
The authors wish to thank each of the anonymous reviewers for taking the time to review our 
manuscript. While referee #2 found the manuscript to be publishable in its current, referee #1 has 
provided valuable input to the revised manuscript. We have responded (in blue) to each of the 
general and specific comments (in black) and hope they are to the satisfaction of the 
questions/concerned posed.  
 
Anonymous Referee #1 
 
General comments 
 
The authors applied the NOAA GFDL-AM4 model to simulate air quality over India for 20 
years. They used a coarse horizontal resolution and two different emissions estimates (CMIP5 
and CMIP6) in the model. They compared model predictions with observed PM25 in India for 
six winter months and performed detailed analysis. Model with CMIP5 substantially 
underestimated PM25 compared to observed data in Northern India. While the model with 
CMIP6 improved the predictions, it still underestimated PM25. Most monitoring stations in India 
are located in urban areas. The model with a coarse horizontal resolution is not suitable for 
examining PM25 in urban areas in India. 
 
We appreciate the reviewers concern with using this model to compare with urban air quality 
data in India. There is a long history of representation errors when testing gridded global model 
output against limited number of point observations of air quality – rural, urban, or otherwise. 
However, these errors  exist even for relatively high resolution regional air quality models (e.g., 
4–12 km) as sites are often clustered closely together. For example, there are 9 observing sites 
located in and around New Delhi and they are extremely diverse in their overall magnitude of 
PM2.5 abundances (Figure 2a) despite being within ~25km of one another. In that sense, it’s not 
clear how much more suitable a high resolution model would be. Furthermore, it would certainly 
prove difficult to obtain accurate emission data on the scale required, which is probably on the 
order of 1-5 km. Moreover, these are the only observations that are available and we attempt to 
make use of them as best as possible - not only to test the GFDL AM4 simulation of PM2.5, but 
also compare modeled vs. observed meteorology-PM2.5 relationships. In any case, we recognize 
this analysis has similar measurement-model mismatch issues that exist in previous works and 
we try to make this point in Section 3.1. 
 
Specific comments 
 
Line 199-200 Reference is needed for the heterogeneous uptake coefficients used in the model. 
 
We have included a reference for the values in Table S1. 
 
Line 204-206 Several acronyms have already been defined before and are defined here and later. 
No need to define the acronyms multiple times. 
 
We have removed duplicate acronyms within the main text. 
 
Line 215-216 Dust1, dust2, ssalt1, ssalt2, ssalt3 are not defined in the article? 



 
Thank you for noting this. We have included a description of these components (the numbers 
correspond to different size bins; i.e., dust1-2 & ssalt1-3 are < 2.5µm) 
 
Line 261-266 and Figure 1 It is not clear if NO or NO2 emissions are shown in Figure 1. “NO” is 
used in one sentence but “NO2” is used in the other sentence. Need clarification. How NOx 
emissions are being speciated into NO and NO2 emissions? 
 
Thank you for catching this. NOx emissions are emitted as 100% NO and as such the references 
to NO2 in the text and figure caption are incorrect, but they are merely a typo that we have 
corrected. 
 
Figure 2 Title of Figure 2 indicates “CMIP5-dry”. However, legend shows “AM4-CMIP5 (wet)”. 
Need clarification. 
  
Thank you for catching this. We have changed the caption for Figure 2 to read “AM4-
CMIP5(wet)” as the legend indicates. 
 
Figure 3 Observed data are taken from Kanpur site which is not clearly indicated in the Figure 
title. 
 
We have added a description of the observational data (city name, lat, lon, elevation, time period, 
and reference) to the figure caption. 
 
Line 325-340 The model over-predicts aerosol nitrate substantially which may result from many 
factors including the use of high heterogeneous uptake coefficient for N2O5 (Table S1). Recent 
studies (Davis et al., 2008; Reimer et al., 2009; Brown et al., 2009; Phillips et al., 2016; Chang et 
al., 2016) suggest a much lower value for the heterogeneous uptake coefficient. A discussion of 
the impact of high heterogeneous uptake coefficient for N2O5 on model results is relevant.  
 
Davis et al., 2008: Parameterization of N2O5 reaction probabilities on the surface of particles 
containing ammonium, sulfate, and nitrate, Atmos. Chem. Phys., 8, 5295– 5311.  
 
Riemer et al., 2009: The relative importance of organic coatings for the heterogeneous hydrolysis 
of N2O5, JGR, 114.  
 
Brown et al., 2009: Reactive uptake coefficients for N2O5 determined from aircraft 
measurements during the Second Texas Air Quality Study: Comparison to current model 
parameterizations, JGR, 114.  
 
Phillips et al., 2016: Estimating N2O5 uptake coefficients using ambient measurements of NO3, 
N2O5, ClNO2 and particle-phase nitrate, ACP, 16, 13231-13249.  
 
Chang et al., 2016: Evaluating N2O5 heterogeneous hydrolysis parameterizations for CalNex 
2010, JGR: Atmosphere, 121, 5051–5070. 
 



Thank you for bringing this to our attention. The heterogeneous uptake coefficient used here for 
N2O5 is indeed significantly higher than those from recent studies, and has been the default value 
for the GFDL AM3 chemistry (Naik et al., 2013;  Mao et al. 2013a). To test how our value 
affects the nitrate bias, as well as the potentially aberrant nitrate diurnal cycle (per the comment 
below), we have run an additional simulation that covers the 2008-2009 period of the 
observations by Ram et al. (2012) using the updated uptake value of 0.01, which is an order of 
magnitude smaller than our original. We have plotted the results of this simulation in Figure S10 
(diurnal cycle of PM2.5 components), which is shown below. Nitrate is shown in panel (f). 
Compare the blue line (base simulation of the Ram et al. period) with the red lines (sensitivity 
over the same period). The effect of the updated gamma value is to reduce nitrate abundances by 
~15 ug m3 and ammonium abundances by about 5 ug m-3 with the largest changes at night. 
However, the diurnal cycle of nitrate (as with ammonium and sulfate) is qualitatively unchanged 
from the base simulation, with a relative maximum still occurring at midday. So, while we have 
reduced nitrate abundances, the seemingly aberrant diurnal cycle of nitrate is still evident even 
with the updated gamma and will require additional experimentation beyond the scope of this 
paper. We hope that this satisfies the reviewers comments/concerns. We have added the 
following to the paper to reflect the results of the sensitivity experiment: 
 
We test if the seemingly aberrant 𝑁𝑂#$ diurnal cycle is 
a result of our choice of the value for the N2O5 
heterogenous uptake coefficient (0.1), which is 
significantly higher than those reported by previous 
studies (e.g., Davis et al., 2008; Chang et al., 2016), by 
performing an additional simulation with an N2O5 
uptake coefficient of 0.01 over period of the Ram et al. 
(2012) observations. The effect of the updated value is 
to reduce 𝑁𝑂#$ by ~15 µg m3, 𝑁𝐻&' by ~5 µg m-3, and 
𝑆𝑂&)$ by ~1 µg m-3, all with the largest changes at night 
(Fig S10d-f). However, the diurnal cycle of 𝑁𝑂#$ (as 
with  𝑁𝐻&' and	𝑆𝑂&)$) is qualitatively unchanged from 
the base simulation, with a relative maximum still 
occurring at midday. So, while we have reduced nitrate 
abundances, the midday 𝑁𝑂#$ peak is still evident even 
with the updated gamma. One possible explanation is 
that the model prescribes monthly average deposition 
rates for NH4NO3 (i.e., no diurnal cycle), however, 
determining the cause of this midday peak will require 
additional experimentation beyond the scope of this 
paper.  
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Line 443-444 The sentence suggests that annual cycle is shown in the Figure. However, it shows 
data for 6 months, not for the year. 
 
Thank you, we have fixed the wording to denote that it is a monthly average for six months. 
 
Line 449-450 The sentence suggests model is biased high in RH. However, Figure 6b shows 
under-prediction of RH compared to observed data. Need clarification. 
 
Thank you for bringing this to our attention. We have fixed the sentence to reflect the low-bias. 
 
Line 492-497 Ram and Sarin (2011) analyzed measurement data and reported that nighttime 
aerosol nitrate level is five times greater than the day-time nitrate level. In contrast, this 
modeling study finds that aerosol nitrate peaks during mid-day. Despite the use of high uptake 
coefficient for N2O5, it finds that aerosol nitrate peaks during the day which reveals that HNO3 
produced from the reaction of NO2 + OH likely dominates the production of aerosol nitrate. 
What caused the results to be completely opposite to that of Ram and Sarin (2011)? 
 
