

1 **Evaluating the performance of two surface layer schemes for the**
2 **momentum and heat exchange processes during severe haze pollution in**
3 **Jing-Jin-Ji in eastern China**

4 Yue Peng^{1,2}, Hong Wang^{1,2}, Yubin Li³, Changwei Liu³, Tianliang Zhao², Xiaoye Zhang¹, Zhiqiu Gao^{3,4},
5 Tong Jiang⁵, Huizheng Che¹, Meng Zhang⁶

6 ¹ State Key Laboratory of Severe Weather/Institute of Atmospheric Composition, Chinese Academy of Meteorological
7 Sciences (CMAS), Beijing 100081, China

8 ² Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters/Key Laboratory for Aerosol-Cloud-
9 Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing
10 210044, China

11 ³ Key Laboratory of Meteorological Disaster of Ministry of Education/Collaborative Innovation Center on Forecast and
12 Evaluation of Meteorological Disasters, School of Atmospheric Physics, Nanjing University of Information Science and
13 Technology, Nanjing 210044, China

14 ⁴ State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics,
15 Chinese Academy of Sciences, Beijing 100029, China

16 ⁵ National Climate Center, China Meteorological Administration, Beijing 100081, China

17 ⁶ Beijing Meteorological Service, Beijing 100089, China

18 *Correspondence to:* Hong Wang (wangh@cma.gov.cn)

19 **Abstract.** The turbulent flux parameterization schemes in the surface layer are crucial for air pollution modeling. There have
20 existed some deficiencies in the prediction of air pollutants by atmosphere chemical models, which is closely related to the
21 uncertainties of the momentum and sensible heat fluxes calculated in surface layer. The differences between two surface
22 layer schemes (Li and MM5 schemes) were discussed, and the performances of two schemes were mainly evaluated based on
23 the observed momentum and sensible heat fluxes during a heavy haze episode in Jing-Jin-Ji in eastern China. The results
24 showed that the aerodynamic roughness length z_{0m} and the thermal roughness length z_{0h} played the major roles in the flux
25 calculation. Comparing with the Li scheme, ignoring the difference between z_{0m} and z_{0h} in the MM5 scheme induced a
26 great error in the calculation of sensible heat flux (e.g., the error was 54 % at Gucheng station). Besides the roughness length,
27 the algorithm for surface turbulent flux as well as the roughness sublayer also resulted in certain errors in the MM5 scheme.
28 In addition, magnitudes of z_{0m} and z_{0h} have significant influence on the two schemes. The large z_{0m} and z_{0m}/z_{0h} in
29 megacity with rough surface (e.g., Beijing) resulted in much larger differences of momentum and sensible heat fluxes between
30 Li and MM5, comparing with the small z_{0m} and z_{0m}/z_{0h} in suburban area with smooth surface (e.g., Gucheng). The Li
31 scheme could better characterize the evolution of atmospheric stratification than the MM5 scheme in general, especially for
32 the transition stage from unstable to stable atmospheric stratification corresponding to the PM_{2.5} accumulation. The biases of
33 momentum and sensible heat fluxes from Li were lower about 38 % and 43 % respectively than those from MM5 during this
34 stage. This study indicates the superiority of the Li scheme in describing the regional atmospheric stratification with improving

35 possibility of severe haze prediction in Jing-Jin-Ji in eastern China by coupling it into atmosphere chemical models.

36 **Key words:** surface layer; turbulent flux parameterization; roughness length; numerical modeling; air pollution

37 **1 Introduction**

38 Adequate air quality modeling relies on accurate simulation of meteorological conditions, especially in the planetary
39 boundary layer (PBL) (Hu et al., 2010; Cheng et al., 2012; Xie et al., 2012). The PBL is tightly coupled with the earth's surface
40 by turbulent exchange processes. As the bottom layer of PBL, the surface layer (SL) reflects the surface state by calculating
41 momentum, heat, water vapor and other fluxes, and influences the atmospheric structure by turbulent transport process. Many
42 studies have illustrated the important roles of meteorological factors in the SL during air pollution formation. It has been
43 demonstrated that weak wind speed, high relative humidity (RH) and strong temperature inversion are favorable for the haze
44 concentrating (Zhang et al., 2014; Yang et al., 2015; Liu et al., 2017; Zhong et al., 2017). The strong stable stratification and
45 weak turbulent are mainly responsible for many haze events. The relationship between flux and atmospheric profile in the
46 atmospheric surface layer is a critical factor for air pollution diffusion, especially under stable stratification conditions (Li et
47 al., 2017). However, there are still some uncertainties in the study of stable boundary layer due to the poor description of
48 surface turbulent motion. The simulating study on a severe haze in eastern China by the Weather Research and
49 Forecasting/Chemistry (WRF-Chem) model concluded that current PBL schemes had a weak ability to distinguish between
50 haze days under stable conditions and clean days under unstable conditions (Li et al., 2016a). Another study (Vautard et al.
51 2012) of mesoscale meteorological models also pointed out there was a systematic overestimation of near-surface wind speed
52 in the stable boundary layer which should contribute to the underestimation of surface concentrations of primary pollutions.
53 In addition, atmospheric conditions in both the PBL and upper layers are highly dependent on turbulent fluxes which are
54 computed in the SL (Ban et al., 2010). Flux parameterization in the SL plays an important role in studies of the hydrological
55 cycle and weather prediction (Yang et al., 2001; Li, 2014). An adequate SL scheme is crucial to provide an accurate
56 atmospheric evolution by numerical models (Jiménez et al., 2012) and hence it may introduce significant impacts on air
57 pollution simulation.

58 The bulk aerodynamic formulation based on Monin-Obukhov similarity theory (hereinafter MOST, Monin and Obukhov,
59 1954) is usually employed to calculate surface fluxes in numerical models. Turbulent fluxes are parameterized by wind,
60 temperature, humidity in the lowest layer in the model and temperature and humidity at the surface. Many international scholars
61 verified the MOST using field experiments and then proposed the universal functions, the commonly used of which is
62 Businger-Dyer (BD) equation (Businger, 1966; Dyer, 1967). With the development of observation technology, the coefficients
63 in the BD equation have been further modified (Paulson, 1970; Webb, 1970; Businger et al., 1971; Dyer, 1974; Högström,
64 1996). In addition to the BD equation, some other schemes have been put forward and they performed better especially for

65 strongly stable stratification (Holtslag and De Bruin, 1988; Beljaars and Holtslag, 1991; Cheng and Brutsaert, 2005). The
66 schemes can be divided into two types according to the computing characteristics. One type is called as iterative algorithm
67 (Paulson, 1970; Businger et al., 1971; Dyer, 1974; Högström, 1996; Beljaars and Holtslag, 1991), and it keeps the MOST
68 completely with less approximation so that the results can be more precise. However, it needs to take much more steps to
69 converge and hence the CPU time is consuming which reduces the computational efficiency of modeling (Louis, 1979; Li et
70 al., 2014); The other one is called as non-iterative algorithm (Louis et al., 1982; Launiainen, 1995; Wang et al., 2002; Wouters
71 et al., 2012). There is no requirement for loop iteration in the calculation due to the approximate treatment. This algorithm is
72 much simpler and less CPU time-consuming, but the results are based on the loss of the calculation accuracy.

73 A new non-iterative scheme proposed by Li et al. (2014; 2015, Li hereinafter) speeds up effectively under a higher
74 accuracy comparing with some classic iterative computation. It is remarkable that this new scheme just has been theoretically
75 evaluated and it has never been applied in any models. Haze pollution occurs frequently in recent years in eastern China. The
76 concentration of PM_{2.5} may reach up to 1000 $\mu\text{g m}^{-3}$ in the Beijing-Tianjin-Hebei (Jing-Jin-Ji) region in winter (Wang et al.,
77 2014) while it is generally underestimated by current air quality models (Zhang et al., 2015; Li et al., 2016a; Liu et al., 2017).
78 The Li and another classic SL scheme (Zhang and Anthes, 1982, MM5 hereinafter) were compared in details in this study. The
79 observed momentum and sensible heat flux data covering one complete haze process at Gucheng station were used to evaluate
80 the two schemes focusing on the transition stage from unstable to stable atmospheric stratification corresponding to the PM_{2.5}
81 accumulation. The evaluation is in the view of both local and regional scales. This study may provide the prerequisite for
82 coupling the Li scheme into atmosphere chemical models in the future.

83 2 Theory

84 The definitions of momentum and sensible heat flux as well as the detailed algorithms of the Li and MM5 schemes are
85 introduced in this section.

86 2.1 Introduction of the momentum and sensible heat flux

87 The turbulent fluxes from ground surface are defined as follows:

$$88 \tau = \rho u_*^2, \quad (1a)$$

$$89 H = -\rho c_p u_* \theta_*, \quad (1b)$$

90 where τ is the momentum flux, H is the sensible heat flux, ρ is the air density, c_p is the specific heat capacity at constant
91 pressure. u_* and θ_* are the friction velocity and the temperature scale, respectively, and they represent the intensity of the
92 vertical turbulent flux transport and are approximately independent on height in the SL.

93 Both the Li and MM5 schemes are based on bulk flux parameterization. As an important dimensionless parameter related
94 to the stability, the bulk Richardson number Ri_B is defined as

$$Ri_B = \frac{gz(\theta - \theta_g)}{\theta u^2}, \quad (2)$$

where g is the acceleration of gravity, z is the reference height which is the lowest level in models, θ is the mean potential temperature at height z , θ_g is the surface radiometric potential temperature, u is the mean wind speed at height z . Thus, Ri_B can be computed through meteorological variables from at least two levels.

