Response to Reviewer 1  (Anonymous Referee)

General comments:

This work investigated impacts of meteorology and aerosols on lightning activities in Africa based
on products from TRMM, MODIS and MERRA and so on. Authors examined six meteorological
variables to analyze the dominant role by thermodynamics and attributed the differences in
lightning under clean and polluted conditions to aerosol effect. They separated the northern Africa
and the southern Africa dominated by dust and smoke aerosols, respectively. And they found
different radiative effects of different aerosol species. This work presents valuable information to
understand aerosol effects on lightning. Some minor questions/suggestions need to be solved are
listed in the following.

General response:

We thank the reviewer for the valuable comments and suggestions that have helped us improve the
paper. Our detailed responses to the reviewer’s questions and comments are listed below.
Comment and Question:

(1) Both MODIS and MERRA can provide aerosol optical depth and aerosol species, why

did authors choose two datasets than one? How did authors combine aerosols, lightning and
meteorological information from different platforms together?

Response:

1.1) We did take into account which data to use and compared MODIS AOD and MERRA total
AOD (60°S—70°N) which shows a good correlation with R=0.88. For total AOD, these two
products are well correlated. We believe that MODIS is closest to the real value among so many
AOD products. So we used MODIS AOD in the statistical analysis. However, MODIS cannot
measure the magnitudes of different aerosol species which contribute to total AOD. So in the
process of determining study areas, we used MERRA total AOD and the AOD of different aerosol
species to ensure that dust and biomass burning aerosols are dominant in these two areas.

1.2) In order to match lightning data (2.5°x2.5°), all AOD (MODIS: 1°x1°) and meteorological
(now called dynamic-thermodynamic) data (1°x1°) are resampled to 2.5°x2.5° resolution grids in
the analysis. For each variable, the value in each grid is the mean value of the closest grids within

a 1.25°radius.



M%R;RA and MODIS AOD (Dark Target - Deep Blue Combined Algorithm,70°N-60°S)

o
3
T
9
L

o
=)
L

o
o
T

R=0.88
MERRA=0.76*"MODIS+0.01

MERRAero AOD (0.55um)
o o
w S

o

0 0.2 0.4 0.6 0.8 1
MODIS AOD (0.55.:m)

Fig. R1. Comparison of global MODIS and MERRA monthly aerosol optical depth (AOD) at 550
nm for the period 2003-2013 (May, June, July of each year). R is the correlation coefficient.

(2) Page 5, Line 85: Referring to dust effect on drought, following articles should be cited.
Huang, J., T. Wang, W. Wang, Z. Li, and H. Yan, Climate effects of dust aerosols over East
Asian arid and semiarid regions, Journal of Geophysical Research: Atmospheres, 119 (2014),
11398-11416, doi:10.1002/2014JD021796.

Huang J., Y. Li, C. Fu, F. Chen, Q. Fu, A. Dai, M. Shinoda, Z. Ma, W. Guo, Z. Li, L. Zhang,
Y. Liu, H. Yu, Y. He, Y. Xie, X. Guan , M. Ji, L. Lin, S. Wang, H. Yan and G. Wang, 2017:
Dryland climate change recent progress and challenges. Reviews of Geophysics, 55, 719-778,
doi:10.1002/2016RG000550.

Response:

Indeed, these two papers are closely related to our study and have been cited/added to the reference
list.

(3) The potential temperature is conserved for a parcel of air that is unsaturated and remains
unsaturated as it rises and sinks. For deep convection condition, it is far away from adiabatic
process. So why don’t use the pseudo-equivalent potential temperature?

Response:

1) Yes, in unstable convection, two processes are involved: the dry process under the cloud base

and the moist process above the cloud base. Potential temperature is conserved in the dry



2)

process, but in the real troposphere, it usually increases with increasing altitude. In this study,
potential temperature is calculated to correct the effect of altitude on the 2-m temperature. Its
horizontal distribution can reflect the thermal condition at the level of equal altitudes: In places
with higher potential temperature, warm air rises. Although potential temperature appears to
have nothing to do directly with the moist process, places with higher potential temperatures
have larger updrafts when the moisture is fixed. Therefore, when there is enough moisture,
places with higher potential temperatures are more favorable for convection.

The pseudo-equivalent potential temperature includes both temperature and moisture and may
be the better choice when investigating the correlation between deep convection (lightning
activity) and a thermodynamic parameter. But in our study, we examine the relative roles of
several parameters and their total contribution to lightning activity, so we selected potential
temperature to reduce the repeatability of humidity information. In an ongoing study, we are

selecting parameters more carefully and evaluating them.

Response: 2018/7/23



Response to Reviewer 2: Earle Williams
(Note that the text in italics is text appearing in the revised paper).
General comments:

This paper is an excellent contribution to the literature on the effects of thermodynamics
and aerosol on lightning activity, and gets high marks for its efforts to study simultaneously
the roles of multiple variables. Only in this way can aerosol and thermodynamic effects get
disentangled. Figure 7 is a remarkable result in showing a consistent optimal AOD value
(=0.3) for effect of aerosol on lightning, on the basis of climatological datasets alone as |
understand it. The two areas in greatest need of attention are the procedures used in the
paper to organize the data sets and make specific plots, and the discussion and
interpretation of same plots. Further details are provided below through an emphasis on
Substantive Issues. This discussion is followed by a detailed editing of the manuscript.

General Response:

We deeply appreciate your exceptionally informative and constructive comments on our
manuscript. We have studied them carefully and have addressed all the issues raised with
several additional analyses. The changes are explained in the following responses, and also
marked in the revised manuscript. Please excuse us for the exceptionally long responses (44
pages) as a result.

Substantive Issues:

(1) Data sampling

Coming back to Figure 7, the most important single result in the paper, some comments are
in order about data sets and sampling. Maybe the most remarkable aspect of Figure 7 is
that it shows consistent behavior with AOD for two regions with very different aerosol
characteristics. And somewhere it needs to be stated clearly that the data points in that plot
do not represent simultaneous lightning and aerosol measurements on the same storm or
in the same grid square, but instead points drawn from two independent climatologies
developed over many years of observations, one for lightning and one for aerosol. But still |
am confused about the last sentence in the Figure 7 caption which attempts to explain how
this figure was created. More details are needed here. For example, are the 10 samples
mentioned drawn from only the AOD data set or both the LIS and AOD data sets? And since
both lightning and AOD data sets have samples through all the seasons (though with
resolution degraded from monthly), are all seasons represented in this plot (and other plots,
see below)?

Response:

1.1) Yes, lightning and aerosol data are not simultaneous measurements. They are from two



independent observational climatologies developed over many years (the TRMM LIS
climatology, the LRMTS dataset, and the MODIS monthly products), and collocated in the
same grid square (2.5°x2.5°).

1.2) The last sentence in Figure 7 caption means that we first ordered samples (each sample
includes a pair of AOD and lightning data) by AOD from small to large, then calculated mean
values (for both AOD and lightning rate) in each 10-sample bin to reduce the uncertainty
caused by the large dispersion in the data. Samples from all seasons are used.

Figure 7 is now recreated and reordered as Figure 9 in the revised paper. The caption has
been rewritten to explain more clearly.
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Fig. R1 (Figure 9 in the paper). Lightning flash rate as a function of aerosol optical depth
(AOD) in the dust- (orange points) and smoke-dominant regions (blue points). Note that all
data pairs (i.e., a three-month mean lightning rate and a three-month mean AOD) are first
ordered by AOD from small to large. Mean values of both AOD and lightning flash rate in
each 10-sample bin are then calculated to reduce the uncertainty caused by the large
dispersion of data. The two curves are created by applying a 100-point moving average (50-
point) thrice to the mean values of lightning flash rate in each 30-sample bin for the dust-
(smoke-) dominant region. Note that data used here are for the entire AOD range but only
shown for the range AOD € (0, 1). Turning points in the boomerang shapes are around AOD
= 0.3. Aerosol-cloud interactions (ACI) play a dominant role in lightning activity under
relatively clean conditions (green zone). As AOD exceeds 0.3, both ACI and aerosol-radiation
interaction (ARI) effects come into play with different magnitudes. For dust aerosols, ACl and
ARI have the same same effect of suppressing convection in the dry environment favorable



for evaporating cloud droplets. The moist environment of central Africa strengthens aerosol
invigoration that offsets the suppression due to ARI, leading to a nearly flat line in the grey
and red zones.

(2) Meteorology versus aerosol

This study is comparing the effects of meteorology (including six meteorological variables)
and aerosol on lightning rate. However, to any physical meteorologist, aerosol is a subset of
meteorology. Shouldn’ t the authors be pitting aerosol effects versus thermodynamic
effects? | guess then we have a problem because SLP is a variable outside the
thermodynamic realm. Please consider.

Response:

Yes, aerosols can also be considered a meteorological variable. Previous studies have
proposed two hypotheses—the thermal hypothesis and the aerosol hypothesis—to explain
the variability in lightning and convective intensity. In this study, we investigate the relative
roles of thermodynamics and aerosols from a climatological perspective. Sea level pressure
determines the weather pattern which may be advantageous or disadvantageous to the
development of convection and lightning activity. Therefore, in our study, we take the sea
level pressure (SLP) into account. However, as you point out, SLP is not a thermodynamic
factor, which, combined with other thermodynamic factors, are considered meteorological
variables. To enable a separate statistical analysis of the aerosol effect, especially the
different dust and smoke aerosol effects, we do not lump aerosols and other meteorological
variables together. As you suggested, it may be better to divide the influential factors into
two groups: (1) dynamic-thermodynamic variables and (2) aerosols.

The term “meteorology” is replaced by the term  “dynamics-thermodynamics” , and the
phrase “meteorological variables” is replaced by the phrase “dynamic-thermodynamic
variables” in the revised paper.

(3) The lightning quantity is a rate

Lightning is often referred to in this work but the real metric for lightning is a flash rate
obtained from the LIS. Hence the suggestion for a slight modification of the paper’ s title.

Response:

We have modified the paper’ s title per your suggestion: “The Climate Impact of Aerosols
on the Lightning Flash Rate: Is it Detectable from Long-term Measurements?”

(4) “Severe storm” terminology

In a couple of places (lines 59, 162), the severe storm usage appears. The problem here is
that a severe storm in USA meteorology is a storm in which very specific thresholds are
exceeded: surface wind speed, hailstone size, and the occurrence of a tornado on the ground.



The great majority of storms studied here will not be in the severe storm category.
Response:

We now use the term “strong convection” instead of “severe storms” .

(5) Linking AOD with CCN concentration in per cc

Figure 7 is one of the highlights of this work in showing maximum values of AOD near 0.3
for the impact of aerosol on lightning rate. The value of these results could be extended by
linking with CCN, a parameter more closely allied with the cloud microphysics pertaining to
lightning and now getting increased attention by virtue of Rosenfeld’ s satellite method to
measure CCN at cloud base height. Towards this end, the work by Andreae et al. (2009,
Atmos. Chem. Phys.) should be cited. According to the least squares fit in Figure 1, for an
AQT of 0.3, the corresponding CCN value is a little less than 2000 per cc. These values are
close to what Hu et al. (2018, manuscript in preparation) are finding for optimal values in
the lightning context.

Response:

The tight relationship between CCNo. and AODsw has been fitted with the power law
function

AODgy, = 0.0027CCN, ,°%* with a very high degree of correlation (r? = 0.88; Andreae et
al., 2009). According to the regression equation, we can deduce CCN concentrations at a
supersaturation of 0.4% (a value commonly used for convective clouds) from retrievals of
AOD at 500 nm. When AO0Dss, = 0.3, the corresponding CCNo. is about 1600 cm™3 which
is close to 1200 ¢m™3 (Rosenfeld et al., 2008). The maxima of the scattering and extinction
efficiency functions often fall near or above the maximum of the mass size distribution of
the aerosol between 400 and 1000 nm so that this part of the size distribution usually has
the strongest influence on A0Ds,. In addition, in regions with high loadings of dust and
sea salt aerosols, the coarse mode (>1 um) may also contribute strongly to AODsqg.
Samples dominated by dust plumes were excluded when fitting the regression equation.
Therefore, CCNo. estimated for the smoke-dominant region is more reliable than that for
the dust-dominant region. However, without any other available CCN data from the dust
aerosol-dominant region, we use CCNo. =1600 cm™3 as a reference value. We will try to
estimate CCN with other methods in a future study.
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Fig. R2. The response of the lightning flash rate to dust and smoke aerosols in the dust-
and smoke-dominant regions. The turning points are around CCNos = 1600 cm™3.

The following “We deduce that the CCN concentration is more closely allied with the

cloud microphysics pertaining to lightning based on the equation fitted by Andreae (2009). The
turning point of the CCN concentration at a supersaturation of 0.4% is 1600 cm* which falls
within the range of 1000-2000 cm* (Mansell and Ziegler, 2013) and is close to 1200 cm”

(Rosenfeld et al., 2008).” is added to the paper (see Lines 445-449).
Fig. R2 is added to the supplemental material (see Fig. S3).
(6) AOD boundaries, defining regimes

Given the central importance of the AOD=0.3 value in Figure 7 (that the reader does not
learn about when AOD boundaries are first discussed in lines 201-205), and the linkage to
CCN in Figure 1 of Andreae et al. (2009), more care should be given to explaining, justifying
and bounding the three regions (clean, intermediate?, and polluted) that are used in this
work. All three regions should be named, and possibly illustrated in Figure 7 where the full
range of AOD is shown, and with early notice about the special transitional value taken from
Figure 7. | am confused in returning to this important Figure because there you show
equations for just two AOD intervals (AOD< 0.3 and AOD>0.3) rather than the three given
mention in the text. It seems to this reviewer that all ambiguities on this topic can be resolved
by appropriate modification of the AOD range in this figure. My recollection is that Altaratz
et al. (2017) did something similar with the AOD scale in their work. This paper on the same
topic (lightning and AOD-measured aerosol) should also be consulted and cited.

Response:



6.1) We choose AOD = 0.3 to separate relatively clean and polluted cases when performing
regression analyses (Figure 7 and Figure 10 are now Figure 9 and 12). The regression
analyses are removed in the revised paper. However, since aerosol loadings change over the
seasons/dynamic-thermodynamic conditions, this threshold value (AOD = 0.3) cannot be
used for every month in the comparison of the lightning rate seasonal variability under clean
and polluted conditions (Figure 2) and in the analysis of the environmental dependence of
the aerosol effect on lightning activity (Figure 9, now Figure 11). Therefore, all data are sorted
by AOD and divided into three equal-sample subsets to retain a good sampling size. The
top third of the AOD range [AOD € (0, 1)] is labeled as polluted, and the bottom third is
labeled as clean. Analyses are only performed between clean and polluted subsets to create
sufficient contrast between the groups (Koren et al., 2012).

