
Table S1. Heterogeneous uptake coefficients.

$\begin{array}{c c} \text{Species} & \text{Gamma} \\ \hline N_2O_5 & 0.1 \\ N_2O_5 \text{ dust} & 0.0 \\ NO_3 & 0.1 \\ NO_3 \text{ dust} & 0.0 \\ NO_2 & 0.0001 \\ NH_3 & 0.05 \\ HO_2 & 1.0 \\ \end{array}$		8 1	
$\begin{array}{ccc} N_2O_5 \ dust & 0.0 \\ NO_3 & 0.1 \\ NO_3 \ dust & 0.0 \\ NO_2 & 0.0001 \\ NH_3 & 0.05 \\ \end{array}$	Species	Gamma	
$\begin{array}{ccc} NO_3 & & 0.1 \\ NO_3 \ dust & & 0.0 \\ NO_2 & & 0.0001 \\ NH_3 & & 0.05 \end{array}$	N_2O_5	0.1	
$ \begin{array}{ccc} NO_3 & dust & 0.0 \\ NO_2 & 0.0001 \\ NH_3 & 0.05 \\ \end{array} $	N ₂ O ₅ dust	0.0	
NO ₂ 0.0001 NH ₃ 0.05	NO_3	0.1	
NH_3 0.05	NO ₃ dust	0.0	
•	NO_2	0.0001	
HO_2 1.0	NH_3	0.05	
	HO ₂	1.0	

Table S2. Time series correlation of each station's observed total $PM_{2.5}$ with the individual components of modeled dry $PM_{2.5}$, total dry $PM_{2.5}$, and total wet $PM_{2.5}$ in the grid cell the station is located within. The last two columns show the normalized mean bias (%) of modeled dry and wet $PM_{2.5}$. For each station, the component with the highest correlation is in bold.

Correlation of modeled component with daily averaged observed PM _{2.5} Normalized Mean Bia											Mean Bias	
Site		Salt	BC	OM	SOA		SO_4	NO_3		PM _{2.5} (wet)	$PM_{2.5}$ (dry)	$PM_{2.5}$ (wet)
1	-0.36 -	-0.46	0.51	0.53	-0.18	0.53	-0.17	0.67	0.62	0.61	3.8	28.1
2	-0.36 -	-0.25	0.66	0.66	-0.33	0.50	-0.08	0.60	0.61	0.60	-32.7	-18.7
3	-0.40 -	-0.37	0.60	0.60	-0.32	0.44	-0.19	0.56	0.56	0.55	-23.9	-7.8
4	-0.20 -	-0.14	0.59	0.60	-0.13	0.43	-0.02	0.46	0.49	0.47	-57.7	-48.8
5	-0.24 -	-0.10	0.41	0.40	0.25	0.25	0.14	0.24	0.34	0.33	-26.0	-10.3
6	0.01	0.19	0.47	0.44	0.23	0.13	-0.11	0.09	0.24	0.21	-26.4	-10.3
7	-0.30 -	-0.21	0.63	0.66	-0.14	0.53	0.08	0.57	0.58	0.57	-34.2	-20.3
8	-0.34 -	-0.23	0.63	0.65	-0.14	0.52	0.05	0.55	0.56	0.55	-48.1	-37.2
9	-0.31 -	-0.21	0.51	0.54	-0.27	0.39	-0.08	0.44	0.45	0.44	-45.9	-34.6
10	-0.21 -	-0.19	0.25	0.23	-0.12	0.25	0.10	0.18	0.21	0.21	-31.2	-16.7
11	-0.29 -	-0.21	0.32	0.30	0.06	-0.14	-0.03	-0.24	-0.12	-0.13	-52.3	-45.6
12	-0.33 -	-0.24	0.66	0.68	-0.19	0.53	-0.03	0.55	0.57	0.56	-39.9	-27.2
13	0.27	0.07	0.23	0.21	0.53	0.21	0.27	0.22	0.28	0.27	-36.7	-23.9
14	-0.23 -	-0.16	0.44	0.43	-0.15	0.35	-0.11	0.36	0.35	0.34	13.4	38.8
15	-0.40 -	-0.30	0.45	0.48	0.10	0.38	0.09	0.41	0.37	0.36	-50.0	-39.0
16	-0.15 -	-0.22	0.29	0.31	0.05	0.18	-0.18	0.21	0.16	0.17	-47.5	-37.3
17	-0.38 -	-0.22	0.66	0.65	-0.26	0.54	-0.02	0.56	0.58	0.57	-30.5	-15.9
18	-0.35 -	-0.17	0.63	0.64	-0.18	0.50	-0.05	0.56	0.57	0.55	-21.0	-3.8
19	-0.25 -	-0.16	0.58	0.58	-0.25	0.53	0.06	0.62	0.59	0.58	-26.9	-11.0
20	-0.24 -	-0.20	0.60	0.60	-0.14	0.47	0.09	0.54	0.55	0.54	-24.7	-8.4
21	-0.36 -	-0.32	0.59	0.58	-0.10	0.61	0.21	0.64	0.64	0.64	-30.9	-15.8
22	-0.37 -	-0.20	0.52	0.53	-0.28	0.40	-0.15	0.49	0.47	0.46	-10.0	9.5