2.2 The Li scheme

This new scheme employs non-iterative algorithm to compute the surface fluxes. Its basic idea is to parameterize the stability parameter ζ directly with Ri_B and roughness lengths (z_{0m} and z_{0h}). Specifically, bulk transfer coefficients of the momentum and sensible heat fluxes (C_M and C_H) are expressed as

$$C_M = \frac{u_*^2}{u^2} = \frac{\tau}{\rho u^2}, \quad (3a)$$

$$C_H = \frac{u_* \theta_*}{u(\theta - \theta_g)} = - \frac{H}{\rho c_p u(\theta - \theta_g)}. \quad (3b)$$

Based on MOST and considering the roughness sublayer (RSL) effect at the same time, the relationships between the bulk transfer coefficients and the profile functions corresponding to wind and potential temperature are usually expressed as

$$C_M = \frac{k^2}{\left[\ln \frac{z}{z_{0m}} - \psi_M \left(\frac{z}{L} \right) + \psi_M \left(\frac{z_{0m}}{L} \right) + \psi_M^* \left(\frac{z}{L}, \frac{z}{z_*} \right) \right]^2}, \quad (4a)$$

$$C_H = \frac{k^2}{R \left[\ln \frac{z}{z_{0m}} - \psi_M \left(\frac{z}{L} \right) + \psi_M \left(\frac{z_{0m}}{L} \right) + \psi_M^* \left(\frac{z}{L}, \frac{z}{z_*} \right) \right] \left[\ln \frac{z}{z_{0h}} - \psi_H \left(\frac{z}{L} \right) + \psi_H \left(\frac{z_{0h}}{L} \right) + \psi_H^* \left(\frac{z}{L}, \frac{z}{z_*} \right) \right]}, \quad (4b)$$

where k is the von Kármán constant which is 0.4 in both two schemes, R is the Prandtl number which is 1.0 in the two schemes, z_{0m} and z_{0h} are the aerodynamic roughness length and the thermal roughness length, respectively. ψ_M and ψ_H are the integrated stability functions for momentum and sensible heat, respectively, which are also called universal functions.

L is the Obukhov length ($\zeta = \frac{z}{L}$), ψ_M^* and ψ_H^* are the correction functions accounting for RSL effect, z_* is the RSL height.

It is clear to see that the calculation of the momentum and sensible heat fluxes requires C_M and C_H (or u_* and θ_*), and there are 3 key points to get them:

1. z_{0m} and z_{0h} . z_{0m} and z_{0h} are two key parameters in the bulk transfer equations. Their definitions and influences will be discussed in Sect. 4.1. Note that both z_{0m} and z_{0h} are taken into account by the Li scheme. In other words, the Li scheme distinguishes the two principal surface parameters effectively as they generate from different mechanisms.

2. ζ . The determination of ζ is the most crucial problem in the Li scheme. In fact, this new scheme consists of two parts. The first part is proposed for atmospheric stable stratification conditions (Li et al., 2014), and the second part then extends the scheme to unstable conditions (Li et al., 2015). For stable conditions, the calculation procedure for a given group of Ri_B , z_{0m} and z_{0h} is the following: (1) find the region according to z_{0m} and z_{0h} ; (2) find the section according to the region and Ri_B with Eq. (5) and given coefficients; (3) calculate ζ using Eq. (6) and given coefficients.

$$Ri_{Bcp} = \sum C_{mn} (\log L_{0M})^m (L_{0H} - L_{0M})^n, \quad (5)$$

$$\zeta = Ri_B \sum C_{ijk} Ri_B^i L_{0M}^j (L_{0H} - L_{0M})^k, \quad (6)$$

125 where C_{mn} and C_{ijk} are the coefficients listed in Tables in Li et al. (2014). $L_{0M} = \ln \frac{z}{z_{0m}}$, $L_{0H} = \ln \frac{z}{z_{0h}}$. $m, n = 0, 1, 2$,
 126 and $m + n \leq 3$; $i, j, k = 0, 1, 2, 3$, and $i + j + k \leq 4$. Similarly, for unstable conditions, eight regions are divided
 127 according to the method from Li et al. (2015). For each of the regions, ζ is carried out by following:

128

$$\zeta = Ri_B \frac{L_{0M}^2}{L_{0H}} \sum C_{ijk} \left(\frac{-Ri_B}{1-Ri_B} \right)^i L_{0M}^{-j} L_{0H}^{-k}, \quad (7)$$

129 where C_{ijk} is listed in Li et al. (2016b), and $i = 0, 1$; $j, k = 0, 1, 2, 3$; $i + j + k \leq 4$.

130 3. Universal function. It is also a key factor in flux calculation. The form of universal function here is adopted from Cheng
 131 and Brutsaert (2005) under stable conditions (Eqs. (8a), (8b)) and it is adopted from Paulson (1970) under unstable
 132 conditions (Eqs. (9a), (9b)):

133

$$\psi_M(\zeta) = -a \ln \left[\zeta + (1 + \zeta^b)^{\frac{1}{b}} \right], \quad \zeta > 0 \text{ (stable)}, \quad (8a)$$

134

$$\psi_H(\zeta) = -c \ln \left[\zeta + (1 + \zeta^d)^{\frac{1}{d}} \right], \quad \zeta > 0 \text{ (stable)}, \quad (8b)$$

135

$$\psi_M(\zeta) = 2 \ln \frac{1+x}{2} + \ln \frac{1+x^2}{2} - 2 \arctan(x) + \frac{\pi}{2}, \quad \zeta < 0 \text{ (unstable)}, \quad (9a)$$

136

$$\psi_H(\zeta) = 2 \ln \frac{1+y}{2}, \quad \zeta < 0 \text{ (unstable)}, \quad (9b)$$

137 where $a = 6.1$, $b = 2.5$, $c = 5.3$, $d = 1.1$, $x = (1 - 16\zeta)^{1/4}$, $y = (1 - 16\zeta)^{1/2}$.

138 In addition, the RSL effect is taken into account in the Li scheme. The definition and influence of RSL will also be
 139 discussed in Sect. 4.1. De Ridder (2010) proposed the expression of ψ_M^* and ψ_H^* :

140

$$\psi_M^* \left(\zeta, \frac{z}{z_*} \right) = \phi_M \left[\left(1 + \frac{v}{\mu_M z / z_*} \right) \zeta \right] \frac{1}{\lambda} \ln \left(1 + \frac{\lambda}{\mu_M z / z_*} \right) e^{-\mu_M z / z_*}, \quad (10a)$$

141

$$\psi_H^* \left(\zeta, \frac{z}{z_*} \right) = \phi_H \left[\left(1 + \frac{v}{\mu_H z / z_*} \right) \zeta \right] \frac{1}{\lambda} \ln \left(1 + \frac{\lambda}{\mu_H z / z_*} \right) e^{-\mu_H z / z_*}, \quad (10b)$$

142 where $v = 0.5$, $\mu_M = 2.59$, $\mu_H = 0.95$, $z_* = 16.7 z_{0m}$, $\lambda = 1.5$. ϕ_M and ϕ_H are universal functions before
 143 integration. Here, set $\chi_M = 1 + \frac{v}{\mu_M z / z_*}$, $\chi_H = 1 + \frac{v}{\mu_H z / z_*}$:

144

$$\phi_M(\chi_M \zeta) = 1 + a \frac{\chi_M \zeta + (\chi_M \zeta)^b [1 + (\chi_M \zeta)^b]^{\frac{1-b}{b}}}{\chi_M \zeta + [1 + (\chi_M \zeta)^b]^{\frac{1}{b}}}, \quad \zeta > 0 \text{ (stable)}, \quad (11a)$$

145

$$\phi_H(\chi_H \zeta) = 1 + c \frac{\chi_H \zeta + (\chi_H \zeta)^d [1 + (\chi_H \zeta)^d]^{\frac{1-d}{d}}}{\chi_H \zeta + [1 + (\chi_H \zeta)^d]^{\frac{1}{d}}}, \quad \zeta > 0 \text{ (stable)}, \quad (11b)$$

146

$$\phi_M(\chi_M \zeta) = (1 - 16\chi_M \zeta)^{-1/4}, \quad \zeta < 0 \text{ (unstable)}, \quad (12a)$$

147

$$\phi_H(\chi_H \zeta) = (1 - 16\chi_H \zeta)^{-1/2}, \quad \zeta < 0 \text{ (unstable)}. \quad (12b)$$

148 2.3 The MM5 scheme

149 The MM5 scheme is a classic one which is widely applied in modeling investigation (Hu et al., 2010; Wang et al., 2015a,

150 b; Tymvios et al., 2017). This scheme does not distinguish z_{0h} from z_{0m} , thus the roughness length here is expressed as z_0 .
 151 For unstable conditions, the function forms are given by Eqs. (16a) and (16b) following Paulson (1970), and for stable
 152 conditions, the atmospheric stratification conditions are subdivided into three cases according to Zhang and Anthes (1982) and
 153 the function forms are given by Eqs. (13), (14), and (15).

154 (1) Strongly stable condition ($Ri_B \geq 0.2$):

155
$$\psi_M = \psi_H = -10 \ln \frac{z}{z_0}. \quad (13)$$

156 (2) Weakly stable condition ($0 < Ri_B < 0.2$):

157
$$\psi_M = \psi_H = -5 \left(\frac{Ri_B}{1.1 - 5Ri_B} \right) \ln \frac{z}{z_0}. \quad (14)$$

158 (3) Neutral condition ($Ri_B = 0$):

159
$$\psi_M = \psi_H = 0. \quad (15)$$

160 (4) Unstable condition ($Ri_B < 0$):

161
$$\psi_M = 2 \ln \frac{1+x}{2} + \ln \frac{1+x^2}{2} - 2 \arctan(x) + \frac{\pi}{2}, \quad (16a)$$

162
$$\psi_H = 2 \ln \frac{1+y}{2}, \quad (16b)$$

163 where $x = (1 - 16\zeta)^{1/4}$, $y = (1 - 16\zeta)^{1/2}$.

164 This scheme calculates turbulent fluxes of the momentum and sensible heat with u_* and θ_* . In order to avoid the huge
 165 difference between the two computations, u_* is arithmetically averaged with its previous value by Eq. (17), and a lower limit
 166 of $u_* = 0.1$ m/s is imposed to prevent the heat flux from being zero under very stable conditions. According to the profile
 167 functions of wind and temperature near the ground, θ_* is then deduced by Eq. (18).

168
$$u_* = \frac{1}{2} \left(u_* + \frac{ku}{\ln \frac{z}{z_{0m}} - \psi_M} \right), \quad (17)$$

169
$$\theta_* = \frac{k(\theta - \theta_g)}{R[\ln \frac{z}{z_{0h}} - \psi_H]}. \quad (18)$$

170 The calculation procedure of the Li scheme is the following: (1) determine Ri_B , z_{0m} and z_{0h} according to the
 171 observation data; (2) calculate ζ with Ri_B , z_{0m} and z_{0h} ; (3) calculate the momentum and sensible heat fluxes under
 172 different conditions. The MM5 scheme is summarized as follows: (1) determine the universal functions according to the values
 173 of Ri_B and z_0 ; (2) calculate the u_* and θ_* with the meteorological variables and flux data; (3) derive the turbulent fluxes.
 174 Comparing with other non-iterative schemes including MM5, the Li scheme can be applied to the full range of roughness status
 175 $10 \leq \frac{z}{z_{0m}} \leq 10^5$ and $-0.5 \leq \ln \frac{z_{0m}}{z_{0h}} \leq 30$ under whole conditions $-5 \leq Ri_B \leq 2.5$. In addition, there are three obvious
 176 differences between the Li and MM5 schemes: (1) Li distinguishes z_{0h} from z_{0m} but MM5 does not; (2) the two schemes
 177 apply different universal functions under stable conditions; (3) Li considers the RSL effect while MM5 ignores it.

