The diurnal cycle of cloud profiles over land and ocean between 51°S and 51°N, seen by the CATS spaceborne lidar from the International Space Station

Vincent Noel¹, Hélène Chepfer², Marjolaine Chiriaco³, John Yorks

Reply to Reviewers June 19th, 2018

Original reviewer comments are in blue italics, our replies in black.

Reviewer 1 comments and replies

This is a review of "The diurnal cycle of cloud profiles over land and ocean between 51°S and 51°N, seen by the CATS spaceborne lidar from the International Space Station"

This paper presents the cloud detection statistics from the CATS lidar that was operating on the ISS. Because of the non-sun-synchronous orbit of the ISS, these statistics sample all hours of day and night. This creates a unique dataset. This data is presented very well in the paper. I believe this is an excellent paper that will be cited a lot. I certainly recommend publication of the paper in ACP. There are a few minor issues that I recommend the authors to consider. Those are discussed below.

Like any lidar, CATS probes the first ~3 optical depths of a cloud, as discussed in the paper. In the case of thin cirrus clouds, the full extent of the clouds will be sampled, but in many cases essentially only the top height will be detected. However, the authors confuse this sampled vertical cloud fraction with statistics of vertical extent. For example, the abstract states "the high clouds geometric thickness increases significantly from 1km near 5PM to 5km near 10PM". However, it could also be that the cloud top altitude is more variable later in the day, while the geometrical thickness is staying the same. The data could be analyzed in other ways to include transparent clouds only, which will allow a study of statistics of geometric thickness, but this is not done in the current study. I am not asking to change the study to include this analysis, but the authors should discuss the fact that real geometric extent is not always sampled here. Especially in the tropics a substantial part of the high clouds would be tops of convection that may have vary throughout the day. Other parts of the paper that refer to geometric thickness of clouds are at lines 340-344, 444, 492, 629, 636, and 642. There may be other instances. Please go through the paper and discuss this interpretation of the data correctly.

This interpretation is correct, and we thank the reviewer for pointing out this problem. We went through the paper (thanks for the pointers) and now try to present the reader a more correct interpretation of the results.

Line 172: If I understand correctly, lidar depolarization information is used for cloud classification. If so please briefly discuss this in the paper.

A sentence has been added to the CATS overview paragraph that briefly outlines the CATS cloud phase algorithm and references the appropriate papers for more details. The full description of the CATS cloud phase algorithm is presented in Section 4.3 of the CATS ATBD [1] and in an AMT paper soon to be submitted. High confidence liquid water clouds are classified if the cloud layer has a T_mid > 0 C and high confidence ice clouds are identified as cloud layers with a T_mid < -20 C. These ice clouds and liquid water clouds are assigned a CP score of 10 and -10, respectively. Next, the CP algorithm identifies high confidence ice cloud layers as those layers with 1064 nm depolarization ratios greater than 0.25 or T_mid < -10 C (CP Score = 9). High confidence liquid water clouds are classified if the cloud layer has a 1064 nm depolarization ratio< 0.15 (CP Score = -9). The remaining layers are determined to have lower confidence cloud phase and are assigned a CP Score with an absolute value of 7 or less. These thresholds are based on Yorks et al. (2011) and Hu et al. (2009). Comparisons

with CALIOP have shown very good agreement between the two instruments for cloud phase.

[1] https://cats.gsfc.nasa.gov/media/docs/CATS_ATBD_V1-02.pdf

Line 372: It seems that a reference to Johnson et al. (1999; J. Climate, 12, 2397–2418) about the tri-modal nature of tropical convection is in place here.

We thank the reviewer for this very useful reference and comment, which are now both included in the text. Note however that CATS only reports a significant population of those midlevel clouds (5-7km) over land, and not over ocean. This is not consistent with those clouds being cumulus congestus, as these also appear over ocean (Masugana et al. 2005). Higher-altitude clouds, which cloud mask such clouds from the lidar view, are equally frequent over ocean and land, so this inconsistency is not explained by instrumental bias.

Following the references provided by Reviewer 2 suggests those clouds could be Altocumulus, as both share middle-level altitudes and locations over land in the summer hemisphere. This possibility is also now mentioned in the text.

Line 515: Another thing to note is that, besides cloud detection, retrieving a cloud top height from passive instruments is not as straightforward as it is for lidar measurements, especially for thin clouds and in multi-layered situations.

We agree with the reviewer and have modified the text to include this point.

Figure 5 (and A7): I would suggest to add a vertical scale to the Africa-North plot, or maybe to all of the plots.

Following this comment, we have added vertical scales to all the subplots of Figures 5 and A7.

Figure 6: Because of the ISS orbit, CATS samples between 51 degrees north and south, as explained in the paper. However, figure 6 and the discussion are not consistent with this geographical limitation and include statistics supposedly from latitude bands of 30-60 degrees north and south. This choice is made to be consistent with previous studies, but hides the fact that CATS is only sampling to 51 degrees, making the data not completely consistent with previous datasets. It is important to be consistent about the sampling region throughout the paper. Also, I find the labels of the latitude bands on the right side of figure 6 rather confusing. It makes it seem like vertical axis are latitudes in addition to cloud amount deviation somehow. I would propose adding the latitude bands on top or inside the figure as a label or legend.

We agree with the reviewer's position, and have updated figure 6 to be hopefully less confusing, and convey the actual sampling latitude range of CATS.

Reviewer 2 comments and replies

Review "The diurnal cycle of cloud profiles over land and ocean between 51°S and 51°N, seen by the CATS spaceborne lidar from the International Space Station" by Noel et al. By using CATS measurement, the paper presents a first land-ocean contrast of cloud diurnal cycle. Results are very useful. However, there are many uncertainties associ- ated with CATS data for diurnal cloud studies, which need to be clearly discussed. I suggest the paper for publication after the following comments are properly addressed.

Major issues

1. There are many challenges in using CATS data to study diurnal cloud cycle. First, it is linked with space lidar observations itself. Although several points (day-night solar background difference, attenuation of lidar signal by upper and middle clouds) are touched in the paper, they are needed to be clearly presented and quantified. Results discussions need to consider these uncertainties.

The paper now includes more extensive comparisons with ground-based datasets, that we hope will help the reader understand the strengths and limitations of spaceborne lidar measurements, including the influence of attenuation by upper and middle clouds on the detected low-altitude clouds.

Regarding the day-night variation, the CATS minimum detectable backscatter (MDB) at 1064nm goes from 5.10-5 km-1 sr-1 in absence of sunlight to 1.30 10-3km-1 sr-1 in illuminated conditions (Yorks et al., 2016). CATS daytime profiles are horizontally averaged across 60km before cloud detection, which bring the daytime MDB down to nighttime levels. This has two implications for daytime data: 1) optically thinnest clouds detected during nighttime at 60km horizontal averaging might be absent from daytime detections, these represent roughly ~5% of nightime clouds. 2) cloud amounts might be overestimated when many clouds with small horizontal extent are present - this mainly concerns boundary layer clouds. In our evaluations, the associated decrease in SNR due to solar background has a bigger impact on aerosol layer detection than clouds.

CATS's MDB is smaller than CALIOP's 532nm daytime MDB (1.70 10-3 km-1 sr-1), so all other things being equal CATS should detect more clouds than CALIOP in daytime conditions. Both Sassen et al. (2009) and Gupta et al. (2018) successfully used CALIPSO cloud detections in both nighttime and (solar-affected) daytime conditions to document part of the diurnal variability of clouds and, like us, report more high clouds in nighttime measurements. They remark that the observed nighttime increase is considerably more than the uncertainty that might arise from the daytime loss of detection sensitivity. Since CATS cloud detection abilities are at least on par with CALIOP's in daytime conditions, and CALIOP daytime detections are found acceptable to document part of the diurnal cycle, it follows that the existence of solar pollution in the CATS dataset should not prevent its use to document the

diurnal cycle of clouds. As in the Sassen and Gupta papers, we note that how much CALIPSO (and therefore CATS) daytime detections underestimate high clouds occurrence and overestimate low clouds need to be quantified.

These points are now made in the text (Sect. 2.1, 3.1 and 5).

In a similar way, how extinction from high clouds affects the retrieval of low-level clouds remains unquantified and hard to evaluate for all spaceborne lidars. Comparisons with ground-based datasets (see major point 3) suggest that high clouds do not impair significantly the retrieval of low clouds over any site. Over ARM-ENA (oceanic site), the limited amount of high clouds means CATS reports of low clouds amounts is very close to the ground-based one. Over ARM-SGP the relatively large amount of high clouds at night might explain why CATS misses half of the nighttime low and mid-level clouds observed by the ground radar. Supposing that 50% of unsampled profiles due to masking by high clouds are indeed cloudy (i.e. an hypothesis of random overlap) is not sufficient to fix the space-ground disagreement. We think extending these results to the global scale for CATS (and CALIPSO) would be a interesting future project.

The upcoming paper by Yorks et al. (In preparation for AMT) will quantify these points further. We have tried to discuss the importance of uncertainties on the results presented here in the last section of the article.

2. It needs to be very clear that CATS from ISS don't provide exact diurnal cycle cloud observations as ground-based observations. Due to the nature of ISS orbit characters, you need to combine over a month-long measurements together to cover the diurnal cycle. So, composed the diurnal cycle include seasonal cloud variations. Although it is fine to perform the seasonal study as discussed in the paper, it is important to make readers aware of the nature of CATS diurnal cloud properties. Thus, related information needs to be added in the introduction or the method section.

Following this comment, we have updated the introduction (before-last paragraph) to make clear 1) that the CATS lidar cannot track the evolution of cloudiness above a particular location along a particular day and 2) that we recreate the cloud diurnal cycle over a given location by aggregating over seasons the cloud detections made by CATS over that particular location at different times of day. We now make this point again in the relevant Data and Methods section (Sect. 2.2.a, 2nd paragraph).

3. One way to make these limitations well understood is by using ground-based observations to validate CATS results. Although there is one figure for this purpose, it is not enough. Tropical observations and over oceans are needed. ARM observations are available for the validations.

Following this comment, and major comment #2 from Reviewer 3, we have tried locating a

well-documented, 24/24 dataset of cloud layers covering the period 2015-2017 based on measurements from a ground-based lidar operating in the Tropics, preferably close to the ocean. We have contacted several observatories (e.g OPAR) but it appears lidar-based cloud layer products are often unvalidated and/or suffer from irregular or non-diurnal sampling.

Following the Reviewer's suggestion, we investigated ARM data [1] and found several datasets based on Tropics measurements and promising cloud layer information. We found that:

- Datasets from Nauru Island and Darwin Australia did not overlap with CATS timeframe
- Datasets from Brazil and Ascension Island cover the CATS timeframe but only contained profiles of Attenuated Backscatter (without cloud detection) doing the cloud detection ourselves would require external validation
- Only datasets from the ARM Eastern North Atlantic (ENA) atmospheric observatory [2] are close to our criterias above. This site provides cloud layers derived from ground-based lidar measurements made in an oceanic environment, unlike the SIRTA and ARM-SGP datasets considered in the initial article.

Since the ENA observatory is located at 39°N, it is at best sub-tropical. It is however the only oceanic ARM site we found that could provide a 24/24 robust dataset of cloud layers covering the CATS time period.

Our initial exploration of the enaarsclkazrbnd1kolliasC1 dataset (based on a combination of lidar and radar data) showed unusual results during the 2017 summer (see figure below). We contacted ARM people, who explained the problem comes from unresolved issues with lidar cloud detections and suggested rebuilding the cloud layers based on the cloud mask source product and ignoring the lidar-only detections. This resolved the problem, but in effect turned it into a radar-based product.

Figure 1 - Cloud fraction over ARM-ENA for 2017 JJA using both lidar and radar cloud detections (left) and radar-only cloud detections (right)

The paper now includes (Sect. 3.3) a direct comparison of the diurnal cycles of cloud fraction profiles as documented by CATS over the ENA site and from ground-based radar detections. We have also obtained the ARM-SGP ground-based lidar+radar cloud detections in order to directly include them in the paper for comparison with CATS data. Exploration of the sgparsclkazrbnd1kolliasC1 dataset showed artefacts similar to those from the ARM-ENA datasets (vertical steps in cloud fraction) when including lidar-only cloud detections. We thus had again to consider only radar detections, leading to results very similar to those presented in Zhao et al. (2016).