6.2) Because clean and polluted regions vary by seasons and by dynamic-thermodynamic
condition, we cannot show them in Figure 7 (now Figure 9). But in Figures 2c and 2d, we
have shown monthly mean AOD values under clean and polluted conditions. Figure R3 is
the same as Figure 9 (now Figure 11) in the manuscript except that only those data
associated with the AOD range (0, 1) are shown to maintain consistency with the analysis of
the seasonal variability in Figure 2. Figure R4 shows mean AOD as a function of the lightning
flash rate and as a function of the six dynamic-thermodynamic variables under clean and
polluted conditions.
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Fig. R3. Differences (polluted minus clean subsets of data) in lightning flash rate as a function
of (a) sea level pressure, (b) potential temperature, (c) mid-level relative humidity, (d)
convective available potential energy (CAPE), (e) vertical wind shear, and (f) 200-hPa

divergence in the dust- (in orange) and smoke-dominant region (in blue). Note that the top



third of aerosol optical depth (AOD) values [AOD € (0, 1)] is labeled as polluted, and the

bottom third is labeled as clean. Vertical error bars represent one standard deviation.
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Fig. R4. (a, e, duplicated) Mean aerosol optical depth (AOD) as a function of the lightning
flash rate in the dust- (in orange) and smoke-dominant (in blue) regions, and under clean
and polluted conditions for five ranges of (b) sea level pressure, (c) potential temperature,
(d) mid-level relative humidity, (f) convective available potential energy (CAPE), (g) vertical
wind shear, and (h) 200-hPa divergence.

6.3) The decision to divide data into two subsets centered on the value AOD = 0.3 and to
divide data into three equal-sample subsets is not random. The latter choice is explained in
6.2) above. The value of AOD = 0.3 that is the location of the turning point is selected from
the scatterplot. We then perform regression analyses before and after the turning point to
reduce the non-linear effect of AOD.

6.4) The range of AOD, i.e., AOD € (0, 1), was carefully thought out. To avoid a higher
probability of misclassification of clouds and aerosols in high AOD regimes (Platnick et al.,
2003) such as AOD < 0.6 (Kaufman et al., 2005), and to minimize the influence of hygroscopic
growth in a humid environment (Feingold and Morley, 2003), differing threshold values of
AOD have been selected [e.g., AOD < 0.8 in Koren et al. (2008), AOD < 0.3 in Koren et al.
(2012), and AOD < 0.4 in Altaratz et al. (2017)]. To have some knowledge of the MODIS AOD
reliability and to retain enough samples, especially in the lightning-deficient region ROI_1,
daily mean AERONET AOD data (averaged over 1200-1500 local time) from the
Banizoumbou site (2.66 E, 13.54'N) during the most polluted months (May-June-July, 2003-
2013) were used to evaluate Aqua/MODIS AOD at around 13:30 local time (2 E-3°E, 13'N-



14'N). Results are shown in Figures R5, R5-1, 2, and 3. The high correlation (R = 0.85)
suggests that MODIS AQOD retrievals are reliable in the dust-dominant region for the total
AOD range with just a few days having large biases. Four days are selected to see if the large
biases are caused by cloud contamination. As shown in Figures R5-1, 2 (MODIS AOD <<
AERONET AOD) and R5-3 (MODIS AOD > AERONET AOD), high MODIS AOD values under
high cloud fraction (CF) conditions are not found, so the influence of cloud contamination
is considered to be small in the dust-dominant region. Dust storms are frequent in spring
and summer and can last a few days to about two weeks, so the odds of AOD > 0.5 is then
very likely as is the probability of AOD > 0.8. To retain enough data, we finally chose all data
with AOD < 1.0 (~99% of total samples) in the dust-dominant region. For ease of comparison
of the aerosol effect between dust and smoke aerosols, the same AOD range is selected for
the smoke-dominant region (~99% of total samples).
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Fig. R5. Daily mean Aqua/MODIS AOD at 550 nm (local time ~13:30) as a function of
AERONET AOD (averaged from 12:00-15:00 local time) over the dust-dominant region for
the period 2003-2013 (May, June, July of each year). The AERONET site is located at
Banizoumbou (2.66°E, 13.54°N), and the region covered by MODIS is (2°E -3°E,13°N -14°
N). The four dots marked with dates (yyyy.mm.dd, where yyyy = year, mm = month, and dd
= day) have relatively large biases.
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Fig. R5-1. Times series (10 — 17 June 2004) of daily mean Aqua/MODIS AOD at 550 nm
(local time ~13:30 averaged over (2°E-3°E,13°N-14°N), blue triangles), high resolution (~7

min) AERONET AOD retrievals made at Banizoumbou (2.66°E, 13.54°N, averaged from
12:00-15:00 local time, red dots), and cloud fraction (CF, pink stars). The largest deviation
appears on 12 June 2004. The two vertical dotted lines present the period 12:00-15:00 local

time.
3 TT T TT T TT T T T TT TT TT T TT TT -—100
* ® N ’
> < CF
241 e 4 + AOD:MODIS * 80
o * AOD:AERONET
B
* : 4
E18f 60
:2. ¥ . <2007.6.30 4 g
S * w
a ! . ©
2 1.2 e o r :x -140
3 L4 ®
” H k > ‘ ¢ ' ) ¢
t * ® °
06 4 gt ¢ 7 ¢ i 5 s A ¥ 420
o N ‘v M ®
«© 4 . ®
0 11 1 1 11 11 11 11 1 1 11 11 11 1 11 11 0
cr cc e cc cc cc o £ & £ = £ oo cc
om ©o © omn ~ W0 om om oM © oM oM oD © oo oM
o o o o~ o o O -~ o o o o (= o
a8 I3 &8 2§ A§ W RV 5 8 8 & 8 L 83
88 88 88 88 88 88 & 5 55 55 & & =S 55
R KK RN KR BN PSS K BN RO = N PPN
oo (==} oo oo [=]=} [=]=} oo (=] [=]=} (=]} [= =} (=] (= =] o0
S8 |] &K R[] &K S8 &K & |K & & | & Q]
Fig. R5-2. Times series (23 June — 8 July 2007) of daily mean Aqua/MODIS AOD at 550 nm
(local time ~13:30 averaged over (2°E -3°E,13°N -14°N), blue triangles), high resolution (~7

min) AERONET AOD retrievals made at Banizoumbou (2.66°E, 13.54°N, averaged from



12:00-15:00 local time, red dots), and cloud fraction (CF, pink stars). The largest deviation
appears on 30 June 2007. The two vertical dotted lines present the period 12:00-15:00 local
time.

T 1T  TT TT 17T TT T TT TT TT T 7100

T
. o + CF
25k . + AOD:MODIS _
. s . * AOD:AERONET 80
+ . L > ADDAEROEED
)
® ] * .
<7 gy -
£ . .1 . M {60
‘: ° o ‘ I3 . 8 ¥
e ° % . [ 4 ° + 2
e 15 * [ . . ! S
a * “ . a °s " o
<) . % é i
< § 4 . 2006.6.21-> 40
1 . b
H v
H : fe gm
L -
o B ¢ \, 20
| 2es o <-2006.6.10 o _
0.5 g2 5
7Y ‘ -
0 11 11 11 11 1 1 11 11 11 11 11 11 11 11 14 11 1 11 0
cc cc £ £ £ € £€c ££ £ €£ ££ ££ ££ ££ £ ££ ££ cc
G® Kw ©® Bw 2 ® B8 O ©w ©® Ko K6 ©B6 ©om oo 06 o6 on ©w
82 52 82 &2 2 & & 82 L2 52 52 8L 82 82 82 82 82 &
0w O N~ 0000 =23 oo v NN [elnel << nwn WO M~ Leleed o0 o0 - NN
9 99 99 9O 9 T Tz T Tz oo T T T T oo QY QN Qg
©© OO O ©© © oo (&) O OO (&) [te]de] O O O O ©© ©© OO
L2 2L L9 Lo 2 L9 99 99 99 99 QQ 99 9O 99 99 99 Q9 99
©© OO O OO © o0 OO ©© OO OO [(el<e] ©© ©© OO O ©O© OO O
[=l=) [=]=} [=]=} o0 o o0 [=l=] [=]=] o0 [=l=] o0 [=]=] o0 [=]=} [=]=} [=]=] o0 [=]=]
oo oo oo o0 o oo oo [=]=) oo oo oo j=]=] oo (==} [=]=} oo oO oo
[3USY [SUSY NN NN N AN NN [SUSY NN NN NN NN [SUSY NN NN [SUSY NN [SUSY

Fig. R5-3. Times series (5-22 June 2006) of daily mean Aqua/MODIS AOD at 550 nm (local
time ~13:30 averaged over (2°E -3°E,13°N-14°N), blue triangles), high resolution (~7 min)
AERONET AOD retrievals made at Banizoumbou (2.66°E, 13.54°N, averaged from 12:00—
15:00 local time, red dots), and cloud fraction (CF, pink stars). The largest deviations appear
on 10 June 2006 and 21 June 2006. The two vertical dotted lines present the period 12:00-
15:00 local time on each of these days.

Totally, the following “To avoid a higher probability of misclassification of clouds and

aerosols in high AOD regimes (Platnick et al., 2003), to minimize the influence of hygroscopic
growth in a humid environment (Feingold and Morley, 2003) and to retain enough samples
especially in the lightning-deficient region, the AOD range in this study is set between 0 and 1,
following the work of Kaufman et al. (2005, AOD<0.6), Koren et al. (2008, AOD < 0.8;
2012,A0D<0.3) and Altaratz et al. (2017, AOD<0.4). In addition, MODIS AOD is evaluated

using daily AERONET AOD data (see Figs. S1 and S1-1, 2, 3 in the supplemental material)..”
is added to the revised paper (see Lines 260-266).

Fig. R3 is added to the revised paper (see Figure 11).
Fig. R5, and R5-1, 2, 3 are added to the supplement material (see Figs. S1 and S1-1, 2, 3).
(7) Selection of variables

The authors choose meteorological variables to investigate, but the physical meaning/
justification for this selection gets short shrift. Furthermore, other studies have considered



different (but more physically relevant to the questions at hand) variables (CBH and warm
cloud depth) that the authors chose to bypass without explanation. It should also be noted
that certain variables will work better in Africa than elsewhere (RH is one), and others will
work poorly in Africa (potential temperature). The linkage between lightning and shear has
been considered in previous studies (Fan et al., 2009; Yoshida et al. (2009, have relevant data
but do not address it directly) and Bang and Zipser (who have a positive relationship but
overlook it). These findings are mixed and so new looks (like this one) are most welcome.

Response:

7.1) We strongly agree with the reviewer’ s comment. There are many variables that can be
selected, and some of them are more physically relevant to lightning activity than others.
Since we are trying to examine the possible effects of dynamic-thermodynamic factors on
lightning activity from a climate perspective, we chose the more commonly used ones that
have been identified and explained previously to be associated with lightning activity (sea
level pressure, potential temperature, mid-level relative humidity, CAPE, wind shear, and
divergence) to represent the influences of dynamics and thermodynamics. Thanks for your
comments, more references are cited. Among them, sea level pressure describes weather
patterns, potential temperature describes the surface thermal condition, mid-level relative
humidity represents mid-level tropospheric humidity which contains information about
clouds, and CAPE denotes the instability of the atmosphere which is determined by the
temperature and humidity profiles. The cloud base height and warm cloud depth can also
be derived from surface temperature and humidity (i.e., dew-point temperature) information.
So, to reduce the duplication of information about temperature and humidity, we selected
relative humidity and potential temperature and did not consider cloud base height and
warm cloud depth.

“However, as statistical theory indicates, more factors will introduce more random noise
and thus undermine the stability of the regression equation. When the sample size is fixed,
the contribution of factors to the multiple regression equation changes little between 5-10
factors (Klein and Walsh, 1983; see Tables S1-1 and S1-2 in the supplemental material), so
5-6 factors should be the best choice.” (added to the paper, see Lines 369-373). This is shown
in Tables R1-1 and R1-2 and is added to the supplemental material (see Tables S1-1 and S1-2).
However, the importance of these factors still needs to be assessed, not only through analyses and

some speculation, but also through quantification with statistical methods. This will be considered
in a future study.

Assume that the Pearson correlation coefficients between the predictor (y) and factors (x;,

Xy, ", X19) and Pearson correlation coefficients between factors are all equal to 7. The sum
of squared residuals (Q) can be derived as:
2
— pr
Q=Syy(1— ) D

1+(p—-D)r



Here, p is the number of factors (p =1,2,...,10). If we set the sum of squares of
deviations Sy, =1, then @ can be calculated using different p and r. Results are shown
in Table R1-1.

Assume that the Pearson correlation coefficients between the predictor (y) and factors (x4,

Xz, ', Xq90) are equal to r, and Pearson correlation coefficients between factors are equal
to /2. The sum of squared residuals (Q) can be derived as:
2
pr
=S, 1l-—— .
Q yy( 1+(p_1)£ (2)

Here, p is the number of factors (p = 1, 2, ..., 10). If we set the sum of squares of deviations
Syy =1, then @ can be calculated using different p and r. Results are shown in Table
R1-2.

Table R1-1. The relationship between the sum of squared residuals (Q) and the number of factors.

o2 1 2 3 4 5 6 7 8 9 10

-
02 096 | 093 | 091 | 090 | 089 | 088 | 087 | 087 | 086 | 086
03 091 | 086 | 083 | 081 | 080 | 078 | 078 | 077 | 076 | 076
04 084 | 077 | 073 | 071 | 069 | 068 | 067 | 066 | 066 | 065
05 075 | 067 | 063 | 060 | 058 | 057 | 056 | 056 | 055 | 055
06 064 | 055 | 051 | 049 | 047 | 046 | 045 | 045 | 044 | 044
07 051 | 042 | 039 | 037 | 036 | 035 | 034 | 034 | 033 | 033
058 036 | 029 | 026 | 025 | 024 | 023 | 023 | 022 | 022 | 022
0.9 019 | 015 | 013 | 012 | 012 | 012 | 011 | 011 | 011 | 011

Table R1-2. The relationship between the sum of squared residuals (Q) and the number of factors.

ot 1 2 3 4 5 6 7 8 9 10

7




0.2 0.96 0.93 0.90 0.88 0.86 0.84 0.83 0.81 0.80 0.79
03 091 0.84 0.79 0.75 0.72 0.69 0.67 0.65 0.63 0.62
0.4 0.84 0.73 0.66 0.60 0.56 0.52 0.49 0.47 0.45 0.43
0.5 0.75 0.6 0.50 0.43 0.38 0.33 0.30 0.27 0.25 0.23
0.6 0.64 0.45 0.33 0.24 0.18 0.14 0.10 0.07 0.05 0.03

In general, the sum of squared residuals decreases little when the number of factors is
greater than five, so 5-6 factors should be the best choice. Another finding is that if the
factors are approximately independent, they contribute much to the decrease in the sum of
squared residuals.