178 **3 Observational data and methods**

179 The observational fluxes used in this study were measured at Gucheng station from December 1, 2016 to January 9, 2017.
 180 Gucheng station (115.40 ° E, 39.08 ° N) is located at Gucheng County, Baoding, Hebei province and it is about 110km
 181 southwest of Beijing (Fig. 1a). This station has a farmland site where rice is grown in summer and wheat in winter. The
 182 surroundings are mainly farmland and scattered villages (Fig. 1b). At Gucheng station, the momentum and sensible heat fluxes
 183 near the surface were measured by the eddy correlation flux measurement system. The system is mainly composed of a sonic
 184 anemometer (CSAT3) and a gas analyzer (LI-7500). They are set up at 4 m height above the surface ground. The measured
 185 fluxes are used to evaluate the two schemes as well as estimate the roughness lengths. The measured meteorological variables
 186 including wind speed and direction, temperature, humidity, pressure, radiation are utilized to calculate the momentum and
 187 sensible heat fluxes both in the Li and MM5 schemes. Note the observed meteorological data were from Gucheng station and
 188 national basic automatic weather stations in Jing-Jin-Ji in eastern China, respectively. Hourly surface PM_{2.5} mass concentration
 189 in Baoding and Beijing from China National Environmental Monitoring Centre (<http://www.cnemc.cn/>) was also used in this
 190 paper.

191 **3.1 Data processing**

192 To obtain accurate flux data, quality control has been performed for the observational data, including: (1) eliminate the
 193 outliers and the data in rainy days; (2) double rotation and WPL correction (Webb et al., 1980); (3) omit the dataset when the
 194 wind speed is less than 0.5 m s⁻¹. In addition, the wind field especially the wind direction has a great impact on the value of
 195 z_{0m} , so it is necessary to understand the situation at Gucheng station. Figure 2 shows the distribution frequency of wind speed
 196 and wind direction at Gucheng during the observation (December 1, 2016 ~ January 9, 2017). The wind speed is stable during
 197 this period and the maximum is no more than 5 m s⁻¹ and most of them are about 1 ~ 2 m s⁻¹. The wind direction is relatively
 198 uniform except for the southeast wind (135 °).

199 **3.2 Determination of surface skin temperature**

200 The surface skin temperature at Gucheng station is calculated from the radiation data by the following formula:

$$201 R_{lw}^{\uparrow} = (1 - \varepsilon_s)R_{lw}^{\downarrow} + \varepsilon_s\sigma T_g^4, \quad (19)$$

202 where R_{lw}^{\uparrow} and R_{lw}^{\downarrow} are the surface upward longwave radiation and long wave radiation incident on the surface,
 203 respectively. σ is the Stephen Boltzmann constant, $\sigma = 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$. T_g is the surface skin temperature, ε_s is
 204 the surface emissivity which is the prerequisite of T_g calculation. Many researches estimated the value of ε_s and found it is
 205 always 0.9 ~ 1 (Stewart et al., 1994; Verhoef et al., 1997). According to the semi-empirical method in Yang et al. (2008), ε_s
 206 is estimated when the RMSE is minimal. In this paper, the Li and MM5 schemes were used to estimate the ε_s value (as shown

207 in Fig. 3). It is clear that the ε_s value corresponding to the minimum RMSE is not very sensitive to the choice of two schemes.
208 When ε_s is 1, the RMSE has the minimum value. Thus, this experiment takes 1 as the optimal value of ε_s .

209 **3.3 Determination of roughness length z_{0m} (z_{0h})**

210 Using the observed momentum and sensible heat fluxes and the meteorological variables including wind speed,
211 temperature, humidity and pressure after quality control at Gucheng station, z_{0m} and z_{0h} were derived from Eqs. (20a) and
212 (20b) following Yang et al. (2003) and Sicart et al. (2014).

213
$$\frac{u_*}{u} = \frac{k}{\ln \frac{z}{z_{0m}} - \psi_M}, \quad (20a)$$

214
$$\frac{\theta_*}{(\theta - \theta_g)} = \frac{k}{R[\ln \frac{z}{z_{0h}} - \psi_H]}. \quad (20b)$$

215 During the observation period, the crops stopped growing and the height did not exceed 0.1 m, so the zero-plane
216 displacement height was ignored and the reference height z was taken as 4m. The observation time was too short (about 1
217 month) to consider the effect of seasonal variations on the roughness length. Thus, z_{0m} and z_{0h} were assumed as two fixed
218 values. Based on the variables and formulae mentioned above, the two roughness lengths at Gucheng are derived: $z_{0m} =$
219 0.0419 m, $z_{0h} = 0.0042$ m.

220 **4 Results and discussion**

221 The definitions and influences of RSL, roughness length on the calculation of turbulent flux are discussed in detail in
222 this section. The Li and MM5 schemes are tested offline and evaluated during the haze pollution from December 13 to 23,
223 2016.

224 **4.1 The influences of RSL and roughness length on the calculation of turbulent flux**

225 The RSL is usually defined as the region where the flow is influenced by the individual roughness elements as reflected
226 by the spatial inhomogeneity of the mean flow (Florens et al., 2013). In the RSL, turbulence is strongly affected by individual
227 roughness elements, and the standard MOST is no longer valid (Simpson et al., 1998). Therefore, it is necessary to consider
228 the RSL effect in the calculation of turbulent flux, especially for the rough terrain such as forest or large cities. z_{0m} is defined
229 as the height at which the extrapolated wind speed following the similarity theory vanishes. It is mainly determined by land-
230 cover type and canopy height after excluding large obstructions. In models, z_{0m} is always based on the look-up table which
231 is related to land-cover types. In this study, z_{0m} is simply classified based on the research of Stull (1988) and listed in Table
232 1. It can be seen in Table 1 that the rougher underlying surface corresponds to the larger value of z_{0m} . z_{0h} is the height at
233 which the extrapolated air temperature is identical to the surface skin temperature. Some early researchers assumed that z_{0m}
234 was equal to z_{0h} (Louis, 1979; Louis et al., 1982). However, the assumption is not applicable in reality because z_{0m} and

235 z_{0h} have different physical meanings. Different treatments of z_{0m} and z_{0h} may introduce considerable changes in the
236 surface flux calculation (Launiainen, 1995; Kot and Song, 1998; Anurose and Subrahmanyam, 2013). Many studies removed
237 the assumption that z_{0m} was equal to z_{0h} and made the schemes more applicable in the situation that z_{0m} was not equal to
238 z_{0h} or the ratio of z_{0m} to z_{0h} was much large (Wouters et al., 2012; Li et al., 2014; Li et al., 2015). Some field experiments
239 even indicated the ratio z_{0m}/z_{0h} has a diurnal variation (Sun, 1999; Yang, 2003; Yang, 2008). In this study, we make the
240 common assumption that the ratio z_{0m}/z_{0h} is a constant.

241 Considering the lowest level in mesoscale models is usually about 10m, $z = 10$ m is set as the reference height in this
242 study. The range of Ri_B is set according to Louis82 (Louis et al., 1982) in the following discussion. Firstly, the study discusses
243 the effects of different land-cover types (different z_{0m} values) and RSL on flux calculation. Set $z_{0m} = z_{0h}$, corresponding to
244 four cases: $z_{0m} = 1, 0.5, 0.05, 0.001$ m. These cases correspond to large cities, forests, agricultural fields and wide water surface,
245 respectively. Figure 4 shows the relationship between $C_M(C_H)$ and Ri_B under different z_{0m} values and treatments of RSL.
246 It can be seen that both RSL and z_{0m} have impacts on C_M and C_H . Ignoring the RSL effect can result in larger C_M and C_H ,
247 comparing with the results of original scheme considering the RSL effect. The difference induced by RSL effect is evident
248 only under the rough surface. For example, the difference under $z_{0m} = 1$ is obviously greater than other z_{0m} settings, and
249 when z_{0m} is reduced to 0.05 or less, the RSL has little effect. Furthermore, the RSL contributes more to sensible heat transfer
250 than to momentum transfer under the same setting of z_{0m} . The effects of different land-cover types on C_M and C_H are much
251 more significant comparing with RSL. The rougher surface (corresponding to the larger z_{0m} value) brings the larger C_M (C_H)
252 under the same stability. In addition, there is a corresponding relationship between $C_M(C_H)$ and stability. The value of
253 $C_M(C_H)$ drops with the stability. Once Ri_B exceeds the critical value (generally $0.2 \sim 0.25$), the transfer coefficients decline
254 sharply but still above 0.

255 Secondly, the effects of difference between z_{0m} and z_{0h} as well as RSL on flux calculation are discussed. The
256 relationship between z_{0m} and z_{0h} can be expressed as $kB^{-1} = \ln \frac{z_{0m}}{z_{0h}}$. Over the sea, z_{0m} is comparable to z_{0h} ; over the
257 uniform vegetation surface (e.g., grassland, farmland, woodland), kB^{-1} is about 2 ($z_{0m}/z_{0h} \approx 10$) (Garratt and Hicks, 1973;
258 Garratt, 1978; Garratt and Francey, 1978), which coincides with our results in Gucheng ($z_{0m} = 0.0419$ m, $z_{0h} = 0.0042$ m);
259 over the surface with bluff roughness elements, the kB^{-1} value may be very large. For example, in some large cities, kB^{-1}
260 is even up to 30 ($z_{0m}/z_{0h} \approx 10^{13}$) (Sugawara and Narita, 2009). Therefore, the ratio z_{0m}/z_{0h} varies over a wide range.
261 Figure 5 shows the relationship between $C_M(C_H)$ and Ri_B under different treatments of z_{0m}/z_{0h} . Set $z_{0m} = 1$ as a large
262 city case, $z_{0h} = 1, 0.01, 10^{-4}, 10^{-6}$ m, and the large differences derived from the different ratios are displayed in Fig. 5. The
263 differences induced by RSL effect are more obvious than those in Fig. 4. The different treatments of ratio z_{0m}/z_{0h} have great
264 impacts on turbulent flux transfer, particularly for sensible heat transfer. It seems evident that when z_{0h} is not equal to z_{0m}

265 ($z_{0m}/z_{0h}=100 \sim 10^6$), the calculated C_H is much small compared to the treatment that z_{0h} is equal to z_{0m} ($z_{0m}/z_{0h}=1$). In
266 addition, $C_M(C_H)$ decreases with the stability, and it decreases much slower when z_{0h} is not equal to z_{0m} .