The fact that we uncovered issues with those ARM datasets, which are apparently among the most reliable, confirms how difficult it is to obtain faultless lidar-based cloud retrievals over long periods. Providing our own analysis of the data allowed us to only use cloud detections made during the CATS operation period, making time periods consistent across all ground-based comparisons.

The article now includes comparisons between CATS and:

- Lidar-based cloud retrievals from a midlatitude continental site (SIRTA), already described in e.g. Noel et Haeffelin (2006)
- Radar-based cloud retrievals from a midlatitude continental site (ARM-SGP), already described in e.g. Zhao et al. (2016)
- Radar-based cloud retrivals from a subtropical oceanic site (ARM-ENA).

We hope these improvements to our comparisons between CATS and ground-based datasets better highlights the strenghts and limitations of spaceborne and ground-based lidar cloud

sampling.

[1] <u>https://www.arm.gov/data</u>[2] <u>https://www.arm.gov/capabilities/observatories/ena</u>

Minor issues

1. L23-24: change "high clouds maximum" to "high cloud thickness maximum." The interpretation of cloud thickness detected by a lidar has to consider cloud optical thickness.

Following the first comment from reviewer 1, the text referenced here has been modified. We hope it now satisfies the concern expressed here.

2. Line 88-101: Some references are needed her to support the discussion. For example, the Fig. 9 of Wang and Sassen 2001, will support your middle latitude discussion.

Wang, Z., and K. Sassen, 2001: Cloud type and macrophysical property retrieval using multiple remote sensors. J. Appl. Meteor., 40, 1665-1682.

Our initial idea was that paragraph would sum up the findings of the articles referenced in the previous paragraph ("Those studies..."). However, the first paragraph only references studies of cloud diurnal cycles documented from space, whereas the findings in the second paragraph are general. Following this observation, we have revised the first two paragraphs of the introduction, trying to support our assertions with appropriate references, including the one suggested by the reviewer. We thank the reviewer for that very on-point reference.

This comment echoes Major Issue #1 from reviewer 3.

3. Line 106-107: There are many more important related papers should be cited than your paper.

The thank the reviewer for pointing this out. We have updated the manuscript to include references to papers that are hopefully more important.

4. L165: "measured every 350m" not accurate. It is a 350 m average profile.

The Reviewer is correct. CALIPSO sends every $1/20^{th}$ of a second a laser pulse, which travels to the Earth's surface and back before the satellite has time to move significantly and thus can be considered instantaneous. Unlike CALIPSO, CATS has a high repetition rate of 5kHz and monitors constantly for backscattered energy. The onboard data system accumulates 250 of these 5kHz profiles and reports the data every ±350m to approximate a 20Hz measurement rate. The text has been changed to "CATS reports vertical profiles of Attenuated Total Backscatter (ATB) every 350m at 1064nm with a 60m vertical resolution (Yorks et al., 2016a). Each profile is created by accumulating backscattered energy from 250 5kHz pulses, 20 times per second."

5. L 171: What is "L2O"?

Files for CATS level 2 layer products share the prefix "CATS-ISS_L2O_N-M7.2-V2-01_05kmLay". The L2O designation identifies "Level 2 Operational" products. The updated text now includes this explanation.

6. L201-202: So you shouldn't use this site considering it data collection biases.

Unfortunately, the number of site providing datasets containing 24-hour retrievals of cloud boundaries derived from active measurements and part of published research is currently limited, as we explained in our answer to major comment #3. Even lidar-based cloud retrievals from ARM sites suffer from artefacts that prevent their use in this study.

In the updated manuscript we now include, in addition to direct comparisons of CATS with SIRTA lidar retrievals (over midlatitude western Europe), comparisons of cloud retrievals from CATS with others based on measurements from ARM-ENA (subtropical oceanic) and ARM-SGP (midlatitude US) observation sites. As the ARM retrievals are radar-only, we decided to keep the SIRTA dataset as it is the only lidar-based ground-based cloud retrievals dataset.

7. L273-274, "low clouds have their base below 4km ASL": Do you sure that you mean cloud base height here. If so, it does not make sense. First, it is almost impossible for you to detect the base of optically thick clouds. Assuming that you can detect, we refer clouds with the base higher than 2 km as middle-level clouds. Using top height will make more sense.

The Reviewer is correct, the original sentence mixed up cloud base and top. Thanks for noticing that error. The text now includes the correct explanation: low clouds have their top below 4km ASL, high clouds have their base above 7km, and mid-level clouds are in between.

8. L308-308: Not necessarily true. How often do you detect low clouds below high clouds? Even if high cloud occurrences are high, they are not 100.

The reviewer is correct, the logic of the discussion was incorrect. We have modified the text to fix the discussion and hopefully better make the point we were trying to make.

9. L315-316: Solar-background variations need to be better quantified.

We adressed the solar background variations issue in our answer to major comment #1.

10. L336-346: To what extent, these variations are due to the lower daytime detection sensitivity, especially considering the contrast between N30-50 with S30-50?

We adressed the issue of solar background variations in our reply to major comment #1.

11. L368-374: The high occurrence of middle-level clouds are well documented by may early studies (Zhang et al. 2010; Sassen and Wang 2012, and other), which should be properly referenced.

Zhang, D., Z. Wang, and D. Liu (2010), A global view of midlevel liquid-layer topped stratiform cloud distribution and phase partition from CALIPSO and CloudSat measurements, J. Geophys. Res., 115, D00H13, doi:10.1029/2009JD012143. Sassen, K. and Z. Wang, 2012: The Clouds of the Middle Troposphere: Composition, Radiative Impact, and Global Distribution, Surv Geophys (2012) 33:677-691,D0I 10.1007/s10712-011-9163-x

The mid-level clouds CATS detects over Africa, South America and Australia, in the North hemisphere in JJA and the South hemisphere in DJF, might very well be Altocumulus clouds that Wang and Sassen (2012) document in the same locations, altitudes and times. This possibility is now discussed in the text. We thank the Reviewer for this useful reference.

12. L411-473: This part of the discussion should occur early in the paper as validation efforts.

We present the results at global scale first on purpose, as we consider those are the most novel and interesting for potential readers. Since validation efforts are not the main purpose of the paper, we think nothing is lost by delaying their presentation.

13. L421-422: Considering the night time sampling biases, I don't think that you can trust this result.

We have modified the text to include this observation.

14. L449-452: It will good to include a panel for SGP ground-based observation results here.

As noted before, for the revision we have obtained the ARM-SGP ground-based lidar+radar cloud detections from the ARM site. From those, we have extracted radar-only detections (to avoid bias from spurious lidar detections) and derived the daily cycle of vertical cloud fraction profiles during the CATS period (JJA 2015-2017). These results are now included in the paper's Figure 4. They are very similar to those presented in Zhao et al. (2016).

15. L484-487: In Fig. 5, why cloud top in Europe JJA is significantly lower than the other regions?

Europe is the only region in Fig. 5 that does not include part of the Tropical band, where the tropopause reaches much higher altitudes. This leads to cloud tops over Europe

We included this information in the legend of Figure 5 in the updated manuscript version that we submitted in March (this version has "over land and ocean" in the title), which superseded our original submission in February and became the one available from the ACPD website during the open discussion [1]. We do not know why the reviewers were provided with the non-updated version and regret the confusion.

[1] https://www.atmos-chem-phys-discuss.net/acp-2018-214/acp-2018-214.pdf

16. L522: Where is ISCCP data? Is there any reason not to plot it?

Indeed, we have decided against directly including retrievals based on ISCCP in the paper. By doing so, our goal is to prevent the discussion from focusing on active-vs-passive detection differences, and spending too much time explaining why this instrument detects that much more high clouds here and that much less low clouds there. Those questions are valid, and require thorough discussions about the subtle interplay between instrumental sensitivities, the distribution of cloud properties on a global scale, and data analysis algorithmic choices, all of which require extensive studies of their own (e.g. Stubenrauch et al. 2012 which is 176 pages long). We were concerned that going down that path would detract the reader from the main novel results provided by CATS, i.e. the daily variability of the cloud vertical distribution. To do so we decided not to directly include retrievals based on ISCCP data. Instead, our goal was to verify that CATS retrievals capture the general qualitative feature of the daily cycle of cloud amounts, compared to the baseline dataset usually considered (ISCCP).

C. Stubenrauch, W. B. Rossow, and S. Kinne, 2012: Assessment of global cloud datasets from satellites: A project of the World Climate Research Programme Global Energy and Water Cycle Experiment (GEWEX) Radiation Panel. WCRP Rep. 23/2012, 176 pp.

17. L539-541: This could also due to the different day-night cloud detection sensitivities between lidar and ISCCP passive measurements.

This is a possible explanation that we now have included in the article. Thanks.

18. L574-579: You could try to use CALIOP 1064 only measurements to run the same detection to minimize the difference.

This could indeed diminish differences between CATS and CALIOP datasets that are related to the instrument's wavelength differences. Many other differences would remain, like laser pulse energy and repetition frequency (20Hz vs. 5kHz), beam width, telescope field of view, sampling rates, performance of optical elements, etc. Moreover, our focus here is on statistics over large regions and seasons, and the different altitude and orbital paths of both missions imply that comparisons will necessarily be statistical in nature — i.e. both datasets document different clouds anyway. Given this, it is unclear what understanding would be gained by going through the exercise suggested here.

The reviewer's suggestion will be useful though for future research aiming to clarify the reasons behind differences between CALIPSO and CATS cloud detections over case studies.

19. L585 "Cloud Fraction": either use CF or "cloud fraction".

Thanks for spotting this, we have corrected the error.

20. Section 5: It will good to have some discussion on the potential limitations here.

Section 5 now mentions the limitations of cloud fractions retrieved through spaceborne lidar measurements such as CATS and CALIOP, and highlights the problems that still need to be investigated.

Reviewer 3 comments and replies

"The diurnal cycle of cloud profiles over land and ocean between 51S and 51N, seen by the CATS spaceborne lidar from the International Space Station" by Vincent Noel et al. This paper documents the diurnal cycle of the cloud vertical profiles over a large part of the globe, using CATS lidar, operating on the International Space Station. Cloud fractions from different locations, seasons, instruments have been compared, by taking the advantage of this unique dataset. The study is interesting and useful. But it would be better to relate the role of dynamic and thermodynamic processes to the differences of CF found from different conditions, which is not clearly presented. I recommend some modifications to improve the paper before publication.

We thank the Reviewer for his or her appreciation. Relating the cloud diurnal cycles documented in this paper to the other processes driving the daily evolution of the troposphere (temperature, water vapor) is the focus of a soon-to-be-submitted paper we are currently working on.

Major issues:

1. The second paragraph of Introduction needs more support references to help the readers to better understand the background. For example, 'well documented by passive satellite imagery', it would be better to add in relative works. The same suggestion for 'b) cloud detections from ground-based active instruments' part. There are a lot of works have been done with ground- based instruments on cloud property analysis, I would appreciate if you can give a few references here.

Our initial idea was that paragraph would sum up the findings of the articles referenced in the previous paragraph ("Those studies..."). However, the first paragraph only references studies of cloud diurnal cycles documented from space, whereas the findings in the second paragraph are general. Following this observation, we have rewritten the first two paragraphs of the introduction, trying to support our assertions with appropriate references.

This comment echoes minor issue #2 from reviewer 2.

2. The authors chose ARM SGP site for the comparison, is there any particular reason to compare two mid-latitude continental sites with CATS? Comparing with oceanic type of clouds would be interesting, if there are any possibilities. Since you actually didn't really process the SGP dataset, I would suggest that you could keep this part as an additional material.

Following this comment, and major comment #3 from Reviewer 2, we have tried locating a well-documented, 24/24 dataset of cloud layers covering the period 2015-2017 based on measurements from a ground-based lidar operating in the Tropics, preferably close to the

ocean. We have contacted several observatories (e.g OPAR) but it appears lidar-based cloud layer products are often unvalidated and/or suffer from irregular or non-diurnal sampling.

