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Trajectory residence time

Residence time trajectory analyses have been used extensively to identify the source locations
and preferred transport pathways of atmospheric trace elements and particulate species (Ashbaugh
et al., 1985). Residence times are calculated by the following equation:

Tabk = i i (Savin | vin) 5(1)

k=1h=1

Tabk 1S the total residence time for all trajectories over grid cell a, b; Saskn is the length of that portion
of the 4™ segment of the k™ trajectory over the grid cell a, b; and v is the average speed of the air
parcel as it travels along the 4™ segment of the k™ trajectory.
The residence time analysis shown in Fig. 1S suggests that the major air masses arriving at Gosan
station (GSN) vary seasonally, with predominant northwesterly and northeasterly continental
outflows from fall through spring versus flows of clean air directly from the Pacific in summer
and from northern Siberia in winter.
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Fig. S1. Residence time analysis for 2008 using 6-day back-trajectories arriving at the Gosan
station. Seasonal residence time distributions show a distinctive seasonally-varying wind
pattern.
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Fig. S2. Distribution of averaged residence times of air masses arriving at Gosan for the years
2008-2015. Residence times of over 24 h occurred over both northeastern continental
regions and the central southern part of China. The asterisk denotes the Gosan
measurement station.
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Fig. S3. The 8-year observation records for CCls analyzed in this study are shown as red points
(also shown in Fig. 1). For comparison, the corresponding observations taken at the Mace
Head station (53°N, 10°W) in Ireland are represented by blue points. Note that the
“background” concentrations from GSN agree well with the baseline values at Mace Head
station, a background station in the Northern Hemisphere, and are declining at a similar
rate to its global trend.



Trajectory Statistics

To identify the potential CCls source regions, we applied a statistical analysis coupled with back
trajectories to the time series of observed enhancements in CCls concentrations from 2008 to 2015.
The trajectory statistics method has often been applied to estimate the potential source areas of air
pollutants (Reimann et al. 2004). The underlying assumption of the trajectory statistics method is
that elevated concentrations at an observation site are proportionally related to both the average
concentrations in a specific grid cell over which the observed air mass has passed and the residence
time of the air mass over that grid cell. Thus, the method simply computes a residence-time-
weighted mean concentration for each grid cell by superimposing the back-trajectory domain on
the grid matrix. The formula is given by:

> S(2)

where Ci is the enhanced concentration of CCls at a given i time; T is the residence time of the
trajectory arriving at Gosan at the i™ time, spent over the grid cell a, b (in 0.5°x 0.5°) within the

atmospheric boundary layer; and Cas represents the relative strength of the cell @, b as a potential
source region of CCls source. Back trajectories were calculated using the Hybrid Single Particle
Lagrangian Integrated Trajectory (HYSPLIT) model of the NOAA Air Resources Laboratory
(ARL) using meteorological information from the Global Data Assimilation System (GDAS)
model with 1°%1° grid cell. The HYSPLIT model was run using 6-day backward trajectories at
500-m altitude above the measurement site. The residence times were calculated by the method of
Poirot and Wishinski (1986). To eliminate low confidence level areas, a point filter was applied
that removed grid cells over which less than 12 trajectories had passed (Reimann et al. 2004).

This trajectory statistics method can also be applied to illustrate the potential location of each
source factor determined from the PMF analysis. The formula is identical to Eq. S(2) in all respects
except that it uses the normalized strength of each source factor. The enhanced concentrations from
the j” source contribute to the observation at the k” time (which is denoted as “/i”” of Eq. (1) in
main text). Since the fjx values from all eight sources cover a very wide range of concentrations,
the fix values can be normalized against their time average for the j source in order not to bias the
statistical significance of one source against the others. Therefore, the normalized time series of fjx
values were defined as

mjk = fik /(i fik)/n S(3)
k=1

Then, Eq. S(2) was modified to the following:

> (zavkme) S(4)



where "%*is the normalized strength of the j* source at a given k™ time; Task is the residence time
of the trajectory arriving at Gosan at the k™ time, spent over the grid cell a, b (in 0.5°x 0.5°) within

the atmospheric boundary layer; and "% represent a relative strength of the cell g, b as a potential
source region of the j source.