267 **4.2 Comparison of momentum and sensible heat fluxes calculated by the two schemes**

268 Using the obtained roughness lengths and the observations, the momentum and sensible heat flux were calculated by the
269 Li and MM5 schemes. Firstly, z_{0m} and z_{0h} were set as 0.0419 and 0.0042 respectively in the Li scheme, z_0 was equal to
270 z_{0m} in the MM5 scheme to calculate the momentum and sensible heat fluxes and the results are shown in Figs. 6a and 6b. It
271 can be seen that comparing with MM5, Li performs better with higher regression coefficient and determination coefficient.
272 For the momentum fluxes, the regression coefficient by Li is 0.6795 and that by MM5 is 0.5598, indicating that the error of Li
273 is 12 % lower than that of MM5. For sensible heat fluxes, the regression coefficient by Li is 0.7967 and that by MM5 is 1.7994.
274 The latter is much larger than 1, that is, the MM5 scheme obviously overestimates the sensible heat due to it does not distinguish
275 z_{0h} from z_{0m} . Then, make z_0 equal to 0.0042 in the MM5 scheme to re-calculate the sensible heat fluxes and the result is
276 shown in Fig. 6c. It can be seen the result has a great improvement after modifying z_0 value and the regression coefficient by
277 MM5 is 0.7363, indicating that the error was reduced by 54 % after considering the z_{0h} effect. The result indicates that z_{0h}
278 plays a critical role in both the SL scheme and the sensible heat flux (Chen and Zhang, 2009; Chen et al., 2011). However, the
279 error of MM5 is still 6 % larger than that of Li. This illustrates that in addition to the effect of roughness length, the algorithm
280 of the Li scheme itself is more reasonable than that of MM5 scheme.

281 **4.3 The specific performance of the two schemes in the severe haze pollution**

282 There were two obvious pollution processes during this observation period and one occurred during December 13 to 23,
283 2016. Figure 7 shows the variations of hourly observed PM_{2.5} concentration as well as the momentum and sensible heat fluxes
284 calculated by the Li and MM5 schemes at Gucheng station in this process. For the research purpose significance, only the
285 daytime (from 8:00 a.m. to 20:00 p.m.) was taken into account. Note in MM5, z_0 was 0.0419 when calculate momentum
286 fluxes and it was 0.0042 when calculate sensible heat fluxes. As shown in Fig. 7, the calculated results of momentum and
287 sensible heat fluxes by the two schemes are generally consistent with the trend of the observations. Specifically, for the
288 momentum fluxes (Fig. 7a), the results of two schemes have little difference when the values of observed momentum fluxes
289 are large or at the peak. When the observed momentum fluxes are small, Li results are close to or less than the observations,
290 while MM5 results are always higher than observations because of the limit of $u_* = 0.1$ in this scheme. For the sensible heat
291 fluxes (Fig. 7b), MM5 results are always lower while Li results are closer to observations especially when the observed values
292 are small. Furthermore, according to the evolution of PM_{2.5} concentration, this haze event was then divided into three stages:
293 the clear stage (stage 1: 13~14), the transition stage (stage 2: 16~18) and the maintenance stage (stage 3: 21~22). As shown in
294 Fig. 7, in the clear stage (stage 1), the atmospheric stratification is unstable, PM_{2.5} concentration is low and there is a strong

295 flux transport in the SL, the corresponding observations of the momentum and sensible heat fluxes are relatively high and they
296 vary greatly. In the transition stage (stage 2), the atmosphere is changing from unstable to stable corresponding to haze
297 formation, the momentum and sensible heat fluxes gradually decrease and the daily variation also decreases. In the maintenance
298 stage (stage 3), the atmospheric stratification is very stable, and flux transport in the SL is weak, both the momentum and
299 sensible heat fluxes are at a low level. It can be seen that the Li results are generally closer to the observations comparing with
300 MM5 results in all three stages.

301 Figure 8 shows the probability distribution functions (PDF) of the difference between calculated fluxes (by using the Li
302 and MM5 schemes) and observations in different stages at Gucheng station. In the whole pollution process, for the momentum
303 fluxes (Fig. 8a), the PDF from Li tends to cluster in a narrower range centered by 0, and the probability within $\pm 0.005 \text{ N m}^{-2}$
304 is 46.82 %, while this value from MM5 falls to 23.02 %. For the sensible heat fluxes (Fig. 8b), the PDF from Li is also more
305 concentrated around 0 than that from MM5. The probabilities of bias from Li and MM5 within $\pm 2.5 \text{ W m}^{-2}$ are 32.54 % and
306 13.49 %, respectively. In stage 1, for the momentum fluxes (Fig. 8c), the probability of bias from Li within $\pm 0.005 \text{ N m}^{-2}$ is
307 38.09 %. The bias from MM5 mainly concentrates larger than 0, and the probability within $\pm 0.005 \text{ N m}^{-2}$ is 14.29 %. For the
308 sensible heat fluxes (Fig. 8d), the probability of bias from Li within $\pm 2.5 \text{ W m}^{-2}$ is 38.09 %, the same as momentum fluxes.
309 The bias from MM5 mainly concentrates less than 0, and the probability within $\pm 2.5 \text{ W m}^{-2}$ is 9.52 %. In stage 2, the differences
310 between the two schemes are more obvious. The PDFs from Li are the most concentrated around 0 in all cases, while those
311 from MM5 are similar to stage 1. Specifically, for the momentum fluxes (Fig. 8e), the probabilities of bias from Li and MM5
312 within $\pm 0.005 \text{ N m}^{-2}$ are 56.25 % and 25.00 %. For the sensible heat fluxes (Fig. 8f), the values within $\pm 2.5 \text{ W m}^{-2}$ are 40.62 %
313 and 6.25 %. In stage 3, the difference between two schemes is small. For the momentum fluxes (Fig. 8g), the probabilities of
314 bias from Li and MM5 within $\pm 0.005 \text{ N m}^{-2}$ are 22.73 % and 27.27 %. For the sensible heat fluxes (Fig. 8h), the values from
315 Li and MM5 within $\pm 2.5 \text{ W m}^{-2}$ are both 36.36 %.

316 Mean bias (MB), normalized mean bias (NMB), normalized mean error (NME) and root mean square error (RMSE) were
317 calculated to test the results of two schemes. Table 2 shows that the Li scheme generally estimates better than the MM5 scheme.
318 In the whole haze process, the Li scheme underestimates the momentum fluxes by 3.63 % relative to the observations, while
319 the MM5 scheme overestimates by 34.03 %. The Li and MM5 schemes underestimate the sensible heat fluxes by 15.69 % and
320 50.22 %, respectively. In the three stages, the Li scheme performs much better than the MM5 scheme in the stage 1 and stage
321 2, especially in stage 2 when atmospheric stratification transforms from unstable to stable condition, the difference between
322 the Li and MM5 schemes is particularly significant. That is, the Li and MM5 schemes overestimate the momentum fluxes by
323 7.68% and 45.56 %, respectively, and they underestimate the sensible heat fluxes by 33.84 % and 76.88 %. The error of Li is
324 much less than that of MM5. In view of the importance role of atmospheric stratification in the generation and accumulation
325 of $\text{PM}_{2.5}$ in stage 2, the Li scheme is expected to show better performance in online simulation of $\text{PM}_{2.5}$ than MM5.

326 Based on the good behavior of the Li scheme in Gucheng, the same experiment was performed at Beijing station to discuss
327 the effect of different land-cover types on flux calculation. For Beijing station, the assumption $z_{0m} = 1$ m, $z_{0m}/z_{0h} = 10^6$
328 was made to represent the surface condition of megacity due to a lack in situ measurements of surface turbulent flux. As shown
329 in Fig. 9, the evolution of PM_{2.5} concentration at Beijing station was also divided into three stages (stage 1: 13~15; stage 2:
330 17~19; stage 3: 20~21) like Gucheng shown in Fig. 7. Comparing with Gucheng, the momentum transfer at Beijing station is
331 obviously larger due to the great increase of the urban aerodynamic roughness length (z_{0m}). In the meanwhile, the difference
332 between Li and MM5 has a further expansion at Beijing station. The sensible heat transfer of the Li scheme has great difference
333 between clear days and pollution days, which is, the sensible heat transfer changes acutely in the stage 1 while it changes
334 smoothly in the stage 2 and stage 3. However, the result of the MM5 scheme is significantly different from Li result due to
335 MM5 ignores the z_{0m} effect, and the small number of z_{0h} keeps the sensible heat fluxes at a low level in all three stages.

336 To quantify the difference between the two schemes, a relative difference is defined in percentage:

$$337 \Delta V = \left| \frac{V_{Li} - V_{MM5}}{V_{MM5}} \right| \times 100 \%, \quad (21)$$

388 where V_{Li} and V_{MM5} are the momentum (or sensible heat) fluxes calculated by the Li and MM5 schemes, respectively. We
389 obtained the relative differences at the two stations in the three stages through the statistics. It is clearly that the largest relative
390 difference at Gucheng station is in the stage 2 and that at Beijing station is in the stage 1. The differences in Beijing are always
391 larger than those in Gucheng for each three stages. Specifically, the relative differences of momentum flux in stage 1, stage 2
392 and stage 3 increase by 73 %, 34 % and 27 %, respectively, and the results of sensible heat flux are 289 %, 52 % and 68 %,
393 respectively.

394 We further estimated the surface fluxes in whole Jing-Jin-Ji region by using the two schemes. Figure 10 shows the mean
395 momentum and sensible heat fluxes calculated by Li and MM5 schemes and their differences in Jing-Jin-Ji during the pollution
396 episode. The assumption ($z_{0m} = 0.1$ m, $z_{0m}/z_{0h} = 10^3$) was used to represent the average condition of the underlying surface
397 of Jing-Jin-Ji region. As shown in Fig. 10, the momentum fluxes calculated by Li are less than those by MM5 in most stations;
398 the sensible heat fluxes calculated by Li are usually larger than those by MM5. The result is consistent with the experiment at
399 Gucheng station, which further indicates the importance of considering both z_{0m} and z_{0h} .