Following the Reviewer's suggestion, we investigated ARM data [1] and found several datasets based on Tropics and/or oceanic measurements and promising cloud layer information. We found that:

- Datasets from Nauru Island and Darwin Australia did not overlap with CATS timeframe
- Datasets from Brazil and Ascension Island cover the CATS timeframe but only contained profiles of Attenuated Backscatter (without cloud detection) doing the cloud detection ourselves would require external validation
- Only datasets from the ARM Eastern North Atlantic (ENA) atmospheric observatory [2] are close to our criterias above. This site provides cloud layers derived from ground-based lidar measurements made in an oceanic environment, unlike the SIRTA and ARM-SGP datasets considered in the initial article.

Since the ENA observatory is located at 39°N, it is at best sub-tropical. It is however the only oceanic ARM site we found that could provide a 24/24 robust cloud layers dataset covering the CATS time period.

Our initial exploration of the enaarsclkazrbnd1kolliasC1 dataset (based on a combination of lidar and radar data) showed unusual results during the 2017 summer (see figure below). We contacted ARM people, who explained the problem comes from unresolved issues with lidar cloud detections and suggested rebuilding the cloud layers based on the cloud mask source product and ignoring the lidar-only detections. This resolved the problem, but in effect turned it into a radar-based product.

Figure 1 - Cloud fraction over ARM-ENA for 2017 JJA using both lidar and radar cloud detections (left) and radar-only cloud detections (right)

The paper now includes (Sect. 3.3) a direct comparison of the diurnal cycles of cloud fraction profiles as documented by CATS over the ENA site and from ground-based radar detections.

We have also obtained the ARM-SGP ground-based lidar+radar cloud detections in order to directly include them in the paper for comparison with CATS data. Exploration of the sgparsclkazrbnd1kolliasC1 dataset showed artefacts similar to those from the ARM-ENA datasets (vertical steps in cloud fraction) when including lidar-only cloud detections. We thus had again to consider only radar detections, leading to results very similar to those presented in Zhao et al. (2016).

The fact that we uncovered issues with those ARM datasets, which are apparently among the most reliable, confirms how difficult it is to obtain faultless lidar-based cloud retrievals over long periods. Providing our own analysis of the data allowed us to only use cloud detections made during the CATS operation period, making time periods consistent across all ground-based comparisons.

The article now includes comparisons between CATS and:

- Lidar-based cloud retrievals from a midlatitude continental site (SIRTA), already described in e.g. Noel et Haeffelin (2006)
- Radar-based cloud retrievals from a midlatitude continental site (ARM-SGP), already described in e.g. Zhao et al. (2016)
- Radar-based cloud retrivals from a subtropical oceanic site (ARM-ENA).

We hope these improvements to our comparisons between CATS and ground-based datasets

better highlights the strengths and limitations of spaceborne and ground-based lidar cloud sampling.

[1] <u>https://www.arm.gov/data</u>[2] https://www.arm.gov/capabilities/observatories/ena

3. You talked about the pronounced mid-level clouds over continent many times which has been well documented, could you give a more detailed explanation for that, and the role of dynamic and thermodynamic processes.

The mid-level clouds CATS detects over Africa, South America and Australia, in the North hemisphere in JJA and the South hemisphere in DJF, might very well be Altocumulus clouds that Wang and Sassen (2012) document in the same locations, altitudes and times. This possibility is now discussed in the text.

Minor issues:

1. On Figure 1, is there any way to show the number of samples on the plots as well? In the text, the latitude range is 51S-51N, but on most of the plots, it's 55S-55N. It is better to keep it consistent.

Following this comment, the map in Figure 1 now shows the number of profiles sampled by CATS over the JJA 2015-2016-2017 period in 2°x2° grid cells. We thank the Reviewer for this suggestion that makes Figure 1 richer in information.

As noted by the Reviewer, the latitude ranges in figures and their legends were incorrect in the initial version of the manuscript we uploaded to ACPD in February. We fixed those in an updated version submitted in March (this version has "over land and ocean" in the title), which became the one available from the ACPD website during the open discussion [1]. We do not know why the reviewers were provided with the non-updated version and regret the confusion.

[1] https://www.atmos-chem-phys-discuss.net/acp-2018-214/acp-2018-214.pdf

2. The color bar need to be adjusted and extended to greater than 20%, add in unit, and keep the x axis and y axis consistent for the same figure group, specially figure 4.

Our attempts to increase the maximum to larger cloud fractions led to poor visibility for areas of weak cloud fractions, which are much more frequent and more frequently discussed in the text. Through experimentations, we found that limiting the color bar to a 20% maximum provided the best compromise between keeping variations of weak cloud fractions visible (e.g. at low altitudes) and not masking too many variations in large cloud fractions, for instance in high clouds in tropical summer conditions or low clouds over ARM-

ENA.

All cloud fraction colorbars should now include units (%). We have made sure all axes remain consistent within the same figure groups.

3. Figure 5, better to label A, B, C... on the subplot for each location.

We thank the reviewer for this useful suggestion that Figure 5 now implements.

4. Line 515: Using passive instruments to retrieve the cloud properties is different from active instruments, they don't have the same sensitivity for the thin clouds. It isn't a fair comparison here.

Our objective here is not to validate or depreciate either one of the detection approaches. All instruments have different sensitivities to different phenomenas. We do not think that confronting retrievals from passive instruments with retrievals from active instruments is unfair to the passive instruments — it shows how each instrument understands a scene, which we think helps the readers familiar with either one, or both, to understand what is actually going on. However, since the sentence in question did not bring any significant value to the manuscript, we have rewritten it to avoid any misunderstanding.

5. Another thing to note is that, besides cloud detection, retrieving a cloud top height from especially for thin clouds and in multi-layered situations.

We think some words are missing from the comment. We guess the Reviewer points out that cloud top heights retrieved from passive measurements can suffer from large uncertainties, especially in presence of thin clouds and multi-layered situations. We agree with his comment.

Reviewer 4 comments and replies

1. The paper discusses the diurnal changes in cloud fraction, but commonly CF is meant to represent the fraction of a grid box area or sensor field of view that is covered in cloud. Would it not be correct to give the results as cloud frequency instead, as that is what is actually being measured?

During the past years, interactions with co-authors and reviewers led to our adoption of the following naming scheme:

- "cloud cover" to name the fraction of a grid box area covered in cloud
- "cloud fraction profile" to name a vertical profile describing at each altitude level the fraction of shots containing clouds

Many articles use this distinction, for instance Reverdy et al. (2015), Chepfer et al. (2010) referenced in the main article. The following articles use the same naming scheme:

- Chepfer, H., Noel, V., Chiriaco, M., Wielicki, B., Winker, D., Loeb, N. and Wood, R.: The Potential of a Multidecade Spaceborne Lidar Record to Constrain Cloud Feedback, J. Geophys. Res. Atmos., 123(10), 5433–5454, doi:10.1002/2017JD027742, 2018.
- Cesana, G., et al. (2016), Using in situ airborne measurements to evaluate three cloud phase products derived from CALIPSO, J. Geophys. Res. Atmos., 121, 5788–5808, doi:10.1002/2015JD024334.
- Chepfer, H., V. Noel, D. Winker, and M. Chiriaco (2014), Where and when will we observe cloud changes due to climate warming?, Geophys. Res. Lett.,41, 8387–8395, doi:10.1002/2014GL061792
- Reverdy, M., Noel, V., Chepfer, H., and Legras, B.: On the origin of subvisible cirrus clouds in the tropical upper troposphere, Atmos. Chem. Phys., 12, 12081-12101, https://doi.org/10.5194/acp-12-12081-2012, 2012
- Chepfer H., S. Bony, D. Winker, M. Chiriaco, J-L. Dufresne, G. Sèze, 2008: Use of CALIPSO lidar observations to evaluate the cloudiness simulated by a climate model, Geophys. Res. Let., 35, L15704, doi:10.1029/2008GL034207.

We went through the paper to make sure that the paper always mentioned "cloud fraction profile", or specified an altitude range (e.g. "at low altitudes, cloud fractions are high..."). We hope this naming scheme is satisfactory.

2. Secondly, the figures' color bars max out at CF=20%, with values above 20% visible in many of the figures. It would be good to extend the color bar so that fewer figures saturate like this.

Our attempts to increase the maximum to larger cloud fractions led to poor visibility for areas of weak cloud fractions, which are much more frequent and more frequently discussed in the text (e.g. at low altitudes). Through experimentations, we found that limiting the color bar to a 20% maximum provided the best compromise between keeping

variations of weak cloud fractions visible and not masking too many variations in large cloud fractions, for instance in high clouds in tropical summer conditions or low clouds over ARM-ENA.

1	The diurnal cycle of cloud profiles over land and ocean between 51°S and 51°N, seen by
2	the CATS spaceborne lidar from the International Space Station
3	
4	Vincent Noel ¹ , Hélène Chepfer ² , Marjolaine Chiriaco ³ , John Yorks ⁴
5	
6 7	1 - Laboratoire d'Aérologie, CNRS/UPS, Observatoire Midi-Pyrénées, 14 avenue Edouard Belin, Toulouse, France
8 9	2 - LMD/IPSL, Sorbonne Université, École polytechnique, École Normale Supérieure, PSL Research University, CNRS, F-91120 Palaiseau, France
10	3 - LATMOS/IPSL, Univ. Versailles Saint-Quentin en Yvelines, France
11	4 - NASA GSFC, Greenbelt, Maryland, USA
12	
13	Proposed for publication in:
14	Atmospheric Chemistry and Physics
15	
16	<u>19 June 2018</u>
17	

Abstract. 19

	20	We document, for the first time, how detailed vertical profiles of Cloud Fraction change		
	21	diurnally between 51°S and 51°N, by taking advantage of 15 months of measurements from		Delet
ļ	22	the Cloud and Aerosol Transport System (CATS) lidar on the non-sun-synchronous		
ĺ	23	International Space Station (ISS),		Delet
	24	Over the Tropical ocean in summer, we find few high clouds during daytime. At night they		detail 51°N
				Delet
	25	become frequent over a large altitude range (11-16km between 10PM and 4AM), Over the		contir
	26	summer tropical continents, <u>but not over ocean</u> , CATS observations reveal <u>mid-level clouds</u>	$\langle \rangle \rangle$	Delet
	27	(4-8 km Above Sea Level or ASL) persisting all-day long, with a weak diurnal cycle (minimum	$\langle \rangle \rangle$	Delet Delet
	28	at noon), Over the Southern Ocean, diurnal cycles appear for the omnipresent low-level	\mathbb{N}	result
	29	clouds (minimum between noon and 3PM) and high-altitude clouds (minimum between	$\langle \rangle \rangle \rangle$	Delet
	30	8AM and 2PM). Both cycles are time-shifted, with high-altitude clouds following the		Delet Delet
	31	changes in low-altitude clouds by several hours. Over all continents at all latitudes during		Delet
ĺ	32	summer, the low-level clouds develop upwards and reach a maximum occurrence at about		Delet
	33	2.5 km ASL in the early afternoon (around 2 pm).		Delet
1	34	Our work also <u>shows</u> that 1) the diurnal cycles of vertical profiles derived from CATS are		Delet
	35	consistent with those from ground-based active sensors at local scale, 2) the cloud profiles		
	36	derived from CATS measurements at local times of 0130AM and 0130PM are consistent		
	37	with those observed from CALIPSO at similar times, 3) the diurnal cycles of low and high		
	38	cloud amounts derived from CATS are in general in phase with those derived from		
	39	geostationary imagery but less pronounced. Finally, the diurnal variability of cloud profiles		
	40	revealed by CATS strongly suggests that CALIPSO measurements at 0130AM and PM		
	41	document the daily extremes of the cloud fraction profiles over ocean and are more		
	42	representative of daily averages over land, except at altitudes above 10km where they		
	43	capture part of the diurnal variability. These findings are applicable to other instruments		Delet
	44	with local overpass times similar to CALIPSO's, like all the other A-Train instruments and the		
	45	future Earth-CARE mission.		
	46			