7.2) Yes, wind shear affects the dynamical flow structures around and within a deep
convective cloud. Lightning activity or convection responds to shear in different ways under
different conditions. But from a climatological perspective, shear has no significant effect,
maybe because these mixed impacts cancel each other in the long term.

The following  “The influences of other variables such as wind shear and
convergence/divergence are insignificant from a climatological perspective.” is added to
the revised paper (see Lines 635-636).

The following papers are cited in section 2.1.3 and added to the reference list:
About wind shear: Bang and Zipser, 2016, Richardson and Droegemeier, 2007, Takemi, (2007)
(8) RH as a favored variable in Africa

| did not grasp immediately that you were considering the RH in mid-troposphere, rather
than the surface RH. Please clarify this wherever appropriate. If it is the RH in mid-
troposphere that is selected, some physical interpretation of the importance of this variable
should be discussed, and especially how that can influence the erosion of moist convection
by entrainment. | do not see any discussion on the entrainment issue at all in the present
version. The text below on this RH topic was prepared when | was still under the impression
that the authors were using surface RH. | think | will leave this text in, just for further
consideration of the important thermodynamic side of this challenging problem. When one
considers the full meteorological dynamic range of this variable, it' s limitations as a
correlate to lightning rate should be clear. The largest values during lightning episodes are
~80% and this is a prevalent value over tropical oceans where lightning is least likely. The
contrast between weak lightning activity in the high RH tropical monsoon and in the strong
lightning activity of the low RH pre-monsoon/break period is also widely recognized



(Williams et al., 1992; Rutledge et al., 1992). The reason RH works as a positive correlate with
lightning in Africa is because RH is low and CBH is already high. See for example Williams
and Satori (2004) and follow up work by Venevsky et al. (2014) that are not now cited.

Venevsky, S., Importance of aerosols for annual lightning production at global scale, Atmos.
Chem. Phys. Discuss., 14, 4303-4325, 2014.

Williams, E.R. and G. Satori, Lightning, thermodynamic and hydrological comparison of the
two tropical continental chimneys, J. Atmos. Sol. Terr. Phys., 66, 1213-1231, 2004.

Response:

Thank you for pointing out highly relevant studies that were not cited in our original
manuscript. They have now been added.

The following papers are added to section 2.1.3 and the reference:
About temperature: Reeve and Toumi, 1999; Jayaratne and Kuleshov, 2006, Markson, 2007

About relative humidity: Williams et al., 1992; Redelsperger et al, 2002; Derbyshire et al.,
2004, Xiong et al., 2006; Zhang 2009; Chakraborty et al., 2018

The following papers are cited in section 4.2 and added to the reference list:
About cloud base height: Williams and Satori, 2004; Venevsky, 2014

Yes, in our study, mid-tropospheric relative humidity is used instead of surface relative
humidity.

Both surface and mid- to upper-level relative humidity are closely correlated with
convection:

1) Moderately wet underlying surfaces are recognized as an important factor in facilitating
deep convection. A higher relative humidity results in more lightning activities in dry
regions and less lightning activities in wet regions with a watershed value of relative
humidity of ~72-74% (Xiong et al., 2006). This result can be explained through the
development of unstable convection. Large CAPE and the high conversion efficiency of
CAPE to kinetic energy (large updrafts) are essential to thunderstorms. Williams and
Stanfill (2002) suggest that the transformation from CAPE to kinetic energy can be
reflected by the cloud base height (CBH). Both CAPE and CBH are a function of
temperature and relative humidity, but the change in CBH depends almost only on the
variation in relative humidity (Williams and Satori, 2004). When temperature is fixed, the
moist environment produces large CAPE and a low CBH. So in the development of
convection (the production of lightning activities), a moderately wet underlying surface
is needed.

2) Mid-tropospheric moistening is important for the evolution of deep convection. A
sensitivity test of moist atmospheric convection to mid-tropospheric humidity shows



strong deep convection in moist cases and only shallow convection in the driest case
(Derbyshire et al., 2004). By simulating a dry intrusion event, strong positive associations
were found between mean humidity (between 2—6 km) and convective cloud top heights
(Redelsperger et al., 2002). Anomalously high humidity in the free troposphere (between
850-400 hPa), which tends to increase plume buoyancy, was observed prior to a shallow-
to-deep convection transition (Chakraborty et al., 2018). Wall et al. (2014) also
demonstrated significant differences in convective intensity with respect to variations in
average relative humidity in the 700-500 hPa layer based on proximal thermodynamic
soundings. They also noted that relatively dry air in the middle troposphere could
contribute to increased temperature lapse rates and a hostile environment for weak
convection to develop in. Developing plumes that overcome convective inhibition tend
to be subsequently stronger.

Shallow and congestus cumulus clouds are important means of transporting moisture
from the atmospheric boundary layer to the lower mid-troposphere, thus allowing for
the development of deep convection which can bring moisture to the upper troposphere.
Mid-to-upper tropospheric moisture (between 200-600 hPa) is more likely to be an
effect of convection (Sobel et al., 2003). Moistening the mid-tropospheric environment
can also reduce the dilution effect on CAPE which depends strongly on the degree of
sub-saturation of the entrained air: the drier the entrained air, the larger the effect
(Zhang, 2009), thus facilitating deep convection. So we think there may be no turning
point in the response of lightning to mid-tropospheric relative humidity. Even if there is
one, the three-month smoothed mid-tropospheric relative humidity is less than the
surface relative humidity in the long term. In the dust-dominant region (the smoke-
dominant region), less than 1.3% (8.3%) of mid-level relative humidity values are greater
than 73%. The probability of mid-level relative humidity > 73% is much lower than that of
surface relative humidity (see Fig. R5). Finally, to avoid the nonlinear response of
convection (lightning activity) on surface humidity, we chose mid-tropospheric relative
humidity instead of surface relative humidity.
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Fig. R6. The probability density function (PDF) of (a) surface and (b) mid-level relative
humidity in the dust- and smoke-dominant regions.

The following “Moderately wet underlying surfaces are an important factor in facilitating
deep convection due to the compromise between instability energy (when temperature is
fixed, the atmosphere is wetter, and CAPE is larger) and the transformation efficiency from
instability energy to kinetic energy (when the boundary layer is wetter, the cloud base height
is lower, and updrafts are weaker). Higher surface relative humidity results in more lightning
activities in dry regions and less lightning activities in wet regions with the watershed of
surface relative humidity values at ~72 % to 74 % (Xiong et al., 2006). However, for mid-level
humidity, only shallow convection occurs in the driest case while strong deep convection
occurs in more moist cases (Derbyshire et al., 2004). Strong positive relations are found
between mean humidity (between 2—6 km) and convective cloud top heights (Redelsperger
et al, 2002). Anomalously high humidity in the free troposphere (between 850-400 hPa),
which tends to increase plume buoyancy, is observed prior to a shallow-to-deep convection
transition (Chakraborty et al., 2018). Different from surface moisture as a cause of deep
convection, mid-to-upper tropospheric moisture (between 200-600 hPa) is more likely to
be an effect of convection (Sobel et al., 2003). In addition, moistening the mid-tropospheric
environment can also reduce the dilution effect on CAPE, which depends strongly on the
degree of sub-saturation of the entrained air: the wetter the entrained air, the smaller the
effect (Zhang 2009) which tends to facilitate ensuing deep convection. Therefore, there may



be no turning point regarding the response of lightning to mid-level relative humidity. Even
if there is, three-month-moving-averaged mid-level relative humidity (less than 1 % and 9 %
of the total in the dust- and smoke-dominant regions,

respectively, surpass relative humidity = 73 %) is less than the surface relative humidity (12 %
and 63 % of the total in the dust- and smoke-dominant regions surpass relative humidity
=73 %) in the long-term. Mean relative humidity values at 700 and 500 hPa levels are used
in this study.” is added to the revised paper (see Lines 195-219).

Fig. R6 is added to revised paper (see Figure 4).
(9) Potential temperature

Potential temperature is selected as another variable, presumably as a test of earlier work
that

considered global lightning/temperature relationships and not just Africa. Here is the
problem with the use of this quantity for Africa. The linkage between lightning rate and
thermodynamics clearly involves moist processes. In much of the African continent, there is
insufficient moisture to allow ANY condensation, much less deep moist convection of the
kind productive of lightning. Accordingly, elevated potential temperature is not serving to
enhance moist processes. A second (but related) problem with the use of potential
temperature is that in elevated terrain, the air temperature can be high by virtue of sensible
heat flux, but because the boundary layer height (containing the rich water vapor) is
comparable, the air is still moisture starved and so little lightning producing convection can
occur. A good example is the Rocky Mountains west of Denver. The positive correlation
between lightning and theta in the Sahara Desert (Figure 5) is puzzling to me and deserves
additional explanation. Wet bulb potential temperature includes both temperature and
moisture. We ought to be measuring global warming in that quantity rather than dry bulb
temperature. Why isn’ t this variable being considered in the present context?

Response:

We appreciate the reviewer’ s comments on this point which helped us think through this
issue more deeply.

3) Potential temperature is selected based on the work “Lightning, thermodynamic and
hydrological comparison of the two tropical continental chimneys” (Williams and Satori,
2004) whose study regions are the Amazon and Congo River basins. We note that ROI_1
was not included in that study.

4) Yes, in unstable convection, two processes are involved: the dry process under the cloud
base and the moist process above the cloud base. Potential temperature is conserved in
the dry process, but in the real troposphere, it usually increases with increasing altitude.
In this study, potential temperature is calculated to correct the effect of altitude on the
2-m temperature. Its horizontal distribution can reflect the thermal condition at the level



of equal altitudes: In places with higher potential temperature, warm air rises. Although
potential temperature appears to have nothing to do with the moist process directly,
places with higher potential temperatures have larger updrafts when the moisture is fixed.
Therefore, when there is enough moisture, places with higher potential temperatures are
more favorable for convection.

5) The wet-bulb potential temperature includes both temperature and moisture and may
be the better choice when investigating the correlation between deep convection
(lightning activity) and a thermodynamic parameter. But in our study, we examine the
relative roles of several parameters and their total contribution to lightning activity, so
we selected potential temperature to reduce the repeatability of RH information. In an
ongoing study, we are selecting parameters more carefully and evaluating them.

6) We think the positive correlation between the lightning flash rate and potential
temperature in the Sahara Desert is mainly because we use data from all seasons. Higher
potential temperatures in warmer seasons are also accompanied by higher RHs which
are more likely to produce deep convection compared to the situation in cold seasons.
We note that the absolute number of deep convection events in warmer seasons is not
large. We also note that when we controlled RH, the positive correlation between
potential temperature and the lightning flash rate disappeared.

The following “Taking into account that the linkage between lightning activity and
thermodynamics involves moist processes, some others use wet-bulb temperature or wet-
bulb potential temperature which includes both temperature and moisture (Williams, 1992;
Reeve and Toumi, 1999, Jayaratne and Kuleshov, 2006). It has been demonstrated that CAPE
increases linearly with wet-bulb potential temperature (Williams et al., 1992). In this studly,
we would like to examine the relative roles of several parameters and their total contribution
to lightning activity. In order to select more independent variables and reduce the
duplication of temperature and humidity information, potential temperature is selected.
Although it does not reflect moist processes directly, when the moisture level is high enough,
places with higher temperatures are more favorable for convection.” is added to the revised
paper (see Lines 183-192).

(10) Figure 2 backup

Figure 2 is a useful contribution to this work but more attention is needed to justify it when
it is first introduced and more details are needed for how the curves computed from the
observations in the clean and polluted conditions. An additional sentence or two should
suffice here. This also links with the Substantive Issue on AOD boundaries. It also seems that
no attention is given to thermodynamic variations on either the diurnal or the seasonal times
scale here, so how are the authors disentangling the two contributions. Also some
justification is needed for the selection of the wind parameter and the elevation of 850 mb.

As a general remark, the figures in this paper are full of information but are deserving of



greater

discussion either in the text or in the respective captions.

Response:

1

About the curves: Firstly, we collocate AOD with lightning data (each sample: one AOD-
one lightning rate) and remove those samples with AOD > 1.0. We then order the
samples by AOD from small to large and separate them into three equal sample groups
(the first group with smallest AOD is labeled as clean; the third group with largest AOD
is labeled as polluted).

And an additional sentence “The seasonal and diurnal cycles of the lightning flash rate
and AOD are first examined over the dust- and smoke-dominant regions (Figure 2a).”
is added to the beginning of section 4.1 (see Lines 328-329).

Disentangling diurnal and seasonal contributions.

Fig. R7 shows that CAPE varies throughout the year over both regions with
maximum values in local summer (boreal summer in the dust-dominant region and
austral summer in the smoke-dominant region) and minimum values in local winter. In
the dust-dominant region, CAPE under relatively clean conditions increases in
magnitude more than under polluted conditions in warmer months (from May to
October). In the smoke-dominant region, CAPE under polluted conditions increases in
magnitude more than under clean conditions throughout the whole year. The seasonal
variations in CAPE over both regions show similar seasonal patterns in lightning activity.
This supports the idea of the dominant role of thermodynamics on the seasonal variation
in lightning activity.
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Fig. R7. Seasonal variations in CAPE under relatively clean and polluted conditions



in the dust- and smoke-dominant regions. Clean (polluted) cases are defined as those
CAPE values corresponding to the lowest (highest) third of the aerosol optical depth
(AOD) range [AOD € (0, 1)].

Due to the lack of hourly CAPE data, we do not present the diurnal variation in CAPE.
Instead, we report findings from other studies about the diurnal variation in CAPE.
Ratnam et al. (2013) found a strong diurnal variation in CAPE with a maximum in the
afternoon and a minimum in the early morning hours in all seasons except in winter over
a tropical station based on microwave radiometer measurements. Nesbitt and Zipser
(2003) examined the diurnal cycle of rainfall and convective intensity using TRMM
measurements. They found that land areas have a large rainfall cycle with a marked
minimum in the midmorning hours and a maximum in the afternoon. This is similar to
the patterns of the diurnal variation in lightning activity found in our study. And as they
indicated, this is attributed to convective enhancement by afternoon heating.

Fig. R7 is added to the revised paper (see Fig. S3).

The selection of 850-hPa winds.

Alpert et al. (2004) showed the vertical distribution of Saharan dust based on 2.5-
year model predictions (Fig. R8-1 and Fig. R8-2). The dust-dominant region (8.75°N—
21.25°N, 11.25°W-26.25°E) is closest to the Chad Basin in the Sahara Desert (15°N-17°N,
15°E-17°E, see Fig. R8-1). From these two figures (Fig. R8-1 and Fig. R8-2), we find that
dust aerosols are mainly distributed within the 1-4.5 km layer and are densest under 800
hPa.