See discussion above. 
 
Figure S7 Title is not clear. Figure d-f are missing.  
 
We have fixed the figure caption. Only figures a-c are shown. 
 
Figure S8 Title refers to Figure 4 which should probably be Figure 5. 
 
Thank you for catching this, we have fixed the caption. 
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Exploring the relationship between surface PM2.5 and meteorology in 
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Abstract. Northern India (23° N–31° N, 68° E–90° E) is one of the most densely populated and polluted regions in world. 

Accurately modeling pollution in the region is difficult due to the extreme conditions with respect to emissions, meteorology, 

and topography, but it is paramount in order to understand how future changes in emissions and climate may alter the region’s 

pollution regime. We evaluate the ability of a developmental version of the new-generation NOAA GFDL Atmospheric Model, 15 

version 4 (AM4) to simulate observed wintertime fine particulate matter (PM2.5) and its relationship to meteorology over 

Northern India. We compare two simulations of GFDL-AM4 nudged to observed meteorology for the period 1980–2016 driven 

by pollutant emissions from two global inventories developed in support of the Coupled Model Intercomparison Project Phases 

5 (CMIP5) and 6 (CMIP6), and compare results with ground-based observations from India’s Central Pollution Control Board 

(CPCB) for the period 1 October 2015–31 March 2016. Overall, our results indicate that the simulation with CMIP6 emissions 20 

produces improved concentrations of pollutants over the region relative to the CMIP5-driven simulation.  

 

While the particulate concentrations simulated by AM4 are biased low overall, the model generally simulates the magnitude 

and daily variability of observed total PM2.5. Nitrate and organic matter are the primary components of PM2.5 over Northern 

India in the model. On the basis of correlations of the individual model components with total observed PM2.5 and correlations 25 

between the two simulations, meteorology is the primary driver of daily variability. The model correctly reproduces the shape 

and magnitude of the seasonal cycle of PM2.5, but the simulated diurnal cycle misses the early evening rise and secondary 

maximum found in the observations. Observed PM2.5 abundances are by far the highest within the densely populated Indo-

Gangetic Plain, where they are closely related to boundary layer meteorology, specifically relative humidity, wind speed, 

boundary layer height, and inversion strength. The GFDL AM4 model reproduces the overall observed pollution gradient over 30 

Northern India as well as the strength of the meteorology–PM2.5 relationship in most locations. 
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1 Introduction 

Air pollution in India has become a serious problem in recent years, with particulate matter of aerodynamic diameter less than 

2.5 µm (PM2.5) accounting for over 1 million premature deaths in 2015 (Health Effects Institute, 2017). The Indo-Gangetic 

Plain (IGP) is an extremely densely populated area in Northern India that experiences some of the highest PM2.5 levels in the 

world. Considering that there are limited measurements of the spatiotemporal distribution of PM2.5 and its aerosol components 5 

over this region, we must rely on chemistry-climate models to investigate their abundances, long-range transport, trends and 

variability, and predict their distributions in the future with changing climate and emissions. Here we evaluate the ability of a 

state-of-the-art global chemistry-climate model to reproduce surface PM2.5 abundances using recently available hourly surface 

observations covering a large portion of Northern India over an entire extended winter season (October 2015–March 2016).  

 10 

Simulating PM2.5 is a difficult task since it entails correctly modeling its individual components, which requires an accurate 

representation of emissions, chemistry, and transport. The task is especially challenging for simulating the distribution of PM2.5 

over Northern India due to its extreme physical (i.e., complex topography), chemical (concentrated and abundant primary and 

precursor emissions), as well as dynamical meteorological (i.e., shallow boundary layer heights with frequent inversions during 

winter) conditions. While summer months are characterized by the south-west monsoon and relatively low pollution levels, 15 

the region’s wintertime meteorology greatly favors PM2.5 buildup; i.e., low wind speeds, shallow boundary layer heights, and 

high relative humidity (e.g., Nair et al., 2007). Additionally, multiple feedback mechanisms between meteorology and surface 

PM2.5 exist such that, if they are not adequately represented, can amplify problems with a given model. For example, high 

aerosol loading at the surface, particularly absorbing aerosols such as black carbon, can cause surface cooling and warming 

aloft, which can lead to an enhanced boundary layer inversion that allows greater aerosol accumulation (Ackerman et al., 2000; 20 

Ramanathan et al., 2005; Gao et al., 2015; Yang et al., 2016). The stabilization of the boundary layer caused by high aerosol 

concentrations can also lead to reduced wind speeds and thus decreased ventilation, as well as increased relative humidity and 

thus increased hygroscopic aerosol growth (Ram et al., 2014; Chen et al., 2017). 

 

The dominant source of emissions of primary PM2.5 and of precursors of secondary PM2.5 in the IGP originate from coal-fired 25 

power plants and brick-kiln industries scattered throughout the region (Prasad et al., 2006) with other majors sources including 

agricultural biomass burning, transportation, and burning of biofuels used for heating and cooking (e.g., Reddy and 

Venkataraman, 2002). Some sources, primarily crop residue burning, are less steady than those from other anthropogenic 

sources like power generation, but can intermittently drastically impact air quality. While the sources of these emissions are 

relatively well-known, there are large uncertainties in emission estimates across inventories (e.g., Jena et al., 2015; Zhong et 30 

al., 2016).  Indeed, correctly simulating the extremely high PM2.5 abundances in the IGP has proved troublesome for current 

global chemistry models (Reddy et al., 2004; Chin et al., 2009; Ganguly et al., 2009; Menon et al., 2010; Henriksson et al., 

2011; Goto et al., 2011; Nair et al., 2012; Cherian et al., 2013; Moorthy et al., 2013; Sanap et al., 2014; Pan et al., 2015). A 
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multi-model evaluation by Pan et al. (2015) concluded that an underestimation of wintertime biofuel emissions was the 

dominant cause of the models’ low biases. With model simulations for the upcoming CoupledAerosol Chemistry Model 

Intercomparison Project (AerChemMIP) endorsed by the Coupled Model Intercomparison Project Phase 6 (CMIP6) in support 

of the sixth IPCC assessment report (AR6) presently beginning, a standing question is whether the newly updated emissions 

will remedy these frequently found low biases. For this analysis, we use two different emission datasets, those developed for 5 

the CMIP5 (Lamarque et al., 2010) and the CMIP6 (Hoesly et al., 2017; van Marle et al., 2017) to test their impact on modeled 

PM2.5. We also assess the model’s ability to reproduce the observed relationships between site level PM2.5 abundances and 

meteorology. We then show which meteorological indicators have consistency in their ability to predict PM2.5 over the past 

few decades so that the effect of future potential changes in meteorology and their impact on PM2.5 abundances can be assessed.  

The paper is organized as follows: in Section 2 we describe the observational datasets and the model used in this study; Section 10 

3 describes the results, and our conclusions and discussion are in Section 4. 

2 Materials and Methods 

2.1 Observations of surface PM2.5 

We use surface observations of hourly PM2.5 abundances (µg m-3) provided by India’s Central Pollution Control Board (CPCB; 

http://www.cpcb.gov.in/CAAQM/mapPage/frmindiamap.aspx). We consider the time period 1 October 2015–31 March 2016 15 

since the highest PM2.5 abundances in Northern India typically occur during late fall to early spring (Moorthy et al., 2013) and 

very few observations are available for years prior to this period. A total of 22 sites across Northern India provide data for this 

time period; however many of these sites span areas of only a few 10s of km (e.g., 9 are located in a single area of about 25 x 

25 km in and around New Delhi). Table 1 provides a summary of the sites used. The data contains obvious repetitive “fill” 

values when presumably the monitor obtains a null value or the measurement is outside of the detectable range (e.g., 985 µg 20 

m-3, 1,985 µg m-3). However, these values are not flagged and are also considered in the daily averages that CPCB provides. 