47

ted: e

ted: to document, for the first time, the diurnal cycle of led vertical profiles of Cloud Fraction between 51°S and

ted: After processing CATS lidar data, we analyzed the nal cycles of the cloud profiles over ocean and over nent in two different seasons. ¶

ted: the

ted: s geometric thickness increases

ted: ignificantly from 1km near 5PM to 5km near 10PM, ting in a high clouds maximum at nighttime

ted: the presence of a

ted: layer

ted: ASL

ted:

ted: for the ted: vertically

ted: show

ted: equally

67	Outline	
68	1. Introduction	
69	2. Data and methods	
70	2.1 Data	
71	a. Cloud detections from the CATS spaceborne Lidar	
72	b. Cloud detections from ground-based active instruments	
73	c. Cloud detections from passive and active spaceborne sensors	
74	2.2 Methods	
75	a. Building the diurnal cycle of Cloud Fraction profiles from lidar cloud detections	
76	b. Building the diurnal cycle of Low and High Clouds Amounts from CATS data	
77	3. Results	
78	3.1 Diurnal cycle of Cloud Fraction profiles observed at Global scale	
79	3.2 Diurnal cycle of Cloud Fraction profiles observed over mid-latitudes and Tropics	
80	a. High clouds	
81	b. Low clouds	
82	c. Seasonal differences	
83	3.3 Diurnal cycle of Cloud Fraction profiles above selected continental regions	
84	a. Over South of Paris in Europe	
85	b. Over the US Southern Great Plains ARM site	
86	<u>c. Over the subtropical Eastern North Atlantic ARM site</u>	Formatted: Font; Not Bold, Not Italic
		Formatted: Font: Not Bold, Not Italic
87	d, Over continents	Deleted: c
88	4. Discussion	
89	4.1 About the diurnal cycles of the Low and High Cloud Amounts	
90	4.2 About the Cloud Fraction profiles observed at fixed local times by space lidars	
91	5. Conclusions	

94 1. Introduction

95	The diurnal cycle of clouds has been documented for decades by ground-based instruments
96	(e.g. Gray and Jacobson, 1977) and geostationary satellites (e.g. Rossow et al., 1989). Even
97	though climatologies give priority on how clouds change with seasons and geography, many
98	studies noted the strong diurnal cycle of boundary layer clouds. During the day, low clouds
99	form in the morning and expand, following the warming of the surface by incoming solar
100	radiation (Stubenrauch et al., 2006). Maximum low cloud amount is often reached in the
101	early afternoon. This sun-driven variation is maximum over continents, where it depends on
102	orography (Wilson and Barros, 2017; Shang et al., 2018), and in summer. It is more limited
103	over ocean and during winter (Rozendaal et al., 1995; Soden, 2000). When night falls,
104	condensation in the boundary layer can create stratiform clouds, which stabilize and expand
105	through nighttime radiative cooling at cloud top and reach maximal cover in the early
106	morning (Greenwald and Christopher, 1999; Eastman and Warren, 2014).
107	In the Tropics, the near-surface daily increase in water vapor triggered by solar warming
108	(Tian et al., 2004) is transmitted to higher altitudes through deep convection (Johnson et al.,
109	1999). This imposes a diurnal cycle to high clouds, which is delayed by several hours
110	compared to low clouds (Soden, 2000). Their maximum amount is reached in the evening
111	(Rossow and Schiffer, 1999; Stubenrauch et al., 2006). At midlatitudes, without deep
112	convection most of the troposphere is free from surface influence (Wang and Sassen, 2001),
113	and diurnal changes in the distribution of high-altitude clouds are limited. Changes are
114	rather driven by the local atmospheric circulation (e.g. Storm-tracks), leading to less
115	predictable patterns which are more location-dependent.
116	More recently, geostationary imagery documented the diurnal variations in the composition
117	of cloud cover above Central Africa (Philippon et al., 2016) and cloud top temperatures
118	(Taylor et al., 2017). In any case, the vertically-integrated nature of passive imagery means it
119	cannot resolve the vertical variability of clouds and its diurnal cycle, which is key to better
120	understand the atmospheric heating rate profile (L'Ecuyer et al., 2008). By comparison,
121	active remote sensing instruments, such as radars and lidars, document the cloud vertical
122	distribution with great, accuracy, and vertical resolutions finer than 500m. Long-running
123	datasets from active instruments operated from ground-based sites have led to useful time

Deleted: Cloud cover diurnal cycles have been documented from space by geostationary satellites as early as the late 1970's (e.g. Gray and Jacobson, 1977) and were summarized based on retrievals from the International Satellite Cloud Climatology Project (ISCCP; Cairns, 1994; Rossow and Schiffer, 1999). Soden (2000) and Tian et al. (2004) used those retrievals to confront the diurnal cycles of clouds, convective activity and water vapor in the upper troposphere, pointing to a clear land-sea contrast. More recently, Philippon et al. (2016) used MSG-SEVIRI data to describe the diurnal variations in the composition of cloud cover above Central Africa. Taylor et al. (2017) also used MSG-SEVIRI to describe when during the day the cloud top temperature is the coldest on average seasonally, over a half-hemisphere grid. Apart from geostationary imagery, few spaceborne instruments provide a sampling frequency wellsuited to describe the diurnal variability of clouds. For instance, Wylie (2008) had to take advantage of the four observations per day provided by the NOAA series of polar orbiters to document a weakly-resolved clouds diurnal cycle from multispectral infrared data.

Those studies found the most significant diurnal changes of clouds over continents in summer: low-level boundary layer clouds eand throughout the day, following the warming of the surface by incoming solar radiation, a process significantly affected by orography. In the Tropics, this nearsurface activity is transmitted to higher altitudes through deep convection, driving a diurnal cycle in high-level clouds. The time needed for this process to occur delays the cycle of high clouds, whose maximas and minimas occur hours late compared to low-level clouds. At midlatitudes, without deep convection most of the troposphere is free from surface influence, and diurnal changes in the distribution of highaltitude clouds are rather driven by the local atmospheric circulation (e.g. Storm-tracks), leading to less predictable patterns. Over oceans, the largest low-level cloud covers happen in the morning, when the expansion generated by nighttime radiative cooling at cloud top stops. These patterns are supported by understood physical principles and are well documented by passive satellite imagery. But these observations do not provide information on the diurnal cycle of the detailed cloud profiles, which is key to better understand the atmospheric heating rate profile. ¶

Deleted: A Deleted: er

Deleted: resolutions than passive instruments, with Deleted: For decades, a Deleted: have been

Deleted: , building extensive datasets from which

173	series and statistics about clouds (e.g. <u>Sassen and Benson, 2001; Hogan et al., 2003; Protat</u>		Deleted: can be derived
174	et al., 2009; Dong et al., 2010; Hoareau et al., 2013; Zhao et al., 2016). From space, Liu and		Deleted: Noel et al., 2006
175	Zipser (2008) were able to derive information on the clouds diurnal cycle from the		
176	spaceborne Tropical Rainfall Measuring Mission radar, launched in 1997 (Kummerow et al.,		
177	1998), but the instrument was not designed to detect clouds with accuracy. The CALIPSO		
178	lidar (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations), since its launch		
179	into orbit in 2006 (Winker et al., 2010), has provided transformative vertically-resolved data		
180	on clouds (Stephens et al., 2017; Winker et al., 2017). Cloud detections from CALIPSO have,		Deleted: Enhanced c
181	among other things, helped pinpoint and improve significant cloud-related weaknesses in		
182	climate models (e.g. Cesana and Chepfer, 2013; Konsta et al., 2016), helped improve		
183	estimates of the surface radiation budget (Kato et al., 2011) and of the heating rate profile		
184	(Haynes et al., 2013; Bouniol et al., 2016). Due to its sun-synchronous polar orbit, CALIPSO		Deleted: L'Ecuyer et al., 2008;
185	samples the atmosphere at either 1:30AM or 1:30PM local time (LT) <u>, like, t</u> he CloudSat radar		Deleted: However, d
			Deleted: .
186	(Stephens and Kummerow, 2007) and all A-Train instruments (L'Ecuyer and Jiang, 2010),	7	Deleted: T
187	Even though measurements at two times of day can offer insights into the day-night cloud	1	Deleted: share the same overpass times
188	changes (Sèze et al., 2015; Gupta et al., 2018), they are insufficient to fully document the	\sum	Deleted: limited to
189	diurnal evolution of cloud profiles. This observational blind spot explains why very little is	1	Deleted: still
190	known so far about how the vertical distribution of clouds changes diurnally in most of the		
191	globe, leading to inconsistencies amongst climate models (Yin and Porporato, 2017).		
192	Here we take advantage of measurements from the Cloud Aerosol Transport System (CATS,		
193	McGill et al., 2015) lidar on the International Space Station (ISS), to document the diurnal		
194	evolution of the vertical distribution of clouds in regions of the globe. <u>As the ISS orbits the</u>		Moved down [1]: The CATS dataset is unique so far, as it
195	Earth many times a day between 51°S and 51°N, CATS measurements cannot track the		contains active vertically-resolved measurements made by lidar from space with variable local times of overpass: the
196	evolution of individual clouds over a given location and a given day. Instead, cloud	l	CATS lidar can document cloud profiles at different times along the day between 51°S and 51°N following the ISS orbit.
197	detections over a given location at variable times of day can be aggregated over seasons, to		
198	create statistics that eventually document the seasonal average diurnal cycle of clouds over		(Moved (insertion) [1]
199	that location. Thus far, the CATS dataset is the only one to contain active vertically-resolved		Deleted: T
		\leq	Deleted: is Deleted: unique so far, as it
200	measurements made from satellite with variable local times of overpass.		Deleted: s
201	We first describe how data were selected and processed to derive diurnal cycles of cloud	$\langle \rangle$	Deleted: by lidar
202	Cloud Fraction (CF) profiles and Cloud Amounts (CA) from CATS and all other instruments		Deleted: space
202	included for comparison (Sect. 2). Then, using CATS retrievals we document, for the first		Deleted: : the CATS lidar can document cloud profiles at different times along the day between 51°S and 51°N following the ISS orbit

.

- time, the diurnal cycle of detailed Cloud Fraction profiles in large regions of the globe in two
- seasons over ocean and land (Sect. 3.1 and 3.2). In Sect. 3.3 we describe CATS-derived
- 230 diurnal cycles of cloud profiles over selected sites and continents with two goals in mind: (i)
- 231 to compare them with independent ground-based observations to check the validity of the
- 232 CATS retrievals, and (ii) to document the diversity of the continental cloud profile diurnal
- 233 cycles over the globe. In Section 4 we discuss implications of our results: We compare the
- 234 diurnal cycle of the Low and High cloud covers derived from CATS with ones from
- 235 geostationary satellites (Sect. 4.1), and discuss the agreement between CATS Cloud Fraction
- 236 profiles derived at the times of CALIPSO overpass with actual CALIPSO retrievals (Sect.
- 4.2.a). Finally, we consider CATS profiles at overpass times from current and future sun-
- 238 synchronous spaceborne lidar missions (Sect. 4.2.b) to understand which part of the diurnal
- cloud cycle is sampled by these instruments. We conclude in Sect. 5.