Figure S1. Time series (1980–2015) of anthropogenic black carbon emissions (TgC yr⁻¹) over 10 regions of India for the CMIP5 inventory (blue dots) and CMIP6 inventory (red lines).

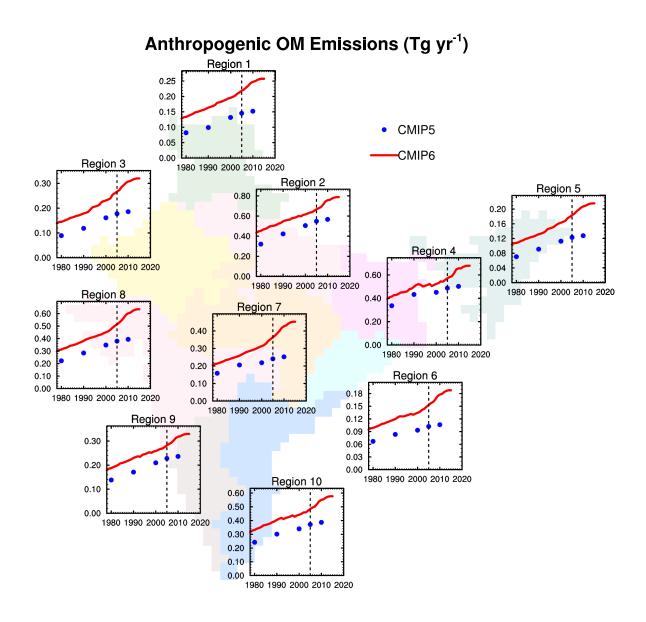


Figure S2. Same as Figure S1, but for organic matter (Tg yr⁻¹)

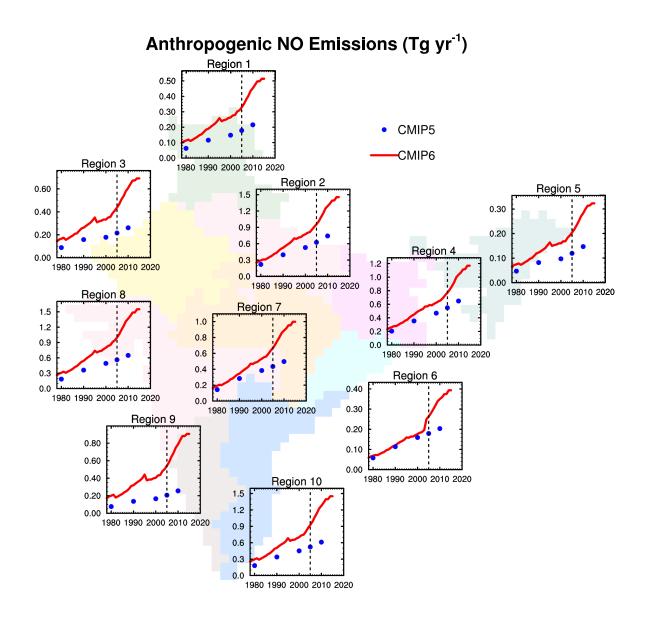


Figure S3. Same as Figure S1, but for NO (Tg yr⁻¹)

