properties which is ideally done in the same way as for the

observational datasets. The inputs to a simulator are usually grid box mean profiles (cloud fraction, cloud water content,

temperature, etc.) and surface parameters (surface geopotential, land/sea mask, skin temperature, etc.).

The era of satellite simulators for evaluating climate model clouds began with the ISCCP (International Satellite Cloud

Climatology Project) software package in 1999 (Klein and Jakob, 1999). The ISCCP dataset (Rossow and Schiffer, 1999)20

along with its corresponding simulator have been used in various studies that diagnosed the performance of GCMs. They have

shown that common climate models at that time underestimated the total cloud cover, overestimated the frequency of optically

thick clouds and underestimated the frequency of mid-level clouds (Kay et al., 2012). Since then, many other simulators for

cloud-related instruments followed (e.g. Pincus et al., 2012) contributing to further improve cloud parameterizations in GCMs.

A widely used tool for interfacing models with satellite observations is COSP (CFMIP Observation Simulator Package), which25

has been developed by the Cloud Feedback Model Intercomparison Project (CFMIP) community (Bodas-Salcedo et al., 2011).

COSP provides the framework for simulating observations and datasets of multiple active and passive satellite instruments

(e.g., CloudSat, Calipso, ISCCP, MISR, MODIS) and therefore facilitates an apple-to-apple evaluation of clouds, humidity, and

precipitation processes in diverse numerical models. However, many simulators include complex procedures such as radiative

transfer simulations. Most of these procedures can be justified when aiming at performing synthetic satellite retrievals. Caveat30

of this approach is that so many modifications to the initial model fields are applied, that any comparison to observations will be

very difficult to interpret. For example, comparisons between simulated and observed COT should give insights in the accuracy

of the COT of the modelled cloud fields.

In this study we follow a more conservative approach. We evaluate modelled clouds in ERA-Interim by employing a simpli-

fied satellite simulator, which can also be seen as a light version of a simulator that keeps the modifications to the model fields35
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Figure 1. Schematic representation of the basic principle of the SIMFERA satellite simulator, which in many aspects is common to other

satellite simulators. SIMFERA is a diagnostic tool that maps the model representation of clouds to synthetic satellite observations.

to a minimum. The simplified simulator uses pre-calculated and stored 3-dimensional, instantaneous model fields and accounts

firstly for the relatively course spatial resolution of the model compared to observations and secondly for the limitations in

the observations in terms of resolving sub-pixel and vertical cloud structures. Cloud variables that are not standard output in

the model fields are determined following parametrizations used in the model if available. After undergoing these simplified

simulations, ERA-Interim cloud fields are compared to cloud property observations of the Cloud_cci AVHRR-PM v2.0 dataset5

(Stengel et al., 2017a) with a focus on systematic climatological deviations between the two sources in the period 1982-2014.

Cloud properties addressed are total cloud fraction, the vertical placement of the clouds and the cloud-top thermodynamic

phase. These properties have been selected due to the high confidence in them in the observational dataset and because of the

availability of quantifying corresponding systematic uncertainties in the Cloud_cci AVHRR-PM dataset by comparison to the

Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP, Winker et al., 2009) instrument.10

Acknowledging specific weather feature studies, e.g. studying the cloud structure in extra-tropical storms in Hawcroft et al.

(2017), the application of a satellite simulator to reanalysis data for global and long-term evaluation of modelled cloud proper-

ties has to our knowledge not been published in the peer-review literature yet. Thus, the presented study adds novel aspects to

the evaluation of ERA-Interim cloud data, which has generally been very limited so far.

In this article we will firstly describe the Cloud_cci and ERA-Interim data used in our study (Section 2), followed by a15

detailed description of the simplified satellite simulator and a discussion of its output (Section 3). Selected comparisons of

cloud fraction, cloud vertical placement and cloud phase are shown and discussed in Section 4. Section 5 summarizes and

concludes the study.
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2 Datasets

2.1 The Cloud_cci AVHRR-PM v2.0 dataset

The Cloud_cci AVHRR-PM v2.0 dataset (Stengel et al., 2017a) is a cloud property dataset based on 33 years of AVHRR

measurements from the prime AVHRR-carrying afternoon satellites of the NOAA Polar Operational Environmental Satellites

(POES) program: NOAA-07, NOAA-09, NOAA-11, NOAA-14, NOAA-16, NOAA-18, and NOAA-19.5