350 5 Conclusions

351 Using the observed momentum and sensible heat fluxes, together with conventional meteorological data including
352 pressure, temperature, humidity and wind speed from December 1, 2016 to January 9, 2017, including a severe pollution
353 episode from December 13 to 23, 2016, the differences between the Li and MM5 schemes and the specific performances of
354 the two were discussed and evaluated in this paper. The evolution process of atmospheric stratification from unstable to stable
355 corresponding to PM_{2.5} accumulation was mainly discussed. The contributions of roughness lengths (z_{0m} and z_{0h}) as well as

356 other factors in the SL schemes to the flux calculation for the momentum and sensible heat were also discussed in details. The
357 results are summarized as follows:

358 1) z_{0m} and z_{0h} have important effects on turbulent flux calculation in the SL schemes. Different values of z_{0m} and
359 z_{0h} could induce great changes in the flux calculation, indicating that it is very necessary and important to distinguish z_{0h}
360 from z_{0m} . Ignoring the difference between the two in the MM5 scheme led to large error in the calculation of sensible heat
361 flux and this error in Gucheng was 54 %. Besides the roughness length, the algorithms in schemes are also important factors.
362 In addition, ignoring the effect of the RSL in schemes may also result in certain bias of momentum and sensible heat fluxes in
363 megacity regions which represent the rough underlying surface.

364 2) The effect of z_{0m}/z_{0h} on turbulent fluxes is closely related to land-cover types (z_{0m}). A rough land-cover type (large
365 z_{0m}) should be accompanied by a large value of z_{0m}/z_{0h} . The differences between the two schemes for the momentum and
366 sensible heat fluxes in Beijing were much larger than those in Gucheng. This suggests that the MM5 scheme probably induces
367 greater error in megacities with rough surface (e.g., Beijing) than in suburban areas with smooth surface (e.g., Gucheng) due
368 to the irrational algorithm of MM5 scheme itself and the ignoring difference between z_{0m} and z_{0h} .

369 3) The Li scheme generally performed better than the MM5 scheme in the calculation of both the momentum flux and
370 the sensible heat flux at Gucheng station. The Li scheme made a better description in atmospheric stratification which is closely
371 related to the haze pollution, comparing with the MM5 scheme. This advantage was the most prominent in the transition stage
372 from unstable to stable atmospheric stratification corresponding to the PM_{2.5} accumulation. In this stage, the momentum flux
373 calculated by Li was overestimated by 7.68 % and this overestimation by MM5 was up to 45.56 %; the sensible heat flux by
374 Li was underestimated by 33.84 % while this underestimation by MM5 was even up to 76.88 %. In most Jing-Jin-Ji region,
375 the momentum fluxes calculated by Li were less than those by MM5 and the sensible heat fluxes by Li were larger than those
376 by MM5, which were consistent with Gucheng.

377 The offline study of the two SL schemes in this paper showed the superiority of the Li scheme for surface flux calculation
378 corresponding to the PM_{2.5} evolution during the haze episode in Jing-Jin-Ji in eastern China. The study results offer the
379 prerequisite and a possible way to improve PBL diffusion simulation and then PM_{2.5} prediction, which will be achieved in the
380 follow-up work of integrating the Li scheme into atmosphere chemical models.

381 **Author contributions**

382 HW and YP conducted the study design. YL and CL provided the Li scheme and the flux data. CL helped with data
383 processing. YP wrote the manuscript with help of HW and TZ. XZ, ZG, TJ, HC and MZ were involved in the scientific
384 interpretation and discussion. All the authors commented on the paper.

385 **Acknowledgments**

386 The study was supported by the National Key Project (2016YFC0203306, 2016YFC0203304), the National (Key) Basic
387 Research and Development (973) Program of China (2014CB441201), the National Natural Science Foundation of China
388 (41505004, 41675009), and Jiangsu Provincial Natural Science Fund Project (BK20150910).

389 **References**

- 390 Anurose, T. J., and Subrahmanyam, D. B.: Improvements in Sensible Heat-Flux Parametrization in the High-Resolution
391 Regional Model (HRM) Through the Modified Treatment of the Roughness Length for Heat, Bound.-Lay. Meteorol.,
392 147, 569-578, <https://doi.org/10.1007/s10546-013-9799-9>, 2013.
- 393 Ban, J., Gao, Z., and Lenschow, D. H.: Climate simulations with a new air-sea turbulent flux parameterization in the
394 National Center for Atmospheric Research Community Atmosphere Model (CAM3), J. Geophys. Res.-Atmos., 115,
395 <https://doi.org/10.1029/2009JD012802>, 2010.
- 396 Beljaars, A. C. M., and Holtslag, A. A. M.: Flux parameterization over land surfaces for atmospheric models, J. Appl.
397 Meteor., 30, 327-341, 1991.
- 398 Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: Flux-profile relationships in the atmospheric surface layer, J.
399 Atmos. Sci., 28, 181-189, 1971.
- 400 Businger, J. A.: Transfer of momentum and heat in the planetary boundary layer, Proc. Symp. Arctic Heat Budget and
401 Atmospheric Circulation, RM-5233-NSF, 305-331, 1966.
- 402 Chen, F., and Zhang, Y.: On the coupling strength between the land surface and the atmosphere: From viewpoint of surface
403 exchange coefficients, Geophys. Res. Lett., 36, <https://doi.org/10.1029/2009GL037980>, 2009.
- 404 Chen, Y., Yang, K., He, J., Qin, J., Shi, J., Du, J., and He, Q.: Improving land surface temperature modeling for dry land of
405 China, J. Geophys. Res.-Atmos., 116, <https://doi.org/10.1029/2011JD015921>, 2011.
- 406 Cheng, F. Y., Chin, S. C., and Liu, T. H.: The role of boundary layer schemes in meteorological and air quality simulations of
407 the Taiwan area, Atmos. Environ., 54, 714-727, <https://doi.org/10.1016/j.atmosenv.2012.01.029>, 2012.
- 408 Cheng, Y., and Brutsaert, W.: Flux-profile relationships for wind speed and temperature in the stable atmospheric boundary
409 layer, Bound.-Lay. Meteorol., 114, 519-538, <https://doi.org/10.1007/s10546-004-1425-4>, 2005.
- 410 De Ridder, K.: Bulk Transfer Relations for the Roughness Sublayer, Bound.-Lay. Meteorol., 134, 257-267,
411 <https://doi.org/10.1007/s10546-009-9450-y>, 2010.
- 412 Dyer, A. J.: A review of flux-profile relationships, Bound.-Lay. Meteorol., 7, 363-372, <https://doi.org/10.1007/BF00240838>,
413 1974.

- 414 Dyer, A. J.: The turbulent transport of heat and water vapour in an unstable atmosphere, Quart. J. Roy. Meteor. Soc., 93, 501-
415 508, <https://doi.org/10.1002/qj.49709339809>, 1967.
- 416 Florens, E., Eiff, O., and Moulin, F.: Defining the roughness sublayer and its turbulence statistics, Exp. Fluids, 54, 1500,
417 <https://doi.org/10.1007/s00348-013-1500-z>, 2013.
- 418 Garratt, J. R., and Francey, R. J.: Bulk characteristics of heat transfer in the unstable, baroclinic atmospheric boundary layer,
419 Bound.-Lay. Meteorol., 15, 399-421, <https://doi.org/10.1007/BF00120603>, 1978.
- 420 Garratt, J. R., and Hicks, B. B.: Momentum, heat and water vapour transfer to and from natural and artificial surfaces, Quart.
421 J. Roy. Meteor. Soc., 99, 680-687, 1973.
- 422 Garratt, J. R.: Transfer characteristics for a heterogeneous surface of large aerodynamic roughness, Quart. J. Roy. Meteor.
423 Soc., 104, 491-502, 1978.
- 424 Högström, U.: Review of some basic characteristics of the atmospheric surface layer, Bound.-Lay. Meteorol., 78, 215-246,
425 <https://doi.org/10.1007/BF00120937>, 1996.
- 426 Holtslag, A. A. M., and De Bruin, H. A. R.: Applied modeling of the nighttime surface energy balance over land, J. Appl.
427 Meteorol., 27, 689-704, 1988.
- 428 Hu, X. M., Nielsen-Gammon, J. W., and Zhang, F.: Evaluation of three planetary boundary layer schemes in the WRF model,
429 J. Appl. Meteorol. Climatol., 49, 1831-1844, <https://doi.org/10.1175/2010JAMC2432.1>, 2010.
- 430 Jiménez, P. A., Dudhia, J., González-Rouco, J. F., Navarro, J., Montávez, J. P., and García-Bustamante, E.: A revised scheme
431 for the WRF surface layer formulation, Mon. Wea. Rev., 140, 898-918, <https://doi.org/10.1175/MWR-D-11-00056.1>,
432 2012.
- 433 Kot, S. C., and Song, Y.: An Improvement of the Louis Scheme for the Surface Layer in an Atmospheric Modelling System,
434 Bound.-Lay. Meteorol., 88, 239-254, <https://doi.org/10.1023/A:1001119329423>, 1998.
- 435 Launiainen, J.: Derivation of the relationship between the Obukhov stability parameter and the bulk Richardson number for
436 flux-profile studies, Bound.-Lay. Meteorol., 76, 165-179, <https://doi.org/10.1007/BF00710895>, 1995.
- 437 Li, T., Wang, H., Zhao, T., Xue, M., Wang, Y., Che, H., and Jiang, C.: The Impacts of Different PBL Schemes on the
438 Simulation of PM2.5 during Severe Haze Episodes in the Jing-Jin-Ji Region and Its Surroundings in China, Adv.
439 Meteorol., <http://dx.doi.org/10.1155/2016/6295878>, 2016a.
- 440 Li, Y., Gao, Z., Li, D., Chen, F., Yang, Y., and Sun, L.: An Update of Non-iterative Solutions for Surface Fluxes Under
441 Unstable Conditions, Bound.-Lay. Meteorol., 156, 501-511, <https://doi.org/10.1007/s10546-015-0032-x>, 2015.
- 442 Li, Y., Gao, Z., Li, D., Chen, F., Yang, Y., and Sun, L.: Erratum to: An Update of Non-iterative Solutions for Surface Fluxes
443 Under Unstable Conditions, Bound.-Lay. Meteorol., 161: 225-228, 2016b.