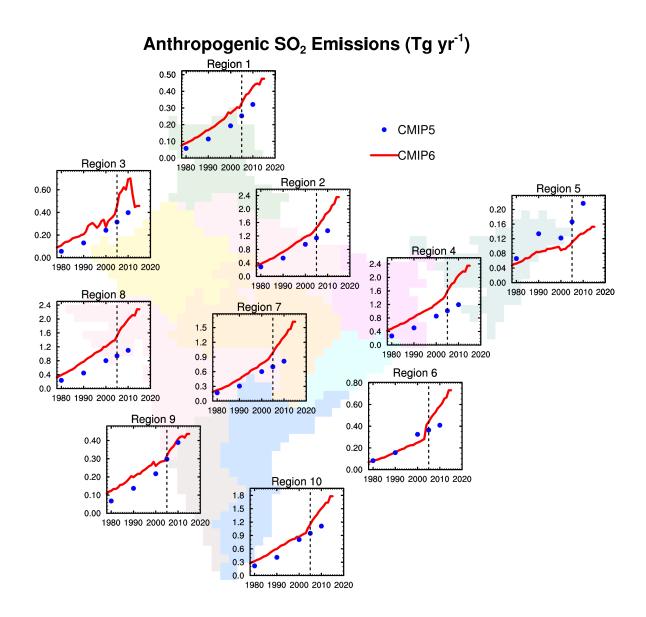
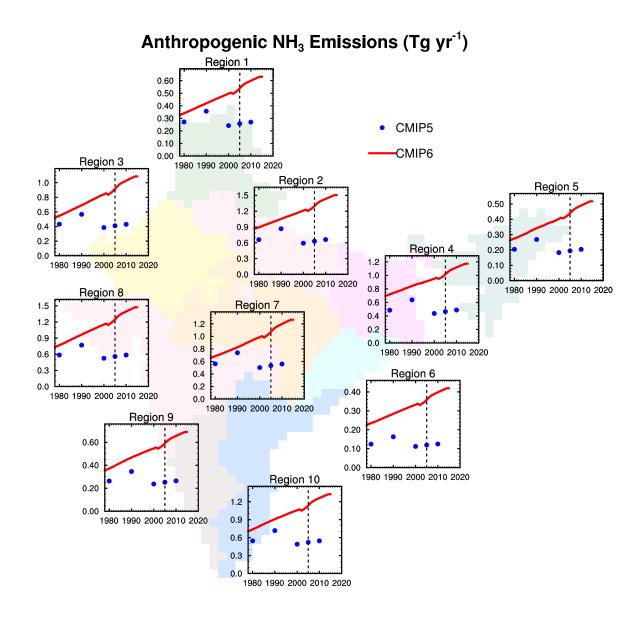
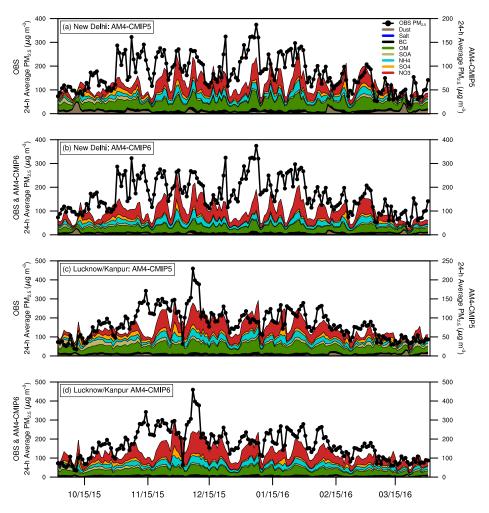
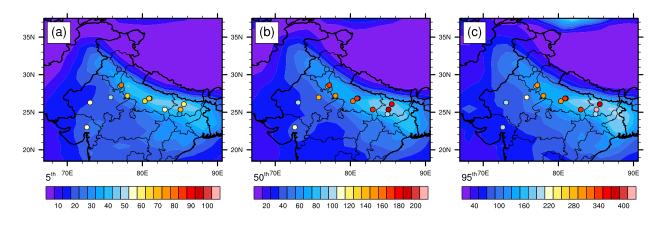
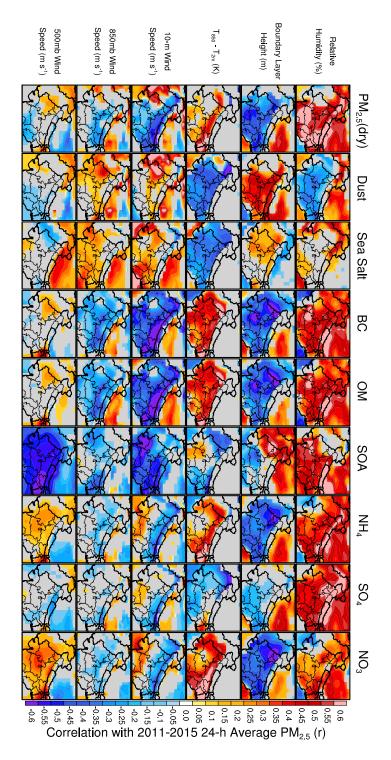
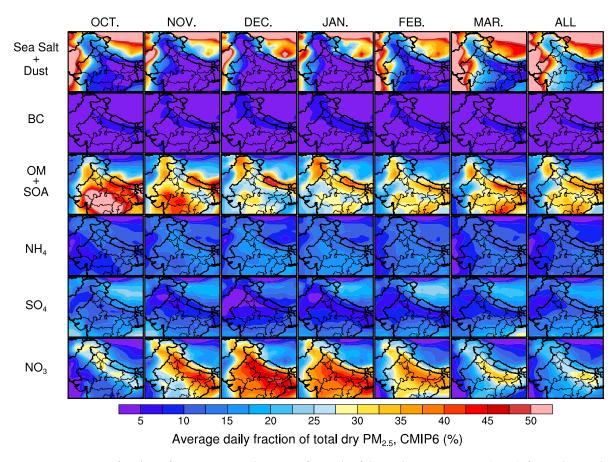
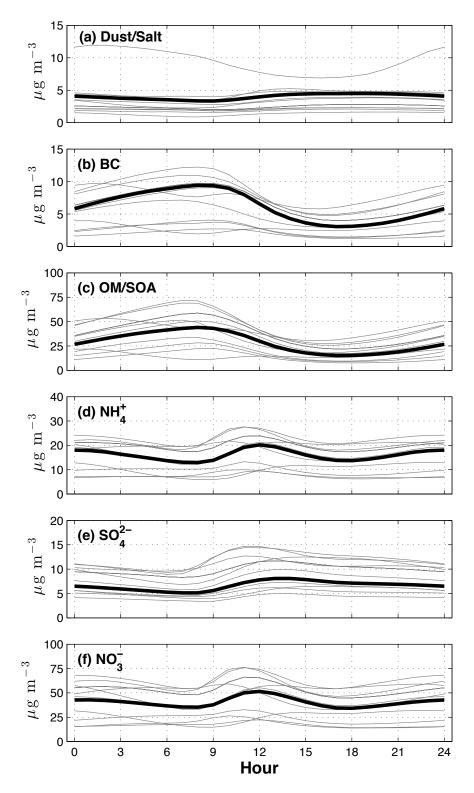