A large variety of cloud properties are included in this dataset, of which the following are used in this study: (1) cloud

fraction for all clouds (CFC) and separated into high-, mid- and low-level clouds (CFChigh, CFCmid, CFClow), (2) cloud top

pressure (CTP) and (3) cloud phase (CPH, here represented by the liquid cloud fraction which is the frequency of liquid clouds

with respect to all clouds). The CFC, CFChigh, CFCmid, CFClow and CPH data used are monthly averages, while for CTP

monthly histograms were used, all contained in the Level-3C products defined on a 0.5◦ x 0.5◦ latitude-longitude grid (Stengel10

et al., 2017b). All available Level-3C products within the time period 1982 through 2014 were used. The underlying, initially

retrieved, pixel-level cloud properties were derived using the Community Cloud retrieval for CLimate (CC4CL; Sus et al.,

2017; McGarragh et al., 2017).

All remaining details of the Cloud_cci AVHRR-PM v2.0 dataset can be found in Stengel et al. (2017a) also including

validation results for the cloud properties used in this study. All systematic deviations against CALIOP are repeated in Table 115

and extended by the validation scores for optical thickness thresholds (COTth) of 1.0 in addition to 0.0 and 0.15.

Cloud_cci cloud detection is successful in 81 % of all pixels being however characterized by an underestimation of cloud

occurrence by about 13 %. Removing optically thin clouds from the reference data (CALIOP) clearly improves the agreement

of Cloud_cci to the reference with hit rates now reaching 85 % and a bias close to 0. Removing all clouds with COT smaller

than 1 (COTth=1.0) from the reference deteriorates the cloud detection scores and leads to a significant positive bias (about20

12 % more clouds in Cloud_cci than in CALIOP). This exercise suggests that AVHRR-PM systematically misses the very thin

clouds, but builds a very sound reference for all clouds with COT of 0.15 and higher.

Furthermore, cloud top height (CTH) was validated, which is as CTP a representation of the retrieved vertical placement of

the cloud top. Similar to the CFC validation COT thresholds were applied, however, here (and for CPH) referring to the optical

thickness into the cloud (top-down) at which the reference value was taken from the CALIOP profile.25

Once the liquid phase is correctly identified the CTH is retrieved very accurately with standard deviations below 1 km and

biases below 130m. Both measures improve further when removing the very thin cloud layers at the cloud top, although this

has only a minor impact on the scores for liquid clouds. For ice clouds the errors in CTH retrieval are larger than for liquid

clouds in terms of standard deviations and biases. Removing the thin cloud layers at the cloud top significantly improves the

quality leading to reduced standard deviations of 2.2 km and biases of -0.7 km when selecting the reference CTH at COTth=1.0.30

For CPH, validation results are very similar to the cloud detection validation, when compared to the reference (CALIOP).

Best CPH agreement to CALIOP is found for COTth=0.15 into the cloud with hitrate exceeding 80% here, although accompa-

nied with a ice frequency bias of 6.9 %. For COTth=0.0 and COTth=1.0 hitrate scores are clearly lower.
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Table 1. Global validation scores of Cloud_cci AVHRR-PM v2.0 cloud mask (CMA), cloud-top height (CTH) and cloud phase (CPH) against

CALIOP. For CMA the validation scores are shown as a function of a COT threshold (COTth), which is used for separating cloudy from

clear-sky CALIOP pixels. For CTH and CPH the scores are also shown as a function of (COTth), although (COTth) is here referring to the

optical thickness into the cloud (top-down) at which the reference value was taken from the CALIOP profile. (Stdd = Standard deviation)

CMA CTHliq CTHice CPH

(Hitrate [%]/ Bias [%]) (Stdd [km] / Bias [km]) (Stdd [km] / Bias [km]) (Hitrate [%]/ Bias [%])

COTth = 0.0 81.2 / -12.6 0.91 / -0.13 2.84 / -2.65 77.1 / 5.9

COTth = 0.15 84.9 / -0.5 0.97 / -0.09 2.59 / -1.94 80.6 / -6.9

COTth = 1.0 77.7 / 12.3 0.84 / 0.05 2.23 / -0.74 76.0 / -18.6

In summary, comparison with CALIOP have shown that Cloud_cci AVHRR-PM v2.0 data for CMA, CPH and CTH data

are of good quality. The detection of optically very thin cloud layers and the retrieval of their cloud phase and cloud top pres-

sure/height using AVHRR is difficult. This however could be well characterized by the presented validation results. Removing

the optically very thin clouds from the statistics leads to improvements in the scores (when compared with CALIOP) approach-

ing maximum hitrate scores for CMA and CPH for COTth=0.15. For CTH best agreement to CALIOP is found for COTth=1.0.5

In addition to the global validation scores mentioned, latitudinally dependent systematic errors were computed and are shown

as uncertainty margin of the Cloud_cci data in the comparisons of section 4.