- 444 Li, Y., Gao, Z., Li, D., Wang, L., and Wang, H.: An improved non-iterative surface layer flux scheme for atmospheric stable
445 stratification conditions, *Geosci. Model Dev.*, 7, 515-529, <https://doi.org/10.5194/gmd-7-515-2014>, 2014.
- 446 Li, Y.: On the Surface Turbulent Fluxes Calculation in Numerical Models, Beijing: university of Chinese academy of
447 sciences, 2014.
- 448 Li, Z., Guo, J., Ding, A., Liao, H., Liu, J., Sun, Y., Wang, T., Xue, H., Zhang, H., and Zhu, B.: Aerosol and boundary-layer
449 interactions and impact on air quality, *Natl. Sci. Rev.*, 4, 810–833, <https://doi.org/10.1093/nsr/nwx117>, 2017.
- 450 Liu, T. T., Gong, S. L., He, J. J., Yu, M., Wang, Q. F., Li, H. R., Liu, W., Zhang, J., Li, L., Wang, X. G., Li, S. L., Lu, Y. L.,
451 Du, H. T., Wang, Y. Q., Zhou, C. H., Liu, H. L. and Zhao, Q. C.: Attributions of meteorological and emission factors to
452 the 2015 winter severe haze pollution episodes in China's Jing-Jin-Ji area, *Atmos. Chem. Phys.*, 17, 2971–2980,
453 <https://doi.org/10.5194/acp-17-2971-2017>, 2017.
- 454 Louis, J. F.: A parametric model of vertical eddy fluxes in the atmosphere. *Bound.-Lay. Meteorol.*, 17, 187-202,
455 <https://doi.org/10.1007/BF00117978>, 1979.
- 456 Louis, J. F., Tiedtke, M., and Geleyn, J. F.: A short history of the operational PBL parameterization at ECMWF, in *Workshop*
457 on Planetary Boundary Layer Parameterization, November 1981, ECMWF, Reading, U.K., pp. 59–79, 1982.
- 458 Monin, A. S., and Obukhov, A. M.: Basic laws of turbulent mixing in the surface layer of the atmosphere, *Contrib. Geophys.*
459 *Inst. Acad. Sci. USSR*, 24, 163–187, 1954.
- 460 Paulson, C. A.: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface
461 layer, *J. Appl. Meteorol.*, 9, 857-861, 1970.
- 462 Sharan, M., and Srivastava, P.: A Semi-Analytical Approach for Parametrization of the Obukhov Stability Parameter in the
463 Unstable Atmospheric Surface Layer, *Bound.-Lay. Meteorol.*, 153, 339-353, <https://doi.org/10.1007/s10546-014-9948-9>, 2014.
- 464 Sicart, J. E., Litt, M., Helgason, W., Tahar, V. B., and Chaperon, T.: A study of the atmospheric surface layer and roughness
465 lengths on the high-altitude tropical Zongo glacier, Bolivia, *J. Geophys. Res.-Atmos.*, 119, 3793–3808,
466 <https://doi.org/10.1002/2013JD020615>, 2014.
- 467 Simpson, I. J., Thurtell, G. W., Neumann, H. H., Den Hartog, G., and Edwards, G. C.: The Validity of Similarity Theory in
468 the Roughness Sublayer Above Forests, *Bound.-Lay. Meteorol.*, 87, 69-99, <https://doi.org/10.1023/A:1000809902980>,
469 1998.
- 470 Stewart, J. B., Kustas, W. P., Humes, K. S., Nichols, W. D., Moran, M. S., and De Bruin, H. A. R.: Sensible heat flux-
471 radiometric surface temperature relationship for eight semiarid areas, *J. Appl. Meteorol.*, 33, 1110-1117, 1994.
- 472 Stull, R. B.: *An Introduction to Boundary Layer Meteorology*, Kluwer Academic Publishers, London, 1988.

- 474 Sugawara, H., and Narita, K.: Roughness length for heat over an urban canopy, *Theor. Appl. Climatol.*, 95, 291-299,
475 <https://doi.org/10.1007/s00704-008-0007-7>, 2009.
- 476 Sun, J.: Diurnal Variations of Thermal Roughness Height over a Grassland, *Bound.-Lay. Meteorol.*, 92, 407-427,
477 <https://doi.org/10.1023/A:1002071421362>, 1999.
- 478 Tymvios, F., Charalambous, D., Michaelides, S., and Lelieveld, J.: Intercomparison of boundary layer parameterizations for
479 summer conditions in the eastern Mediterranean island of Cyprus using the WRF-ARW model, *Atmos. Res.*, 208, 45-
480 59, <https://doi.org/10.1016/j.atmosres.2017.09.011>, 2017.
- 481 Vautard, R., Moran, M. D., Solazzo, E., Gilliam, R. C., Matthias, V., Bianconi, R., Chemel, C., Ferreira, J., Geyer, B.,
482 Hansen, A. B., Jericevic, A., Prank, M., Segers, A., Silver, J. D., Werhahn, J., Eolke, R., Rao, S. T., and Galmarini, S.:
483 Evaluation of the meteorological forcing used for the Air Quality Model Evaluation International Initiative (AQMEII)
484 air quality simulations, *Atmos. Environ.*, 53, 15-37, <https://doi.org/10.1016/j.atmosenv.2011.10.065>, 2012.
- 485 Verhoef, A., De Bruin, H. A. R., and Van Den Hurk, B. J. J. M.: Some Practical Notes on the Parameter kB-1 for Sparse
486 Vegetation., *J. Appl. Meteorol.*, 36, 560-572, 1997.
- 487 Wang, H., Shi, G. Y., Zhang, X. Y., Gong, S. L., Tan, S. C., Chen, B., Che, H. Z., and Li, T.: Mesoscale modeling study of the
488 interactions between aerosols and PBL meteorology during a haze episode in China Jing-Jin-Ji and its near surrounding
489 region - Part 2: Aerosols' radiative feedback effects, *Atmos. Chem. Phys.*, 15, 3277-3287, <https://doi.org/10.5194/acp-15-3277-2015>, 2015b.
- 490 Wang, H., Tan, S. C., Wang, Y., Jiang, C., Shi, G., Zhang, M., and Che, H. Z.: A multisource observation study of the severe
491 prolonged regional haze episode over eastern China in January 2013, *Atmos. Environ.*, 89, 807-815,
492 <https://doi.org/10.1016/j.atmosenv.2014.03.004>, 2014.
- 493 Wang, H., Xue, M., Zhang, X. Y., Liu, H. L., Zhou, C. H., Tan, S. C., Che, H. Z., Chen, B., and Li, T.: Mesoscale modeling
494 study of the interactions between aerosols and PBL meteorology during a haze episode in China Jing-Jin-Ji and its
495 nearby surrounding region - Part 1: Aerosol distributions and meteorological features, *Atmos. Chem. Phys.*, 15, 3257-
496 3275, <https://doi.org/10.5194/acp-15-3257-2015>, 2015a.
- 497 Wang, S., Wang, Q., and Doyle, J.: Some improvements to Louis surface flux parameterization. Paper presented at 15th
498 symposium on boundary layers and turbulence, American Meteorological Society, 15-19, 2002, Wageningen,
499 Netherlands.
- 500 Webb, E. K., Pearman, G. I., and Leuning, R.: Correction of flux measurements for density effects due to heat and water
501 vapour transfer, *Quart. J. Roy. Meteor. Soc.*, 106, 85-100, 1980.
- 502 Webb, E. K.: Profile relationships: The log-linear range, and extension to strong stability, *Quart. J. Roy. Meteor. Soc.*, 96, 67-
503 90, 1970.

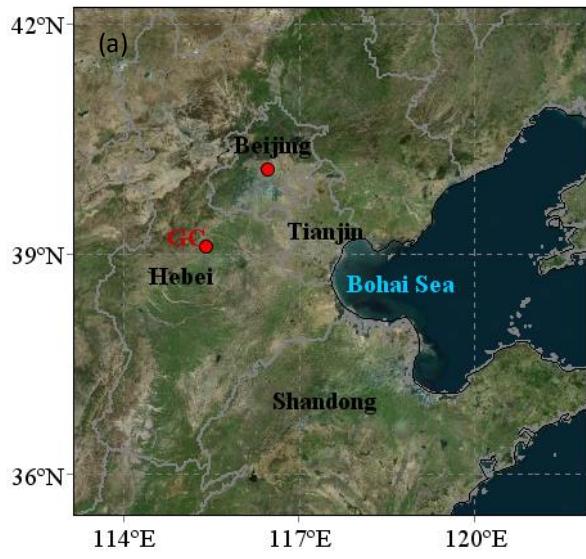
- 505 Wouters, H., De Ridder, K., and van Lipzig, N. P. M.: Comprehensive Parametrization of Surface-Layer Transfer
506 Coefficients for Use in Atmospheric Numerical Models, *Bound.-Lay. Meteorol.*, 145, 539-550,
507 <https://doi.org/10.1007/s10546-012-9744-3>, 2012.
- 508 Xie, B., Fung, J. C. H., Chan, A., and Lau, A.: Evaluation of nonlocal and local planetary boundary layer schemes in the
509 WRF model, *J. Geophys. Res.-Atmos.*, 117, 48-50, <https://doi.org/10.1029/2011JD017080>, 2012.
- 510 Yang, K., Koike, T., and Yang, D.: Surface Flux Parameterization in the Tibetan Plateau, *Bound.-Lay. Meteorol.*, 106, 245-
511 262, <https://doi.org/10.1023/A:1021152407334>, 2003.
- 512 Yang, K., Koike, T., Ishikawa, H., Kim, J., Li, X., Liu, H., Liu, S., Ma, Y., and Wang, J.: Turbulent Flux Transfer over Bare-
513 Soil Surfaces: Characteristics and Parameterization, *J. Appl. Meteorol. Clim.*, 47, 276-290,
514 <https://doi.org/10.1175/2007jamc1547.1>, 2008.
- 515 Yang, K., Tamai, N., and Koike, T.: Analytical Solution of Surface Layer Similarity Equations, *J. Appl. Meteorol.*, 40, 1647-
516 1653, 2001.
- 517 Yang, Y., Liu, X., Qu, Y., Wang, J., An, J., Zhang, Y., and Zhang, F.: Formation mechanism of continuous extreme haze
518 episodes in the megacity Beijing, China, in January 2013, *Atmos. Res.*, 155, 192-203,
519 <https://doi.org/10.1016/j.atmosres.2014.11.023>, 2015.
- 520 Zhang, B., Wang, Y., and Hao, J.: Simulating aerosol-radiationcloud feedbacks on meteorology and air quality over eastern
521 China under severe haze conditions in winter, *Atmos. Chem. Phys.*, 15, 2387-2404, <http://doi.org/10.5194/acp-15-2387-2015>, 2015.
- 523 Zhang, D., and Anthes, R. A.: A high-resolution model of the planetary boundary layer—Sensitivity tests and comparisons
524 with SESAME-79 data, *J. Appl. Meteorol.*, 21, 1594-1609, 1982.
- 525 Zhang, R., Li, Q., and Zhang, R.: Meteorological conditions for the persistent severe fog and haze event over eastern China
526 in January 2013, *Sci. China Earth Sci.*, 57, 26-35, <https://doi.org/10.1007/s11430-013-4774-3>, 2014.
- 527 Zhong, J., Zhang, X., Dong, Y., Wang, Y., Liu, C., Wang, J., Zhang, Y., and Che, H.: Feedback effects of boundary-layer
528 meteorological factors on cumulative explosive growth of PM2.5 during winter heavy pollution episodes in Beijing
529 from 2013 to 2016, *Atmos. Chem. Phys.*, 18, 247-258, <https://doi.org/10.5194/acp-18-247-2018>, 2018.
- 530