Most of these fill values are well over 1,000 µg m-3 and so we exclude any PM2.5 abundance ≥ 985 µg m-3 although such high 

levels have occasionally been observed in similarly polluted environments (e.g., Liu et al., 2017). This process filters 812 

observations, or ~1% of the total hourly data. Daily averages are calculated from each site’s hourly abundances as long as 

there is at least one valid value. 25 

 

We also use surface observations of total PM2.5 and its chemical composition collected at Kanpur (26.5° N, 80.3° E, 142 m 

asl) over the period 25 October 2008–30 January 2009. The chemical composition data includes organic carbon (OC) converted 

to organic matter (OM) using a factor of 1.6, elemental carbon (EC), ammonium (NH#$), sulfate (SO#'–), nitrate (NO)–), Na+, 

K+, Mg2+, Ca2+, Cl-,  and HCO)– . A thorough description of the sampling details and measurements is provided by Ram and 30 

Sarin (2011) and Ram et al. (2012; 2014). 
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2.2 Meteorological reanalysis data 

We use reanalysis fields (2.5° x 2.5° linearly interpolated to 1° x 1°) from the National Centers for Environmental Prediction 

(NCEP/NCAR)(version 1; http://www.esrl.noaa.gov/psd/) of several variables known to influence PM2.5 abundances 

including: relative humidity (RH), surface (2 m) temperature, precipitation, and wind speed and direction at the surface (10-5 

m), 850 mb, and 500 mb, each of which are provided at 6-hourly intervals. We also use boundary layer height (BLH) reanalysis 

from ECMWF ERA-Interim (Dee et al., 2011) since NCEP/NCAR does not provide this variable; we note that there is 

uncertainty in BLH from reanalysis data. We calculate an inversion strength (INV) as the difference between the 850 mb and 

surface (2m) temperature (Gutiérrez et al., 2013). 

 10 

We additionally derive metrics from the reanalysis data that relate to air stagnation, since stagnation describes the basic 

meteorological conditions that are thought to exacerbate the worst pollution levels (e.g., Jacob and Winner, 2009; Fiore et al., 

2012; 2015; and references therein). Stagnation has also been used as a proxy for air quality under future climate change (e.g., 

Horton et al., 2014). The first metric we consider is the modified air stagnation index (ASI) (Wang and Angel, 1999; Horton 

et al., 2012), which is a Boolean index that is true (i.e., the air mass is considered stagnant) when: (i) daily average 10-m wind 15 

speed < 3.2 m s-1, (ii) daily average 500 mb wind speed < 13.0 m s-1, and (iii) daily total precipitation is less than < 1.0 mm. 

We also calculate the wind run and recirculation factor, which respectively characterize stagnation and recirculation of surface 

level flow as described in detail by Allwine and Whiteman, (1994). While the wind run and recirculation factor do not utilize 

upper level wind data like the ASI, their advantage is that they provide a measure of the magnitude of stagnation. The 

recirculation factor takes values between 0 and 1, with 1 meaning total recirculation of an air parcel and 0 meaning complete 20 

ventilation. The wind run is a measure of cumulative wind with a value of 276.5 km equivalent to the daily 3.2 m s-1 cutoff for 

the 10-m wind speed. 

2.3 GFDL-AM4 

We use a developmental version of the new-generation NOAA Geophysical Fluid Dynamics Laboratory Atmospheric Model, 

version 4 (GFDL AM4) for our analysis (Zhao et al., 2017ab).  The standard model setup as described by Zhao et al. consists 25 

of a cubed sphere finite-volume dynamical core with a horizontal resolution of ~100 km on a cubed sphere grid (96x96 grid 

boxes per cube face) with 33 levels extending from the surface up to about 50 km (1 hPa).  

 

The physical atmospheric model (AM4) differs from the previous version (AM3) as described by Zhao et al. (2017b). AM4 

contains increased resolution compared to AM3 (~200 km). AM4 has significantly updated the GFDL radiative transfer code, 30 

with refitting to line-by-line calculations using the latest spectroscopy and adding 10 micron CO2 bands, among other changes. 

The shortwave radiation time-step is reduced from 3 hours (AM3) to 1 hour. In addition AM4 uses a new topographic gravity 

wave drag parameterization described by Garner (2005) and a new double plume moist convection scheme developed based 
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on the University of Washington shallow cumulus scheme (Bretherton et al., 2004). The new scheme represents shallow and 

deep convection, with stronger (weaker) lateral mixing into the shallow (deep plume), with convective inhibition closure for 

the shallow plume mass flux and cloud work function relaxation closure for the deep plume. The deep plume lateral mixing is 

also prescribed to vary with the environmental relative humidity.    

 5 

The base version of AM4 described by Zhao et al. includes interactive aerosols, but only “simple” chemistry needed to drive 

aerosol formation by oxidation of precursors. We modify this configuration by adding detailed tropospheric and stratospheric 

chemistry, and expand the vertical extent of the model to 49 levels (extending up to ~80 km or 1 Pa). This vertical resolution 

is similar to that in AM3, except an extra layer is placed near the surface so that the model’s lowermost layer is thinner.  

 10 

The chemistry and aerosol physics module in our “full chemistry” version of AM4 are similar in structure to AM3, but with 

significant modifications. In particular, the efficiency of removal of tracers by convective precipitation is significantly 

increased (Paulot et al., 2016) compared to the unrealistic weak removal in AM3 (Fang et al., 2011), while the wet removal by 

frozen precipitation produced by the Bergeron process is strongly reduced (Liu et al., 2011; Paulot et al., 2017). As a result, 

the spatial distribution of aerosol climatology and seasonal cycle simulated by AM4 has been significantly improved relative 15 

to AM3. 

 

The base chemical mechanism used is from AM3 as described by Naik et al. (2013), with gas-phase and heterogeneous 

chemistry updates from Mao et al. (2013a, b), and updates to the treatment of sulfate and nitrate chemistry and revised treatment 

of wet deposition (Paulot et al. 2016; 2017). Here we do not take into account the uptake of SO2 and HNO3 on dust. The 20 

heterogeneous uptake coefficients used here are provided in Table S1 (Mao et al., 2013a). The model includes the FAST-JX 

version 7.1 (Li et al., 2016) photolysis code and interactive biogenic isoprene emissions following Guenther et al. (2006), as 

implemented by Li et al. (2016).  

 

Modeled aerosol species include black carbon (BC), primary OM, anthropogenic secondary organic aerosol (SOA), NH#$, 25 

SO#'–, NO)– , sea salt, and mineral dust. Hydrophobic BC and OM are converted to hydrophilic with a 1.44 days e-folding time. 

Sea salt and mineral dust are partitioned into 5 size bins (e.g., dust1, dust2, ssalt1, ssalt2; see Eq. (1)) with constant volume 

size bin distributions. The thermodynamic equilibrium of the SO#'––NO)–  –NH#$ system is simulated using ISORROPIA 

(Fountoukis and Nenes, 2007) with the equilibrium between gas and aerosol assumed to be reached at each model time step 

(30 min). Modeled dry PM2.5 abundances are defined using Eq. (1). We consider 100% of each aerosol species to be included 30 

in PM2.5 except for sea salt and mineral dust where only the bin or fraction of the bin with diameter < 2.5 µm is used. We 

calculate the dry mass of PM2.5 as: 

 

PM'..(dry) = 	SOA + dust1 + 0.25dust2 + ssalt1 + ssalt2 + 0.167ssalt3 + BC+ OM+	NH#$ + NO)E + SO#'E , (1) 
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This formulation (Eq. (1)) does not consider the mass of aerosol water (i.e., hygroscopic growth). Due to diagnostic limitations, 

assumptions of the SO#'––NO)–  –NH#$ system must be made in terms of partitioning NH#$ between NO)–  and SO#'– in order to 

retrieve hourly abundances of PM2.5 that includes hygroscopic growth, since the growth factors are described for NH4NO3 and 

(NH4)2SO4. At each hourly time step, we calculate the fraction (α) of NH#$ present as (NH4)2SO4 using: 5 

 

∝	=	2𝑆𝑂#'E (𝑁𝑂)E + 2𝑆𝑂#'E)⁄  ,           (2)  

 

The remaining NH#$ forms NH4NO3. We partition NH#$ this way since (NH4)2SO4 is more stable. The (NH4)2SO4 hygroscopic 

growth factor is then applied to SO#'E+∝ NH#$ and thus the NH4NO3 growth factor is applied to NO)E + (1−∝)NH#$. We 10 

recognize using this method (as opposed to online calculation using ISORROPIA) introduces some uncertainty into the 

modeled aerosol mass. However, we use this method since we want to apply constant hygroscopic growth factors at 50% RH 

in order to realistically compare modeled results to the observations, as this RH value is operationally defined by CPCB. In 

addition, there are variations in how different models represent hygroscopic growth. For example, the GEOS-CHEM chemical 

transport model (Martin et al., 2003) applies the same hygroscopic mass growth factor at 50% RH of 1.51 to NH#$, NO)– , and 15 