In addition to these validation studies, the Cloud_cci data was compared to other existing climate datasets such as the

Pathfinder extended dataset (PATMOS-x, Heidinger et al., 2014) and the Climate Monitoring Satellite Application Facility’s

(CM SAF) cloud, albedo and radiation dataset (CLARA-A2, Karlsson et al., 2016) in Stapelberg et al. (2017), which docu-10

mented reasonable similarities for the cloud properties considered in this paper.

It is also important to note that an inherent feature of passive imagers is that most of the time only the uppermost cloud can

be observed. This has the direct consequence that clouds covered by cloud layers above will not be detected. This limitation

however has been accounted for in the simulator presented in section 3.

2.2 ERA-Interim reanalysis15

The ERA-Interim global atmospheric reanalysis (Dee et al., 2011) provided by the European Centre for Medium-Range

Weather Forecasts (ECMWF) is the follow-up of ERA-40 reanalysis (Uppala et al., 2005). ERA-Interim covers the period

from 1979 onwards and is continuously extended operationally. One of the main objectives was to solve various difficulties

regarding data assimilation (e.g. use of satellite data), which were found during the production of ERA-40. See for example

Dee et al. (2011); Mooney et al. (2011); Bao and Zhang (2013); Betts et al. (2009) for improvements of ERA-Interim over20

ERA-40.

The ERA-Interim reanalysis is produced by the Integrated Forecast System (IFS) version Cy31r1, which includes the forecast

model consisting of three fully coupled components for the atmosphere, land surface, and ocean waves. ERA-Interim clouds

are represented by a fully prognostic cloud scheme in which cloud-related processes are treated in a unified way, i.e. they are
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physically realistic and consistent with the rest of the model. More specifically, cloud processes are described by prognostic

equations for cloud condensate and cloud fraction obeying mass balance equations (Tiedtke, 1993). Clouds are defined by the

horizontal coverage of the grid box by cloud and the mass mixing ratio of total cloud condensate, along with the constraint that

cloud air is saturated with regard to water and ice, respectively. As time evolves in the model simulation the cloud variables

change due to source and sink terms that are related to cloud formation (e.g., condensation/sublimation, cumulus convection)5

and destruction (e.g., evaporation, precipitation) processes, respectively. The cloud water is separated into ice and liquid portion

by a temperature dependent function between -23 and 0◦C constrained by only ice water below and only liquid water above

this temperature range (ECMWF, 2007).

As for most large-scale models, the fact that only bulk properties of clouds can be taken into account is an important and

indispensable limitation of ERA-Interim.10

ERA-Interim in general has been used in many climate studies in the past (e.g. Screen and Simmonds, 2010; DeMott et al.,

2013; Madonna et al., 2014; Simmons and Poli, 2015), including studies on clouds (e.g. Jiang et al., 2011; Cuzzone and Vavrus,

2011; Hanley and Caballero, 2012).

3 SIMFERA - a simplified satellite simulator

The SIMplified satellite simulator For ERA-interim (SIMFERA) reads the 6-hourly (00, 06, 12, 18 UTC) gridded, three-15

dimensional (3D) model fields of meteorological upper air parameters on 60 model levels with the top of the atmosphere

located at 0.1 hPa. These model fields include liquid water content LWCgbm(the mass of condensate per mass of moist air in

[kg/kg]), where the subscripts gbm refers to grid box mean values, ice water content IWCgbm [kg/kg], cloud cover, temperature

(T ) [K], and specific humidity (Q) [kg/kg]. Additionally, the data input comprise the surface geopotential (Z) [m2/s2] and the

logarithm of surface pressure [Pa] which are used to compute the vertical pressure and geopotential profiles at model levels.20

3.1 Pre-processing

In the pre-processing step the LWCgbm and IWCgbm at each model level are divided by cloud cover, yielding the so-called

in-cloud liquid and ice water content (LWC and IWC) at each model level. For the layers in between two consecutive levels,

LWC and IWC are used to determine layer liquid and ice water path (LWPlay and IWPlay) incorporating the height of the layer.