The vertical distribution of biomass burning aerosols over the South African-Atlantic
region is shown Fig. R8-3 (from Das et al., 2017). The smoke-dominant region (0°-15°S,
15°E-28°E) is close to B (20°S-10°S) and C (10°S-0°) in Fig. R8-3. GOCART data show
that smoke aerosols are mainly distributed within the 1-3.5 km layer in regions B and C
(see Fig. R8-3). By contrast, CALIPSO data show that aerosol extinction coefficients
decrease sharply below 2 km. However, this is due to the large attenuation of signals at
lower altitudes. So GOCART data are more reliable in reflecting the aerosol vertical
distribution.

Dust and biomass burning aerosols distributed within the altitude range of 1-3.5 km
form the major portion of total aerosols. Therefore, wind fields at 850 hPa and 700 hPa
are both reasonable choices to show the prevailing wind direction which affects the
aerosol transport path. We chose 850 hPa because there was little difference between
the prevailing wind directions at the two levels (see Fig. R9).



Lampeduza isl. Sde-Boker

Fig. R8-1 (from Alpert et al., 2004). Mean vertical profiles of dust concentration (unit:
107 kg m™) for the month of June at 12:00 UTC over Sde-Boker (Israel) in the eastern
Mediterranean (29.5°N-31.5°N, 34°E-36°E), Lampedusa Island in the central Mediterranean
(34.5°N-36.5°N, 11.5°E-13.5°E), the Chad Basin in the Sahara Desert (15°N-17°N, 15°E-17°E),
and a domain within the eastern Atlantic (17°N-19°N, 17°W-19°W). Solid lines show mean
profiles calculated from all available profiles for this specific month that have dust loadings
greater than 0.1 g m™. Dashed (dotted) lines show mean profiles representing high (low)
dust activity, calculated from only those vertical profiles with dust loadings greater (less) than
normal.
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Fig. R8-2 (from Alpert et al., 2004). Vertical distribution of mean model dust concentration
and the one of correlation within the latitudinal cross-section zonal averaged over the
positive correlation area, both in the daytime (12:00 UTC) in the month of April. Solid lines
show the correlation between the ECMWF temperature increments at the ERA model levels
and the TOMS aerosol index during the period from 1979 to 1993. The model dust
concentration (10”7 kg m™) averaged for the month of April 2001-2002 is shown by grayscale



shades.
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Fig. R8-3 (from Das et al., 2007). Comparisons of mean (August-September) smoke
extinction profiles (km™) from CALIOP (in red) and GEOS-5-GOCART (in green) over land
(13°E-35°E) and oceanic (13°E-15°W) parts of the three sub-regions, viz., A (30°S-20°S), B
(20°5-10°S), and C (10°S-0°) of the domain. CALIOP-retrieved cloud extinction profiles (in
blue) are plotted using the upper x-axis for profiles over the ocean to show relative altitudes
of smoke and cloud layers. The mean surface elevations retrieved from CALIOP are shown
using dashed lines on profiles over land.
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Fig. R9. Comparison of the prevailing wind directions at (a) 850 hPa and (b) 700 hPa over
Africa.

(11) Figures 3 and 4

Sufficient details should be included in the text and/or figure captions for Figures 3 and 4 to
enable anyone to replicate the plots. At present, | could not do it. For example, are data from
all seasons used to make these plots, or only the respective lightning seasons? Were data
points taken from every grid square in the two selected regions of interest?

Response:

One sentence “Data used here are from every grid square (2.5°x2.5°) through the whole
year from 2003 to 2013. Dynamic-thermodynamic variables are processed using three-
month running mean filters to match with lightning data.” is added to the caption of Figure

3 (now Figure 5) in the revised paper.

(12) Figure 5 discussion and interpretation

Only four sentences appear in the text to describe what one finds over Africa in the six panels
of Figure 5. Some unaddressed questions: why is the correlation with SLP positive only in a
narrow range of latitude? Why is lightning positively correlated with over wide areas of the
Sahara where there is little lightning, and where hotter conditions are often accompanied
by less moisture? Why is there a narrow belt of zero correlation in the RH plot? What is the
significance of the blue spot in central Africa for the CAPE plot? Why is the correlation with
wind shear positive in much of extratropical Africa but positive in the equatorial region?
What is the nature of the blue zone in the map involving divergence?



Figure 5 (now is Figure 7) has been described again in the revised paper as “Figure 7 shows
that lightning flash rates are well correlated with mid-level relative humidity, CAPE, and
divergence throughout both the dust- and smoke-dominant regions (most parts R > 0.6),
while for other variables, the correlations vary from region to region. In particular, the
correlations between the lightning flash rate and sea level pressure (positive), potential
temperature (negative), and wind shear (positive) near the Earth’ s equator are distinctly
different from those over other regions. We infer that this is because the hot and humid
environment year-round favors deep convection. Wind shear helps organize mesoscale
convection in moist deep convection which produces more lightning. Regarding potential
temperature, rich precipitation helps cool the surface, which causes the negative correlation
between the lightning flash rate and potential temperature. Different from the frontal
system-dominant strong convection in the mid-latitudes, thermal convection more likely
occurs in the tropics with a much smaller air pressure change. The frequent precipitation
may also help create low and high pressure centers on the ground. These two points may
lead to the positive correlation between the lightning flash rate and sea level pressure.”
(see Lines 415-428).

Detailed edits and comments on the text:

Major editing is needed for this manuscript. The important and innovative scientific content
of the paper has justified a detailed editing as the authors are not English-speakers, but in
the future they should make a more concerted effort to clean their manuscript text prior to
submission. Errors abound.

Title: Given that lightning rate rather than lightning is the key observable, shouldn’ t the
title be:  “The climate impact of aerosols on lightning rate: Is it detectable from long-term
aerosol and meteorological data?”

Response: Yes. We have changed the title to: “The Climate Impact of Aerosols on the
Lightning Flash Rate: Is it Detectable from Long-term Measurements?”

Page 2

Abstract

Line 34 “based on the 11-year dataset of lightning

Sentence rewritten as  “by analyzing 11-year datasets of lightning, =" (Line 35).
Line 35 “from the Moderate Resolution--”

Response: Modified.

Line 38 Why wasn’ t CBH or warm cloud depth selected, given earlier published results of
Williams et al.(2005) and Stolz et al (2017)?

Response:



One goal of this study is to investigate the relative roles of several variables using the multi-
regression method. As statistics textbooks suggest, when the sample size is fixed, 5-6 factors
are the best choice for developing a multi-regression equation. More factors will introduce
more random noise and thus undermine the stability of the regression equation. CAPE is the
vertical integral of the buoyancy of an air parcel lifted from the boundary layer to the neutral
buoyancy level which contains temperature and humidity information. Observational studies
indicate that temperature and humidity in the boundary layer determines the variability in
CAPE (Donner and Phillips, 2003). CBH can be derived from surface temperature and
humidity and is mainly determined by surface RH (Williams and Satori, 2004). The warm
cloud depth (WCD) is defined as the distance between the cloud base and the local height
of the 0°C isotherm. So, to reduce the duplication of information about temperature and
humidity, we chose to use the fundamental variables mid-level relative humidity, potential
temperature, and CAPE, and did not consider CBH or WCD. However, the importance of
these factors still needs to be assessed, not only through analyses and some speculation,
but also through quantification with statistical methods. This will be considered in a future
study.

Lines 48-49 Why is this so?

Response: From our statistical analysis, RH and CAPE are the top two factors modulating
lightning activity and have the top two highest correlation coefficients and standardized
regression coefficients.
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Line 51 Need to check this special value of AOD = 0.3 in the context of the Andreae et al.
study linking AOD and CCN.

Response: Refer to the response to Substantive Issue (5).

Line 51 “lightning flash rate increases monotonically-"

Corrected.

Line 54 “enhance and suppress” without further explanation is confusing here
Response: Modified and removed.
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Introduction

Line 59 “accompanied with a concomitant” is redundant; be careful about use of

“severe” . This has a well-defined formal meaning in meteorology, and by those
definitions the great majority of thunderstorms investigated here will not be in the severe
category. Suggest not to use this term.

Response: We have changed the sentence to “Lightning can be considered a key indicator



of strong atmospheric convection” .

Line 60 Just a comment on this pairing: For many physical meteorologists, aerosol is part of
meteorology. These are not two distinct categories.

Response: As you suggested, it may be better to divide the influential factors into two
groups: (1) dynamic-thermodynamic variables and (2) aerosols. For more details, see the
response to Substantive Issue (2).

Line 63 There was also pioneering work on aerosol effects on lightning in the 1990s by the
cloud microphyscis group in Guadeloupe. See for example the following reference:

Michalon, N, A. Nassif, T. Saouri, J.F. Royer and C. Pontikis, Contribution to the climatological
study of lightning, Geophys. Res. Lett., 26, 3097-3100, 1999.

Response: We have added this reference (Line 60).
Line 73 I don’ tunderstand “constrained” in this context.

Response: The phrase “the constrained water” is replaced by “a fixed liquid water
content” .

Line 76 Better if authors can quantify “conspicuous”

Response: We have added two sentences to quantify “conspicuous” : “More than a 150 %
increase in lightning flashes accompanied a ~60 % increase in aerosol loading. Aerosol
emissions from ships enhanced the lightning density by a factor of ~2 along two of the
world” s main shipping lanes in the equatorial Indian Ocean (Thornton et al., 2017)." (Lines
77-80)
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Line 80 *“and a simple parcel calculation” stops short. What is the authors’ intended
meaning here. Most readers will not understand.

Response: We wanted to say that previous studies found an optimal aerosol concentration
in the response of clouds to aerosols through observations and theory. To help readers
understand, “a simple parcel calculation” is replaced by “a theoretical calculation” .

Line 83 ‘“rainfall in southern China and drought in northern China”
Corrected.

Line 88 Here and elsewhere in the paper: “lightning activity”
Corrected.

Line 89 *“ prompting us to perform:-"

Corrected.



Line 91 Markson (BAMS, 2007) also considered temperature sensitivity of lightning in global
circuit context.

Response: We have added this reference (Lines 98, 179).

Line 94 Bang and Zipser also considered influence of shear in a recent paper. Yoshida et al.
(2009) has indirect evidence for positive shear effects on lightning flash rate.

Response: Yes, Bang and Zipser (2016) examined whether wind shear helps to differentiate
between flashing and non-flashing convective systems and found no significant differences
in shear. The effect of shear has been added to section 2.1.3.

Line 96 Given these physically-based connections with aerosol, why don’ t the present
authors also consider these same variables?

Response: See the response to Substantive Issue (7) on the selection of variables.
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Lines 99-100 A reference would be valuable here.

Response: A reference has been added: Fan et al., 2009.

Line 100 “forming in relatively dry conditions”

Corrected.

Lines 103-104 Authors are non-committal about the SIGN of the effect of shear. That is
appropriate given different results in the literature, but given that, this situation should be
clarified.

Response: We have added some details in Section 2.1.3.
Line 104 “from the invigoration effect”
Corrected.

Line 106 Williams et al. (2005) found the same effect but in CBH rather than in warm could
depth. They are closely related. But it is in this line that | was left with the impression that
you were looking at SURFACE RH rather than mid-tropospheric RH. Please make this clear
in the text, everywhere.

Response: The reference has been added. Throughout this paper, all RH used in the
statistical analysis is mid-tropospheric RH. We now use the full name “mid-level relative
humidity” in the revised paper.

Lines 108-109 See earlier comments on “meteorology and aerosol”

Response: We have used “aerosol and dynamic-thermodynamics” instead.
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Line 118 *“onboard the Tropical Rainfall--"
Corrected.

Line 119 “(TRMM) satellite which was designed---"
Corrected.

Line 120 *“and span all longitudes”

Corrected.

Line 127 *“with the same spatial resolution”
Corrected.

Lines 130-143 Somewhere the full time period of the AOD data set should be given, for
comparison with the eleven year period provided for the LIS lightning data

Response: We have added the time period of AOD “from 2003-2013" (Line 145).
Line 131 “onboard the Aqua satellite:”

Corrected.

Line 133 “based on a dark target-deep-"

Corrected.

Line 136 “data from 1979 till present”

Corrected.

Line 139 “into the Aerosol Robotic"

Corrected.

Line 140 *-(AERONET)-calibrated-"

Corrected.
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Line 142 Is the particle size aspect used in this paper? If not, why bring this up?

Response: The total Angstrom exponent is used in creating Fig. 1b to show the significant
differences in particle size over southern and northern Africa.

Line 148 “Convective Available Potential Energy” , given the acronym in CAPS.
Corrected.

Line 151 Ditto



Corrected.

Line 151 The “most commonly used thermodynamic parameter” for what purpose? Be
specific.

For climate studies, ordinary temperature is much more commonly used than CAPE.

Modified as “CAPE is a thermodynamic parameter commonly used in strong convection
analysis and forecasting.”

Line 153 “of the atmosphere”
Corrected.

Line 154 *“the more unstable is the atmosphere” ; “and more likely is strong vertical air
motion”

Corrected.

Line 156 Williams et al., JGR, 2002 or Williams, 2012, AGU Franklin Lecture are better
references.

Corrected.

Lines 157-158 Suggest rewording to “Unfortunately, reliable updraft measurements are
lacking toward illuminating this role in the present study.”

The sentence was changed to: “However, reliable updraft measurements that would
illuminate this role in the present study are lacking.” (Lines 170-171)
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Line 162 Ditto on use of “severe weather” . Please check formal definition of this term.
Corrected.

Line 166 Markson (BAMS, 2007) should be added here for his investigation of the UT diurnal
dependence of the DC global circuit on temperature.

Added.

Line 168 “temperature systematically declines with altitude”

Corrected.

Line 172

Use of RH as a parameter for lightning rate can bring confusion. When lightning contrast
between monsoon and break period convection is considered, increased RH is associated
with dramatically reduced lightning activity. In Africa, which is moisture started, increased



RH is associated with increased lightning activity.

Response: Yes. In the development of convection (the production of lightning activities), a
moderately wet underlying surface is needed. In this study, we chose to use mid-
tropospheric RH instead to avoid the non-linear effect of surface RH on lightning activity.
For more details, see the response to Substantive Issue (8).

Line 176 Consider including the same references you had before in lines 99-101 here.
Corrected.
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Line 181-182 | experience same confusion here as in the Abstract. Please elaborate here.
Modified and removed.

Line 187 Add space before “Mapes”

Corrected.

Line 191 “In addition, the Bowen ratio (BR) is calculated from the SHF and the LHF to
describe a surface property” ; on completion of the reading of the paper, it appears that
these variables are never discussed again. If that was the intention, why not delete this
information?

Response: BR is calculated to indicate the type of surface so that we can understand the
climatological behavior of the lightning flash rate over the dust- and smoke-dominant
regions in Figure 2. BR is shown in Fig. R10, mentioned on lines 352, 353, and is added
to the supplemental material (Fig. S2).
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Fig. R10. Spatial distribution of the mean Bowen ratio during the period 2003-2013.
Significant regional differences in surface properties over the African landmass are seen.

Line 195 “three-month smoothed average is chosen in this study” ;| am confused about
“three-month” period when an 11 year period was mentioned earlier.