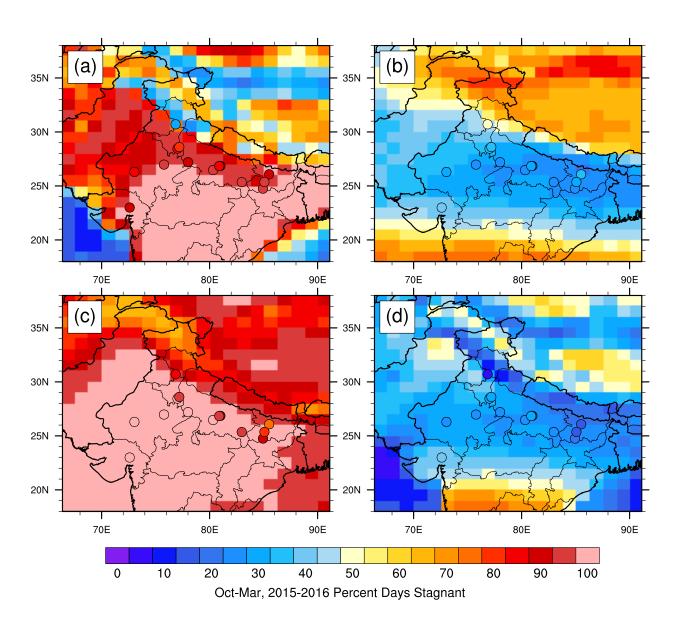
Figure S4. Same as Figure S1, but for SO₂ (Tg yr⁻¹)