SO#'–, which is slightly higher than our growth factors for NH4NO3 (1.32) and (NH4)2SO4 (1.46).  In addition, GEOS-CHEM 

includes a growth factor of 1.24 for hydrophilic OM and SOA whereas our parameterization has no hygroscopic growth of 

organics at 50% RH (Ming and Russel, 2004). Sea salt has the largest growth factor (2.32). In any case, we present both dry 

and wet aerosol mass whenever possible in order to highlight the uncertainty involved with aerosol water content. Equation 

(3) shows the calculation of PM2.5 mass including water (hence wet PM2.5). 20 

 

PM'..(wet	@50%RH) = SOA + dust1 + 0.25dust2 + 	2.32(ssalt1 + ssalt2 + 0.167ssalt3) + BC+ OM + 	1.32(NO)E +

(1−∝)NH#$) + 1.46(SO#'E+∝ NH#$) ,         (3) 

 

The model is nudged with NCEP-NCAR reanalysis winds (Lin et al., 2012) using a pressure-dependent nudging technique and 25 

a relaxation time scale of 6 h at the surface and weakening to ~60 h by 100 ha; this facilitates a consistent comparison of 

modeled and observed daily PM2.5 abundances.  

 

We perform two simulations, each of 36 years and 3 months duration (1 Jan 1980 – 31 March 2016), with the first year used 

as model spin-up. The first simulation, denoted as AM4-CMIP5, is driven by emissions developed in support of the CMIP5 30 

(Lamarque et al., 2010) and is extended from 2000 to 2016 following the Representative Concentration Pathway 8.5 (RCP8.5; 

van Vuuren et al., 2011). The second simulation, referred to as AM4-CMIP6, is driven by emissions developed for the 

upcoming CMIP6 (Hoesly et al., 2017; van Marle et al., 2017) wherein the period from 2000 to 2014 represents historical 

emissions rather than projections. Years 2015-2016 emissions were set to year 2014 values.  
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The spatial patterns (1° x 1°) of the CMIP6 total anthropogenic extended wintertime (October–March, 2015–2016) emissions 

(Gg) of BC, OM, NO, SO2, and NH3 used over India in the AM4-CMIP6 simulation are shown in Fig. 1a-e, respectively. 

Emissions are largest for all species over the IGP and lowest over the oceans and the Himalayan Plateau. The patterns of BC, 

OM, NO, and NH3 are fairly uniform over the IGP while SO2 emissions (Fig. 1d) are highly localized due to large emissions 5 

from coal-fired power plants.  

 

Figure 1f-i show the percent difference between CMIP6 and CMIP5 emissions for the same time period and for the five species 

in Fig. 1a-e. For BC, OM, NO, and NH3 emissions, most grid cells within the IGP show differences of 50–100%. Differences 

in SO2 emissions are more variable, with some grid cells showing moderate differences while others greater than 100%.  10 

Figures S1-S5 in the Supplement compare the evolution of these emissions over the full time period of the model simulation 

for ten sub-regions in India. For almost every region and every species, the difference between CMIP5 and CMIP6 emissions 

is largest over 2000–2016 period (i.e., when CMIP5 is extended using RCP8.5), however, some large differences are also seen 

in earlier years. Overall, anthropogenic emissions in the CMIP6 dataset are much higher than those in the CMIP5 dataset.  

3 Results 15 

In this section we use the surface measurements of PM2.5 to evaluate the ability of GFDL-AM4 to reproduce the daily 

concentrations of PM2.5 and their relationship with meteorological variables, large-scale percentile patterns, and diurnal and 

seasonal cycles. 

3.1 Daily Variability 

Figure 2a-b show the 6-month time series of daily average PM2.5 for two grid cells with multiple observation sites. Nine 20 

observations sites are located in the grid cell over New Delhi (Fig. 2a), and they show extreme variability between them despite 

being within ~25 km of one another. The average difference among the maximum and minimum abundance of the sites on a 

given day is 160 µg m-3, sometimes reaching over 400 µg m-3. The AM4-CMIP5 abundances are a factor of ~2–4 less than the 

observations, but the actual magnitude of the bias clearly depends on which observation is being compared against. The AM4-

CMIP6 abundances are also generally biased low, mainly in December–January, but often fall within the range of the 25 

observations for other months. The correlation coefficient (r) between the two simulations is 0.96 and 0.94 for New Delhi and 

Kanpur/Lucknow, respectively, highlighting the strong control of meteorology on daily variability. The correlation of the 

AM4-CMIP6 dry and wet PM2.5 with the average of the observations is 0.57 and 0.56, respectively. The four sites located in 

the grid cell over the cities of Kanpur and Lucknow (~75 km apart)(Fig. 2b) show less variability between them than those 

over New Delhi, with an average min-to-max difference of 94 µg m-3. The correlation of AM4-CMIP6 with the average of the 30 

observations is slightly better for this grid cell, 0.65 (dry) and 0.63 (wet). In both grid cells, the inclusion of aerosol water 
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slightly decreases the correlation between models and average observations, however, it reduces the normalized mean bias 

(NMB) from –41% to –28% and –26% to –10% over New Delhi and Lucknow/Kanpur, respectively. This is true for most of 

the individual sites as well: only four sites show an improvement in correlation and all but two sites show a reduction in the 

NMB  (Table S2). Noteworthy is the model bias for both locations during the 5-day festival of Diwali (shown by the vertical 

dashed lines in Fig. 2), which is a period marked with extensive fireworks celebrations and thus high aerosol loading (Tiwari 5 

et al., 2012) that the model obviously would not reproduce since the emission inventories used here have monthly resolution. 

These plots show that PM2.5 abundances can vary substantially over regions smaller than a model grid cell (i.e., ~100 km), 

especially in megacities such as New Delhi (~22 million people) and Lucknow/Kanpur (~6 million people). The model 

abundances represent an average over the grid cell while the observations represent a point measurement, and thus this 

incommensurability necessitates caution when comparing the two (e.g., Schnell et al., 2014). 10 

 

Figure S6a-d show the same time series for the observations and both simulations but separates modeled total PM2.5 into its 

individual components. For both grid cells and simulations, NO)E is the dominant driver of modeled PM2.5 variability, 

accounting on average around one-third of PM2.5, largest on days with the highest total PM2.5. Thus, the model’s ability to 

match the time series of PM2.5 observations is largely dependent on NO)E variability. OM is the second largest contributor to 15 

total PM2.5 (~25%), but is less variable than NO)E.  Table S2 also shows the correlation of each site’s observed PM2.5 time 

series with each of the modeled components of PM2.5. For most sites, the correlation with either OM or BC is highest (shown 

by the bolded numbers). 

 

We next compare the fractional contribution of each PM2.5 component to the speciation measurements in Kanpur during 20 

October 2008– January 2009. The observations include an “unidentified” component so we separately show the observed 

fractions excluding the unidentified fraction (Fig. 3a) and including it (Fig. 3b). The results for AM4-CMIP5 and AM4-CMIP6 

are shown in Fig. 3c and Fig. 3d, respectively.  The average total PM2.5 abundance is shown below each pie chart. The largest 

model-measurement discrepancy is for the OM and NO)E component fractions. The model underestimates the OM contribution 

by 12–27% for AM4-CMIP5 and 19–34% for AM4-CMIP6, depending on whether the unidentified fraction is included. The 25 

model overestimates the NO)E contribution by 19-21% for AM4-CMIP5 and 30–32% for AM4-CMIP6, again depending on 

whether the unidentified fraction is included. In absolute terms, the AM4-CMIP5 and AM4-CMIP6 is overestimating NO)E by 

17 µg m-3 (217%) and 53 µg m-3 (680%), respectively. For OM, AM4-CMIP5 underestimates it by 6 µg m-3 (-15%) while 

AM4-CMIP6 overestimates it by 7 µg m-3 (18%). The unidentified fraction is quite large (42% of total PM2.5, Fig. 3b), which 

Ram and Sarin (2011) hypothesize to be mineral dust; while the AM4 may underestimate wintertime dust like previous versions 30 

of the model (Ganguly et al., 2009), it is unlikely the underestimate is this large. 
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3.2 Spatial patterns of PM2.5 and related meteorology 

Figure 4a-c respectively show the 5th, 50th, and 95th percentile of the AM4-CMIP6 (wet) daily average PM2.5 abundances for 

1 October 2015 – 31 March 2016 overlain with the observed site values over the same time period. As expected from the 

emission patterns in Fig. 1, the highest PM2.5 abundances in northern India are found throughout the IGP for all percentiles. 