Fig. S4(a). Trajectory attribution: four country domains defined to separate country-specific
pollution signals from the original observations. The Chinese domain is defined as a
regional grid of 100-124°E and 21-45°N.
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Fig. S4(b). CCla pollution events in 20082015 classified according to origin. Air masses from
China are shown in red. The purple dots represent blended air masses affected both by
China and other countries. Together, these two groups explain about 75 % of the observed
pollution data in 2008-2015. The remaining 25 % are shown as gray dots.
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Fig. S5. The observed relationships of CCls vs. 26 halocarbons for air masses originating from
China. The CCla: HCFC-22 ratio (0.13 ppt/ppt) has one of the most significant correlation
coefficient (R’ = 0.79, p < 0.01) among the calculated 25-member correlation matrix.
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Fig. S6. Annual HCFC-22 emissions in China for 2008-2015 derived from atmospheric
measurements data from Gosan station using an inverse technique based on a Lagrangian
transport model analysis. The red error bars denote the estimation uncertainty of 30 %. The
dashed and solid gray lines represent the average and its 30 % uncertainty ranges for the
HCFC-22 emissions for 2008-2015. The estimates are very consistent overall with
previous top-down studies and a bottom-up estimate.
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Fig. S7. The annual slopes of the empirical correlations between observed enhancements of CCls
vs. HCFC-22 (ACClsvs. AHCFC-22). The slopes and uncertainties were calculated using
a Williamson-York linear least-squares fitting method.
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Fig. S8. Potential source region distributions of the three emission sources accounting for 89+5 %
of CCls enhancements observed at Gosan. The areas in and around Guangzhou of
Guangdong, Wuhan of Hubei, Zhengzhou of Henan, and Xian of Shaanxi province were
identified as the dominant contributors. The six blue dots indicate the locations of the main
factories producing HFCs, HCFC-22 and fluorocarbons, which are given in
http://eng.chinaiol.com/.



Positive Matrix Factorization Model Calculation

The PMF optimization uses a weighted least squares regression to obtain a best fit to the
measured enhancements in the concentration data. Because the main constraints that need to be
resolved during the analysis are “source factors”, this is often called a factor analysis. The
mathematical expression of the model is given by Eq. (1):

Xik = igfj e + en(i =1,2,....,m; j=12,..., p;k =1,2,....,n) 0
where xix represents enhancéci concentrations in the time series of the “i” halogenated compound
at the k” sampling time; g; is the concentration fraction of the i compound from the j* source; fik
is the enhanced concentration from the j# source contributing to the observation at the k" time,
which is given in ppt; ei is the model residual for i compound concentration measured in the £
sampling time; and p is the total number of independent sources (i.e., the number of factors)
(Paatero and Tapper, 1994). The optimal number of factors (p) should be determined by using a
function Q, defined in Eq. S(5) below:

m n

szz( eik %

i ko1 Uil S(5)
where wuir are the uncertainties corresponding to each measurement data point. Following the
guideline provided by Polissar et al. (1998) for PMF model input uncertainties, we took into
account the instrumental measurement uncertainty, monthly standard deviation (1) of
background concentration, and 1/3 of the detection limit value as the overall uncertainty assigned
to each data point. The PMF model input uncertainties (in ppt) were constructed as follows:

s =1, + 02, +du/3 S(6)

where uir is measurement uncertainty; oix is the monthly standard deviation of the background; and
dix 1s the analytical detection limit. The average values of these individual input error terms are
listed for all species in Table S1. In Eq. S(5) hi=1 if |eaw/uir|< o, and otherwise hixis defined as
|lei/uirl/o.. The a is the outlier threshold distance parameter. Appropriate down weighting of outliers
in PMF datasets has been carried out in many studies (Polissar et al., 1998; Lee et al., 1999; Lee
et al., 2002) using this parameter to reduce the influence of outliers and extreme values. We
constrain the PMF analysis with a=4, which is most commonly used. In other words, when the
scaled residual exceeded four times the standard deviation, the uncertainty, uix, was increased to
down-weight that concentration.

The model runs with randomly selected initial values for fand g at a given number of factors (p)
(varied from 5 to 10 factors) to obtain a minimum Q value in less than 20 iterations (Lee et al.,
1999). As the number of factors increases, the corresponding minimum Q values decreases, with
a level-off in this case near 7 factors. We carefully examined the solutions with 7, 8, and 9 factors
and determined an optimal value based on both goodness of fit to the data and prior knowledge
about halogenated compound emissions. The model’s goodness-of-fit was estimated from a
correlation plot between the measured and model-predicted concentrations. Most of the
compounds (16 out of 18 species) showed good correlations (R?> 0.6, see Table S2) for the eight-
factor solution. Another way to assess a PMF fit is to examine the distribution of scaled residuals
(ei/uix). We found the most species except COS lie within +4, which is considered a typical limit.
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The seven-factor model cannot separate the foam-blowing-agent factor from the
semiconductor/electronics sector factor, which are both well-known sources of halogenated
compounds. For the nine-factor analysis, the sources for CH2Cl2 and CHCIl3 were split. Therefore,
we concluded that an eight—source model provides the most relevant and meaningful interpretation
for the enhanced CCls4 concentrations observed at Gosan.