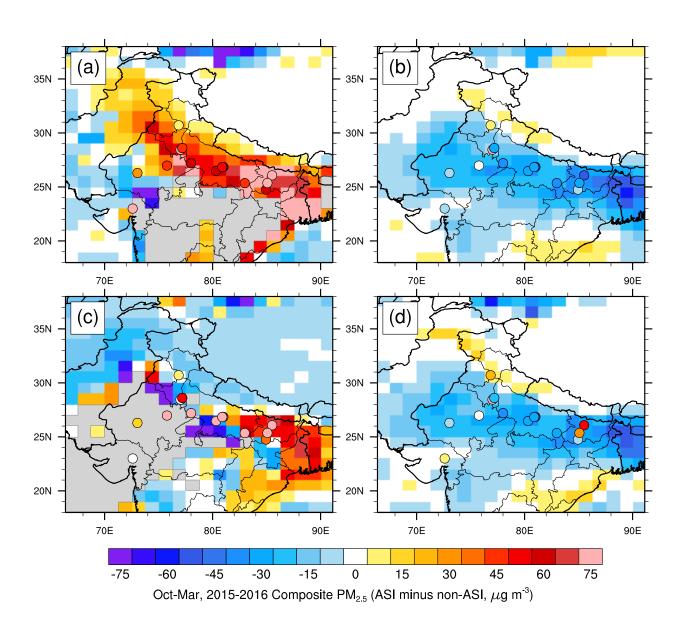




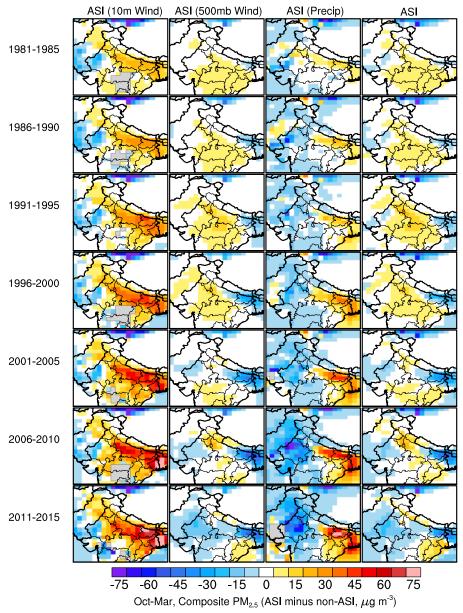

Figure S5. Same as Figure S1, but for NH₃ (Tg yr⁻¹)


Figure S6. Six month time series of daily total observed $PM_{2.5}$ (black) and modeled components (colors) over (\mathbf{a}, \mathbf{b}) New Delhi and (\mathbf{c}, \mathbf{d}) Lucknow/Kanpur, Uttar Pradesh for AM4-CMIP5 (\mathbf{a}, \mathbf{c}) and AM4-CMIP6 (\mathbf{b}, \mathbf{d}) . Note the different y-axis scales in (\mathbf{a}) and (\mathbf{c}) for the AM4-CMIP5 versus the observations.