Within the IGP, the eastern edge shows the highest abundances in both observations and AM4 simulations. This feature is 5 

most evident at the 95th percentile, where the observed values in the east exceed those in the north and central IGP by up to 

50%, with the 95th percentile value at one site reaching ~400 µg m-3 – 16 times the WHO-recommended health standard for a 

24-hour average abundance (WHO, 2006). The AM4-CMIP6 simulation is biased slightly low at the 50th (normalized mean 

bias (NMB) = –19%) and 95th percentiles (NMB = –22%) for most sites, while slightly high for some sites at the 5th percentile 

(NMB = +4%).  This is a major improvement compared to the AM4-CMIP5 (wet) simulation (Fig. S7), which has NMBs at 10 

the 5th, 50th, and 95th percentile of –35%, –53%, and –57%, respectively. The changes from CMIP5 to CMIP6 are almost 

entirely in terms of magnitude as the spatial correlations between the AM4-CMIP5 and AM4-CMIP6 percentile maps are all 

around r = 0.99. 

 

Figure 5 shows modeled (AM4-CMIP6) and observed RH, BLH, INV, and 10-m, 850 mb, and 500 mb wind speed and direction 15 

averaged over the 1 October 2015–31 March 2016 time period. Note that the reference wind vectors in Figs. 5d and 5f are the 

ASI cutoffs for 10-m and 500 mb wind speeds, respectively. Overall, the AM4 simulates these meteorological quantities 

reasonably well, as should be expected since the wind fields in AM4 are nudged to reanalysis data. Ideally, these comparisons 

should be made with surface observations and soundings, however data limitations hinder a complete evaluation of modeled 

meteorology.   20 

 

The general northwesterly direction of the 10-m and 850 mb winds (generally biased high for 850mb) along the IGP (Fig. 5d-

e) allows for accumulation of aerosols as air masses flow to the southeast across the high-emission IGP region (e.g., Nair et 

al., 2007; Kumar et al., 2015; Sen et al., 2017). Nair et al. (2007) highlights the role of this transport mechanism by showing 

PM2.5 levels in the IGP increased with the distance the air mass had traveled from the west. Nair et al. (2007) note that this 25 

also applies to the transport of weather phenomena conducive to aerosol buildup such as a cold air mass. The surface winds 

are light and variable at the eastern edge of the IGP, a recirculation pattern that inhibits outflow into the Bay of Bengal. The 

winds at 500mb are strong westerlies with the largest values (~18 m s-1) in the central and eastern IGP.  

 

The modeled and observed correlations of daily-average PM2.5 with the meteorological variables in Fig.5a-f is shown in Fig 

5g-l, respectively. Only model correlations significant at the 95% confidence level based on a Student’s t-test are shown, and 

significant observed correlations are denoted with an ‘x’. Overall, AM4 reproduces most of the observed PM2.5–meteorology 

correlation patterns well, especially in the eastern IGP, which consistently shows the strongest magnitude correlations for most 
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variables. As for the meteorological variables, INV and BLH generally show the strongest correlations (|r| > 0.6 in the eastern 

IGP). RH is positively correlated with PM2.5 over all of northern India except for the western edge bordering the coast. Small 

negative correlations are found for 850mb winds while, unexpectedly, positive correlations are found between PM2.5 and 500 

mb wind speed. NO)–  is the dominant driver of this positive correlation with 500 mb winds (see below; Fig. S8), but all 

anthropogenic aerosol components show high positive correlation over the far eastern edge. The negative correlation of PM2.5 5 

with surface and 850 mb winds and positive correlation with 500 mb winds suggest that the surface and upper-level airflow 

are independent. This finding is explored further in Sect. 3.3 in the context of the ASI. 

 

The correlations of the meteorological variables with the components of PM2.5 are not always comparable to those with total 

PM2.5. Figure S8 shows the correlations with each of the main components of PM2.5 (i.e., dust, sea salt, BC, OM, SOA, NH#$, 10 

SO#'–, and NO)–) with the same meteorological variables as in Fig. 5. The correlations in Fig. S8 are computed over 2011-2015 

to reduce the influence of interannual variability. For most variables and regions, particularly in the IGP, the individual PM2.5 

components have the same sign and similar magnitude correlations as those for total PM2.5. Because NO)–  is the dominant 

component of PM2.5 in most regions (Fig. S9), the correlations for NO)–  are very similar to those for total PM2.5. But, in some 

cases, differences reflect the source of the component (e.g., dust vs. BC) and aerosol chemistry. At some locations, dust and 15 

sea salt have several correlations that are opposite in sign than the rest of the components. The positive correlations with 

surface wind are expected given that emissions of dust and sea salt are simulated as a function of wind speed (Ginoux et al., 

2001), which is especially evident near strong source regions such as the western coast (sea salt) and the Thar Desert (dust).  

 

Since both the modeled and observed PM2.5 reflect constant 50% RH conditions, the correlation of RH and PM2.5 is not due to 20 

hygroscopic growth. In Fig. S8 the correlation with RH is positive for all PM2.5 components except dust. Since NO)E and OM 

are the dominant components of total PM2.5 over most locations (Fig. S9), their correlations with RH (and thus the other 

meteorological variables) are what is predominantly reflected in terms of total PM2.5. We also examine the correlation of RH 

with the other meteorological variables to determine the underlying driver of the correlations of RH and PM2.5 and its 

components. RH has large negative correlations with surface wind speeds and is positively correlated with INV and low cloud 25 

cover (not shown), which all are indicative of a stable boundary layer (e.g. Chen et al., 2017) and would cause PM2.5 to 

accumulate (e.g., high RH ~ low wind speeds, low ventilation → high PM2.5). Essentially, the positive correlation of PM2.5 

with RH likely reflects that high RH is indicative of other meteorological conditions that allow PM2.5 to accumulate. For SO#'–, 

the positive RH relationship may also reflect in-cloud SO2 oxidation (e.g., Ram et al., 2012).  

3.3 Seasonal and diurnal cycles 30 

The seasonal cycle of total PM2.5 over the IGP is driven by a combination of meteorology and emissions. For example, the 

relatively cold winters in the IGP (~7°C average daily December–January minimum over Kanpur/Lucknow) increases overall 

energy demand and leads to additional burning of fuel for indoor heating. The colder temperatures also play a role in the 
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chemistry of PM2.5 (e.g., nitrate is more stable at colder temperatures). The strong radiative cooling at the surface during the 

winter nights often result in foggy conditions and a shallow inversion layer that traps aerosols near the surface.  

 

Figure 6a shows the monthly average PM2.5 abundances for the min-to-max range of the individual stations (gray shading) and 

their median (black line) over the 6-month period. Also shown is the median of modeled PM2.5 for AM4-CMIP5 dry (blue), 5 

AM4-CMIP6 dry (red), AM4-CMIP6 wet (green). The maximum PM2.5 abundances in the observations occur over a broad 

peak from November–January, with a mean of ~200 µg m-3 and individual sites ranging from ~125–300 µg m-3. Both AM4 

simulations reproduce month-to-month variations well, but the AM4-CMIP5, although biased very low, matches the January 

peak that the AM4-CMIP6 misses. 