Response: Yes, 11-year datasets are used in this study. But each dataset goes through
three-month moving average smoothing. For example, data for January 2003 is the average
of data from December 2002, January 2003, and February 2003, and so on.

Lines 195-196 Suggest rewording: “allow the LIS to progress twice through the diurnal
cycle at a given location”

Corrected.
Line 196 *“and to show”
Corrected.

Line 199 If the gridding of the basic data is 2.5 x 2.5 deg, why does the sampling in Figures
5 and 6 appear to be finer than this? (Please be careful on procedure throughout this
document. Sampling info should go into the captions of every figure for which this is
appropriate.)

Response: We have checked that the spatial resolution in Fig. 5 and Fig. 6 (now Fig. 7 and
Fig. 8) is indeed 2.5°x2.5°. In these two figures, the longitude range is 20°W-40°E and the



latitude range is 37°S—40°N.
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Line 199 *“taking a 3-month running mean and resampling to-"
Corrected.

Line 200 change “climatic” to “climatological”

Corrected.

Line 202 Justify the choice here.

Response: We have added the following to justify the choice made here: “To avoid a higher
probability of misclassification of clouds and aerosols in high AOD regimes (Platnick et al.,
2003), to minimize the influence of hygroscopic growth in a humid environment (Feingold
and Morley, 2003) and to retain enough samples especially in the lightning-deficient region,
the AOD range in this study is set between 0 and 1, following the work of Kaufman et al.
(2005, AOD < 0.6), Koren et al. (2008, AOD < 0.8, 2012, AOD < 0.3) and Altaratz et al. (2017,
AOD < 04). In addition, MODIS AOD is evaluated using daily AERONET AOD data (see
Figures S8 and S8-1, 2, 3 in the supplemental material).” (Lines 260-266)

Line 203 “top third of the AOD range” ; “and the bottom (lowest) third”
Corrected.

Line 207 "to measure the strength of a relationship between lightning flash rate and
individual

predictors”
Corrected.
Line 208 Need reference for ‘Pearson correlation’

Response: We have added the following reference: “Pearson, K. (1896), "Mathematical
Contributions to the Theory of Evolution. Ill.  Regression, Heredity and
Panmixia," Philosophical Transactions of the Royal Society of London, 187, 253-318.” (Line
272)

Line 211 “test at the 0.05 level”

Corrected.

Line 213 “use a multiple-linear regression method following previous studies”
Corrected.

Line 214 *“and establish a standardized regression-"

Corrected.



Line 215 At this stage of the paper, we do not yet understand the importance of 0.3 so
perhaps some foreshadowing is needed; “reduce the nonlinear effect”

Modified and removed.

Line 216 how does this sorting relate to the three categories of AOD noted above (lines 202-
203)?

Response: When we began investigating the climatological behavior of the lightning flash
rate under relatively clean and polluted conditions, we had no idea about the turning point.
AOD varies seasonally, so to make sure there are enough samples in the clean and polluted
scenarios, we divided the data into three categories according to the AOD range of each
month. After we combined data from all seasons and created the scatterplot seen in Fig. 7
(now Fig. 9), we found a turning point at around AOD = 0.3. So in the following regression
analysis, we divided the data into two groups (AOD < 0.3 and AOD > 0.3) to reduce the
effect of nonlinearity.
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Lines 228 to 229 Wording and meaning are unclear to me here.

Response: It means we use normalization on each variables to remove the effect of units on
the slope value.

Section 3 Shouldn’ tit be “Regions of Interest (ROI)” ?
Corrected.
Line 231 “Northern and southern Africa have high-"

Response: The sentence was rewritten “High loadings of dust and smoke aerosols are
found in northern and southern Africa, respectively, as seen in Figure 1.

Line 234 “It has been estimated that about "

Response: The sentence was rewritten: “About 2—4 billion tons of blown dust is estimated
to be removed from the Sahara Desert annually (Goudie and Middleton, 2001)."

Line 235 Shouldn’ t “globally” be “annually” ?
Corrected.

Line 238 *“accounting for roughly 30 to 50 %"
Corrected.
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Line 244 *“onboard the Aqua satellite”



Corrected.
Lines 246-247 “at a spatial resolution of 0.6250 x 0.50"
Corrected.

Line 249 “have excessive uncertainties over land. The African continent stands out" ;
quantify  “very large”

Response: We could not find a published study quantifying this uncertainty. However,
information is given in the introduction to the MODIS Collection 6 product
(https://darktarget.gsfc.nasa.gov/products/ocean). The preliminary estimated error for the
Angstrom exponent over oceans is 0.45; pixels with an AOD > 0.2 are expected to have a
more accurate Angstrém exponent. The Angstrom exponent over land is no longer included
in Collection 6.

Line 251 *“Africa dominated by smoke”
Corrected.

Line 252 change “they--.” to “these two regions ROI_1 and ROI_2 have been selected
for study”

Response: The sentence was rewritten “Due to their distinct differences in aerosol species,
the dust- and smoke-dominant regions (Figures 1c, 1d) are selected as the study regions
for dust and smoke.”

Line 255 “to study multiple aerosol effects on lightning rate”
Corrected.

Line 257 The use of “long-term” here suggests you will study time series and trends, but
| think you are focused only on climatology; suggest new section title: “Climatological
behavior of lightning rate and aerosol optical depth”

Corrected per your suggestion.

Line 258 Discussion of details of Figure 2a begins abruptly. Some introductory sentences are
needed to show reader where you are headed with this Figure.

Response: The following sentence was added: “The seasonal and diurnal cycles of the
lightning flash rate and AOD are first examined over the dust- and smoke-dominant regions
(Figure 2a).”
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Line 259 “over Africa” ; “neighboring” ; “over the red rectangle shown in Fig.1"

Response: The sentence was rewritten: “Also shown in Figures 1c and 1d are mean wind



vector at 850 hPa over Africa and its neighboring oceans (the area outlined in red in the left
panel), which represent the prevailing wind direction.” (Lines 323-325)

Line 260 delete one “the”

Corrected.

Line 262 “over the dust-dominant region” ; “aerosol-dominant region”
Corrected.

Line 266 Williams (2000, JAM) is relevant here.

Added.

Line 270 “simulations by Lee et al. (2016)"

Response :This sentence has been rewritten “This is well consistent with the finding of an
aerosol-induced delay in precipitation and lightning activity revealed from observations
(Guo et al., 2016) and model simulations (Lee et al., 2016) in southern China.”

Line 274 “shows a pronounced seasonal variation with a huge-”
Corrected.
Line 275-276 The basis for this claim is not entirely clear to me.

Response: We have provided a figure to help disentangle the contribution of
thermodynamics on the seasonal variation in lightning activity. For more details, see the
response to Substantive Issue (8).

Lines 277-278 Need to be more specific about what features you are calling attention to.

Response: We have added the subgraph information to the show where we are talking
about “Figure 2 also shows an apparent enhancement in lightning activity under smoky
conditions superimposed on both the diurnal (Figure 2b) and seasonal cycles (Figure 2d).”

Line 278 “the impact is much weaker than for smoky conditions”
Corrected.
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Line 280 “dominating the region”

Response: Modified and removed.

Line 280 *“Akey factor" Authors are not giving the physical basis here for the importance
of relative humidity. See also earlier Substantive Comments

Response: We have added several sentences to Section 2.1.3. See the response to
Substantive Issue (8).



Line 283 A reference that could be added here pertains to oceanic conditions where RH is
greatest—Thornton et al. (GRL, 2017)

Added.

Line 284 “is located in the vicinity-"

Corrected.

Line 285 “is located in the ITCZ"

Corrected.

Line 286 “and leads to differences in wind shear and instability between the two regions”

Response: The sentence was rewritten. “The dust-dominant region is located in the vicinity
of the African easterly jet (Burpee, 1972) and the smoke-dominant region is located in the
ITCZ (Waliser and Gautier, 1993). Differences in wind shear and instability thus arise between
the two regions.”

Line 287 Aerosol is a part of meteorology

Response: We have replaced the term “meteorology” with “dynamics-
thermodynamics” .

Line 288 “Thermodynamic conditions are considered to play the main role in the diurnal
and seasonal variation of lightning”

Response: The sentence was rewritten: “Diurnal and seasonal variations in lightning activity
depend on dynamic-thermodynamic conditions.”

Line 290 “which are characterized” ; Add CBH or warm cloud depth, or say why they have
not been included.

Response: See the response to Substantive Issue (7).
Line 291 “The violin plot-”

Corrected.

Line 292 “of distributions”

Corrected.

Line 296 Authors mean to say “linear correlations” rather than “linear relationships” .
(The relationships themselves can be non-linear.”

Corrected.
Line 298 “lightning flash rates”

Corrected.



Line 298 Not in the ocean regime. If RH is too high, warm rain will kill the lightning activity.
The authors need to consider the full dynamic range of the variables they select, and the
limitations for regimes outside of the dry African continent.

Response: Moderately high surface RH is more favorable for lightning activity with a
watershed value of 72-74% (Xiong et al., 2006). Mid-level relative humidity is lower than
surface humidity. As shown in Fig. R6, there is a very low probability that mid-level relative
humidity surpasses 73% (< 1% in the dust-dominant region, < 9% in the smoke-dominant
region). So we think there may be no turning point in the response of lightning to mid-
tropospheric RH. Even if there is one, the three-month smoothed mid-tropospheric relative
humidity is less than the surface relative humidity in the long term. For more details, see the
response to Substantive Issue (8).

Page 16

Line 300 I don" tunderstand “variable density shape”

Removed.

Line 303 “characterizes”

Corrected.

Line 305 What can one expect, with author’ s use of potential temperature variable?
Response: See the response to Substantive Issue (9).

Line 306 “that the variables cannot be considered correlated”

Response: The sentence was rewritten”  The small correlation coefficients of the regressions
between the lightning flash rate and sea level pressure, wind shear, and potential
temperature suggest little correlation between these variables and the lightning flash rate.”

Line 307 Yes, ‘“linear correlation” is correct, not “linear relationship”
Corrected.

Line 313 “which is also the case”

Corrected.

Line 314 “lightning”

Corrected.

Lines 314-315 This statement is ignoring the physics.

Response: We have added the following as a possible explanation: “Simulations done by
Weisman and Klemp (1982) show that weak, moderate, and high wind shear produces short-



lived single cells, secondary development, and split storms, respectively. The coarse time
resolution may be why no significant correlation is found between shear and the lightning
flash rate.”

Line 316 “and cannot imply causal relationships”

Corrected.

Line 318 “To provide a visual comparison--"

Corrected.

Figure 5 has altogether too little discussion. (It is getting just four sentences.)
Response: See the response to Substantive Issue (9). We have added more discussions.
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Lines 321-322 What is meant here?

Response: We performed partial correlations between lightning rate and each dynamic-
thermodynamic variable while controlling AOD and the other five dynamic-thermodynamic
variables.

Line 323 “activity”

Corrected.

Line 324 “lightning”

Corrected.

Line 325 “lightning activity by participating in ="
Corrected.

Line 328 “the peak times for lightning” ; Please note that thermodynamics will also change
here.

Response: Yes. Thermodynamics may change with pollution load. Thermodynamics under
relatively clean and polluted conditions are quite different, especially in the smoke-dominant
region. Although we cannot determine the cause-and-effect relationship between aerosols
and thermodynamics, there should be some interplay between them.

Lines 329-330 Why?

Response: Yes, thermodynamics under relatively clean and polluted conditions are quite
different, especially in the smoke-dominant region. Although we cannot determine the
cause-and-effect relationship between aerosols and thermodynamics, they should be some
interplay between them.

Line 331 “condition the lightning response to AOD shows an--"



Response: Modified as “The response of the lightning flash rate to AOD is shaped like a
boomerang "

Line 332 “dust- and smoke aerosol-dominant regions”
Corrected.

Line 333 “the data are divided”

Corrected.

Line 334 “performing correlation and regression”
Response: Modified and removed.

Line 35 “lightning flash rate increases monotonically”
Corrected.

Line 337 “lightning flash rate is strongly-"
Corrected.

Line 338 “implying that under large:”

Response: The sentence was rewritten as  “implying that aerosol-cloud interactions (ACI)
play the dominant role in lightning activity.”

Line 339 “lightning rate is mainly influenced”
Response: Modified and removed.

Line 339 At large aerosol loading, the cloud microphysics changes. See modelling efforts in
Mansell and Ziegler (20137?)

Response: This paper helped us explain the boomerang shape in more detail so has been
cited. (Line 448)

Line 340 quantify “under smoky conditions” in AOD.

Response: From the scatterplot, the turning point is around AOD=0.3. Smoky conditions
means AOD > 0.3 here.
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Line 341 “significant” is repeated; | don’ t understand the rest of this line. Please clarify.
Response: Modified and removed.

Line 343 If | am not mistaken, the Farias studies would pertain to smoke rather than dust
aerosol, as they were carried out in South America.

Response: Yes, Farias et al. (2014) used PM,, data collected in the metropolitan region of



Sao Paulo. We cited this work to show a similar suppression effect of aerosols on lightning.
However, the aerosol type is different so this reference was deleted.

Line 344 “we can easily find” : This claim is unclear. Did the authors find it? Are you able
to find it.

Response: Modified and removed.

Line 345 *“a smoke aerosol-dominant region that is located in the ITCZ"
Response: Modified and removed.

Line 346 “the dust-dominant region sis much drier and so is not so easy:"
Response: Modified and removed.

Line 354 “lightning flash rate increase”

Corrected.

Line 356 change “around” to “near”

Corrected.

Line 358 You mean to say that half the CAPE values are < 100 J/kg?

Response: Yes. All data used have undergone three-month moving average smoothing.
The means represent climatological features including information about lightning and non-
lightning days.

Line 359 How do you know that the effect is entirely thermodynamic?

Response: Thermodynamics play an important role, but we cannot say the effect is entirely
thermodynamic.

Line 360 “the lightning flash rate response to RH in different ways:"

Corrected.
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Line 361 “In the dust-dominant region, flashes increase monotonically--"

Corrected.

Line 363 “constraint on lightning activity”

Corrected.

Line 364 “for the smoke aerosol-dominant region, large lightning flash rates appear-”
Corrected.

Line 365 ‘“response of lightning rate to-"



Corrected.
Line 367 “-remain high.” ; “The data distribute-"
Corrected.

Line 368 Best to remind the reviewer that you are talking about mid-level RH rather than
surface RH.

Response: We replaced RH with mid-level relative humidity throughout the paper.

Line 371 “are still conducive to " ; “but data variance is larger, suggesting:--"
Corrected.
Line 372 “is not as high” ; “the restriction on RH"-"

Response: Corrected, “restriction” is replaced by “dependence”

Line 374 “also contribute to different climate conditions” : the meaning here is unclear to
this reviewer

Response: It has been changed to “ be attributed to different dynamic-thermodynamic
conditions.”