Figure S7. (a-b) 5th **(c-d)** 50th, and **(e-f)** 95th percentile of 24-h average $PM_{2.5}$ (µg m⁻³) over 1 October 2015 – 31 March 2016 for the observations (circles), and the AM4-CMIP5-wet (grid).


Figure S8. Correlation of daily average modeled dry $PM_{2.5}$ and its components (columns) with the meteorological variables shown in Figure 4 (rows) over October–March, 2011–2015. Gray areas are where the correlation is not significant at the 95% confidence level.


Figure S9. Average fraction of AM4-CMIP6 dry $PM_{2.5}$ for each of the major components (rows) for each month and the 6-month mean (columns) averaged over 2011–2015.


Figure S10. Diurnal cycles of the abundance ($\mu g \, m^{-3}$) of (a) dust and sea salt, (b) black carbon, (c) organic matter and secondary organic aerosol, (d) ammonium, (e) sulfate, and (f) nitrate in AM4-CMIP6 for the individual grid cells where observations are located (gray) and their median (black) averaged over 1 October 2015 – 31 March 2016.

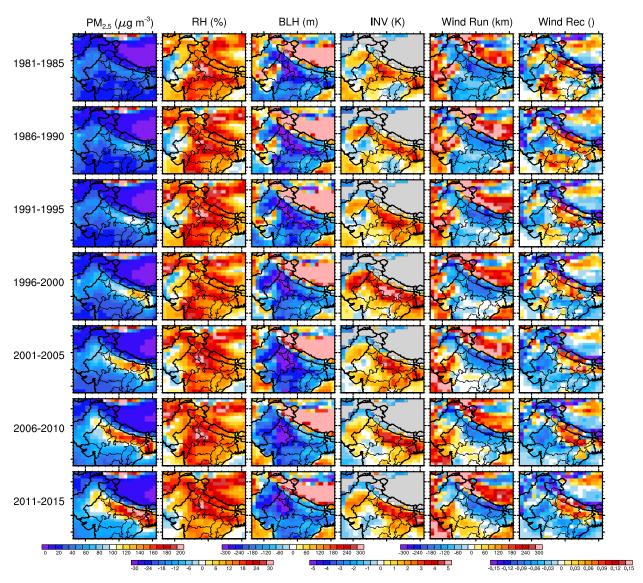

Figure S11. Percentage of October–March, 2015-2016 days that are considered stagnant with respect to (a) 10-m wind speed ($\leq 3.2 \text{ m s}^{-1}$), (b) 500 mb wind speed ($\leq 13.0 \text{ m s}^{-1}$), (c) precipitation ($\leq 1.0 \text{ mm day}^{-1}$), and (d) all three; i.e. the ASI is met for the observations (circles) and the AM4-CMIP6 (background).

Figure S12. Composite of raw PM_{2.5} on days when ASI components (a) 10-m wind speed, (b) 500 mb wind speed, (c) precipitation, and (d) total ASI are met minus days when they are not for October 2015 – March 2016. Gray areas are locations where a composite cannot be constructed since 100% of the days are considered stagnant.

Figure S13. Composite of AM4-CMIP6 wet PM_{2.5} on days when ASI components (first column) 10-m wind speed, (second column) 500 mb wind speed, (third column) precipitation, and (last column) total ASI are met minus days when they are not for October–March over seven 5-year intervals (rows). Gray areas are locations where a composite cannot be constructed since 100% of the days are considered stagnant.

October - March, 50 Worst Days minus 50 Best Days

Figure S14. Composite of the 50 days with the highest PM_{2.5} abundance minus the 50 days with the lowest for October – March over seven 5-year intervals (rows) for (first column) PM2.5 (wet, μg m⁻³), (second column) relative humidity (%), (third column) boundary layer height (m), (fourth column) temperature inversion strength (K), (fifth column) wind run (km), and (sixth column) wind recirculation (unitless) for AM4-CMIP6-wet.