531 **Table 1.** Typical values of z_{0m} corresponding to various land-cover types

z_{0m} / m	Land-cover types
5 ~ 50	Mountain (above 100m)
1 ~ 5	The center of large cities, hills or mountain area
0.1 ~ 1	Forests, the center of large towns
0.01 ~ 0.1	Flat grasslands, agricultural fields
$10^{-4} \sim 10^{-3}$	The snow surface, wide water surface, flat deserts
10^{-5}	The ice surface

532

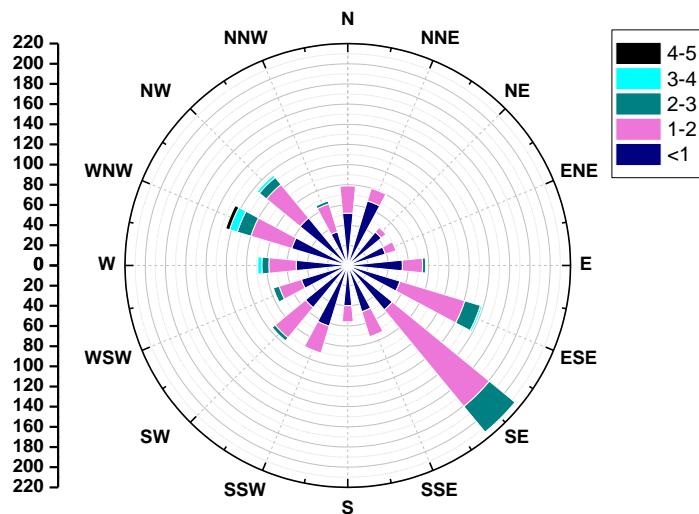
533


534

535 **Table 2.** Statistics between the Li and MM5 schemes calculated turbulent flux at Gucheng station.

			Li				MM5			
			MB	NMB	NME	RMSE	MB	NMB	NME	RMSE
Whole process	τ	-0.0006	-3.63 %	54.29 %	0.0142	0.0058	34.03 %	63.59 %	0.0143	
	H	-2.2723	-15.69 %	52.73 %	10.9649	-7.2735	-50.22 %	69.68 %	12.7946	
Stage 1	τ	0.0021	9.98 %	55.90 %	0.0172	0.0091	43.45 %	66.66 %	0.0169	
	H	1.1775	5.79 %	37.87 %	10.5734	-7.1891	-35.34 %	55.70 %	13.1324	
Stage 2	τ	0.0013	7.68 %	44.50 %	0.0111	0.0079	45.56 %	56.81 %	0.0121	
	H	-4.5752	-33.84 %	50.28 %	9.3995	-10.3924	-76.88 %	81.40 %	13.2553	
Stage 3	τ	-0.0024	-13.25 %	59.13 %	0.0144	0.0030	16.72 %	56.34 %	0.0138	
	H	1.2818	11.39 %	66.31 %	11.4778	-1.7479	-15.52 %	65.90 %	10.4219	

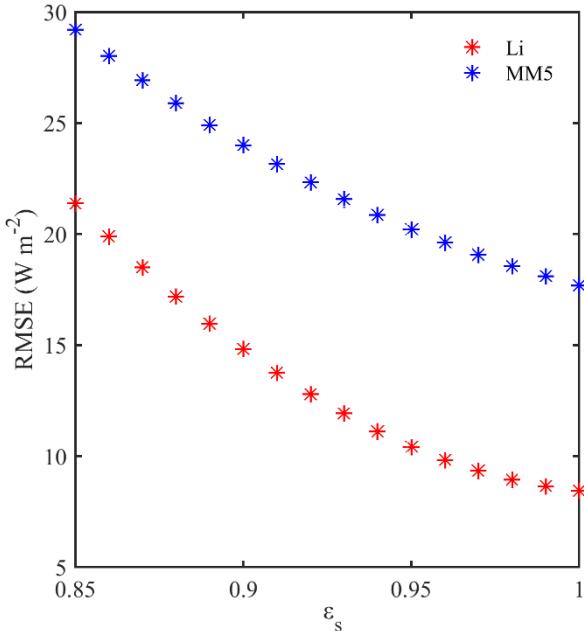
536 * τ : momentum flux; H: sensible heat flux; MB: mean bias; NMB: normalized mean bias; NME: normalized mean error;
 537 RMSE: root mean square error. The units of MB and RMSE: $\mu\text{g m}^{-3}$.


538

541 **Figure 1.** Location (a) and geographical environment (b) at Gucheng station. The map is from Bing Maps.

542

543

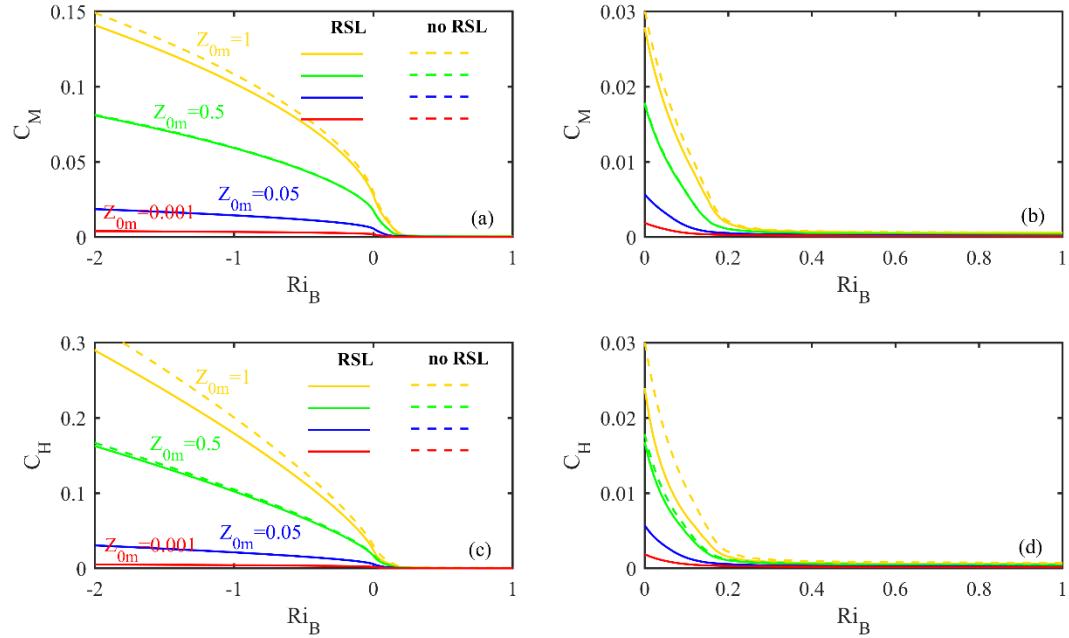

545 **Figure 2.** Wind Rose map at Gucheng station from December 1, 2016 to January 9, 2017.