240 2. Data and Methods

241		
242	2.1 Data	
243		
244	a) Cloud detections from the CATS spaceborne lidar	
245	In this study, our primary data consist of clouds detected during June-July-August (JJA) and	
246	December-January-February (DJF) periods using data from the CATS lidar system (Yorks et	
247	al., in preparation). CATS operated from the ISS between February 2015 to late October	
248	2017. Although CATS was originally designed to operate at 3 wavelengths (355, 532 and	
249	1064nm) with variable viewing geometries, beginning in March 2015 technical issues limited	
250	operation to a single 1064nm wavelength and a single viewing mode. The CATS instrument	
251	went on providing single-channel high-quality data (Yorks et al., 2016a) until a fault in the	
252	on-board power and data system ended science operations on October 30, 2017.	
253	Being located on the ISS means measurements from CATS are constrained to latitudes	
254	below 51°, giving it access to ~78% of the Earth's surface (Figure 1, top). This prevents our	Deleted: however
255	study from covering polar regions, but leads to densely distributed overpasses at latitudes	Deleted: . However, this
255 256	study from covering polar regions, <u>but leads to densely distributed overpasses at latitudes</u> above 40°, CATS sampling is particularly good in populated midlatitude regions and above	Deleted: . However, this Deleted: :
256	above 40°, CATS sampling is particularly good in populated midlatitude regions and above the Southern Ocean.	
256 257 258	above 40° CATS sampling is particularly good in populated midlatitude regions and above the Southern Ocean. CATS reports vertical profiles of Attenuated Total Backscatter (ATB) every 350m at 1064nm	
256 257 258 259	above 40° CATS sampling is particularly good in populated midlatitude regions and above the Southern Ocean. CATS reports vertical profiles of Attenuated Total Backscatter (ATB) every 350m at 1064nm with a 60m vertical resolution (Yorks et al., 2016a). In the mode 7.2 in which CATS operates	
256 257 258 259 260	above 40° CATS sampling is particularly good in populated midlatitude regions and above the Southern Ocean. CATS reports vertical profiles of Attenuated Total Backscatter (ATB) every 350m at 1064nm with a 60m vertical resolution (Yorks et al., 2016a). In the mode 7.2 in which CATS operates since February 2015, each profile is created by accumulating backscattered energy from 200	
256 257 258 259 260 261	above 40° CATS sampling is particularly good in populated midlatitude regions and above the Southern Ocean. CATS reports vertical profiles of Attenuated Total Backscatter (ATB) every 350m at 1064nm with a 60m vertical resolution (Yorks et al., 2016a). In the mode 7.2 in which CATS operates since February 2015, each profile is created by accumulating backscattered energy from 200 4kHz pulses, 20 times per second. The CATS vertical feature mask algorithms use these	
256 257 258 259 260 261 262	above 40° CATS sampling is particularly good in populated midlatitude regions and above the Southern Ocean. CATS reports vertical profiles of Attenuated Total Backscatter (ATB) every 350m at 1064nm with a 60m vertical resolution (Yorks et al., 2016a). In the mode 7.2 in which CATS operates since February 2015, each profile is created by accumulating backscattered energy from 200 4kHz pulses, 20 times per second. The CATS vertical feature mask algorithms use these calibrated ATB profiles, averaged to 5 and 60 km, to detect atmospheric layers, discriminate	
256 257 258 259 260 261 262 263	above 40° CATS sampling is particularly good in populated midlatitude regions and above the Southern Ocean. CATS reports vertical profiles of Attenuated Total Backscatter (ATB) every 350m at 1064nm with a 60m vertical resolution (Yorks et al., 2016a). In the mode 7.2 in which CATS operates since February 2015, each profile is created by accumulating backscattered energy from 200 4kHz pulses, 20 times per second. The CATS vertical feature mask algorithms use these calibrated ATB profiles, averaged to 5 and 60 km, to detect atmospheric layers, discriminate clouds from aerosols, and determine cloud phase (Yorks et al., 2016b and in preparation).	
256 257 258 260 261 262 263 263 264	above 40° CATS sampling is particularly good in populated midlatitude regions and above the Southern Ocean. CATS reports vertical profiles of Attenuated Total Backscatter (ATB) every 350m at 1064nm with a 60m vertical resolution (Yorks et al., 2016a). In the mode 7.2 in which CATS operates since February 2015, each profile is created by accumulating backscattered energy from 200. 4kHz pulses, 20 times per second. The CATS vertical feature mask algorithms use these calibrated ATB profiles, averaged to 5 and 60 km, to detect atmospheric layers, discriminate clouds from aerosols, and determine cloud phase (Yorks et al., 2016b and in preparation). The CATS layer-detection algorithms are based on a threshold-profile technique similar to	
256 257 258 259 260 261 262 263	above 40° CATS sampling is particularly good in populated midlatitude regions and above the Southern Ocean. CATS reports vertical profiles of Attenuated Total Backscatter (ATB) every 350m at 1064nm with a 60m vertical resolution (Yorks et al., 2016a). In the mode 7.2 in which CATS operates since February 2015, each profile is created by accumulating backscattered energy from 200 4kHz pulses, 20 times per second. The CATS vertical feature mask algorithms use these calibrated ATB profiles, averaged to 5 and 60 km, to detect atmospheric layers, discriminate clouds from aerosols, and determine cloud phase (Yorks et al., 2016b and in preparation). The CATS layer-detection algorithms are based on a threshold-profile technique similar to the one used for CALIOP (Vaughan et al., 2009) but, unlike for CALIOP, they rely primarily on	
256 257 258 260 261 262 263 264 265	above 40° CATS sampling is particularly good in populated midlatitude regions and above the Southern Ocean. CATS reports vertical profiles of Attenuated Total Backscatter (ATB) every 350m at 1064nm with a 60m vertical resolution (Yorks et al., 2016a). In the mode 7.2 in which CATS operates since February 2015, each profile is created by accumulating backscattered energy from 200 4kHz pulses, 20 times per second. The CATS vertical feature mask algorithms use these calibrated ATB profiles, averaged to 5 and 60 km, to detect atmospheric layers, discriminate clouds from aerosols, and determine cloud phase (Yorks et al., 2016b and in preparation). The CATS layer-detection algorithms are based on a threshold-profile technique similar to the one used for CALIOP (Vaughan et al., 2009) but, unlike for CALIOP, they rely primarily on 1064nm ATB (Yorks et al., 2016b). CATS cloud-aerosol discrimination algorithm uses a	
256 257 258 260 261 262 263 264 265 266 267	above 40° CATS sampling is particularly good in populated midlatitude regions and above the Southern Ocean. CATS reports vertical profiles of Attenuated Total Backscatter (ATB) every 350m at 1064nm with a 60m vertical resolution (Yorks et al., 2016a). In the mode 7.2 in which CATS operates since February 2015, each profile is created by accumulating backscattered energy from 200 4kHz pulses, 20 times per second. The CATS vertical feature mask algorithms use these calibrated ATB profiles, averaged to 5 and 60 km, to detect atmospheric layers, discriminate clouds from aerosols, and determine cloud phase (Yorks et al., 2016b and in preparation). The CATS layer-detection algorithms are based on a threshold-profile technique similar to the one used for CALIOP (Vaughan et al., 2009) but, unlike for CALIOP, they rely primarily on 1064nm ATB (Yorks et al., 2016b). CATS cloud-aerosol discrimination algorithm uses a probability density function technique that is based on the CALIPSO algorithm but relies on	
256 257 258 260 261 262 263 264 265 266	above 40° CATS sampling is particularly good in populated midlatitude regions and above the Southern Ocean. CATS reports vertical profiles of Attenuated Total Backscatter (ATB) every 350m at 1064nm with a 60m vertical resolution (Yorks et al., 2016a). In the mode 7.2 in which CATS operates since February 2015, each profile is created by accumulating backscattered energy from 200 4kHz pulses, 20 times per second. The CATS vertical feature mask algorithms use these calibrated ATB profiles, averaged to 5 and 60 km, to detect atmospheric layers, discriminate clouds from aerosols, and determine cloud phase (Yorks et al., 2016b and in preparation). The CATS layer-detection algorithms are based on a threshold-profile technique similar to the one used for CALIOP (Vaughan et al., 2009) but, unlike for CALIOP, they rely primarily on 1064nm ATB (Yorks et al., 2016b). CATS cloud-aerosol discrimination algorithm uses a	

273	Mode 7.2. For cloud phase, CATS uses layer-integrated 1064 nm depolarization ratio and
274	mid-layer temperature thresholds based on Hu et al. (2009) and Yorks et al. (2011).
275	Minimum horizontal average was 5km in nighttime and 60km in daytime, a choice that
276	brings the same cloud detection sensitivity to both (Yorks et al., 2016a). This has two
277	consequences: 1) optically thinnest clouds detected during nighttime at 60km horizontal
278	averaging might be absent from daytime detections (these represent roughly ~5% of
279	nighttime clouds) and 2) the horizontal extent and cloud amount of fragmented boundary
280	layer clouds might be overestimated in both daytime and nighttime compared to single-shot
281	detections (as in Chepfer et al., 2013; Cesana et al., 2016). Cloud top and base heights,
282	phase, and other properties are reported in the CATS Level 2 Operational (L2O) products
283	every 5 km along-track. Hereafter we used such cloud properties from CATS L2O data files
284	v2.01 (Palm et al., 2016), including only layers with a feature type score above 5, to avoid
285	including wrongly-classified optically thick aerosol layers near deserts.
286	To document the diurnal cycle (Sect. 2.2.a), we used CATS cloud detections from JJA and DJF
287	seasons between March 2015 and October 2017. CATS cloud data being still novel at the
288	time of this writing, we document and discuss several of its characteristics in Appendices A
289	and B, including sampling variability and the sensitivity of cloud detection in presence of
290	solar pollution. This exploration of CATS data (and the upcoming comparisons with other
291	instruments) made us confident that its sampling and cloud detections are robust enough to
292	be used for scientific purposes.
293	•
294	b) Cloud detections from ground-based active instruments
295	Like with any lidar, the CATS laser beam gets fully attenuated when passing through clouds
296	with optical depths larger than typically 3 (e.g., Chepfer et al., 2010). This can lead to the
297	Cloud Fractions being underestimated in the lower troposphere. Meanwhile, horizontal
298	averaging during daytime can lead to Cloud Fractions being overestimated at low altitudes.
299	To estimate how much the CATS Cloud Fraction is biased at low altitudes, we compare CATS
300	detections with independent observations collected from ground-based active instruments.
301	Ground-based observation sites provide long-term records of atmospheric properties over
302	periods that often cannot be reached by satellite instruments (Chiriaco et al., 2018).

Formatted: Font: Not Italic Formatted: Font: Not Italic

Deleted: CATS cloud detections were derived from vertical profiles of ATtenuated Backscatter measured every 350m at 1064nm with a 60m vertical resolution. ATB profiles were calibrated, processed and averaged based on the procedures designed for CALIOP data to enable threshold-based cloud detection (Yorks et al., 2016b and in preparation). Unlike for CALIOP, the cloud detection algorithms for CATS rely primarily on 1064nm data. They create the CATS operational Level 2 (L2) products, which provide properties for detected clouds (including base and top) every 5km along-track. Hereafter we used such cloud properties from CATS L2O data files v2.01 (Palm et al., 2016), including only layers with a Feature_Type_Score above 5, to avoid including wronglyclassified optically thick aerosol layers near deserts. To document the diurnal cycle (Sect. 2.2.a), we used data obtained in both nighttime and daytime (sunlit) conditions between March 2015 and October 2017. ¶ CATS cloud data being still novel at the time of this writing, we document and discuss several of its characteristics in Appendices A and B, including sampling variability and the sensitivity of cloud detection in presence of solar pollution. This exploration of CATS data (and the upcoming comparisons with other instruments) made us confident that its sampling and cloud detections are robust enough to be used for scientific purposes.¶ Deleted: c Deleted: f

Deleted: c Deleted: f

Deleted: in revision

333	Nowadays such sites are often well equipped with active remote sensing instruments. Data
334	acquisition, calibration and processing are often homogenized in the framework of specific
335	observation networks (e.g. EARLINET, the European Aerosol Research Lidar Network,
336	Pappalardo et al., 2014). Descriptions of the clouds diurnal cycle based on <u>active</u> ground-
337	based measurements are however scarce. In this study, we compare CATS cloud cycles with
338	those derived from active measurements at <u>three</u> ground-based sites, two continental and
339	one oceanic;
340	•The Site Instrumenté de Recherche par Télédétection Atmosphérique (SIRTA,
341	Haeffelin et al., 2005) is continental, located 20km South-West of Paris at 48.7°N,
342	2.2°E. From SIRTA we used <u>cloud detections</u> from the Lidar Nuages et Aérosols (LNA,
343	Elouragini and Flamant, 1996), which were curated, packaged and made available in
344	the framework of the SIRTA-reOBS project (Chiriaco et al., 2014, 2018). The LNA
345	requires human supervision and does not operate under precipitation, leading to
346	irregular sampling and almost no nighttime measurements. Thanks to its long
347	operation time, jts cloud dataset covers almost 15 years and was used in many.
348	studies (e.g. Noel and Haeffelin, 2007; Naud et al., 2010; Dupont et al., 2010). Cloud
349	layers were detected in LNA profiles of attenuated backscatter following a threshold-
350	based approach similar to CATS and CALIPSO.
351	•The Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site is
352	continental too, at 97°W, 36°N. From <u>ARM-SGP we used the sgparsclkazr1kolliasC1</u>
353	cloud dataset (DOI: 10.5439/1393437), which contains vertical cloud detection
354	profiles for every second every day based on measurements from the 35GHz Ka ARM
355	Zenith Radar. This instrument has been operating since 2011 (Kollias et al., 2014).
356	Based on these profiles we reconstructed hourly averages of Cloud Fraction profiles
357	over seasons during the CATS operation period. Our results closely match those Zhao
358	et al. (2017) derived from the same instrument, and those Dupont (2011) derived
359	from the ARM-SGP Raman lidar.
360	The ARM Eastern North Atlantic (ENA) site is oceanic, located on Graciosa Island in
361	the Azores archipelago (28.03°W, 39.1°N). From ARM-ENA we used cloud detections
362	from the enaarsclkazr1kolliasC1 dataset derived from a 35GHz radar similar to the
363	one found at SGP, which we processed in a similar way,