The liquid and ice cloud optical thickness per layer (lCOTlay, iCOTlay) are obtained by rearranging the Han et al. (1994)25

formulation originally defined for diagnosing LWP from COT and CER:

COT =
3

4

CWP ·Qext

CER · ρ
(1)

where CWP represents either LWP or IWP depending on the thermodynamic phase. Qext denotes the extinction coefficient,

which is assumed to be 2 for water and 2.1 for ice. The density ρ is set to 1000 kg/m3 for water and 916.7 kg/m3 for ice.

The computation of CER in SIMFERA is done as in the ERA-Interim radiation scheme: (a) following Martin et al. (1994)30

for liquid clouds where CERliq is a function of liquid water content and cloud droplet number concentration (CDNC). The

7



needed number of cloud condensation nuclei is 300 cm−3 over land and 100 cm−3 over sea; (b) for ice clouds, CERice is a

function of temperature and ice water content based on Sun and Rikus (1999) and revised by Sun (2001).

3.2 Downscaler

The second part of the simulator addresses firstly the mismatch in horizontal scale between an ERA-Interim model grid box

(∼ 80 km) and a satellite footprint (∼ 5 km for AVHRR global data), and secondly, the limitation in vertical resolution of5

the AVHRR based satellite retrieval. For adjusting the spatial resolution (and for resolving sub-grid variability within a model

grid cell), the vertical profiles in each model grid cell are projected onto a certain number of subcolumns, each of which can

be thought of as representing an AVHRR pixel. At each model layer, the downscaler distributes the grid-cell cloud fraction

randomly onto the subcolumns. Clouds occurring in layers on top of each other (vertically neighbouring layers) are are assumed

to overlap maximally, while vertically separated cloud layers are assumed to have a random overlap. This procedure follows10

the maximum-random overlap approach of (Geleyn and Hollingsworth, 1979). This approach for deriving subgrid profiles is

very similar to SCOPS (Subgrid Cloud Overlap Profile Sampler, Webb et al. (2001)), which is implemented, for instance, in

COSP.
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Figure 2. Example case for converting ERA-Interim grid box profiles to SIMFERA subcolumns and to pseudo retrievals. The left column

shows ERA-Interim based profiles of cloud fraction (a), cloud phase (b), layer water path (c) and layer cloud optical thickness (d). The middle

column gives the same data after columnizing into 20 subcolumns representing the sub-grid variability and after removing the uppermost

cloud layers with layer optical thicknesses below a certain threshold (here 0.15): cloud mask (e), cloud phase (f), layer water path (g, layer

liquid/ice water path in liquid/ice cells) and layer optical thickness (h, layer liquid/ice optical thickness in liquid/ice cells). The right panels

show vertically summarized values per subcolumn (also called pseudo retrieval): cloud mask (i), cloud top phase (j), vertically integrated

water path (k), vertically integrated optical thickness (l) and cloud top pressure (m). Each of these subcolumn-representative values can be

seen as an individual pseudo satellite retrieval.
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Figure 2 visualizes the results of the preprocessing and downscaling for a randomly selected case. To summarize, the pre-

processing calculates LWC and IWC from LWCgbm and IWCgbm which are further processed to LWPlay and IWPlay (panel c)

(for each of the M model layers), which are in turn used to calculate lCOTlay and iCOTlay, liquid and ice optical thickness per

layer (panel d). The downscaler creates a N -by-M matrix for each model grid cell with N being the number of subcolumns. In

the framework of this study, N = 20 was used, which on the one hand resembles a subgrid at a courser resolution compared to5

the resolution of the AVHRR GAC data, on the other hand this number was found to be a good compromise as no significant

change in the later on calculated grid-mean values was detectable compared to larger Ns, while the computational expense

increases linearly with increasing N . All cells in the N -by-M matrix can be either cloudy (1) or not cloudy (0) and the cloudy

cells can be of liquid or ice phase. Depending on the phase of each cell the COT matrix is filled with lCOTlay or iCOTlay

and the CWP matrix with LWPlay or IWPlay. In each subcolumn, all uppermost cloud cells for which the vertically, top-down10

integrated COT is smaller than the chosen COT threshold are removed. In case the total COT in a subcolumn is smaller then the

threshold that subscolumn is counted as clear. In this study three different COT thresholds were used: COTth=0.0, COTth=0.15

and COTth=1.0. Choosing these thresholds was motivated by generally assessing the sensitivity of the ERA-Interim clouds and

the comparison results to the value of the threshold. Furthermore, the chosen thresholds correspond directly to the values used

in the validation of Cloud_cci data against CALIOP (in which the threshold is applied to CALIOP profiles; see Section 2.1),15

which provide error margins used as observation uncertainties in the presented study.