Line 378-379 “Generally, the lightning rates are greater for all these-"
Corrected.

Line 380 “lightning” (typo)

Corrected.

Line 381 “is highly significant (>99%), based on the Student’ s test.”

Corrected.
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Line 383 “In addition, we note that, when SLP decreases and mid-level RH increases, the
differences in lightning rate-"

Corrected.
Line 384 *“conducive conditions”
Corrected.

Line 385 “participate in the cloud microphysics and convective development, and thus to
modulate-"

Corrected.



Line 388 “response of lightning rate”
Corrected.

Line 389 “impacting aerosol loadings”
Corrected.

Line 392 “the aerosol-meteorological variables” and add
Figure 7)"

Corrected.

Line 393 Start new sentence: “The results are shown in-"
Corrected.

Line 394 “For clean conditions”

Corrected.

Line 401 Excellent to constrain all the others.

Thank you.
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“the turning point (AOD=0.3,

Line 402 ‘“regression equation, the coefficients of this equation represent"

Corrected.

Line 405 *“anymore” ; ‘“envisaged” ?

Response: The sentence was rewritten” - are no longer significant.” . “Envisaged” is
removed.

Line 406 “lightning activity through the modulation of meteorological variables:-"

clear what is the physical meaning here.

Not

Response: The weak partial correlation of the AOD-lightning flash rate relationship, the high
Pearson correlation of the AOD-CAPE relationship, and the high partial correlation of the
CAPE-lightning flash rate relationship all suggest that the lightning rate does not respond
much to dust aerosols directly, but dust can affect convection and lightning activity through
the modulation of the thermodynamic variables in aerosol-cloud interactions.

Line 408 “for the dust-dominant region”

Corrected.

Line 411 “The main interplay is between AOD and--"
Corrected.

Line 412 *“and the coefficients”



Corrected.

Line 413 “The standardized multiple regression equation reveal the top three factors:"
Corrected.

Line 414 “as the top restraint factor in the dust-dominant region--"

Corrected.

Line 415 *“In addition, AOD becomes more important--"

Corrected.

Line 416 “meteorology” (typo); What is the meaning here? Correlate well with what
meteorology?

Response: Aerosols correlate well with CAPE (R > 0.75) under clean conditions (AOD < 0.3).
Line 417 | am not sure what the tight cluster distribution is in Figure 9. Please clarify.

Response: In both regions, aerosols correlate well with CAPE (R > 0.75) under clean
conditions (AOD < 0.3) which suggests that aerosols might participate in cloud microphysical
processes: more aerosols acting as CCN leads to a narrower cloud droplet size spectrum,
delays the warm-rain process and allows more liquid water to ascend higher into the mixed-
phase cloud, thus releasing more latent heat, molulating environmental variables (such as
increasing temperature, updraft and CAPE in and above clouds) and producing a more
unstable atmosphere conducive to convective development. The aerosol invigoration effect
may play the key role during this stage (AOD < 0.3). The same directions of the impacts of
aerosols and thermodynamics such as CAPE on the lightning flash rate may be the reason
for the tightly clustered distribution under clean conditions seen in Figure 9.

Line 417-418 CAPE and moist static energy are not the same, so CAPE does not measure it.
Response: This sentence has been deleted.

Line 422 “more latent heat

Corrected.
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Line 423 “conducive to convective development”

Corrected.

Line 426 “meteorology” (typo)

Corrected.

Line 427 “is weakened” ; “meteorology” (typo)

Corrected.



Line 430 | think you have the causality turned around: a dry environment enables dust
aerosol.

Response: We appreciate this comment. Ackerman et al. (2000) demonstrated that dark
haze enhances the solar heating of aerosol layers, increases temperatures, thereby lowering
RH, leading to cloud burning. Under dusty conditions, high dust loadings produce more
cloud droplets which are easy to evaporate and may reduce cloudiness. As the absorption
strength of dust is much smaller than soot, this hardly happens. Perhaps the reviewer’ s
suggestion is more reasonable. We have modified the text “This suggests two things: (1)
drier environments are more favorable for dust emission, and (2) drier mid-level
environments produce a more stable atmosphere and rapid evaporation of the condensate,
leading to the suppression of convection and lightning. "

Line 431 *“and the atmosphere more stable through the aerosol radiative effect”
Corrected.

Line 433-434 “in making the environment drier”

Corrected.

Line 434-435 This finding is surprising to me, but is also what Stolz et al. (2017) concluded.

Response: “The lightning flash rate seems to be saturated in the smoke-dominant region
but is strongly suppressed in the dust-dominant region. This is likely associated with
difference in both aerosol properties and dynamics/thermodynamics which are coupled to
Jointly affect lightning. The different dynamic and thermodynamic conditions between the
two regions may play important roles: 1) The drier the mid-level atmosphere, the more likely
that there is evaporation of cloud droplets that are smaller under heavily polluted conditions.
The aerosol-microphysical-effect-induced evaporation tends to suppress the development
of clouds and inhibits lightning activity in combination with the aerosol radiative effect which
causes surface cooling and leads to an increase in atmosphere stability. Together, the two
factors are compounded, leading to a sharp decline in lightning rate under heavy dusty
conditions in the desert-dominant region. 2) However, clouds in the moister region of
central Africa are less susceptible to evaporation and suppression. The strongly absorbing
smoke aerosols also heat up the aerosol layers (usually below deep convective clouds that
produce lightning), destabilizing the atmosphere above, thus dampening the suppression
effect of the aerosol-radiation interactions. The development of convection and associated
lightning is thus sustained.” (Lines 460-474)

Line 439 “convection-induced” ; “case-based”
Corrected.
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Line 445 *“dust- and smoke-dominant regions”

Corrected.

Line 447 “from the ECMWF--"

Corrected.

Line 448 “features of the diurnal--" ; “show the peakin -"
Corrected.

Line 449 “role of thermodynamics”

Corrected.

Line 452 “lightning flash rates are larger” ; “than under clean ones”
Corrected.

Line 453 “increase much more than when the SLP--" Clarify where this is shown in the
paper.

Response: When we constrain AOD to the range of (0, 1) and recreate Figure 9 (now Figure
11), this feature is no longer seen. This sentence has thus been deleted.

Line 456 “show a boomerang shape”

Corrected.

Line 457 “in an attempt--"

Corrected.

Line 458 *“and to quantify”

Corrected.

Line 459 “Under relatively clean conditions”
Corrected.

Line 461 “two top determinants” ; “in the dust-dominant region”
Corrected.

Line 462 “in the smoke aerosol-dominant region”
Corrected.

Line 463 “on lightning activity”

Corrected.
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Line 464 “through a cloud microphysical effect which may modulate the meteorological ‘"
Corrected.

Line 465 “lightning rate shows a more dispersed--"

Corrected.

Line 466 “of a competition between the aerosol microphysical effect and the radiative--”
Corrected.

Line 469 “cools the surface”

Corrected.

Line 470 “warms the mid-level atmosphere”

Corrected.

Line 471 “dusty conditions”

Corrected.

Line 472 “the aerosol radiative effect”

Corrected.

Line 473 “to a stable atmosphere” ; ‘“lightning” (typo)

Corrected.

Lines 474-475 How do you know this?

Response: There is a large difference in mid-level relative humidity: 1) The mean RH in ROI_1
is ~36%, while the mean RH in ROI_2 is ~74%; 2) There is a much lower probability that relative
humidity surpasses 73% (< 1% in the mid-level troposphere, < 12% at the surface) in the dust-
dominant region than in the smoke-dominant region (~9% in the mid-level troposphere,
~63% at the surface). This large moisture difference may lead to the difference in the
response of lightning to aerosols.

Line 475 *“for the dust-dominant region” ; *“and high CAPE”

Corrected.

Line 476 “help to intensify:-" ; “For the smoke-dominant region-"
Corrected.

Line 477-478 You could list the state variables and the transient variables here.

Response: This sentence is rewritten “The influences of other variables such as wind shear
and convergence/divergence are insignificant from a climatological perspective.” (Lines



635-636).

Line 479 “cannot totally filter them out”
Corrected.

Line 482 “model simulations”
Corrected.
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Line 487 “lightning flash information”

Corrected.
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Figures

Figure 1

Line 574 “from the MERRA dataset”
Corrected.

Line 758 “from the MERRAAero data set” Caption needs to clarify whether pictures are
seasonally integrated. And whatis “BC+OC" ?

Response: Corrected. All figures in this paper cover the period 2003-2013 and include all
seasons. “BC+OC”" means black carbon and organic carbon.

Figur 2
2nd line of caption: “neighboring”

Corrected.



5th line of caption: “enables”

Corrected.

7th line of caption: “calculated” (typo)

Corrected.

8th line of caption: “in the dust-dominant region” ; “smoke-dominant region”
Corrected.

Last line: “Cecil et al., --”

Corrected.

Figures 3 and 4 The caption should tell what time frame is examined and how the monthly
sampling is handled. Why are the CAPE values so low here?

Response: Corrected. All data used here are for the period 2003-2013 and are processed
using a three-month running mean smoothing filter to match with lightning data. Each
sample represents a three-month mean value and includes data with and without lightning
activity. The mean CAPE value is therefore much lower than it is in a lightning case.

Figure 5 The caption should explain exactly how the plots were made. See also other
questions about details of each sub-figure.

Response: We have added more explanations about how the plots were made: “Data used
here are from every grid square (2.5°%2.5°) through the whole year from 2003 to 2013.
Dynamic-thermodynamic variables are processed using three-month running mean filters
to match with lightning data. "

Figure 7 You have excellent opportunity here to show your three ranges of AOD, including
the “clean” and “polluted” range, and the one in between. Also important to explain
exactly what a single point represents on these important plots. The last sentence of the
caption | do not completely understand.

First of all, what is one “sample” ?
Response:

1) Itis a good idea to show three ranges of AOD in Figure 7 (now Figure 9). However, the
problem is that clean and polluted regions vary by season (Figure 2) and dynamic-
thermodynamic condition (Figure 9, now Figure 11), so we cannot show them together
in Figure 7 (now Figure 9). In Figures 2c and 2d, mean values of AOD under clean and
polluted conditions are shown for each month. Figure R4, which shows mean AOD as a
function of the lightning flash rate and as a function of the six meteorological variables
under clean and polluted conditions, has been added here to help explain and analyze
Figure 9 (now Figure 11). See the response to Substantive Issues (6) for more details.



2) One sample, or data point, means a pair of data in each month, e.g., the three-month
mean (e.g., April-May-June) lightning rate and the three-month mean (e.g., April-May-
June) sea level pressure for May 2007.

3) The last sentence means that we first ordered samples by AOD from small to large, then
calculated mean values (for both AOD and lightning rate) in each 10-sample bin to
reduce the uncertainty caused by the large dispersion of data.

Figure 8 What exactly isone “cell” here relative to the climatological maps you are taking
data from? (This gets at the criticism on Procedure again.) Why is CAPE so small?

Response:

1) In Figure 8 (now Figure 10), lightning data is divided into 100 discrete cells: ten decile
bins of the horizontal axis variable and ten decile bins of the vertical axis variable. The
intersection of a specific bin along the x-axis and a specific bin along the y-axis defines
a cell in x-y space.

2) Allvariables here are processed using a three-month running mean smoothing filter and
include data with and without lightning activity. The mean CAPE value is therefore much
lower than it would be in a lightning-only case.

Figure 9 This is an impressive result, with all differences (no exception) taking on a positive
sign. Still confused about “the top third of AOD” . Is that the top third of a full range of
0.9 (0.6 to 0.9), or the top third of a full range of 1.0 (0.66 to 1.0)?

Response:

The top third of AOD is the top third of the full range of values. The full range of values is
0-1.7 for ROI_1 and 0-1.2 for ROI_2 in Figure 9. Figure 9 (now Figure 11) was recreated using
the AOD range 0-1 for both dust- and smoke-dominant regions. Note that the top third of
the range 0-1 does not mean 0.66-1. Data are ordered by AOD from small to large first then
data are divided into three subsets with an equal number of samples in each subset. So
under different dynamic or thermodynamic conditions, the top third of the AOD range varies.

Figure 10 is too complicated for me to understand.
Response:

Here is a table listing the regression coefficients. This may help in understanding Figure 10
(now Figure 12) and has been added to the supplemental material (see Table S2).

Table R2: Linear regression correlations between lightning flash rate and dynamic-thermodynamic factors
(x1—x¢) and AOD (x7) before and after the turning point (AOD = 0.3) for the dust- and smoke-dominant
regions.

ROI Correlation SLP 0 (x2) RH CAPE SHEAR Div AOD
(X1) (x3) (X4) (Xs5) (X6) (x7)




Pearson_1 -0.62 0.52 0.96 0.96 -0.51 0.87 0.75
Pearson_2 -0.74 0.63 0.81 0.76 -0.43 0.74 /
dust
Partial 0.12 0.02 0.44 0.57 0.02 0.16 -0.04
(AOD<0.3)
Equation y =0.07x4 + 0.08x;, + 0.49x3 + 0.49x, + 0.01x5 + 0.09x,
—0.02x, — 1.52x10" 14
Multiple 0.96 (standardized)
Pearson_1 0.26 -0.18 0.89 0.91 -0.09 0.76 | -0.41
Pearson_2 -0.66 0.47 -0.51 -0.33 -0.07 -0.53 /
dust
(AOD>0.3) Partial 0.10 0.16 0.41 0.66 -0.05 0.25 0.04
Equation y = 0.11x; + 0.15x; + 0.34x3 + 0.54x, — 0.02x5 + 0.15x,
+0.02x; — 5.44x1071*
Multiple 0.91 (standardized)
Pearson_1 -0.94 -0.37 0.74 0.96 -0.31 0.83 0.86
Pearson_2 -0.80 -0.43 0.43 0.78 -0.02 0.59 /
smoke
(AOD<0.3) Partial -0.27 -0.21 0.36 0.50 0.31 -0.10 0.50
Equation y = —0.21x; — 0.06x; + 0.32x3 + 0.42x, + 0.13x5 — 0.08x4
+ 0.25x; — 5.28x10~1*
Multiple 0.96 (standardized)

Columns from left to right: (1) Region of interest (ROI). (2) Correlation type: Pearson

correlation coefficients of the linear regression relationships between the lightning flash rate
and the six dynamic-thermodynamic variables and aerosol optical depth (AOD; Pearson_1),

Pearson correlation coefficients of the linear regression relationships between AOD and any



given dynamic-thermodynamic variable (Pearson_2), partial correlation coefficients of the
relationships between the lightning flash rate and any influential factor (AOD or dynamic-
thermodynamic variables) with the others as control variables (Partial). (3) Correlation
coefficients, standardized multiple correlation coefficients (Ry) and standardized multiple
regression equations of the lightning flash rate (y) to six dynamic-thermodynamic factors
(x1 —Xg) and AOD (x7). The six dynamic-thermodynamic variables are sea level pressure
[SLP (x4)], potential temperature [6 (X,)], mid-level relative humidity [RH (x3)], mean
convective available potential energy [CAPE (x,)], vertical wind shear [SHEAR (x5)], and 200-
hPa divergence [Div (x4)]. Correlation coefficients are shown in black if they pass the
significance test at 99%. They are shown in red if they failed the significance test at the 0.05

level.
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Abstract

The effect of aerosols on lightning has been noted in many case studies, but much less is known -

about the long-term impact, relative importance of dynamics-thermodynamics versus aerosol, and

any difference by different types of aerosols. Attempts are made to tackle with all these factors

whose distinct roles are discovered by analyzing 11-year datasets of lightning, aerosol loading and

composition, and dynamic-thermodynamic data from satellite and model reanalysis. Variations in

the lightning rate are analyzed with respect to changes in dynamic-thermodynamic variables and

indices such as the convective available potential energy (CAPE), vertical wind shear, etc. In

general, lightning has strong diurnal and seasonal variations, peaking in an afternoon and summer.