Deleted: two	
Deleted: in Europe and the United States	
Deleted: .	\leq
Formatted: Font: 12 pt	\prec
Formatted: List Paragraph, Bulleted + Level: 1 + Aligned a 0,63 cm + Indent at: 1,27 cm	t:
Deleted: first ground-based site is the	\prec
Deleted: ,	\prec
Formatted: Font: 12 pt	\leq
Deleted: observations	5
Deleted: . Cloud detections from the LNA were homogeneized	~
Deleted: re	
Deleted: ; Chiriaco et al.,	
Deleted: in revision	<
Deleted:	<i>≺</i>
Formatted: Font: 12 pt	\prec
Formatted: Font: 12 pt	
Deleted: however means	
Formatted: Font: 12 pt	\Box
Deleted: second site we consider is the	\Box
Formatted: Font: 12 pt	\Box
Deleted: this ground-based site	
Formatted: Font: 12 pt	\Box
Deleted: consider	
Deleted: retrievals	
Deleted: from the Millimeter Wavelength Cloud Radar (MMCR) and from the Raman Lidar (RL). The MMCR has been routinely	
Deleted: ed to detect and identify clouds and precipitations	
Deleted: 1996	
Deleted: Moran et al., 1998	
Deleted:), while RL cloud detections are available since	1]
Deleted: In the framework of the present study we did p	29
Formatted: Font: 12 pt	
· Moved (insertion) [2]	
Deleted: Fig. 3a, top left	
Deleted: i	
Deleted: n Zhao et al., 2017	
Formatted: Font: 12 pt	
Formatted: Font: 12 pt	
Formatted: Font: 12 pt	2
Formatted: Font: 12 pt	\downarrow
(Formatted: Font: Bold	

402			
403	c) Cloud detections from passive and active spaceborne sensors		
404	In addition to the datasets from CATS, LNA and two ground-based radars, in the	(Deleted: MMCR
405	upcoming sections we use cloud retrievals from two spaceborne datasets to put CATS cloud	(Deleted: datasets
406	retrievals into a referenced context. First, we consider the baseline reference for the		
407	description of the clouds diurnal cycle from space: the analysis of data from the ISCCP done		
408	by Rossow and Schiffer (1999), hereafter RS99. Their results are based on aggregated and		
409	homogenized infrared and visible radiances from imaging radiometers on the international		
410	constellation of weather satellites. They are widely considered as the reference for		
411	describing the diurnal cycle of the cloud cover at large scales from space measurements. We	(Deleted: Like with SGP data, w
412	did not reprocess any ISCCP data for the present study, instead we rely on the description of		
413	the diurnal cycle of low and high clouds RS99 documented in their Fig. 11 based on ISCCP, to		
414	which we confront CATS retrievals in Sect. 4.1.		
415	Finally, we also confront CATS cloud detections with retrievals based on measurements	(Formatted: Left, Indent: First line: 0 cm
416	from the CALIOP lidar, routinely made since 2006 from the sun-synchronous CALIPSO		
417	platform at 13:30 and 01:30 LT in Sect. 4.2. To enable comparison with CATS retrievals, we		
418	used cloud layers retrieved from CALIPSO measurements during the period of CATS		
419	operation (March 2015 to October 2017), and documented at <u>a 5km horizontal resolution in</u>	(Deleted: ,
420	CALIPSO Level 2 V4.10 Cloud Layer Products (Vaughan et al., 2009). We processed both		
421	CATS and CALIPSO data alike as described in Sect. 2.2.a.	(Deleted: .¶
422			
423	2.2. Methods		
424			
425	a)_Building the diurnal cycle of Cloud Fraction profiles from lidar cloud detections,	\leq	Deleted: ¶
426	Analyzing CATS lidar echoes lets one identify at which altitude a cloud is present above a		Formatted: Numbered + Level: 1 + Numbering Style: a, b, c, + Start at: 1 + Alignment: Left + Aligned at: 0,63 cm + Indent at: 1,27 cm
427	particular location on Earth at a given moment. By aggregating such information over a long		
428	period, vertical profiles of Cloud Fraction can be derived. A CF(z) profile documents at which	(Deleted: (CF)

frequency clouds were observed at the altitude z over a particular location. Cloud Fractions

are conceptually equivalent to the Cloud Amounts derived from passive measurements

429

438	(next section), but vertically resolved with a 60 meters resolution.	Deleted: ,
439	From CATS level 2 data files, we extract profile-based cloud detections and use the	(Deleted:
440	measurement UTC time and coordinates to deduce their local time of observation. Using the	
441	resulting list of cloud layer altitudes, coordinates and local times of detection, we count the	
442	number <i>n</i> of cloud detected within half-hour bins of local time, 2°x2° lat-lon boxes and	
443	200m altitude bins. We also count the number of valid data points n_0 within those bins.	
444	Eventually, we derive the Cloud Fraction $CF = \frac{n}{n_0}$, either in individual local time/lat-	
445	lon/altitude bin or by aggregating n and n_0 over a selection of bins. Thus, we recreate a	
446	statistically accurate representation of the diurnal cycle of Cloud Fractions profiles, over any	
447	location between 51°S and 51°N, through the aggregation over long periods of cloud	
448	detections made over that location on different days and local times.	
449	CATS reports cloud layers as opaque when no echo from the surface is found in the profile	
450	below a detected cloud, following the same methodology as in Guzman et al., 2017. Below	
451	an opaque cloud layer, there is no laser signal left to propagate, and clouds potentially	
452	present at lower altitudes will not be sampled by the lidar. To account for this effect, we	
453	consider the portions of profiles below an opaque layer unsampled, and they do not count	
454	in the number of valid data points n_0 . This approach limits the influence of laser attenuation	
455	on cloud detections but cannot totally cancel it. For very low clouds (top below 2km), we	
456	make an exception to this rule and consider the lower part of the profile cloudy, as we	
457	found this creates the best agreement with ground-based observations.	
458	To enable comparisons with CATS CF profiles (Sect. 3.3 and 4.2), we followed a similar	
459	approach to build CF profiles using cloud detections from SIRTA-reOBS and ARM datasets	
460	(Sect. 2.1.), and from CALIPSO Level 2 products (Sect. 2.1.c). In both cases, we counted the	Deleted: .b
461	number of cloud detections and valid (non-attenuated) measurements in hourly local time	
462	bins and 200m altitude bins. For CALIPSO, only 01:30AM and PM time bins were filled.	
463		
464	b) Building the diurnal cycle of Low and High Cloud Amounts from CATS data	Deleted: ¶
465	As ISCCP data are based on radiances, clouds therein are characterized according to	
466	their retrieved top pressure P as low (P > 680hPa), middle (440 < P < 680hPa) or high	
467	(P < 440hPa). To enable a direct ISCCP-CATS comparison, we derived Cloud Amounts (CA)	
	11	

472	from CATS data for low and high clouds as defined by altitude: low clouds have their top	(Deleted: base	
473	below 4km ASL, high clouds have their base above 7km, and mid-level clouds are in	(Deleted: tops	
474	between. Using the list of cloud layer altitudes, coordinates and local times of detection			
475	derived from CATS detections (Sect. 2.2.a), we count the number of occurrences n^\prime of at			
476	least part of one cloud layer in half-hour bins of local time, 2°x2° lat-lon boxes and the three			
477	altitude ranges (0-4km, 4-7km and higher than 7km ASL). We also count the number of			
478	occurrences n_0^\prime that could possibly be reported given the measurements sampled by CATS			
479	within each bin, taking into account the existence of opaque layers. Eventually, we derive			
480	the Cloud Amount $CA = \frac{n'}{n'_0}$ for low, mid and high-altitude clouds layers, either in individual			
481	local time/lat-lon bin or by aggregating n^\prime and n^\prime_0 over a selection of bins. Like RS99, we			
482	separated CATS cloud detections over land and ocean, based on the International			
483	Geosphere-Biosphere Programme surface flag present in CATS L2 products on a profile basis			

12

(Palm et al., 2016). 484

487	3. Results		
488	3.1. Diurnal Cloud Fraction profiles observed at Global scale	(Deleted: f
l	Name and the second sec		
489			
490	Figure 1 shows the global diurnal cycle revealed by CATS during JJA from March 2015 to		
491	October 2017 over Ocean and Land (bottom left and right), Low and high clouds are clearly		Deleted: shows the global diurnal cycle revealed by CATS
492	separated, with a band of minimum cloudiness in-between (near 4km ASL). Above both		data over Ocean and Land during JJA from March 2015 to October 2017
493	surfaces, CATS data show an increase of high clouds during nighttime. Sassen et al. (2009)		Deleted: Above Sea Level or
494	explain this increase by the infrared radiative cooling of the upper troposphere. The vertical		Deleted: large amounts of
) L	Deleted:
495	spread of high clouds is most narrow near noon, at which point their apparent base is the	\leq	Deleted: that get thinner near Deleted:
496	highest, These findings are consistent with CALIPSO retrievals (Sassen et al., 2009; Gupta et	(Deleted: as their base rise
497	al., 2018). The vertical evolution in the fraction of sampled atmosphere due to attenuation	\sim	Deleted:
498	by atmospheric components, for these diurnal cycles and all that follow, is documented in		
499	Appendix C.		
500	Significant differences exist between the cloud profiles diurnal cycle above land and ocean.		
501	Clouds generally extend higher over land during nighttime: high clouds are vertically most		
502	frequent near 10km over ocean, while they extend up to 14km above continents until 5AM.		
503	Over ocean, high clouds appear to rise late in the afternoon (3-6PM) and fall soon thereafter		
504	as the sun sets. Land-ocean differences are most striking at low altitudes: over Ocean low	(Deleted: night falls
505	clouds are present almost all day long between 0 and 2km ASL, their CF decreasing from a		
506	20% maximum near 4AM to ~10% between 11AM and 5PM. Over land, low clouds are most	(Deleted: only
507	significant during daytime: they appear near 2km ASL at 10AM and extends upwards to		
508	reach 4km ASL near 4PM. The associated CF remains low, at most 8%. These planetary		
509	boundary layer (PBL) clouds are most certainly associated with turbulence and convection		
510	activity occurring near the surface. They disappear after 4PM without connecting to the		
511	higher layers. The clear-sky band (CF < 2%) near the surface is <code>Jargest</code> at night (almost 2km)	(Deleted: thickest
512	and thinnest in the late morning.		
513	An aside on cloud detection: over the ocean, CATS detects more low and high clouds during	<	Deleted: both
514	nighttime. This means that the increase in high clouds does not prevent the lidar	(Deleted: more frequently
515	measurements to represent faithfully at least part of the nocturnal increase in low clouds.		

- 532 <u>During daytime</u>, the decrease in detection sensitivity due to solar pollution <u>could</u>
- 533 <u>underestimate the retrieved frequency of clouds (low or high), However, CALIPSO cloud</u>
- 534 detections also reveal a nighttime increase in high clouds, which Sassen et al. (2009) and
- 535 Gupta et al. (2018) found much too large to be attributed to detection bias from solar noise.
- 536 Since CATS daytime cloud detection abilities at 1064nm are at least as good as CALIOP's at
- 537 532nm (Yorks et al., 2016), it follows that CATS cloud retrievals should provide a reliable
- 538 qualitative assessment of their diurnal cycle, as comparisons with ground-based
- 539 measurements will later show (Sect. 3.3). How much solar noise leads to an underestimate
- 540 of high clouds in CALIOP and CATS datasets still needs to be quantified,
- 541 While these seasonal mean results are informative, they mix together unrelated cloud
- 542 populations from hemispheres with opposite seasons driven by different circulation
- regimes. We thus describe the daily cycles of clouds in zonal bands in the next section

Deleted: suggests that the high clouds are optically thin enough for letting CATS document the increase of lower clouds. If the reverse was true, more high clouds would be systematically linked to fewer low clouds, which is not what we observe. The frequency of high-level clouds observed in daytime could however be affected by

Deleted: cloud

Deleted: affecting the signal to noise ratio

Deleted:

Deleted: While CATS is seeing the diurnal cycle of high and low clouds, the magnitude of the daytime cloud fractions could then be biased slightly low due to solar pollution and, at low altitudes, cloud-aerosol discrimination issues.