PMF input uncertainties
The uncertainties (in ppt) imposed on individual concentrations are typically determined
typically in the PMF community as follows:

U=+l +0; +di/3 S(7)
where wir is the measurement uncertainty; oir is the monthly standard deviation (lo) of the
background; and dix is analytical detection limit. The average values of these individual input error
terms for all species are listed in Table S1.

Table S1. Three individual input error terms and their average values for all species.

. Background Detection
Analytical . .

Compounds precision (ppt) uncertainty limit

(ppt) (ppt)
CFC-11 0.44 1.40 0.72
CFC-12 0.61 0.82 1.33
HCFC-22 0.54 1.70 1.47
HCFC-141b 0.10 0.70 0.22
HCFC-142b 0.07 0.55 0.12
HFC-23 0.13 0.26 0.26
HFC-134a 0.18 1.10 0.47
HFC-152a 0.08 0.53 0.15
HFC-32 0.13 0.29 0.28
HFC-125 0.05 0.20 0.11
HFC-143a 0.09 0.22 0.19
CF,4 0.09 0.19 0.20
CoFs 0.03 0.04 0.06
CsFs 0.01 0.02 0.03
SFs 0.03 0.08 0.07
CH;Cl 1.09 11.00 2.36
CH,Cl 1.55 7.20 3.36
CHCI3 0.17 1.40 0.74
CH;Br 0.05 0.38 0.11
CClL 0.80 1.09 1.76
COS 2.92 14.00 6.36

PCE 0.02 0.42 0.04




Goodness of the PMF model fit

The goodness of fit of the PMF model can be assessed by comparing the predicted compound
concentrations with the original measurements. We found R-squared of larger than 0.6 for most of
the halogenated compounds, as shown in Table S2.

Table S2. Goodness-of-fit statistics for the plot of the observed concentrations versus the PMF
model estimates at the number of factors (p) = 8.

CFCs and HCFC; HFC, PFC, and SFg Others
Compounds R? p valve | Compounds R? p valve | Compounds R?> p valve | Compounds R> p valve
CFC-11 0.58 <0.01 | HFC-23 0.70  <0.01 CF, 0.67 <0.01 CCl, 0.76  <0.01
HCFC-22 0.78 <0.01 HFC-134a 0.68 <0.01 CoFs 0.55 <0.01 CHCl,4 0.77 <0.01
HCFC-141b 0.74 <0.01 HFC-143a 0.27 <0.01 SFe 0.81 <0.01 CH,Cl, 095 <0.01
HCFC-142b 0.75 <0.01 HFC-32 0.88  <0.01 CH;Cl1 0.99 <0.01

HFC-125 0.86 <0.01 C.Cly 0.99 <0.01
CoS 099 <0.01

Description of the PMF source factors

The sixth factor shown in Fig. 4 in the main text, interpreted as arising from refrigerant
consumption, explains approximately 80+2 % of the HCFC-22 and 32+4 % of the HFC-134a
enhancements observed. HCFC-22 and HFC-134a are the most abundant species in the HCFC and
HFC families, respectively, showing increasing use in refrigeration units and air conditioning
systems as CFCs replacements (Montzka et al., 2011). Many species contribute significantly to the
seventh factor, in particular, 88+20 % for SFe, 41+£3 % for C2Fs, and 40+13 % for CF4. SFs is
widely used in the high-voltage electrical equipment sector as a gaseous dielectric medium and is
also used as an etching/cleaning agent in the semiconductor/electronics sector (Forster et al.,
2007). Recently, use of PFCs (CF4 and C2Fs foremost among them) for plasma etching and
chamber cleaning in semiconductor/electronics manufacturing processes has been increasing
(Miihle et al., 2010). Thus, the large contributions of SF6 and PFCs suggest that this source factor
is related to processes in the semiconductor/electronics industry. The last factor shown in Fig. 4 is
composed of 92+4 % HCFC-142b, the most widely used CFC replacement for foam blowing
agents for extruded polystyrene boards (Derwent et al., 2007). The foam blowing factor also
explains 23+2 % of CFC-11, indicating that this CFC is still emitted from remaining bank use or
old building materials.

Chlorination reactions for CCls production and use

CH;3Cl/ CClsplants
CH3OH+HCl—CH3Cl+H20




CH3Cl+Cl,—CHCl+HCI
CH2Cl>+Cl>—CHCI3+HCI
CHCl3+Cl,—CCl4+HC1

Feedstock for production of chloromethanes and PCE
CCl4+H2—CHCI3+HCI

3CCls+CH4—4CHCl3

CClst+H2—CHCI3+HCI

2CCls+2H2—C2Cly+4HCl

CCls+ 4CL+CHs—C,Cl4+4HCI
2CClst+H2—C2Cl6+2HCI

CCls+HF—CCI3F[CFC-11] + HCI
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