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Trajectory residence time 

Residence time trajectory analyses have been used extensively to identify the source locations 
and preferred transport pathways of atmospheric trace elements and particulate species (Ashbaugh 
et al., 1985). Residence times are calculated by the following equation:  

S(1) 
 
τabk is the total residence time for all trajectories over grid cell a, b; Sabkh is the length of that portion 
of the hth segment of the kth trajectory over the grid cell a, b; and vkn is the average speed of the air 
parcel as it travels along the hth segment of the kth trajectory.  
The residence time analysis shown in Fig. 1S suggests that the major air masses arriving at Gosan 
station (GSN) vary seasonally, with predominant northwesterly and northeasterly continental 
outflows from fall through spring versus flows of clean air directly from the Pacific in summer 
and from northern Siberia in winter. 

 

Fig. S1. Residence time analysis for 2008 using 6-day back-trajectories arriving at the Gosan 
station. Seasonal residence time distributions show a distinctive seasonally-varying wind 
pattern.  
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Fig. S2. Distribution of averaged residence times of air masses arriving at Gosan for the years 
20082015. Residence times of over 24 h occurred over both northeastern continental 
regions and the central southern part of China. The asterisk denotes the Gosan 
measurement station. 

 

 
Fig. S3. The 8-year observation records for CCl4 analyzed in this study are shown as red points 

(also shown in Fig. 1). For comparison, the corresponding observations taken at the Mace 
Head station (53°N, 10°W) in Ireland are represented by blue points. Note that the 
“background” concentrations from GSN agree well with the baseline values at Mace Head 
station, a background station in the Northern Hemisphere, and are declining at a similar 
rate to its global trend.  



Trajectory Statistics  
To identify the potential CCl4 source regions, we applied a statistical analysis coupled with back 

trajectories to the time series of observed enhancements in CCl4 concentrations from 2008 to 2015. 
The trajectory statistics method has often been applied to estimate the potential source areas of air 
pollutants (Reimann et al. 2004). The underlying assumption of the trajectory statistics method is 
that elevated concentrations at an observation site are proportionally related to both the average 
concentrations in a specific grid cell over which the observed air mass has passed and the residence 
time of the air mass over that grid cell. Thus, the method simply computes a residence-time-
weighted mean concentration for each grid cell by superimposing the back-trajectory domain on 
the grid matrix. The formula is given by: 
 
 

S(2) 
 
where Ci is the enhanced concentration of CCl4 at a given ith time; τabi is the residence time of the 
trajectory arriving at Gosan at the ith time, spent over the grid cell a, b (in 0.5°x 0.5°) within the 

atmospheric boundary layer; and abC  represents the relative strength of the cell a, b as a potential 
source region of CCl4 source. Back trajectories were calculated using the Hybrid Single Particle 
Lagrangian Integrated Trajectory (HYSPLIT) model of the NOAA Air Resources Laboratory 
(ARL) using meteorological information from the Global Data Assimilation System (GDAS) 
model with 1°×1° grid cell. The HYSPLIT model was run using 6-day backward trajectories at 
500-m altitude above the measurement site. The residence times were calculated by the method of 
Poirot and Wishinski (1986). To eliminate low confidence level areas, a point filter was applied 
that removed grid cells over which less than 12 trajectories had passed (Reimann et al. 2004). 
This trajectory statistics method can also be applied to illustrate the potential location of each 

source factor determined from the PMF analysis. The formula is identical to Eq. S(2) in all respects 
except that it uses the normalized strength of each source factor. The enhanced concentrations from 
the jth source contribute to the observation at the kth time (which is denoted as “fjk” of Eq. (1) in 
main text). Since the fjk values from all eight sources cover a very wide range of concentrations, 
the fjk values can be normalized against their time average for the jth source in order not to bias the 
statistical significance of one source against the others. Therefore, the normalized time series of fjk 
values were defined as            
   

S(3) 
 
 
Then, Eq. S(2) was modified to the following:  
 

S(4) 
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where jkm is the normalized strength of the jth source at a given kth time; τabk is the residence time 
of the trajectory arriving at Gosan at the kth time, spent over the grid cell a, b (in 0.5°x 0.5°) within 

the atmospheric boundary layer; and abjm represent a relative strength of the cell a, b as a potential 
source region of the jth source. 

Fig. S4(a). Trajectory attribution: four country domains defined to separate country-specific 
pollution signals from the original observations. The Chinese domain is defined as a 
regional grid of 100–124o E and 21–45o N.  

 

Fig. S4(b). CCl4 pollution events in 2008–2015 classified according to origin. Air masses from 
China are shown in red. The purple dots represent blended air masses affected both by 
China and other countries. Together, these two groups explain about 75 % of the observed 
pollution data in 2008–2015. The remaining 25 % are shown as gray dots. 
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Fig. S5. The observed relationships of CCl4 vs. 26 halocarbons for air masses originating from 

China. The CCl4: HCFC-22 ratio (0.13 ppt/ppt) has one of the most significant correlation 
coefficient (R2 = 0.79, p < 0.01) among the calculated 25-member correlation matrix. 