It should be noted that applying a threshold of COTth=0.0 is a good approximation of not using a simulator at all when

considering CFC because no clouds are excluded from the statistics. For cloud top properties, such as CPH and CTH, the

application of a simulator is mandatory since these properties are not included in the standard reanalysis output. Indeed,

the application of a simulator, in particular the application of a COT threshold, can significantly alter the model cloud fields20

occasionally. In an extreme case a very high, optically thin ice cloud, which overlaps a very low liquid cloud, might be removed

from the model cloud fields when the simulator is applied, resulting in that only the high CTP and a liquid cloud is reported

in the simulator output. This however, is just correctly reflecting the limitations of the passive imager capabilities. The impact

of this approach is reflected by applying different COT thresholds (including COTth=0.0, which means no cloud layers are

removed) as mentioned above.25

3.3 Pseudo-retrieval and data aggregation

As the spatial scales of the subcolumn (Figure 2e-h) now represent those of AVHRR pixels, a pseudo-retrieval is done for each

subcolumn based on its vertical cloud distribution. CTP, CER and CPH are collected from the uppermost cloud layer. COT

and CWP are integrated over the entire column. If a subcolumn does not contain a single cloud cell it is assigned to be clear,

otherwise cloudy.30

Figure 2 further shows the pseudo retrievals for each subcolumn (panels i-m) for the presented example case. CTP values are

additionally converted to cloud top height (CTH) and cloud top temperature (CTT). COT, CER and CWP are not considered

during twilight and night-time conditions (sun zenith angles above 75◦) to be consistent with the observational data.
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All pseudo-retrievals from all subcolumns are used as input for aggregating monthly properties (averages and histograms)

on a latitude-longitude grid of 0.5◦ resolution. A list of monthly mean cloud properties produced by SIMFERA is shown in

Table 2. Spatially resolved histograms are composed following the Cloud_cci definition (see Table 5 of Stengel et al. (2017a))

with all histograms being compiled for liquid and ice clouds separately. As CTP histograms are used later in this study, their

bin borders are repeated here:5

{ 1, 90, 180, 245, 310, 375, 440, 500, 560, 620, 680, 740, 800, 875, 950, 1100 } hPa.

For the comparisons shown and discussed in section 4 SIMFERA was applied to ERA-Interim data from 1982 to 2014.

Table 2. SIMFERA output of monthly mean cloud properties. Bold font marks properties used for comparisons to observations in this study.

The separation of low, mid-level and high clouds at 680 hPa and 440 hPa for CFClow, CFCmid and CFChigh follows Rossow and Schiffer

(1999).

Variable name Abbrev. Unit Description

Total cloud fraction CFC 1 Total cloud fraction (all clouds)

Low level cloud fraction CFClow 1 Fraction of low-level clouds with CTP larger than 680 hPa

Mid level cloud fraction CFCmid 1 Fraction of mid-level clouds with CTP between 680 hPa and 440 hPa

High level cloud fraction CFChigh 1 Fraction of high-level clouds with CTP lower than 440 hPa

Liquid cloud fraction CPH 1 Fraction of liquid clouds with respect to all clouds

Cloud top pressure CTP hPa Pressure level at uppermost cloud layer top

Cloud top height CTH km Derived from CTP and atmospheric profile

Cloud top temperature CTT K Derived from CTP and atmospheric profile

Cloud effective radius CER µm Effective particle radius at cloud top

(additionally stratified by cloud top phase (CERliq,CERice))
Cloud optical thickness COT 1 Vertical integrated cloud optical thickness

(additionally stratified by cloud top phase (COTliq,COTice))
Cloud liquid water path LWP g/m2 Vertical integrated cloud water path of liquid clouds

Cloud ice water path IWP g/m2 Vertical integrated cloud water path of ice clouds

4 Comparison of ERA-Interim and Cloud_cci cloud properties

In this section the cloud properties of ERA-Interim, which have been adjusted by SIMFERA to simulate satellite retrieved

properties, are compared against the observed properties of the Cloud_cci AVHRR-PM v2.0 dataset by considering climatolo-10

gies of CFC, CPH and CFClow/CFCmid/CFChigh mean values and CTP histograms. In addition, monthly mean/histogram fields

of both data sources were averaged/aggregated to multi-annual properties within the time period 1982 to 2014 (33years). ERA-

Interim cloud properties are presented threfold by applying three different COT thresholds as described in Section 3.2. For all

11



Figure 3. Multi-annual mean cloud fraction (CFC) from ERA-Interim (panels a-c) and Cloud_cci (panel d), where the ERA-Interim cloud

fraction was produced by SIMFERA for three optical thickness thresholds (COTth=0.0, 0.15, 1.0, respectively). Panel e: zonal mean plot of

CFC for all 4 sets. The grey shaded area corresponds to the estimated systematic uncertainty in Cloud_cci CFC based on comparisons to

CALIOP. The uncertainty in Cloud_cci is mainly due to missing optically very thin clouds.

zonal mean comparisons the estimated systematic uncertainty of Cloud_cci data is given to facilitate a better interpretation of

the results.