546

547

548

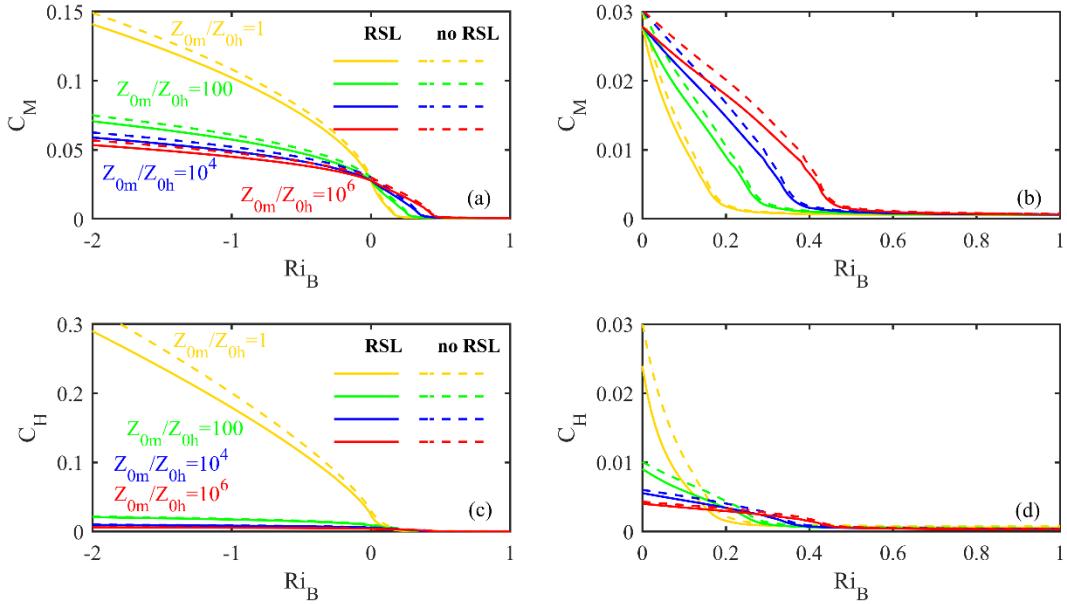
549

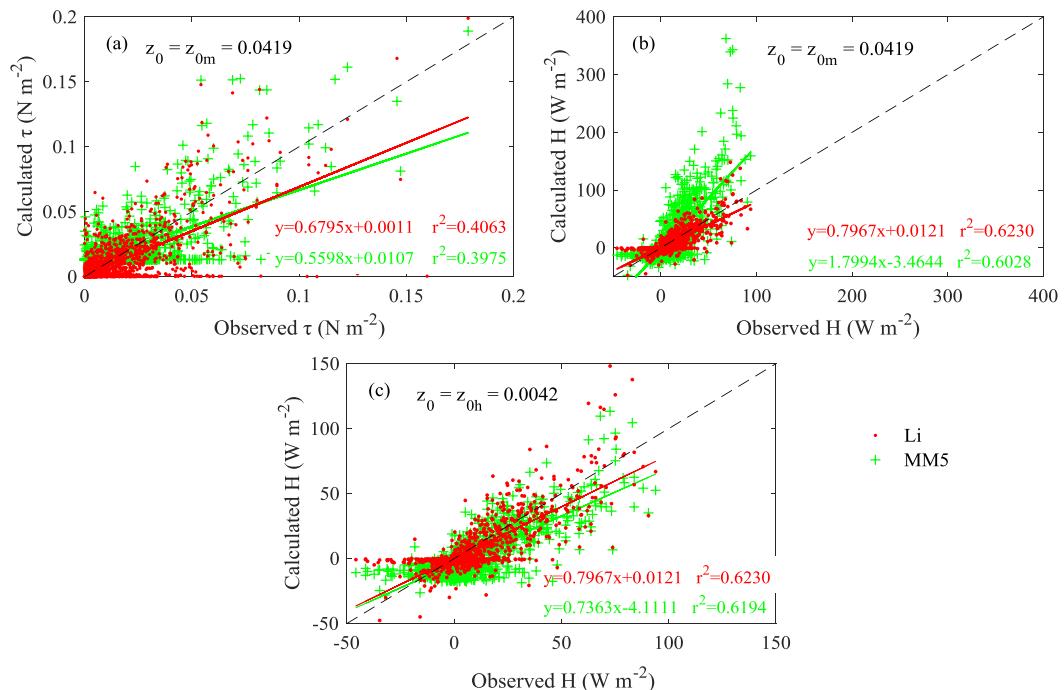

550

551 **Figure 3.** The surface emissivity ε_s dependence of RMSE between observed near-neutral heat fluxes and parameterized heat
 552 fluxes (red for Li and blue for MM5) at Gucheng station.

553

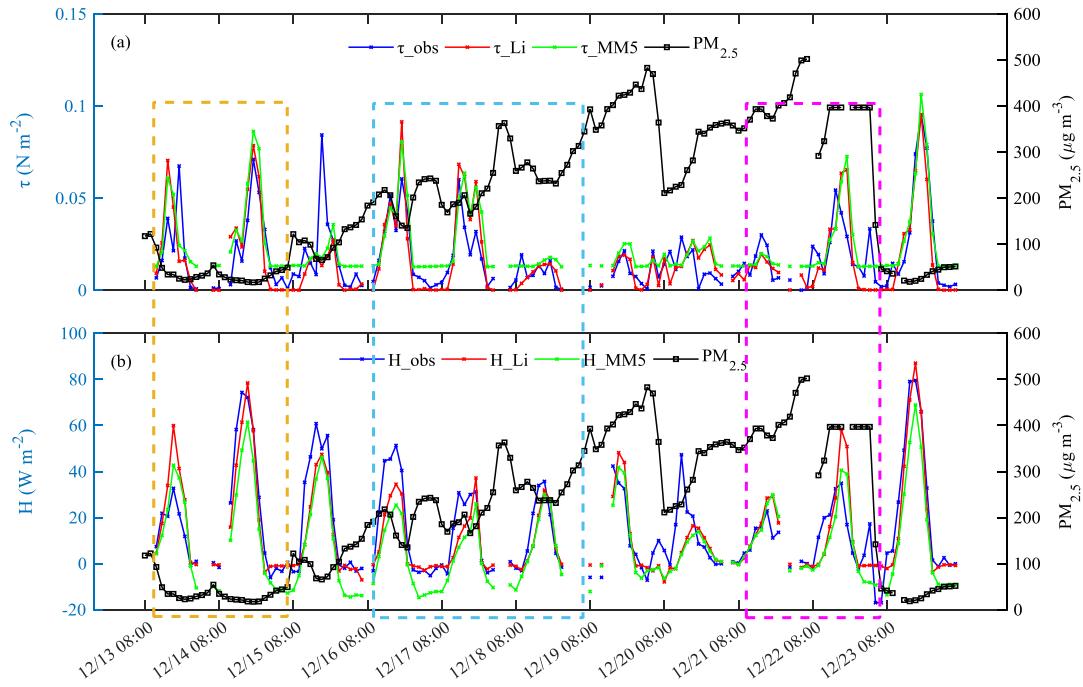
554

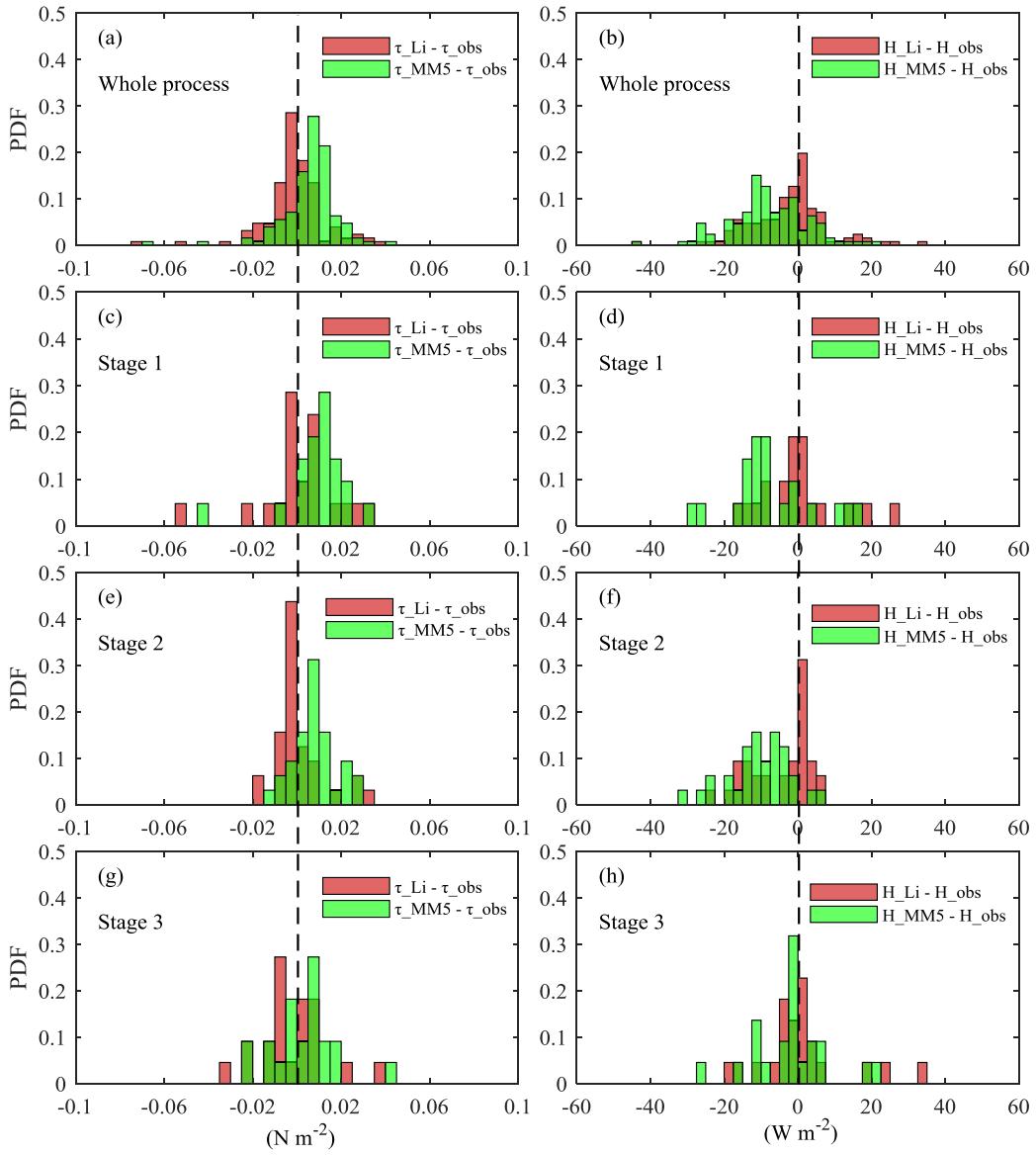

555


556

557 **Figure 4.** The relationships between $C_M (C_H)$ and Ri_B under different z_{0m} values and treatments of RSL. Solid lines:
 558 considering the RSL effect; dotted lines: without the RSL effect.

559


560
561 **Figure 5.** The relationships between $C_M(C_H)$ and Ri_B under different ratios of z_{0m} to z_{0h} and treatments of RSL. Solid
562 lines: considering the RSL effect; dotted lines: without the RSL effect.


567
568 **Figure 6.** Comparison of calculated and observed fluxes at Gucheng station from December 1, 2016 to January 9, 2017. (a)
569 Momentum fluxes (MM5: $z_0 = 0.0419$); (b) sensible heat fluxes (MM5: $z_0 = 0.0419$); (c) sensible heat fluxes (MM5: $z_0 =$
570 0.0042). Red dots: the Li scheme; green plus signs: the MM5 scheme.

571

572


Figure 7. Variations of hourly turbulent fluxes and observed PM_{2.5} at Gucheng station in daytime. (a) Momentum fluxes τ (blue line: observations; red line: the Li scheme; green line: the MM5 scheme) and PM_{2.5} concentration (black line); (b) sensible heat fluxes H (the same as τ) and PM_{2.5} concentration (black line). Yellow box: stage 1; blue box: stage 2; purple box: stage 3.

582


583 **Figure 8.** Probability distribution functions (PDF) of the differences between calculated fluxes (momentum fluxes: left;
 584 sensible heat fluxes: right) by using two schemes (the Li scheme: red bars; the MM5 scheme: green bars) and observations in
 585 different stages (a-b: whole process; c-d: stage 1; e-f: stage 2; g-h: stage 3).

586

587
588
589
590

Figure 9. As in Fig. 7 but for Beijing station.

591
592
593
594

Figure 10. The mean momentum and sensible heat fluxes calculated by using two schemes (a-b: the Li scheme; c-d: the MM5 scheme) and their differences (Li minus MM5. e: momentum fluxes; f: sensible heat fluxes) in Jing-Jin-Ji during the haze episode (December 13 to 23, 2016).