 10 

Figure 6b-e show the 6-month cycle for RH, BLH, INV, and 10-m wind speeds, respectively. As expected from the correlations 

shown in Fig. 5g-l, the cycles of these variables align, such that meteorology is most conducive to formation and accumulation 

during the months with maximum PM2.5: e.g., low BLH and strong INV trap pollution near the surface; and low wind speeds 

decrease ventilation. High RH also increases ambient observed PM2.5 due to hygroscopic growth, but the connection here is 

probably due to the relationship between RH and a stable boundary layer. The model reproduces the shape of these cycles 15 

well, but is biased slightly low in RH (~5% from November to January), low in BLH (~200 m for all months), high in INV 

(~2° for most months), and low in surface wind speed (0.5 to 1 m s-1).  There is some evidence for aerosol feedback onto 

meteorology seen by comparing the curves of AM4-CMIP5 (blue) to AM4-CMIP6 (green), namely a stabilization effect on 

the boundary layer. The much higher aerosol abundances in AM4-CMIP6 seem to have caused higher relative humidity, 

decreases in boundary layer height and surface wind speeds, as well as a stronger inversion.  20 

 

The skill of the model in reproducing the seasonal cycle of PM2.5 and related meteorology provides confidence in the 

seasonality of emissions and the ability of the model to simulate the large-scale PM2.5-meteorology relationships. A more 

stringent test is to compare the diurnal cycles from observations and the model. Like the seasonal cycle, the diurnal cycle of 

PM2.5 is controlled by a combination of emissions and meteorology. However, since the model lacks a diurnal cycle of 25 

emissions, it may not be capable of accurately reproducing the observed diurnal cycle of PM2.5. If the model were to simulate 

the observed diurnal cycle well, even without a diurnal cycle of emissions, this would provide confidence in the model’s ability 

to simulate high-frequency PM2.5–meteorological relationships.  

 

Figure 6f shows the diurnal cycle of PM2.5 for the min-to-max range of the individual stations (gray) and their average (black) 30 

over the 6-month period. The AM4-CMIP5 (dry), AM4-CMIP6 (dry), and AM4-CMIP6 (wet) values are also shown in blue, 

red, and green, respectively. We also show the diurnal cycle of each major PM2.5 component for AM4-CMIP6 (dry) (in addition 

to a sensitivity experiment, see below) in Fig. S10 of the Supplement. The minimum PM2.5 abundance in the observations 

occurs at ~15:00 LT, aligning with the lowest RH, deepest boundary layer, and highest wind speeds. As evening approaches, 
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wind speeds decrease and the boundary layer collapses, trapping the PM2.5 emitted and produced over the day at the surface. 

These features, together with an evening pulse in traffic and biofuel emissions for heating and cooking (Rehman et al., 2011), 

cause PM2.5 abundances to reach their maximum at around 21:00 LT. PM2.5 abundances decrease through the night, likely due 

to a drop off in emissions since all other meteorological variables would suggest further PM2.5 increases. Abundances begin to 

increase about an hour before the ~07:00 sunrise and a short-lived secondary maximum occurs at around 09:00 LT. Part of 5 

this increase may be driven by emissions (e.g., cold engine starts and morning traffic); however, Nair et al. (2007) attribute the 

rise mostly to fumigation (Stull, 1988; Fochesatto et al., 2001), i.e., thermals that break up the nighttime inversion layer and 

mix aerosols trapped in the residual layer down to the surface. 

 

The PM2.5 concentrations simulated by AM4 are biased low during all hours of the day, with the largest bias at the time of the 10 

evening maximum. AM4 reproduces a slightly delayed morning maximum, closely following the rise in BC and OM/SOA 

(Fig. S10b-c). AM4 largely misses the evening rise in PM2.5 abundances despite simulating the changes in meteorology, which 

would otherwise increase PM2.5 abundances. Thus, the lack of a diurnal emission cycle in the AM4 likely explains why it 

misses the evening peak in PM2.5. Indeed, Ram and Sarin (2011) find that, for a site in Kanpur, boundary layer dynamics are 

not the only cause for the evening rise PM2.5 but rather an increase in source emissions and enhanced secondary aerosol 15 

formation. Additionally, Ram and Sarin (2011) find that particulate NO)E was a factor of four higher during nighttime, 

attributable to secondary formation via the hydrolysis of N2O5 under high humidity conditions. AM4, however, shows the 

reverse, with a peak in NO)E during midday. Overall, NH#$, NO)E, and SO#'E in AM4 (Fig. S10d–f) act to increase midday PM2.5 

and cause a relative decrease in morning and early evening PM2.5, thereby decreasing the overall amplitude of the PM2.5 diurnal 

cycle. 20 

 

We test if the seemingly aberrant NO)E diurnal cycle is a result of our choice of the value for the N2O5 heterogenous uptake 

coefficient (0.1), which is significantly higher than those reported by previous studies (e.g., Davis et al., 2008; Chang et al., 

2016), by performing an additional simulation with a N2O5 uptake coefficient of 0.01 over period of the Ram et al. (2012) 

observations. The effect of the updated value is to reduce NO)E by ~15 µg m3, NH#$ by ~5 µg m-3, and SO#'E by ~1 µg m-3, all 25 

with the largest changes at night (Fig S10d-f). However, the diurnal cycle of NO)E (as with  NH#$ and	SO#'E) is qualitatively 

unchanged from the base simulation, with a relative maximum still occurring at midday. So, while we have reduced nitrate 

abundances (and total PM2.5), the midday NO)E peak is still evident even with the updated gamma. One possible explanation is 

that the model prescribes monthly average deposition rates for NH4NO3 (i.e., no diurnal cycle); however, determining the 

cause of this midday peak will require additional experimentation beyond the scope of this paper.  30 

3.4 Air stagnation 

The Air Stagnation Index (ASI) is a metric commonly used to identify days when meteorology is conducive to the buildup of 

pollutants, viz. light winds at the surface and upper levels and no precipitation (Wang and Angell, 1999). Meteorologically, 
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light winds at the surface hinder dilution of pollutants, no precipitation prevents pollutant washout and implies no convection 

and thus less dilution, and light upper level winds are related to slow moving synoptic systems. The index was developed over 

the United States, but it has been used in relation to air quality in other regions (e.g., Horton et al., 2012; 2014; Huang et al., 

2017). Fig. S11 shows the frequency of each of the stagnation criteria over the 6-month period. Stagnation with respect to 10-

m wind speeds and precipitation occurs on nearly 100% of the days over large portions of northern India. The 500 mb wind 5 

speed criteria is the limiting factor for total ASI, both occurring on ~35% of the days. These patterns of stagnation frequency 

are nearly identical from year to year over the period of the simulations, with only a few grid cells (most over the ocean and 

the Himalayas) showing significant trends in any of the stagnation criteria (not shown). 

 

The large negative correlations between PM2.5  and 10-m wind speed shown in Fig. 5j clearly imply that days with low surface 10 

wind speeds have higher PM2.5 abundances. Precipitation is weakly correlated with PM2.5 (not shown), but it is relatively rare 

during winter months. However, the positive correlation of PM2.5 with 500 mb wind speeds – the third component of the ASI 

– suggests that the ASI may not accurately describe conditions susceptible to pollution buildup over India. 

 

We test the ability of the ASI to predict extreme pollution days by comparing the composite average PM2.5 on days when any 15 

individual or all stagnation criteria are met with the average on days that they are not met. We calculate the composite using 

anomalies relative to the monthly mean to remove the influence of seasonality. Notably, since nearly 100% of the days are 

considered stagnant with respect to 10-m wind speeds and precipitation, the composites are not a completely fair comparison. 

However, the 500mb and total ASI criteria are achieved as often (Fig. S11). Figure 7a-d show the results for observations and 

AM4-CMIP6 over the October 2015 – March 2016 time frame. The gray regions in Fig. 7a and 7d are grid cells where a 20 

composite cannot be constructed since 100% of the days are considered stagnant for the respective criterion. Both the 

observations and AM4-CMIP6 have large positive composites (~30 µg m-3 ASI minus non-ASI, relative to the monthly mean) 

in the IGP on days when the 10-m wind ASI criterion is met. The results for the precipitation criterion are mixed, with the 

observations showing positive composite anomalies for most sites, but the model only showing positive composites for areas 

in the far eastern edge of the IGP.  The composites for the 500 mb component and total ASI agree very well, but are also mixed 25 

between the observations and model.  For the observations, most composites are slightly positive (0–10 µg m-3) with the model 

showing similar magnitudes but opposite in sign. Examining the composites on a monthly basis shows that the positive 

composites for 500 mb and total ASI in the observations occur mostly outside of December-January, the months when the 

highest PM2.5 abundances typically occur. Indeed, plots of the composites using the raw data (i.e., not relative to the monthly 

mean) (Fig. S12) shows that nearly all observations and all model grid cells have large negative composites for the 500 mb 30 

wind speed and total ASI. 