4.1 Cloud fraction

Figure 3 shows multi-annual mean CFC for Cloud_cci AVHRR-PM data and for ERA-Interim. In general, ERA-Interim clouds

present very similar global patterns compared to Cloud_cci with high cloud fractions in the mid- and high-latitude storm5

track regions, in the Artic, in the inner-Tropics and in regions with persistent marine stratocumulus. Low cloud fractions

are in particular found in the subtropical subsidence regions. When considering all clouds in ERA-Interim (COTth=0.0) a
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general underestimation of CFC is however found compared to Cloud_cci. This underestimation in ERA-Interim is outside

the estimated systematic uncertainty of Cloud_cci. Exceptions are the polar regions in which ERA-Interim has significantly

higher CFC than Cloud_cci, even outside the reported uncertainty range. The general underestimation of CFC in ERA-Interim

outside the polar regions is in line with results found by Free et al. (2016) for the continental US. Removing the optically thin

clouds from ERA-Interim, which had been found to be under-represented in Cloud_cci, further increases the underestimation5

of ERA-Interim CFC compared to Cloud_cci between 60◦S and 60◦N. The reduction in CFC, when removing the optically

thin clouds, is highest in the polar regions, e.g. over Antarctica more than 20 % of all clouds in ERA-Interim have optical

thicknesses lower than 0.15. Removing all clouds with an optical thickness below 1 leads to a further reduction in CFC, most

prominently in the high latitudes and polar regions. The agreement between the two datasets and the sensitivity of ERA-Interim

to changes in COTth are remarkably different for different cloud levels, which is elaborated on in the next subsection.10

4.2 Vertical cloud distribution

Figure 4 shows multi-annual mean cloud fraction for three vertical layers: CFChigh, CFCmid and CFClow. In contrast to the

total cloud fraction, for which a significant underestimation was found in ERA-Interim, the high cloud fraction reveals partly

opposite characteristics. Many more high clouds are found in ERA-Interim than in Cloud_cci. The difference amounts up to

20 % cloud fraction, being largest in the mid and higher latitudes, but also in the Tropics the difference is approximately 10 %.15

In the Cloud_cci dataset, CFChigh also has the highest systematic uncertainty as again shown by the grey shading embedding

the ERA-Interim results. Removing the optically thin clouds from ERA-Interim reduces the CFChigh significantly, highlighting

the large contribution of optically thin clouds to ERA-Interim CFChigh. When applying COTth=0.15, ERA-Interim CFChigh

drops by 5 to 10 % - still being higher than Cloud_cci in the mid and high latitudes. In the Tropics, ERA-Interim CFChigh

is already lower than Cloud_cci in this set-up. For COTth=1.0 ERA-Interim CFChigh is more than halved, now being below20

Cloud_cci for all latitudes.

Considering mid-level clouds, the ERA-Interim cloud fraction is lower than in Cloud_cci. The difference in CFCmid is

about 5 to 10 %, correlating with the amount of CFCmid. The systematic uncertainty in Cloud_cci CFCmid has a different sign

compared to CFChigh, which is assumed to be a results of high clouds being classified as mid-level clouds, as the CTP retrieval

in Cloud_cci is biased high for these thin clouds. The ERA-Interim CFCmid has nearly no sensitivity to the varying COTth25

(except over Antarctica), showing a very small increase in CFCmid for increasing COTth. This is probably due to fewer clouds

leaving the mid-level cloud class than being added from the high level cloud class for increasing COTth. Generally, ERA-

Interim CFCmid lies slightly outside the Cloud_cci uncertainty range indicating too few mid-level clouds in ERA-Interim.