 
 



 
Fig. S6. Annual HCFC-22 emissions in China for 2008–2015 derived from atmospheric 

measurements data from Gosan station using an inverse technique based on a Lagrangian 
transport model analysis. The red error bars denote the estimation uncertainty of 30 %. The 
dashed and solid gray lines represent the average and its 30 % uncertainty ranges for the 
HCFC-22 emissions for 2008–2015. The estimates are very consistent overall with 
previous top-down studies and a bottom-up estimate.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. S7. The annual slopes of the empirical correlations between observed enhancements of CCl4 

vs. HCFC-22 (CCl4 vs. HCFC-22). The slopes and uncertainties were calculated  using 
a Williamson-York linear least-squares fitting method. 

 
Fig. S8. Potential source region distributions of the three emission sources accounting for 89±5 % 

of CCl4 enhancements observed at Gosan. The areas in and around Guangzhou of 
Guangdong, Wuhan of Hubei, Zhengzhou of Henan, and Xian of Shaanxi province were 
identified as the dominant contributors. The six blue dots indicate the locations of the main 
factories producing HFCs, HCFC-22 and fluorocarbons, which are given in 
http://eng.chinaiol.com/. 



Positive Matrix Factorization Model Calculation 

The PMF optimization uses a weighted least squares regression to obtain a best fit to the 
measured enhancements in the concentration data. Because the main constraints that need to be 
resolved during the analysis are “source factors”, this is often called a factor analysis. The 
mathematical expression of the model is given by Eq. (1): 

 
                                                                        (1) 

where xik represents enhanced concentrations in the time series of the “i” halogenated compound 
at the kth sampling time; gij is the concentration fraction of the ith compound from the jth source; fjk 
is the enhanced concentration from the jth source contributing to the observation at the kth time, 
which is given in ppt; eik is the model residual for ith compound concentration measured in the kth 
sampling time; and p is the total number of independent sources (i.e., the number of factors) 
(Paatero and Tapper, 1994). The optimal number of factors (p) should be determined by using a 
function Q, defined in Eq. S(5) below: 
 
                                                                          S(5) 

where uik are the uncertainties corresponding to each measurement data point. Following the 
guideline provided by Polissar et al. (1998) for PMF model input uncertainties, we took into 
account the instrumental measurement uncertainty, monthly standard deviation (1) of 
background concentration, and 1/3 of the detection limit value as the overall uncertainty assigned 
to each data point. The PMF model input uncertainties (in ppt) were constructed as follows:   
                                                                           

S(6) 
where μik is measurement uncertainty; σik is the monthly standard deviation of the background; and 
dik is the analytical detection limit. The average values of these individual input error terms are 
listed for all species in Table S1. In Eq. S(5) hik=1 if |eik/uik|< α, and otherwise hik is defined as 
|eik/uik|/α. The α is the outlier threshold distance parameter. Appropriate down weighting of outliers 
in PMF datasets has been carried out in many studies (Polissar et al., 1998; Lee et al., 1999; Lee 
et al., 2002) using this parameter to reduce the influence of outliers and extreme values. We 
constrain the PMF analysis with α=4, which is most commonly used. In other words, when the 
scaled residual exceeded four times the standard deviation, the uncertainty, uik, was increased to 
down-weight that concentration. 

The model runs with randomly selected initial values for f and g at a given number of factors (p) 
(varied from 5 to 10 factors) to obtain a minimum Q value in less than 20 iterations (Lee et al., 
1999). As the number of factors increases, the corresponding minimum Q values decreases, with 
a level-off in this case near 7 factors. We carefully examined the solutions with 7, 8, and 9 factors 
and determined an optimal value based on both goodness of fit to the data and prior knowledge 
about halogenated compound emissions. The model’s goodness-of-fit was estimated from a 
correlation plot between the measured and model-predicted concentrations. Most of the 
compounds (16 out of 18 species) showed good correlations (R2

 > 0.6, see Table S2) for the eight-
factor solution. Another way to assess a PMF fit is to examine the distribution of scaled residuals 
(eik/uik). We found the most species except COS lie within ±4, which is considered a typical limit. 
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The seven-factor model cannot separate the foam-blowing-agent factor from the 
semiconductor/electronics sector factor, which are both well-known sources of halogenated 
compounds. For the nine-factor analysis, the sources for CH2Cl2 and CHCl3 were split. Therefore, 
we concluded that an eight–source model provides the most relevant and meaningful interpretation 
for the enhanced CCl4 concentrations observed at Gosan. 
 
PMF input uncertainties 

The uncertainties (in ppt) imposed on individual concentrations are typically determined 
typically in the PMF community as follows: 
           S(7) 
where μik is the measurement uncertainty; σik is the monthly standard deviation (1) of the 
background; and dik is analytical detection limit. The average values of these individual input error 
terms for all species are listed in Table S1. 
 