Formatted: Left, Space After: 6 pt, Line spacing: 1,5 lines, No widow/orphan control, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Tab stops: 0,63 cm, Left + 1,27 cm, Left + 1,9 cm, Left + 2,54 cm, Left + 3,17 cm, Left + 3,81 cm, Left + 5,08 cm, Left + 6,35 cm, Left + 7,62 cm, Left

Deleted: ¶

558 3.2. Diurnal Cloud Fraction profiles observed over mid-latitudes and Tropics In this section, we consider cloud populations over four latitude bands: midlatitude (30°-559 51°) and Tropics (0-30°), in the North Hemisphere (NH) and South Hemisphere (SH), over 560 land and ocean. We first examine the differences between the diurnal cycles affecting the 561 cloud vertical profiles over ocean and land in JJA (Sect. 3.2.a and 3.2.b, Fig. 2), then we 562 discuss how these cycles are affected by the season by considering DJF results (Sect. 3.2.c, 563 564 Fig. 3). 565 a) High clouds 566 As expected, Fig. 2 shows that high clouds are located at higher altitude in the tropics (12-567 568 16km ASL) than in midlatitude (8-12km), following the variation of the troposphere depth with latitude. Also as expected, the occurrence of high clouds is largest (CF > 20%) in deep 569 convection along the Inter-Tropical Convergence Zone (ITCZ), located between 0° and 30°N 570 in JJA, and minimum (CF < 8%) in the subsidence branch of the Hadley cell (0° -30°S in JJA). In 571 mid-latitudes, high clouds (7-9km ASL) are far more frequent (CF ~ 20%) over the Southern 572

573 Ocean (30°S-51°S) than over the northern ocean (30-51°N).

The CF of oceanic high clouds follows a strong diurnal cycle, with a maximum at nighttime 574 and a minimum at noon, in mid-latitudes and tropics (even in subsidence region), This cycle 575 is more pronounced where the high clouds are more numerous: along the ITCZ (0-30°N) and 576 577 in the Southern Ocean (30-51°S). In addition to the variation in the high cloud occurrence, the vertical <u>distribution</u> of these clouds <u>also follows</u> a marked diurnal cycle along the ITCZ: 578 detections spread vertically over more than 4km near midnight, but over less than 1km at 579 580 noon. This spreading out occurs between 5PM and 10PM, and disappears much faster during the morning, A wider spread of detection altitudes can either indicate the presence 581 of geometrically thicker clouds, or a wider distribution of optically thick clouds tops only 582 partially sampled by CATS. By comparison, over the Southern Ocean high cloud detections 583 occur over the same altitude range throughout the day. 584 Overall, high clouds behave very similarly above land (Fig. 2, right column) and ocean (Fig. 2, 585 left column) at all latitudes, except between 30-51°S where the continental surface is too 586

587 small to conclude.

Deleted: Cloud fraction profile Deleted: s

Λ	Deleted:
1	Deleted: O
$\ $	Deleted: CF exhibits
)	Deleted: a marked
//	Deleted: a pronounced
//	Deleted: midday
7μ	Deleted: all latitude ranges (
Ά	Deleted: and mid latitudes
	Deleted:)
1	Deleted: Even if t
Ì	Deleted: strong diurnal
ή	Deleted: occurs at all latitudes (even in subsidence region), it
	Deleted: extent
1	Deleted: shows
Y	Deleted: as well
(Deleted: thickening
Ţ	Deleted: takes a few hours
Ŋ	Deleted: (
$\langle \rangle \rangle$	Deleted: -
$\left(\right) $	Deleted:)
/I	Deleted: while
Ŋ	Deleted: thinning is much sharper
$\langle \rangle$	Deleted: the thickness of
$\langle \rangle$	Deleted: s
	Deleted: remains quite stable
Y	Deleted: land

616

633

617 b) Low clouds

- Over ocean in JJA (Fig. 2), the occurrence of low clouds (0-3km ASL) changes significantly 618 with latitude: The Southern Ocean region (30-51°S) is by far the cloudiest, the mid-latitude 619 north (30-51°N) and the subsidence tropics (0-30°S) are moderately cloudy, and even less 620 low clouds are observed along the ITCZ (0-30°N). The oceanic low clouds show only small 621 622 variations along the day. A weak diurnal cycle occurs at all latitudes except along the ITCZ 623 (possibly because Jow clouds there are in part masked by higher clouds affected by an outof-phase diurnal cycle). Low-level clouds are more numerous in nighttime (CF near 20%) 624 compared to daytime (CF~12%) in subsidence tropics (0-30°S) and mid-latitude north (30-625 51°N). The southern oceanic low clouds exhibit a very faint diurnal cycle: their CF gets over 626 20% nearly all day long, with a very small decrease near 2PM. 627 628 In contrast to high clouds, the differences between land and ocean are striking for the low and mid-level clouds. Both the occurrences and the diurnal cycles of clouds over land differ 629 significantly from their oceanic counterparts. The low clouds are very few over land (CF~4%) 630 compared to over ocean (>16%), all day long. Moreover, the continental low cloud diurnal 631 cycle exhibits a maximum in the early afternoon (around 2PM) that does not show up over 632
- the top) of the atmospheric boundary layer; it is linked to convective activity between 10AM
 and 5PM.

ocean: a maximum CF appears around 2.5 km of altitude in the upper edge (or just above

- Another noticeable difference between land and ocean is the presence of well-defined mid-636 level cloud population over NH tropical land (0-30°N, 2nd row on the right in Fig. 2) in the 637 free troposphere between 5 and 7 km ASL. These mid-level clouds show a diurnal cycle 638 639 opposite to PBL clouds and similar to the high clouds in that its minimum occurs at midday and its maximum at night, although the magnitude of this cycle is much more limited. This 640 altitude range would be consistent with cumulus congestus (Johnson et al., 1999). Those, 641 however, are present above both land and ocean (Masugana et al. 2005) and CATS finds little 642 643 clouds at these altitudes over ocean. Rather, the clouds altitudes and location, over land in the summer hemisphere, are consistent with Altocumulus clouds as described by Sassen and 644 Wang (2012) using CALIPSO and CloudSat measurements. Bourgeois et al. (2017) discussed 645
- 646 <u>the diurnal cycle of similar clouds observed over West Africa: they found these clouds reach</u>

Deleted: there the

648 maximum occurrence early in the morning, which is consistent with our results.

650	c) Seasonal differences	
651	Figure 3 presents diurnal cycles of Cloud Fraction profiles over the same latitude bands as	Deleted: c
652	Fig. 2 but based on data collected during the boreal winter (DJF). As seasons switch	Deleted: f
653	hemispheres, we anticipate cloud populations to undergo symmetric changes across	
654	hemispheres, in agreement with large-scale dynamic processes driving their spatial	
655	distribution on seasonal time scales. This is verified for high clouds (Fig. 2 vs. Fig. 3): in the	
656	Tropics the ITCZ moves to South and with it the large CF at high altitudes, in midlatitudes the	
657	high clouds are more frequent during the winter season, due to more frequent low-pressure	
658	conditions.	
659	Interestingly, the mid-altitude clouds visible near 6km ASL in the NH Tropics over land (Fig. 2,	
660	2nd row on the right) also move to the SH Tropics in DJF (Fig. 3, 3rd row on the right). This	
661	confirms the year-long persistence of midlevel clouds over continental tropical regions found	
662	by Bourgeois et al. (2017).	
663	The seasonal changes in low clouds are less symmetric than in higher clouds, as they are	
664	more closely related to surface conditions. Over ocean, in DJF the amount of low clouds	
665	increases dramatically in NH midlatitudes compared to JJA (Fig. 2 and 3, top left), but does	
666	not change noticeably in the SH midlatitudes: the diurnal cycle that sees a slight decrease in	
667	the huge population of low clouds over the Southern Ocean is present in both seasons (Fig.	
668	2 and 3, bottom left). Over land, in the Tropics, low clouds appear similar in frequency and	
669	behavior in both DJF and JJA: PBL clouds extend vertically between ~7AM to 5PM (Fig. 2 and	Deleted: u
670	3, rows 2 and 3 of right column). The NH midlatitudes show the strongest seasonal change in	
671	low clouds, as they become present all day long: the diurnal cycle associated with PBL	
672	development in JJA disappears in DJF (Fig. 2 and 3, top right). SH midlatitude retrievals over	
673	land are noisy in DJF and JJA, but the DJF data (Fig. 3, bottom right) suggests that low clouds	Deleted: as
674	there extend vertically a lot more than in JJA, up to 4km ASL.	
679 3.3. Diurnal cycle of cloud profiles above selected continental regions

- In this section, our first goal is to compare the diurnal cycle of the Cloud Fraction profiles
- from CATS against independent observations collected by active instruments from ground-
- based sites (Sect. 3.3.a and 3.3.b). In particular, we want to understand if the <u>behaviors</u>
- 684 <u>found</u> so far (Fig. 1-3) are valid for low clouds despite the attenuation of the space laser
- signal (Sect. 2.2.a). Our second goal is to compare, for the first time, the diurnal cycle of the
 Gloud Fraction profiles over different continental regions all over the globe as observed with
- 687 a single instrument (Sect. 3.3.c).
- It is important to note that since detection sensitivity, penetration depths and algorithmic
- 689 <u>choices (e.g. averaging times and distances) change significantly from one instrument to the</u>
- 690 next, we do not expect the various datasets to agree on absolute values of Cloud Fraction
- 691 profiles or Cloud Amounts. Rather, our interest is in whether different instruments agree on
- 692 <u>the behavior of the diurnal evolution of clouds when they document the same location.</u>
- ⁶⁹³ Thus the following comparison focus on the main features of the daily cycles and not on
- 694 <u>absolute values.</u>
- 695

680

696 a) Over South of Paris in Europe

- ⁶⁹⁷ Figure 4 shows the diurnal evolution of CF profiles seen by the ground-based LNA lidar (top
- 698 left) operated on the SIRTA site south of Paris (Sect. 2.1.b) and seen by CATS in a 10°x10°
- box centered on <u>SIRTA</u>, keeping only profiles sampled over land (<u>top right</u>). Both datasets
- $_{\rm 700}$ $\,$ report a well-defined high-altitude layer, with a clear-cut cloud top near 12 km ASL that
- rises up a few hundred meters in the morning until 10AM and slowly falls during the
- 702 afternoon by at most 1 km. In both figures, the bottom of this layer is not sharply defined:
- 703 the CF decreases almost linearly <u>from</u> 11-12km ASL to near-zero at 4km ASL. Both
- instruments also report a low-level cloud layer that <u>initiates in the morning and</u> extends
- upwards from ~1km ASL at 5AM to ~4km ASL near 8PM.
- 706 Regarding differences, <u>CATS</u> sees <u>more high-altitude clouds</u>. In the late afternoon (starting
- near 5PM), in particular, the ground-based lidar instead sees much less high clouds; that
- 708 instrument, however, suffers from poor sampling at this late hour. CATS reports less

- Deleted: c
 - Deleted: results
 - Deleted: shown

Deleted: c

 Deleted: Fig. 4a

 Deleted: space lidar

 Deleted: the same site

 Deleted: Fig. 4b

Deleted: from 20% near	

Å	Deleted: the space lidar
1	Deleted: a late-afternoon resurgence of high-altitude clouds (starting near 5PM)
Å	Deleted: absent from the ground-based lidar record
4	Deleted: The space lidar
1	Deleted: also
-	Deleted: a much lower frequency of