The lightning flash rate is much higher in moist central Africa than in dry northern Africa

presumably because of the combined influences of surface heating, CAPE, relative humidity, and

aerosol type. In both regions, the lightning flash rate changes with AOD in a boomerang shape:

first increasing with AOD, tailing off around AOD = 0.3, and then behaving differently, i.e.

decreasing for dust and flattening for smoke aerosols. The deviation is arguably caused by the

tangled influences of different thermodynamics (in particular humidity and CAPE) and aerosol

type between the two regions. In northern Africa, the two branches of opposite trends seem to echo

the different dominant influences of the aerosol microphysical effect and the aerosol radiative

effect that are more pronounced under low and high aerosol loading conditions, respectively.

Under low AOD conditions, the aerosol microphysical effect more likely invigorates deep

convection. This may gradually yield to the suppression effect as AOD increases, leading to more
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and smaller cloud droplets that are highly susceptible to evaporation under the dry conditions of

northern Africa. For smoke aerosols in moist central Africa, the aerosol invigoration effect can be

sustained across the entire range of AOD by the high humidity and CAPE. This, plus a potential

heating effect of the smoke layer, jointly offset the suppression of convection due to the radiative

cooling at the surface by smoke aerosols. Various analyses were done that tend to support this

hypothesis.
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2, Data and method

2.1 Data

and AOD in...n the lightning activity, finally followed by

2.1.1 Lightning data

We pse lightning data from the Lightning Imaging Sensor (LIS) onboard the Tropical Rainfall

[ Formatted: Font:Bold, Not Italic

Measuring Mission (TRMM) satellite which was designed to acquire and investigate the

distribution and variability of total lightning (i.e,, intra-cloud and cloud-to-ground) on a global

basis, and spans all longitudes between 38°N-38°S, during_the day and night (Boccippio, 2002;

Christian et al., 2003). The LIS on TRMM monitors individual storms and storm systems at a nadir

field of view exceeding 580 kmx580 km with a detection efficiency of 69,% to 90,%. Also used
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2.1.2 Aerosol data
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Aerosol loading is characterized by AOD,which is obtained from observations collected by the

Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua satellite that crosses

the equator at ~13:30 LT, Here, the monthly level 3 global product (MYD08 M3) on a 1°x1° grid

from 2003-2013 is used. The AOD at 0.55 um is retrieved psing the Dark Target-Deep Blue

combined algorithm which is particularly suitable over desert regions (Levy et al., 2013; Hubanks

et al., 2015). The Modern Era—Retrospective, analysis for Research and Application (MERRA) is

a NASA meteorological reanalysis that takes advantage of satellite data from 1979 till the present

using the Goddard Earth Observing System Data Assimilation System Version 5 (GEOS-5). The

assimilation of AOD in the GEOS-5 involves very careful cloud screening and data |

homogenization by means of a peural net scheme that translates MODIS radiances into Aerosol /

Robotic Network (AERONET)-calibrated AODs. The MERRA Aerosol Re-analysis (MERRAero)

provides dust, black carbon, organic carbon, and total extinction AODs, and the total Angstrém \’
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exponent at a spatial resolution of 0.625°x0.5° (da Silva, et al., 2015). These data characterize |

aerosol species and particle size.

2.1.3 Dynamic-thermodynamic, data

Dynamic-thermodynamic data psed are from the Medium-Range Weather Forecasting

(ECMWF) ERA-Interim reanalysis product (Dee et al., 2011). Of interest to this study are the

surface upward sensible heat flux, the surface upward latent heat flux, sea level pressure, 2-m

temperature, CAPE, relative humidity at 700 and 500 hPa, the wind fields at 925 and 500 hPa, and
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divergence at 200 hPa, all with a spatial resolution of 1°x1°. With reference to the findings from

previous studies, we choose the following factors to characterize the dynamics and

thermodynamics:

1) CAPE, CAPE is a thermodynamic parameter, commonly used in strong convection analysis

and forecasting. It describes the potential buoyancy available to idealized rising air parcels and
thus denotes the instability of the atmosphere (Riemann-Campe et al., 2009; Williams, 1992).

The stronger is CAPE, the more unstable is the atmosphere, and the more Jikely is there strong

vertical air motion. Lightning activity increases with CAPE (Williamg, et al., 2002). The

conversion efficiency of CAPE to updraft kinetic energy depends on the strength and width of |

updrafts (Williams et al., 2005). However, reliable updraft measurements that would illuminate

this role in the present study are lacking.

2) Sea level pressure, Atmospheric pressure is a key dynamic factor affecting weather, because it

defines basic weather regimes. Low;zpressure systems are usually associated with strong winds,

warm air, and atmospheric lifting, and normally produce clouds, precipitation, and strong

convective disturbances such as storms and cyclones. An examination of summertime sea level

pressure anomalies in the tropical Atlantic region shows an inverse relationship between sea

level pressure and tropical cyclones (Knaff, 1997).

3) Potential temperature, Many researchers have studied the role of femperature in influencing

lightning activity (Williams, 1992, 1994, 1999; Williams et al., 2005; Markson, 2003, 2007).

However, the direct comparison of air temperatures for different regions is problematic because

air temperature gystematically declines with altitude. We choose potential temperature instead,
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which corrects for the altitude dependence and provides a more meaningful comparison.

Taking into account that the linkage between lightning activity and thermodynamics involves

moist processes, some others use wet-bulb temperature or wet-bulb potential temperature

which includes both temperature and moisture (Williams, 1992; Reeve and Toumi, 1999;

Jayaratne and Kuleshov, 2006). It has been demonstrated that CAPE increases linearly with

wet-bulb potential temperature (Williams et al., 1992). In this study, we would like to examine

the relative roles of several parameters and their total contribution to lightning activity. In order

to select more independent variables and reduce the duplication of temperature and humidity

information, potential temperature is selected. Although it does not reflect moist processes

directly, when the moisture level is suitable, places with higher temperatures are more

favorable for convection. Here, potential temperature (6; in units of K) is calculated from 2:m -
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4) Mid-level relative humidity. Moderately wet underlying surfaces are an important factor in

facilitating deep convection due to the compromise between instability energy (when

temperature is fixed, the atmosphere is wetter, and CAPE is larger) and the transformation

efficiency from instability energy to kinetic energy (when the boundary layer is wetter, the

cloud base height is lower, and updrafts are weaker). Higher surface relative humidity results

in more lightning activities in dry regions and less lightning activities in wet regions with the

watershed of surface relative humidity values at ~72 % to 74 % (Xiong et al., 2006). However

for mid-level humidity, only shallow convection occurs in the driest case while strong deep
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convection occurs in more moist cases (Derbyshire et al., 2004). Strong positive relations are

found between mean humidity (between 2-6 km) and convective cloud top heights

(Redelsperger et al., 2002). Anomalously high humidity in the free troposphere (between 850—

400 hPa), which tends to increase plume buoyancy, is observed prior to a shallow-to-deep

convection transition (Chakraborty et al., 2018). Different from surface moisture as a cause of

deep convection, mid-to-upper tropospheric moisture (between 200-600 hPa) is more likely to

be an effect of convection (Sobel et al., 2003). In addition, moistening the mid-tropospheric

environment can also reduce the dilution effect on CAPE, which depends strongly on the

degree of sub-saturation of the entrained air: the wetter the entrained air, the smaller the effect

(Zhang 2009) which tends to facilitate ensuing deep convection. Therefore, there may be no

turning point regarding the response of lightning to mid-level relative humidity. Even if there

is, three-month-moving-averaged mid-level relative humidity (less than 1 % and 9 % of the

total in the dust- and smoke-dominant regions, respectively, surpass relative humidity = 73 %)

is less than the surface relative humidity (12 % and 63 % of the total in the dust- and smoke-

dominant regions surpass relative humidity = 73 %) in the long-term. Mean relative humidity

values at 700 and 500 hPa levels are used in this study.
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High loadings of dust and smoke aerosols are found in northern and southern Africa

respectively, as seen in Figure 1. Northern Africa is the world’s largest source of mineral dust

(Lemaitre et al., 2010) with the most widespread, persistent dust aerosol plumes and the densest

particulate contribution found on Earth (Prospero et al., 2002). About 24 billion tons of blown

dust js estimated to be removed from the Sahara Desert annually (Goudie and Middleton, 2001).
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smoke emissions due to widespread biomass burning, accounting for roughly 30 to 50 % of the

total amount of vegetation burned globally each year (Andreae, 1991; van der Werf et al., 2003,
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2006, Roberts et al., 2009). In gentral and southern Africa, biomass burning due to wildfires and
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the dust- and smoke-dominant regions (Figure 2a). Figure 2 also shows the diurnal cycle (Figure

2b) and monthly yariations in MODIS-retrieved AOD and lightning flash rate (Figures 2c, 2d)

calculated under relatively clean and polluted (dusty/smoky) conditions over the dust-dominant

region and the smoke-dominant region. The same afternoon peaks in lightning activity are seen in

Figure 2b, suggesting strong convection in the afternoon over land (Williams et al., 2000; Nesbitt

and Zipser, 2003). Peaks in lightning activity over both the dust- and smoke-dominant regions

under polluted (dusty/smoky) conditions pccur 1 h later than those under clean conditions. This js

consistent with the finding of an aerosol-induced delay in precipitation and lightning activity

revealed from observations (Guo et al., 2016) and model simulations (Lee et al,, 2016) in southern

China. Numerous studies have noted that aerosols modulate convection and lightning activit
through both radiative and microphysical processes, as reviewed extensively jn Asia (Li et al.

2016) and around the world (Li et al., 2017b). Monthly variations in dust loading change little

fhroughout the, year (Figure 2¢), while smoke shows a pronounced seasonal variation with a Jarge

contrast between dry and wet seasons (Figure 2d). Lightning activity in both regions is most active

in summer and rarely occurs in winter, which js consistent with the seasonal feature of CAPE

(especially for the smoke-dominant region; see Figure 3), implying that the seasonal variation in

lightning activity is mainly controlled by thermodynamic conditions. Figure 2 also shows an

apparent enhancement jn lightning activity under smoky conditions superimposed on both the

diurnal (Figure 2b) and seasonal cycles (Figure 2d). Under dusty conditions, however, the impact

is much weaker than under smoky conditions. Apart from different aerosol effects, different

climate conditions that exist between the dust- and smoke-dominant yegions, as well as between
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heavy and light loading seasons/conditions for the same type of aerosol, may also contribute. A

key factor is moisture which is much lower over the dust-dominant region (Bowen ratio > 10, see

Fig. S2 in the supplemental material) than over the smoke-dominant region covered with

rainforests (Bowen ratio < 0.4, see Fig. S2 in the supplemental material). The significantly higher

probabilities of high relative humidity over the smoke-dominant region than over the dust-

dominant region for both middle troposphere and surface are shown in Figure 4, The mean mid-

level relative humidity for the dust-dominant region is ~36 % and for the smoke-dominant region

is ~74 %. High values of relative humidity favor the invigoration effect (Fan et al., 2008, 2009;

Khain et al., 2008; Khain, 2009; Thornton et al., 2017), which is likely a major cause for the jntense

lightning activity in the smoke-dominant region. The dust-dominant region is located in the

vicinity of the African gasterly jet (Burpee, 1972) and the smoke-dominant region is located in the -
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two regions,

4.2 Response of lightning to dynamics and thermodynamics,

Diurnal and seasonal variations in lightning activity depend on dynamic-thermodynamic™™.

conditions. We first look at the response of the lightning flash rate to dynamic-thermodynamic

conditions which are characterized by six variables (sea level pressure, potential temperature

CAPE, mid-level relative humidity, wind shear, and divergence). The cloud base height and warm
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Venevsky, 2014; Stolz et al., 2017). However, as statistical theory indicates, more factors will
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introduce more random noise and thus undermine the stability of the regression equation. When

the sample size is fixed, the contribution of factors to the multiple regression equation changes

little between 5—10 factors (Klein and Walsh, 1983; see Tables S1-1 and S1-2 in the supplemental

material), so 5—6 factors should be the best choice. However, the importance of these factors still

needs to be assessed. Since cloud base height and warm cloud depth can be derived from

temperature and humidity, to reduce the duplication of information about temperature and humidity:

we choose to use only the fundamental variables relative humidity and potential temperature. The

violin plot is an effective way to visualize the distribution of data and the shape of distributions

that allows the quick and insightful comparison of multiple distributions across several levels of

categorical variables, It synergistically combines the box plot and the density trace into a single
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display (Hintze and Nelson, 1998).

Figure 5 shows Jinear correlations between the lightning flash rate and the six dynamic-

thermodynamic variables for the dust-dominant region. CAPE, mid-level relative humidity, and

divergence are the top three dynamic-thermodynamic variables strongly and positively correlated

with lightning flash rate (R > 0.7). This suggests that high mid-level relative humidity and CAPE

are conducive to the development of intense convection and that the lightning occurrence js

associated with high-level divergence. One thing to notice is the shape of the density fraces in

Figure 5f. The bimodal distribution indicates that small to moderate high-level divergence may be

due to clear-sky atmospheric movement or in-cloud with a small updraft velocity that does not

produce lightning, Large divergence usually characterizes the strong upward movement closely

associated with lightning activity. Jnverse correlations petween the lightning flash rate and sea

7
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thermodynamic variables and cannot imply causal relationships.