Table S1. Three individual input error terms and their average values for all species. 
      
      

 Compounds     
Analytical 

precision (ppt) 

Background 
uncertainty 

(ppt) 

Detection 
limit     
(ppt) 

 

 CFC-11 0.44  1.40  0.72   
 CFC-12 0.61  0.82  1.33   
 HCFC-22 0.54  1.70  1.47   
 HCFC-141b 0.10  0.70  0.22   
 HCFC-142b 0.07  0.55  0.12   
 HFC-23 0.13  0.26  0.26   
 HFC-134a 0.18  1.10  0.47   
 HFC-152a 0.08  0.53  0.15   
 HFC-32 0.13  0.29  0.28   
 HFC-125 0.05  0.20  0.11   
 HFC-143a 0.09  0.22  0.19   
 CF4 0.09  0.19  0.20   
 C2F6 0.03  0.04  0.06   
 C3F8 0.01  0.02  0.03   
 SF6 0.03  0.08  0.07   
 CH3Cl 1.09  11.00  2.36   
 CH2Cl2 1.55  7.20  3.36   
 CHCl3 0.17  1.40  0.74   
 CH3Br 0.05  0.38  0.11   
 CCl4 0.80  1.09  1.76   
 COS 2.92  14.00  6.36   
 PCE 0.02  0.42  0.04   
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Goodness of the PMF model fit  
The goodness of fit of the PMF model can be assessed by comparing the predicted compound 

concentrations with the original measurements. We found R-squared of larger than 0.6 for most of 
the halogenated compounds, as shown in Table S2. 
 
Table S2. Goodness-of-fit statistics for the plot of the observed concentrations versus the PMF 

model estimates at the number of factors (p) = 8. 
CFCs and HCFCs HFCs PFCs	 and	 SF6 Others 

Compounds  R2   p  valve Compounds  R2   p  valve Compounds R2  p  valve Compounds  R2   p  valve 

 
CFC-11     0.58   <0.01 

HCFC-22    0.78  <0.01 

HCFC-141b  0.74  <0.01 

HCFC-142b  0.75  <0.01 

 
HFC-23    0.70   <0.01 

HFC-134a  0.68   <0.01 

HFC-143a  0.27   <0.01 

HFC-32    0.88   <0.01 

HFC-125   0.86   <0.01 

 
CF4     0.67   <0.01 

C2F6     0.55   <0.01 

SF଺      0.81   <0.01 

 
CCl4	       0.76   <0.01 

CHCl3     0.77   <0.01 

CH2Cl2    0.95   <0.01 

CH3Cl     0.99   <0.01 

C2Cl4      0.99   <0.01 

COS       0.99   <0.01 

 

Description of the PMF source factors 
The sixth factor shown in Fig. 4 in the main text, interpreted as arising from refrigerant 

consumption, explains approximately 80±2 % of the HCFC-22 and 32±4 % of the HFC-134a 
enhancements observed. HCFC-22 and HFC-134a are the most abundant species in the HCFC and 
HFC families, respectively, showing increasing use in refrigeration units and air conditioning 
systems as CFCs replacements (Montzka et al., 2011). Many species contribute significantly to the 
seventh factor, in particular, 88±20 % for SF6, 41±3 % for C2F6, and 40±13 % for CF4. SF6 is 
widely used in the high-voltage electrical equipment sector as a gaseous dielectric medium and is 
also used as an etching/cleaning agent in the semiconductor/electronics sector (Forster et al., 
2007). Recently, use of PFCs (CF4 and C2F6 foremost among them) for plasma etching and 
chamber cleaning in semiconductor/electronics manufacturing processes has been increasing 
(Mühle et al., 2010). Thus, the large contributions of SF6 and PFCs suggest that this source factor 
is related to processes in the semiconductor/electronics industry. The last factor shown in Fig. 4 is 
composed of 92±4 % HCFC-142b, the most widely used CFC replacement for foam blowing 
agents for extruded polystyrene boards (Derwent et al., 2007). The foam blowing factor also 
explains 23±2 % of CFC-11, indicating that this CFC is still emitted from remaining bank use or 
old building materials.  

 

Chlorination reactions for CCl4 production and use 

 

CH3Cl/ CCl4 plants 

CH3OH+HCl→CH3Cl+H2O 



CH3Cl+Cl2→CH2Cl2+HCl 

CH2Cl2+Cl2→CHCl3+HCl 

CHCl3+Cl2→CCl4+HCl 

 

Feedstock for production of chloromethanes and PCE 

CCl4+H2→CHCl3+HCl 

3CCl4+CH4→4CHCl3 

CCl4+H2→CHCl3+HCl 

2CCl4+2H2→C2Cl4+4HCl 

CCl4+ 4Cl2+CH4→C2Cl4+4HCl 

2CCl4+H2→C2Cl6+2HCl 

CCl4+HF→CCl3F[CFC-11] + HCl 
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