For low clouds a good agreement of ERA-Interim CFClow with Cloud_cci is found, the difference being within 10 %. ERA-

Interim has fewer clouds than Cloud_cci for nearly all latitudes except in the Arctic regions, where ERA-Interim is about 10 %30

higher than Cloud_cci, and some parts of the Tropics, where CFClow is nearly equal between both datasets. Looking at the

global maps of CFClow, the agreement of the spatial patterns between ERA-Interim and Cloud_cci is remarkable. Similar to

mid-level clouds, very little change is found for ERA-Interim CFClow when varying COTth, which can have a similar reason as
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discussed above for mid-level clouds. In addition, low-level clouds are mainly water clouds, which usually have COTs higher

than 1.0 anyway.
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Figure 4. Multi-annual mean cloud fraction from ERA-Interim (rows 1-3) and Cloud_cci (row 4) for high (CFChigh, left column), mid-level

(CFCmid, middle column) and low clouds (CFClow, right column). The ERA-Interim cloud fraction was produced by SIMFERA for three

optical thickness thresholds (COTth=0.0, 0.15, 1.0; rows 1 to 3, respectively). Bottom row: zonal mean plots with grey shaded areas showing

the estimated uncertainty in Cloud_cci CFChigh, CFCmid and CFClow based on comparisons to CALIOP.
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Figure 5. Global, multi-annual, relative frequency histograms of observed Cloud_cci cloud top pressure (CTP) compared to ERA-Interim

CTP after applying SIMFERA with three COT thresholds (0.0, 0.15 and 1.00) - separated in liquid (left) and ice clouds (right).

Figure 5 reports one-dimensional CTP histograms from ERA-Interim and Cloud_cci, separately for liquid and ice clouds.

For liquid clouds there is a negligible impact of the applied COT thresholds on the CTP, as the histograms do not change

significantly. This can be explained by the generally high COT of liquid clouds. The agreement between Cloud_cci and ERA-

Interim histograms is generally good for liquid clouds, with the histograms of both datasets peaking around 875 hPa. It is

assumed that the histograms would fit even better if the ERA-Interim clouds would be allowed to remain supercooled to5

lower temperatures, which would add some mid-level liquid clouds to the histograms and at the same time lower the relative

frequency of low-level clouds.

When considering ice clouds, applying different COT thresholds for inferring CTP has a significant impact as visible in

panel (b) of Figure 5. When applying no threshold (COTth=0.0), the ERA-Interim histogram for ice clouds peaks very high

around 200 hPa. This maximum becomes broader and moves to lower levels (higher CTPs) when COTth=0.15 and COTth=1.010

are applied. For COTth=1.0 the ERA-Interim histogram fits the Cloud_cci data quite well. An exception occurs at lower levels,

for which, nearly insensitive to the applied threshold, higher ice cloud frequencies are found in ERA-Interim. Further analysis

revealed that these low-level ice clouds are located in high latitude regions (not shown). It can be speculated that these low

ice clouds exist at relative warm sub-zero temperatures and would disappear from the ice statistics if liquid cloud water were

allowed to remain liquid until lower temperatures in ERA-Interim.15
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4.3 Cloud thermodynamic phase

Figure 6. Multi-annual mean cloud phase (CPH), presented as liquid cloud fraction, from ERA-Interim (panels a-c) and Cloud_cci (panel

d), where the ERA-Interim liquid cloud fraction was produced by SIMFERA for three top-down optical thickness thresholds (COTth=0.0,

0.15, 1.0), at which the phase was collected from ERA-Interim profiles. Panel e: zonal mean plot of CPH for all 4 sets. The grey shaded area

corresponds to the estimated uncertainty in Cloud_cci CPH based on comparisons to CALIOP.

Figure 6 shows multi-annual mean CPH for Cloud_cci AVHRR-PM data and for ERA-Interim, the latter processed through

SIMFERA for COTth of 0.0, 0.15 and 1.0. A general similarity of the global patterns of ERA-Interim to Cloud_cci is found with,

for example, very high CPH in the marine stratocumulus regions, relatively lower values in the inner Tropics and lowest CPH

values over Antarctica. However, the differences between ERA-Interim and Cloud_cci are large in the mid and high Latitudes5

where CPH drops much more in ERA-Interim than in Cloud_cci, meaning that ERA-Interim has much higher relative ice cloud

frequencies. The occurrence of too few liquid clouds for sub-zero temperature in ERA-Interim is likely caused by a too strict,

linear, liquid-to-ice conversion suppressing all liquid clouds below -23◦ C. This would be in line with the discussion about
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the CTP histograms in the previous paragraph. This issue was also addressed in (Forbes et al., 2016), according to which too

few liquid clouds caused too low top-of-the atmosphere upward solar radiation, although their study was limited to cold air

outbreaks north of the Antarctic ice shield.