To provide a visual comparison of the dust- and smoke-dominant regions, we show the spatial®

distributions of the correlation coefficients of the regressions between the lightning flash rate and

dynamic-thermodynamic variables. Figure 7 shows that lightning flash rates are well correlated

with mid-level relative humidity, CAPE, and divergence throughout both the dust- and smoke-

dominant regions (most parts R > 0.6), while for other variables, the correlations vary from region

to region. In particular, the correlations between the lightning flash rate and sea level pressure

(positive), potential temperature (negative), and wind shear (positive) near the Earth’s equator are

distinctly different from those over other regions. We infer that this is because the hot and humid

environment year-round favors deep convection. Wind shear helps organize mesoscale convection

in moist deep convection which produces more lightning. Regarding potential temperature, rich

precipitation helps cool the surface, which causes the negative correlation between the lightning ;""

flash rate and potential temperature. Different from the frontal system-dominant strong convection

in the mid-latitudes, thermal convection more likely occurs in the tropics with a much smaller air

pressure change. The frequent precipitation may also help create low and high pressure centers on

the ground. These two points may lead to the positive correlation between the lightning flash rate

and sea level pressure. However, partial correlation analyses show that only CAPE and mid-level

relative humidity are the top two factors affecting lightning activity (Figure 8).

4.3 Contrast in the response of the lightning flash rate to dust and smoke aerosols,

Aecrosols can modulate lightning activity by participating in radiative and microphysical /
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processes. Besides the finding that the peak time for lightning under polluted conditions is delayed

by about 1 h or so (see Figure 2), more informative and revealing features of the impact of aerosols

on lightning are presented in Figure 9. The scatterplot and two curves (100-point and 50-point

running means are applied thrice to the mean values of lightning flash rate in each 30-sample bin

for the dust- dominant region and the smoke-dominant region, respectively) show that lightning

activity is much more intense in the smoke-dominant region located in the ITCZ where the air is

hot and humid regardless of aerosol loading. By contrast, the dust-dominant region is much drier.

making it difficult to produce intense convection and lightning. The response of the lightning flash

rate to AOD is shaped like a boomerang (Koren et al., 2008) with a turning point around AOD =

0.3, and the turning point in the dust-dominant region is slightly ahead of that in the smoke-

dominant region. This is mainly because fewer aerosols are needed to produce small droplets likely

to evaporate in the drier dust-dominant region so the optimal AOD will be lower. We deduce that

the CCN concentration is more closely allied with the cloud microphysics pertaining to lightning

based on the equation fitted by Andreae (2009). The turning point of the CCN concentration at a

supersaturation of 0.4 % is ~1600 cm™ (see Fig. S3 in the supplemental material), which falls

within the range of 1000 — 2000 ¢m™ (Mansell and Ziegler, 2013) and is close to 1200 cm”

(Rosenfeld et al., 2008). Figure 9 is separated into three zones (green, grey, red) to show the

dominant roles of the aerosol microphysical effect and the aerosol radiative effect. In the green

zone, the lightning flash rate increases sharply with increasing aerosol loading in both dust- and

smoke-dominant regions. Data are clustered around the regression lines tightly, and the lightning

flash rate is strongly and positively correlated with AOD, implying that aerosol-cloud interactions
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(ACI) play a dominant role in lightning activity. However, as AOD approaches the turning point

(the grey zone), data become more scattered and the trend is reversed likely because of the joint

impact of the aerosol microphysical effect and the aerosol radiative effect that have opposite signs

of compatible magnitude (Koren et al., 2008; Rosenfeld et al., 2008). However, other dynamic-

thermodynamic effects cannot be ruled out. In the red zone, the response of the lightning flash rate

to aerosol loading is different between dust and smoke aerosols. The lightning flash rate seems to

be saturated in the smoke-dominant region but is strongly suppressed in the dust-dominant region.

This is likely associated with the differences in both aerosol properties and

dynamics/thermodynamics which are coupled to jointly affect lightning. The different dynamic

and thermodynamic conditions between the two regions may play important roles: 1) The drier the

mid-level atmosphere, the more likely that there is evaporation of cloud droplets that are smaller

under heavily polluted conditions. The aerosol-microphysical-effect-induced evaporation tends to

suppress the development of clouds and inhibits lightning activity in combination with the aerosol

radiative effect which causes surface cooling and leads to an increase in atmosphere stability.

Together, the two factors are compounded, leading to a sharp decline in the lightning rate under

heavy dusty conditions in the dust-dominant region. 2) However, clouds in the moister region of

central Africa are less susceptible to evaporation and suppression. The strongly absorbing smoke

aerosols also heat up the aerosol layers (usually below deep convective clouds that produce

lightning), destabilizing the atmosphere above, thus dampening the suppression effect of the

aerosol-radiation interactions. The development of convection and associated lightning is thus

sustained.
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4.4 Environmental dependence of the aerosol effect
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To further clarify the joint influences of dynamics, thermodynamics, and aerosols on lightning .~

activity, the distribution of the lightning flash rate with AOD and the top two influential

thermodynamic variables, i.e., mid-level relative humidity and CAPE (based on the results in

Figures 5-8), are examined in Figure 10. Lightning flash rates are classified into 100 discrete cells

by ten decile bins of horizontal axis variable — ten decile bins of vertical axis variable (AOD —

CAPE, AOD — mid-level relative humidity, and CAPE — mid-level relative humidity) which

ensures approximately equal sample sizes among the cells. The mean values are calculated in each

cell. Looking at the CAPE bins, the lightning flash rate generally increases with increasing AOD

under relatively clean conditions but decreases after the turning point pear AOD, = 0.3 in both

regions, (Figures 10a and 10d). When AOD is fixed, the lightning flash rate monotonically

increases with CAPE. Irrespective of aerosol Joading and yegion, lightning rarely occurs when

CAPE is less than 100 J kg'l, Half of the CAPE data in the dust-dominant region falls below this

value. Systematically higher CAPE in the smoke-dominant region plays an important role in

inducing more intense lightning activity than in the dust-dominant region. However, the lightning

flash rates in the dust- and smoke-dominant regions respond to mid-level relative humidity in

different ways when AOD is fixed (Figures 10b and 10e). In the dust:dominant region, the

lightning flash rate increases monotonically as mid-level relative humidity increases for all AOD

but changes little as AOD increases in each yelative humidity bin. This suggests that, apart from

CAPE, yelative humidity is another yestraint on lightning activity in the dust-dominant region, In

the smoke-dominant region, large lightning flash rates appear in the environment of moderate mid-
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level relative humidity and high aerosol Joading. When yelative humidity is fixed, the response of

the lightning flash rate to AOD also shows a turning point in AOD around AOD, = 0.3, Beyond

this value, the lightning flash rate remains high, When looking into the common yoles of relative

humidity and CAPE on lightning, the data distribution along the diagonal shows that mid-level

relative humidity is highly correlated with CAPE, and that they affect lightning activity in the same

direction. In general, intense lightning activity occurs under high mid-level relative humidity (>

40 %) and high CAPE (> 100 J kg'l) conditions in the dust-dominant region. In the smoke-

dominant region, high CAPE and high mid-level relative humidity are still conducive to lightning

production, but the data yariance is larger, suggesting that the correlation jnvolving mid-level

relative humidity and CAPE js not as high as in fhe dust-dominant region, and the dependence on

relative humidity is reduced.

As shown in Figures 2, 9, and 10, differences jn the lightning response to aerosols in the dust-
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and smoke-dominant regions may also pe attributed to different dynamic-thermodynamic

conditions. To isolate the signal attributed to aerosol Joading from that attributed to environmental

forcing, lightning flash rates are categorized according to six dynamic-thermodynamic variables

(sea level pressure, potential temperature, mid-level relative humidity, CAPE, wind shear, and

divergence). Figure 11 shows the differences jn lightning flash rate between polluted and clean

— —

conditions (polluted minus clean datasets) as a function of these six variables. In general, lightning

flash rates are greater for all these dynamic-thermodynamic variables under polluted conditions

compared with ¢clean conditions in both the dust- and smoke-dominant regions. Lightning

enhancement under polluted conditions js highly significant (> 99,%) based on the Student’s t-test.
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The differences jn lightning flash rates between polluted and clean conditions are smaller in the

dust-dominant region than in the smoke-dominant region. Note that in the dust-dominant region

when sea level pressure decreases and potential temperature increases, differences jn the lightning

flash rate (polluted minus clean datasets) become larger. This suggests that under conductive

conditions (such as a thermal depression which is likely the main synoptic system introducing

lightning activity in this region), aerosols are more likely to participate in cloud microphysics and

convective development, thus modulating lightning activity.

4.5 Relative roles of dynamics-thermodynamics and AOD on the lightning flash rate

The response of the lightning flash rate to changes in AOD may indicate an aerosol effect on

lightning activity, but it can also be the result of dynamics or thermodynamics impacting aerosol

|
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loadings and the cloud microphysical process that is closely associated with lightning production.

To further explore this complex process, the correlations between aerosol — lightning rate,
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shown in Figure 12 (correlation coefficients are listed in Table S2 in the supplemental material).

Under clean conditions (AOD,< 0.3) in the dust-dominant region, all dynamic-thermodynamic

variables and AOD show good correlations with the lightning flash rate ( | R | >0.5). Considering

the interaction between gerosols and dynamics-thermodynamics, the correlation coefficients

between AOD and the six dynamic-thermodynamic variables were calculated. Results show strong,

positive correlations between AOD and jmid-level relative humidity, CAPE, divergence, and
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potential temperature (R > 0.6) and a negative correlation between AOD and gsea level pressure

and wind shear (in order of correlation strength). To investigate the relative roles of these variables

(AOD and the six dynamic-thermodynamic variables), we carry out partial correlation analyses

between the lightning flash rate and any of its influential factors while constraining all the others,

We then establish standardized multiple regression equations where the coefficients of these

equations represent the relative importance of each factor. After the common effects are

constrained, the partial correlation coefficients are much smaller than the Pearson correlation

coefficients, and the correlations between the lightning flash rate and sea level pressure, potential

temperature, and AOD are po longer significant, The weak partial correlation of the AOD-

lightning flash rate relationship, the high Peason correlation of the AOD-CAPE relationship, and

the high partial correlation of the CAPE-lightning flash rate relationship all suggest that the

lightning flash rate does not respond much to dust aerosols directly, but dust can affect convection

and lightning activity through modulation of the thermodynamic variables involved in ACI. From

these analyses, the top three factors are found to be mid-level relative humidity, CAPE, and

divergence for the dustzdominant region under relatively clean conditions. For the clean smoke-

dominant region, analyses show strong positive correlations between the lightning flash rate and

CAPE, AOD, and divergence ( | RA | > 0.7), a strong negative correlation between the lightning
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AOD, and mid-level relative humidity (R > 0.35). Different from yelative humidity as the top

restraint factor in the dust;dominant region, here it plays a smaller role in the humid environment.

AOD also becomes more important in this region. In both regions, aerosols correlate well with

CAPE (R > 0.75) under clean conditions (AOD < 0.3) which suggests that aerosols might

participate in cloud microphysical processes: more aerosols acting as CCN, leads to a narrower

cloud droplet size spectrum, delays the warm-rain process,and allows more liquid water to ascend

higher into the mixed-phase cloud, thus yeleasing more latent heat, modulating environmental

variables (such as increasing temperature, updrafts, and CAPE in and above clouds) and producing

a more unstable atmosphere conducive to convective development. The aerosol invigoration effect

may play the key role during this stage (AOD,< 0.3). The same directions of the impacts of aerosols

and thermodynamics such as CAPE on the lightning flash rate may be the reason for the tightly

clustered distribution under clean conditions seen in Figure 9.

Under polluted conditions, CAPE and jid-level relative humidity are still of pararnount*f» )

importance for lightning activity (Pearson: R > 0.8; Partial: R > 0.35), but the correlation between

aerosols and dynamics-thermodynamics is weakened. This weak connection between aerosols and

dynamics-thermodynamics results in a large dispersion of Jightning flash rates under polluted

conditions in both regions. The most important finding appears to be the negative correlation

between AOD and CAPE (R,= -0.51) and between AOD and mid-level relative humidity (R = -

0.33) in the dust-dominant region. This suggests fwo things: (1) drier environments are more

favorable for dust emission, and (2) drier mid-level environments produce a more stable

aAtmosphere and rapid evaporation of the condensate, leading to the suppression of convection and
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lightning. In the smoke-dominant region, AOD is negatively correlated with mid-level relative

humidity (R = -0.24) which suggests the similar role of drier environments in producing more

smoke aerosols. The negative correlation between AOD and potential temperature (R = -0.74)

reflects the surface cooling that is caused by the radiative effect. No significant correlation is found

between AOD and CAPE (R,= 0, p,> 0.05) which may imply that the radiative effect and the

microphysical effect are comparable under heavy smoke aerosol loading conditions.

5 Conclusions,

Depending on specific environmental conditions, aerosols are able to invigorate or suppress

convection-induced lightning activity. This has been noted in previous case-based studies, This

study attempts to 1) answer a key question of whether aerosol effects on lightning are of long-term

climate  significance, 2) disentangle the complex influences of aerosols and

dynamics/thermodynamics on lightning activity and their mutual dependencies, and 3) investigate

different roles played by different types of aerosols (dust versus smoke) on lightning. Here,

dynamics and thermodynamics are characterized by six variables: sea level pressure, potential

temperature, mid-level relative humidity, convective available potential energy (CAPE), vertical

wind shear, and 200;hPa divergence, Eleven years (2003-2013) of coincident data are used,

including lightning data from the LIS/TRMM, aerosol optical depth (AOD) from_ the

MODIS/Aqua, and dynamic-thermodynamic variables from the ECMWF ERA-Interim reanalysis.

Climatological features of the diurnal and seasonal variations jn lightning flash rate show a peak

in the afternoon and during the local summer, respectively, which suggests the dominant role of
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thermodynamics, while differences in lightning flash rate under relatively clean and polluted -~

conditions signify the potential influences of aerosols. In general, differences jn lightning flash

rates are larger jn moist central Africa dominated by biomass burning than in dry northern Africa

with much dust. Despite the complex and diverse climatic conditions, the response of the lightning
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temperature (R = -0.74), a weak negative correlation with mid-level relative humidity, and no

correlation with CAPE, (R = 0). Note that aerosols cool the surface and warm the mid-level

atmosphere through the radiative effect,which may be less than (for AOD,< 0.3), more than (AOD,>

0.3), or equal to (AOD, = 0.3),the aerosol microphysical effect. Under dusty conditions (AOD >

. the standardized multiple regression equation has a higher .83), and the aeroso
0.3), th dardized Itipl i ion h high RIZVI 0.83 d th 1

convection and Jightning. Lightning flash rates in the dust- and smoke-dominant regions respond

to AOD in different ways mainly because of the different humidity conditions. For the dust:

dominant region, moisture is the maximum constraint, High CAPE, high mid-level relative

humidity, and moderate aerosol loadings help to intensify lightning activity. For the smoke-

dominant region, large values of CAPE, mid-level relative humidity, and AOD (up to 0.3) fuel

lightning. The influences of other variables such as wind shear and convergence/divergence are

insignificant from a climatological perspective. Based on observations alone, however, we cannot

totally filter them out, but can constrain the confounding effect of dynamics and thermodynamics

on lightning activity. More insightful analyses based on a combination of state-of-the-art

observations and convection-revolved model simulations are warranted in the future.
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Figure 2. (a) The distribution of
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