 

We test if these composites are representative of a broader time period by calculating the composites for seven 5-y intervals 

over the 1981–2015 period in AM4-CMIP6 (Fig. S13). The spatial patterns of the 10-m wind and precipitation composites are 
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extremely similar across the 5-y intervals, although the magnitude increases with time. Interestingly, the results for the 500 

mb and total ASI composites in the earlier decades are different from those in the last decade. In the first two decades the 

composites are near zero or slightly positive for most of northern India except in the far eastern edge. The last decade, however, 

shows negative composites over most of the domain. Unfortunately there are no observations to confirm these results, but it 

nevertheless suggests a regime change in the relationship between wintertime PM2.5 and synoptic meteorology, possibly 5 

resulting from a combination of changing climate and emissions.    

 

These results suggest that atmospheric conditions at the surface are decoupled with those in the upper atmosphere over 

Northern India. This disconnect is frequently observed in mountainous topography, such as the western US (e.g., Wolyn and 

Mckee, 1989; Holmes et al., 2015; Chachere and Pu, 2016) where cold air pools form at the surface, such that a temperature 10 

inversion and/or deep stable boundary layer traps pollution close to the surface (Whiteman et al., 2001), leaving light surface 

winds despite relatively strong winds aloft (Wolyn and Mckee, 1989). A complete decoupling between the lower and upper 

atmosphere would presumably yield a near zero or insignificant correlation between surface PM2.5 and 500mb wind speeds; 

however significant correlations greater than +0.35 are found over the entirety of the IGP – and greater than +0.60 over the far 

eastern edge bordering Bangladesh. It remains unclear what – if any – mechanism is responsible for the positive relationship 15 

between PM2.5 and 500 mb wind speeds. 

3.5 What meteorological conditions consistently result in degraded air quality? 

The future of air quality over Northern India will largely be determined by emission changes. However, even with drastic 

emission reductions, pollutant levels may still exceed recommended levels due to the size of the population and the 

socioeconomics in the region. Meteorological changes due to a warming climate will also play a role, especially for the days 20 

with the highest pollution levels. It is thus important to identify meteorological conditions that have consistent effects on air 

quality – at least from a model standpoint – in order to provide confidence in how air quality may respond to changes in those 

variables.   

 

In Fig. 8, we show PM2.5 and meteorological composites for the 10 days with the highest PM2.5 abundance for each observations 25 

site and each grid cell in AM4-CMIP6-wet (~95th percentile over October 2015 – March 2016) minus the 10 days with the 

lowest abundances (i.e., the ~5th percentile).  For PM2.5 (Fig. 8a), abundances are up to 200 µg m-3 higher on the most polluted 

days compared to the cleanest days in both the model and observations. The pattern is matched extremely well by the model 

despite being biased low for PM2.5 at most locations and times. Compared to the cleanest days, the most polluted days in most 

locations have higher RH (Fig. 8b, +5 to +15%), lower BLH (Fig. 8c, –50 to –200 m), and stronger temperature inversions 30 

(Fig. 8d, +1 to +3 K). We also perform the composites for two other stagnation metrics, the wind run and recirculation factor 

(Allwine and Whiteman, 1994). The wind run (i.e., a similar measure to daily average wind speed) is much lower over the IGP 

(about –100 km), but over the western side of Northern India it is higher in the model (about +50 km) and lower in the 

Deleted: Northern

Formatted: English (US)

Deleted: ¶35 
Formatted: English (US)

Deleted: ... [15]
Formatted: English (US)

Formatted: English (US)



 

15 
 

Deleted: ¶

observations (about –50 km). Since this area has higher dust and sea salt fractions (Fig. S9), which are both parameterized as 

function of wind speed, and the model does not seem to be biased high in wind speed (Fig. 5d), this may indicate the dust 

emission source is too large or too sensitive to wind speed. For wind recirculation, most sites have positive composite values 

(i.e., increased recirculation), with the model showing positive composites along the length of the IGP and largest near the far 

eastern edge of the IGP bordering Bangladesh where the surface winds are variable (Fig. 5d).  5 

 

We extend this analysis for seven 5-year intervals to test if these relationships have changed over the recent decades and plot 

the results in Fig. S14. Here we use the 50 most polluted and cleanest days over 5 years (still ~95th percentile minus the ~5th 

percentile). Notably, the composite values for PM2.5 have increased substantially (~40 to >200 µg m-3) over the period due to 

massive increase in emissions. Overall, however, the results are extremely similar to Figure 8, but the patterns are more 10 

pronounced than those using only one winter and 10 days. Based on the consistent results over the time period, we suggest 

using these variables (or possibly others unexplored here) to gauge potential future changes in poor air quality days due to 

changing meteorology. 

4 Conclusions and Discussion 

We have investigated the ability of a developmental version of the new-generation NOAA Geophysical Fluid Dynamics 15 

Laboratory Atmospheric Model, version 4 (GFDL AM4) to reproduce observed PM2.5 and its relationship to meteorology over 

Northern India during October–March, 2015–2016. We find the new emission dataset developed for phase 6 of the Coupled 

Model Intercomparison Project (CMIP6) vastly reduces the low bias of the AM4 results, nearly doubling the amount of PM2.5 

simulated over the time period. In both the observations and the model, the highest PM2.5 abundances are found in the Indo-

Gangetic Plain (IGP), specifically in the eastern states of Uttar Pradesh and Bihar. This area is also most sensitive to 20 

meteorological variables that describe the stability of the lower atmosphere including: relative humidity, boundary layer height, 

strength of temperature inversion, and low level wind speed.   

 

In the AM4, NO)E and OM are the dominant components of total PM2.5 over most of Northern India, and they are also the most 

sensitive components to meteorology. OM and BC are most strongly correlated with total observed PM2.5, likely reflecting the 25 

stronger influence of meteorology compared to chemistry. Future development of AM4 to improve its ability to reproduce 

observed PM2.5 over India should focus on improving its simulation of NO)E, the most abundant PM2.5 component in the model, 

which is largely overestimated compared to limited observations. AM4 correctly simulates large-scale percentile patterns of 

PM2.5 as well as the seasonal (October – March) cycle. The diurnal cycle is also simulated well, but AM4 misses the early 

evening rise and secondary peak found in the observations, possibly because it lacks a diurnal emission cycle.  30 
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We additionally find that the air stagnation index (ASI), a commonly used indicator of poor air quality, is generally not able 

to predict high pollution days in the present decade over the most polluted regions of Northern India. Results are somewhat 

mixed for previous decades, suggesting that the success of a particular stagnation index in indicating high pollution levels in 

one climate regime does not imply it will continue to be effective in different climate regimes, even on relatively short (30 

year) time scales. Instead we find that poor air quality days can be better predicted using other meteorological variables 5 

describing only the stability of the lower atmosphere (i.e., surface wind speed, boundary layer height, strength of temperature 

inversion), relationships that have not changed in the recent past. 

 

This analysis is largely based on a single winter of observations over Northern India. While the results have provided valuable 

insight into the meteorological and chemical controls on air quality, it is imperative that long-term, reliable pollutant and 10 

meteorological measurements are maintained in the region in order to better assess the future of air quality in response to 

changing emissions and climate. 
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Table 1. Description of observation sites 