When applying COTth=0.15 or COTth=1.0 more liquid clouds are sampled (increase in CPH) in ERA-Interim, relatively

speaking, which seems natural as lower levels usually have higher temperatures than the levels above. While the increase5

in ERA-Interim CPH is only moderate for COTth=0.15 compared to COTth=0 (increase of about 10% CPH in the Tropics

and decreasing impact with higher latitudes), the CPH increase is large for COTth=1.0 (up to 30 % nearly everywhere). The

uncertainty in Cloud_cci (an estimate of which is shown as grey-shaded area in Figure 6e) is rather small and cannot explain

the found differences between ERA-Interim and Cloud_cci.

5 Summary and conclusions10

Global atmospheric models are usually not capable of resolving small-scale, sub-grid processes related to clouds and therefore

use prognostic cloud schemes including parametrizations for connecting grid box variables to sub-grid processes. This is not

only true for GCMs, but also for atmospheric reanalyses, which employ numerical weather prediction models over multiple

decades of data. On the one hand, reanalysis data sets can be considered to be very accurate, e.g. for thermodynamic profiles

such as temperature and moisture, due to the cyclic data assimilation conducted. On the other hand, their cloud properties are15

still modelled exclusively, giving the opportunity to evaluate the cloud-related parametrizations used (which are closely related

to those of GCMs) with observations. Satellite observations are the only source that can provide reference observations with

global coverage and at spatial scales of clouds. However, to overcome the mismatch in spatial scales and in representativeness

between models and satellite observations, satellite simulators are necessary.

In this study a simplified satellite simulator (called SIMFERA) is introduced and applied to ERA-Interim fields with a20

focus on cloud properties. Like already existing satellite simulators, SIMFERA is used to convert the model state into pseudo

satellite observations. Input to SIMFERA are basic model output fields (e.g. temperature, moisture, cloud cover and cloud

condensate), complemented by using model parametrizations for those properties no directly available such as effective radius.

More complex simulators often use synthetic radiances determined by a radiative transfer model (RTM) using the model

fields as input to derive synthetic retrievals of cloud properties. Most commonly they are run online (as part of COSP for25

example) using the temporarily available model fields such as optical properties. Unlike these, SIMFERA can be run offline

on high temporal resolution basic model output, keeping modifications to a minimum and mainly tackling the difference in

horizontal and vertical scales and resolutions. This approach enables more flexibility of the simulator and supports a clearer

back-propagation of the results of comparisons to observations to actual model deficiencies. In more detail, SIMFERA is build

up of three modules: (1) a preprocessor, which determines all necessary input data from available model fields for each grid30

box; (2) a downscaler, which converts the model grid box mean profiles to sub-grid column profiles considering the sub-

grid variability and the finer spatial resolution of the satellite pixel; (3) pseudo-retrieval, which emulates the pixel-scale cloud

property retrieval per column followed by statistical aggregation, which is strongly aligned with the content of the observational
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dataset (e.g., temporal averages and histograms). In summary, unaveraged model fields, such as available from ERA-Interim

reanalysis, undergo the SIMFERA adjustment and are then aggregated to mimic existing satellite-based cloud climatologies

such as the Cloud_cci AVHRR-PM dataset. This dataset was then used in subsequent comparison (for the period 1982-2014)

acting as reference and including estimates of systematic uncertainties.

The comparisons reveal that in terms of global patterns ERA-Interim total cloud fraction agrees very well to the observations.5

However, it is biased low nearly everywhere on the globe. This underestimation amounts to approximately 10%. Exceptions

are the polar regions in which ERA-Interim has partly much higher cloud fraction than the observations. This is caused by

the occurrence of very thin clouds as the overestimation disappears when clouds with low optical thicknesses are filtered out.

The analysis revealed further that the underestimation in total cloud fraction is mainly caused by a lack of mid-level and low

clouds, although the spatial patterns agree well in particular for low clouds. High cloud occurrence in ERA-Interim agrees10

to the observations within their uncertainties. With respect to cloud phase it is found that ERA-Interim has a significant ice

bias. This bias in the corresponding liquid cloud fraction amounts partly to 30 % and is most pronounced in the northern

mid-latitudes, and north- and south-hemispheric polar regions. It is very likely that this is caused by the suppression of liquid

clouds below -23◦ C in ERA-Interim cloud schemes.

In upcoming versions of the Cloud_cci datasets optical and microphysical cloud properties will be improved, facilitating the15

evaluation of corresponding modelled equivalents of those as well.
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