No. State City Station Lat. (°N) Lon. (°E) Elev. (m) % daysa 

(1) Bihar Gaya Gaya Collectorate 24.75 84.94 111 59.6 

(2) Bihar Muzaffarpur Muzaffarpur Collectorate 26.08 85.51 60 87.4 

(3) Bihar Patna IGSC Planetarium Complex 25.36 85.08 53 94.5 

(4) Delhi New Delhi Anand Vihar 28.65 77.30 205 84.7 

(5) Delhi New Delhi Dwarka 28.61 77.04 213b 80.3 

(6) Delhi New Delhi IHBAS 28.61 77.21 213b 35.5 

(7) Delhi New Delhi Mandir Marg 28.64 77.20 213b 89.6 

(8) Delhi New Delhi Punjabi Bagh 28.67 77.13 216 92.3 

(9) Delhi New Delhi R K Purnam 28.57 77.18 213b 92.9 

(10) Delhi New Delhi Shadipur 28.65 77.16 213b 98.9 

(11) Gujarat Ahmedabad Maninagar 23.00 72.60 53 20.2 

(12) Haryana Faridabad Sector 16A Faridabad 28.41 77.31 198 95.1 

(13) Haryana Gurgaon HSPC Gurgaon 28.45 77.03 217 19.7 

(14) Haryana Panchkula Panchkula 30.71 76.85 365 54.1 

(15) Rajasthan Jaipur Jaipur 26.97 75.77 431 67.8 

(16) Rajasthan Jodhpur Jodhpur 26.29 73.04 231 72.1 

(17) Uttar Pradesh Agra Sanja Palace 27.20 78.01 171 97.8 

(18) Uttar Pradesh Kanpur Nehru Nagar 26.47 80.33 126 96.2 

(19) Uttar Pradesh Lucknow Central School 26.85 81.00 123 97.3 

(20) Uttar Pradesh Lucknow Lalbagh 26.85 80.94 123 98.9 

(21) Uttar Pradesh Lucknow Talkatora 26.83 80.89 123 92.3 

(22) Uttar Pradesh Varanasi Ardhali Bazar 25.35 82.98 80.7 98.9 
aPercentage of days (out of 183) with a valid value 
bElevation estimate  
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Figure 1. (a-e) Total CMIP6 anthropogenic emissions (Gg) of (a) black carbon (BC), (b) organic matter (OM), (c) NO, (d) SO2, and 
(e) NH3 over 1 October 2015 – 31 March 2016. Total emissions over the domain (in Tg) are provided in the panel titles. (f-j) Difference 
(%) between CMIP6 and CMIP5 emissions (CMIP6 minus CMIP5) for the species in (a-e). 
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Figure 2. Time series of daily average PM2.5 (1 October 2015 – 31 March 2016) for the grid cells over (a) New Delhi and (b) 
Kanpur/Lucknow, Uttar Pradesh. The min-to-max range of the multiple observations sites are shown in grey with their median in 
black. The number of sites is given in the panel titles. Modeled abundances are shown in (blue) CMIP5-wet, (red) CMIP6-dry, 5 
(green) CMIP6-wet, and (magenta) CMIP6-wet calculated with the GEOS-CHEM hygroscopic growth factors. The dashed vertical 
lines represent the 5-day festival of Diwali. 
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Figure 3. Fractional (%) mass contribution of each component (dust/salt, black carbon (BC), organic matter (OM), ammonium 
(𝐍𝐇𝟒$), sulfate (𝐒𝐎𝟒𝟐–), and nitrate (𝐍𝐎𝟑E)) to total PM2.5 for the (a, b) observations collected at Kanpur (26.5° N, 80.3° E, 142 m asl) 
over the period 25 October 2008–30 January 2009 (Ram and Sarin, 2011), where (a) excludes the “unidentified” component that is 
shown in (b), (c) AM4-CMIP5, and (d) AM4-CMIP6. 5 

 
Figure 4. (a) 5th (b) 50th, and (c) 95th percentile of 24-h average PM2.5 (µg m-3) over 1 October 2015 – 31 March 2016 for the 
observations (circles), and the AM4-CMIP6-wet (background). 
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Figure 5. (a-f) Average meteorological conditions and (g-l) their correlations with daily average PM2.5 for the observations (filled 
circles) and the AM4-CMIP6-wet  (background) over 1 October 2015 – 31 March 2016. (a, g) relative humidity (RH, %), (b, h) 
boundary layer height (BLH, m), (c, i) temperature difference between 850 mb and 2-m (INV, K), (d, j) 10-m wind flow and speed 5 
(m s-1), (e, k) 850 mb wind flow and speed (m s-1), and (f, l) 500 mb wind flow and speed (m s-1). For (g–l), only areas with correlations 
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significant at the 95% confidence level based on a Student’s T-test are shown for the model; circles with an ‘x’ denote the same for 
the observations. 

 

 
Figure 6. (a-e) Monthly (October – March) and (f-j) diurnal cycles of (a, f) PM2.5, (b, g) relative humidity, (c, h) boundary layer 5 
height, (d, i) INV, and (e, j) 10 meter wind speed. The min-to-max range of the observations is shown in gray with the median in 

r = 0.29 r = 0.35 r = 0.30(f)
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black. The median of grid cells containing the sites for the AM4-CMIP5 dry, AM4-CMIP6 dry, and AM4-CMIP6 wet are shown in 
blue, red, and green, respectively. Model-measurement correlations for the PM2.5 cycles are also shown. 

 

 

Figure 7. Composite of anomalies of PM2.5 relative to monthly mean on days when ASI components (a) 10-m wind speed, (b) 500 mb 5 
wind speed, (c) precipitation, and (d) total ASI are met minus days when they are not during the period 1 October 2015 – 31 March 
2016. 
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Figure 8. Composite of the 10 days with the highest PM2.5 abundance minus the 10 days with the lowest from October 2015 – March 
2016 for daily averages of (a) PM2.5 (wet, µg m-3), (b) relative humidity (%), (c) boundary layer height (m), (d) temperature inversion 5 
strength (K), (e) wind run (km), and (f) wind recirculation (unitless) for the observations (circles) and the AM4-CMIP6-wet 
(background). 
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Figure 1. (a-e) Total CMIP6 anthropogenic emissions (Gg) of (a) black carbon (BC), (b) organic matter (OM), (c) 

NO2, (d) SO2, and (e) NH3 over 1 October 2015 – 31 March 2016. Total emissions over the domain (in Tg) are 



provided in the panel titles. (f-j) Difference (%) between CMIP6 and CMIP5 emissions (CMIP6 minus CMIP5) for 

the species in (a-e). 
 

Page 8: [9] Deleted   Schnell_et_al-ACP   6/5/18 11:46:00 AM 

 
Figure 2. Time series of daily average PM2.5 (1 October 2015 – 31 March 2016) for the grid cells over (a) New 

Delhi and (b) Kanpur/Lucknow, Uttar Pradesh. The min-to-max range of the multiple observations sites are shown 

in grey with their median in black. The number of sites is given in the panel titles. Modeled abundances are shown 

in (blue) CMIP5-dry, (red) CMIP6-dry, (green) CMIP6-wet, and (magenta) CMIP6-wet calculated with the GEOS-

CHEM hygroscopic growth factors. The dashed vertical lines represent the 5-day festival of Diwali. 
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Figure 3. Fractional (%) mass contribution of each component (dust/salt, black carbon (BC), organic matter (OM), 

ammonium (NH#$), sulfate (SO#'–), and nitrate (NO)E)) to total PM2.5 for the (a, b) observations (Ram and Sarin, 

2011), where (a) excludes the “unidentified” component that is shown in (b), (c) AM4-CMIP5, and (d) AM4-

CMIP6.   
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Figure 4. (a) 5th (b) 50th, and (c) 95th percentile of 24-h average PM2.5 (µg m-3) over 1 October 2015 – 31 March 

2016 for the observations (circles), and the AM4-CMIP6-wet (background). 
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Figure 5. (a-f) Average meteorological conditions and (g-l) their correlations with daily average PM2.5 for the 

observations (filled circles) and the AM4-CMIP6-wet  (background) over 1 October 2015 – 31 March 2016. (a, g) 

relative humidity (RH, %), (b, h) boundary layer height (BLH, m), (c, i) temperature difference between 850 mb 

and 2-m (INV, K), (d, j) 10-m wind flow and speed (m s-1), (e, k) 850 mb wind flow and speed (m s-1), and (f, l) 

500 mb wind flow and speed (m s-1). For (g–l), only areas with correlations significant at the 95% confidence level 

based on a Student’s T-test are shown for the model; circles with an ‘x’ denote the same for the observations.  
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Figure 6. (a-e) Monthly (October – March) and (f-j) diurnal cycles of (a, f) PM2.5, (b, g) relative humidity, (c, h) 

boundary layer height, (d, i) INV, and (e, j) 10 meter wind speed. The min-to-max range of the observations is 

shown in gray with the median in black. The median of grid cells containing the sites for the AM4-CMIP5 dry, 

AM4-CMIP6 dry, and AM4-CMIP6 wet are shown in blue, red, and green, respectively. Model-measurement 

correlations for the PM2.5 cycles are also shown.  
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Figure 7. Composite of anomalies of PM2.5 relative to monthly mean on days when ASI components (a) 10-m wind 

speed, (b) 500 mb wind speed, (c) precipitation, and (d) total ASI are met minus days when they are not during the 

period 1 October 2015 – 31 March 2016. 
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Figure 8. Composite of the 10 days with the highest PM2.5 abundance minus the 10 days with the lowest from 

October 2015 – March 2016 for daily averages of (a) PM2.5 (wet, µg m-3), (b) relative humidity (%), (c) boundary 

layer height (m), (d) temperature inversion strength (K), (e) wind run (km), and (f) wind recirculation (unitless) for 

the observations (circles) and the AM4-CMIP6-wet (background). 
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