727	boundary layer clouds, particularly in the late afternoon, when the ground-based lidar	Delete
728	reports Jow-level CF above 20% <u>(again, a time of poor sampling)</u> . The large <u>number of high-</u>	gets
729	altitude clouds observed by CATS at that time could impair its ability to detect lower clouds,	Delete
730	while at the same time the <u>many</u> low clouds observed by the ground lidar can impair its	Delete
731	ability to detect high clouds. The absence of precipitating clouds from the LNA dataset could	Delete
732	also explain this difference.	
		Delete high-le
733	T	based lidar c
734	b) Over the US Southern Great Plains ARM site	diurna from s
735	Figure 4, shows the diurnal evolution of CF profiles seen by the SGP-based radar (2nd row,	main li increa
736	left) and CATS (right) in a 10°x10° lat-lon box centered on the SGP site (Sect. 2.2.b), keeping	Delete
737	only profiles sampled over land. <u>During nighttime, both datasets report frequent h</u> igh-level	Delete
738	clouds near 12km ASL, with large CF between 16:00 and 03:00 LT. <u>At night, high clouds are</u>	Delete
739	also more distributed vertically, between 9 and 14km ASL. CATS and SGP datasets agree that	Delete
740	the importance of high-level clouds strongly drops during daytime (7AM-5PM), with <u>a</u>	Delete
741	minimum CF at midday. During daytime, the vertical distribution of high-level clouds is more	Delete
742	narrow, from 11 to 12km ASL at its thinnest point (near 10AM). This rather strong cycle of	Delete
743	high-level clouds can be explained by possible influence from Tropical dynamics at the 36°N	Delete
744	latitude of the SGP site. There are slightly more midlevel clouds (4-8km ASL) at night, with	Delete
745	increasing CF between midnight and 7AM. <u>PBL clouds form near the surface at 9AM, rise</u>	Delete
746	and thicken almost up to 4km ASL near 4PM.	Delete
		Delete
747	There are of course differences. The SGP radar detects PBL and midlevel clouds twice more	Delete
748	frequently than CATS, even though few high clouds are present. CATS also misses low-level	Delete
749	clouds observed by the SGP radar between 6PM and 6AM, probable stratiform clouds that	Delete
750	could either be too optically thin for CATS or miscategorized by its cloud detection	Delete
751	algorithm	Delete
752		Move
		Forma
753	<u>c) Over the subtropical Eastern North Atlantic ARM site</u>	the da
754	Figure 4 shows the diurnal evolution of CF profiles seen by the ENA-based radar (bottom	thicke
755	row, left) and CATS (right) in a 10°x10° lat-lon box centered on the ENA site (Sect. 2.2.b). The	and th
756	vertical distribution of clouds appears very different over this oceanic site. Both CATS and	Delete Forma
1		1 01 112

Deleted: : less than 10% throughout the day. This difference gets
Deleted: large
Deleted: the
Deleted: rising
Deleted: quantity

d: large quantity of

ed: As expected, the spaceborne CATS lidar sees more evel clouds and less low-level clouds than the ground-I UNA lidar . This sampling bias affects all ground-space comparisons (e.g. Dupont et al., 2010). Even so, the al cycle of the cloud altitudes are roughly consistent space and ground lidars. This comparison suggests the imitation of CATS is the capability to document the se in low cloud occurrence in the late afternoon.¶

e**d:** c

(Deleted: based on
Ľ	Deleted: measurements
Ì	Deleted: the ARM
Y	Deleted: H
$\langle \rangle$	Deleted: Above Sea Level (
Ù	Deleted:)
$\langle \rangle$	Deleted: are frequent during nighttime,
Ņ	Deleted: (above 20%)
$\langle \rangle$	Deleted: The
$\langle \rangle$	Deleted: layers
N	Deleted: get thick and extend
$\langle \rangle$	Deleted: T
	Deleted: dropping below 10%
	Deleted: The associated
	Deleted: cloud
	Deleted: layer gets much
	Deleted: thinner
	Deleted: limiting its extent between
	Deleted: and
ļ	Deleted: in the early morning
	Deleted: increasing to ~10%
	Moved (insertion) [3]
Ņ	Formatted: Indent: First line: 0 cm
and the second	Deleted: Midlevel clouds are almost non-existent the rest of the day. PBL clouds form near the surface at 9AM, rise and thicken almost up to 4km ASL near 4PM.
	Moved up [3]: PBL clouds form near the surface at 9AM, rise and thicken almost up to 4km ASL near 4PM.
/	Deleted: ¶
- A.	

19

Formatted: Font: Bold, Italic

800	the ENA radar agree on the day-long persistence of low-level clouds below 2km ASL, and on
801	their slight drop in Cloud Fraction and vertical spread between noon and 6PM. This is
802	consistent with persistent stratiform clouds that are maximum at night. CATS sees more
803	high clouds (8-12km ASL) than the ENA radar (4-12km ASL). CATS also reports a Cloud
804	Fraction minimum between 0300-0500LT that is not present in groud-based dataset.
805	These three comparisons between CATS and ground-based measurements suggest that, in
806	general, the spaceborne lidar sees more high-level clouds and the ground-based instrument
807	more low-level clouds. This sampling bias affects all space lidar comparisons with ground
808	instruments (e.g. Dupont et al., 2010). Even so, we find similar behavior in the diurnal cycles
809	reported by CATS and ground instruments over the same locations. Dataset discrepancies
810	appear acceptable given the much smaller size of the CATS dataset (infrequent overpasses
811	over 3 seasons compared to daily local measurements) and the instrumental and
812	algorithmic variations already mentioned, It is reassuring to find that CATS results retain the
813	major features of the clouds profile daily cycle <u>, m</u> ost notably <u>, an acceptable</u> representation
814	of the daytime low-level boundary layer clouds at all three sites despite the presence of
815	high-level clouds.
816	In this section, we have seen that retrievals from ground-based instruments suggest CATS
817	measurements <u>reliably</u> document the clouds diurnal cycle. Due to the distribution of
818	ground-based sites, however, this approach is limited to mostly midlatitudes from the
819	Northern Hemisphere. Next, we compare CATS detections with global spaceborne
820	retrievals.
821	
822	d) Diurnal cycles of the cloud profiles over continents
823	Continents are diverse in ground type, orography, latitude, exposition to large-scale

1 - - -

824

825 826

827

828

829

830

Moved up [2]: Fig. 3a, top left in Zhao et al., 2017

Deleted: Most of these features derived from CATS observations are consistent with those derived from summer observations by the ground-based MMCR (Fig. 3a, top left in Zhao et al., 2017) and RL (Fig. 3, bottom right in Dupont et al., 2011 -- mind the x-axis in UTC, which brings the local noon at 18UTC). For instance, Both CATS and the groundbased datasets report a rather strong diurnal cycle of high clouds, which can be explained by possible influence from Tropical dynamics at the 36°N latitude of the SGP site. There are some differences: both MMCR and RL report a minimum in the high-level clouds near 5PM. The MMCR reports a thinner extent of boundary layer clouds (up to 2.5km at most), while findings from the RL are more consistent with those from CATS. The MMCR reports almost no low-level clouds between 6PM and 6AM, while CATS and the RL report some clouds in that time frame -- they might be optically thin and missed by the radar. The RL reports almost none of the daytime PBL clouds so conspicuous in MMCR and CATS observations, perhaps because fully attenuating clouds were removed from the RL dataset for the Dupont et al. (2011) study as they hide most of the atmosphere from a groundbased lidar (unlike a spaceborne one).¶ These deviations

Deleted: appear

Deleted: to us
Deleted:)
Deleted: the
Deleted: included in the MMCR and RL datasets (14 and 10 seasons)
Deleted: . M
Deleted: , CATS provides a correct
Deleted: of the diurnal evolution of the altitude of
Deleted: (not the occurrence in late afternoon)
Deleted: ¶
Deleted: using
Deleted: as a reference,
Deleted: seem to provide an interesting
Deleted: ation
Deleted: of
Deleted: validation
Deleted: certain regions:
Deleted: c
Deleted:

atmospheric circulation, and transport of air masses from the local environment. These

cloud diurnal cycle profiles. Ground-based observations let us document these different

cycles, but differences between instruments and operations in the different ground sites make comparing diurnal cycle observed from ground at different locations difficult. Thanks

to CATS data, for the first time we compare here the cloud diurnal cycle profiles observed

factors influence the atmosphere above the continent, leading to possible variations in the

- 875 compared to single-site ground-based observations. Figure 5 illustrates how the diurnal
- 876 cycle of CF varies among seven large continental areas across both hemispheres, considering
- 877 only cloud detections made by CATS over land within lat-lon boxes (defined in the inset map)
- during the summer seasons (JJA in the NH, DJF in the SH).
- 879 During summer most continents share a development of PBL clouds during sunlit hours
- 880 (with similar Cloud Fractions, hours and vertical extents), except NH Africa where low clouds
- are almost absent. Most continents also share a nighttime maximum and daytime maximum
- of high clouds, with an associated <u>narrowing of their vertical distribution</u> during morning
- and <u>a spreading out during the afternoon</u>. Variations in cloudiness and cloud <u>vertical</u>
- 884 <u>distribution</u> are particularly intense over South America and SH Africa, while they are
- 885 minimal over Australia. A mid-altitude cloud layer is present almost all day long, with a faint
- 886 daytime minimum, over all SH continents and NH Africa.
- 887 Note that the present comparison is less robust in the lower troposphere than higher in the
- troposphere, due to the attenuation of the space lidar signal as it penetrates the
- 889 atmosphere.

890

Deleted: thinning

Deleted:	thickening
Deleted:	

Deleted	thickness
Deleteu.	UNICKIIESS

895 4. Discussion

896			
897	Hereafter we use our results for answering the following questions: How does the diurnal		
898	cycle of low, mid, high cloud covers from geostationary satellites compare with CATS ones?		
899	Do the existing lidar space missions document extreme or average behaviors of the cloud		Deleted: u
900	profile diurnal cycle? What about upcoming sun-synchronous lidar space missions?		
901			
902 903	4.1 About the Diurnal cycles of Low and High Cloud Amounts		
904	CATS observations provide an opportunity to compare the cloud diurnal cycle derived from		Deleted: first
905	the ISCCP dataset (Sect. 2.1.c) with completely independent observations at near-global		
906	scale (excluding latitudes higher than 51°). In particular, we expect <u>cloud retrievals from</u> an		
907	active sensor such as CATS to be independent of the surface, even above highly reflective	~~~~~	Deleted: techni
908	surfaces such as ice and deserts and to include optically thin clouds. Since CATS sampling is		Deleted:)
909	constrained between 51°S and 51°N, its data cannot be used to document the diurnal cycle		Deleted: contra observations (IS and surface ove
910	in the polar regions, like ISCCP does: our comparison will extend at most to midlatitudes.		Deleted: . More
911	Figure 6 shows the diurnal cycle of the Low and High cloud covers observed by the CATS		Deleted: observ
912	space lidar,	$\langle \rangle$	Deleted: more
012	Over accore CAs are very stable, the diversal cycle is almost flat (Fig. 6, left column), CATS	$\langle \rangle$	Deleted: than p sensitivity
913	Over ocean CAs are very stable, the diurnal cycle is almost flat (Fig. 6, left column). CATS	$\langle \rangle$	Deleted: ¶
914	shows a weak cycle for low clouds, with a maximum in mid-morning and a minimum in		Deleted: , plotte easier comparis
915	early-afternoon, which is also visible in ISCCP data. For oceanic high clouds, CATS exhibit		easier company
916	almost no diurnal cycle except in the Tropics where they follow the same cycle as low		
917	clouds. ISCCP also shows a weak cycle for high clouds, but opposite to the CATS one. This		
918	might be related to the fact that CATS can detect optically thin high clouds better than		
919	ISCCP. The optically thicker high clouds seen by ISCCP are thus probably more linked to deep		
920	convection activity. CATS can better detect optical thin high clouds, which should be more		
921	decoupled from convection and less affected by diurnal cycles.		
922	Over land, between 15°S and 51°N, CATS reports that low-clouds have a pronounced diurnal		Deleted: 60
923	cycle with a maximum of low-level clouds at midday (+10%) and a minimum at midnight (-		

924 5%). This is consistent with ISCCP observations (Figure 11 in RS99), but in the Northern mid-

-	Deleted: technique (
	Deleted:)	
	Deleted: contrarily to the passive remote sensing observations (ISCCP) that may sometimes confound clouds and surface over reflective surfaces	
ſ,	Deleted: . Moreover, CATS is expected	
Ì	Deleted: observe	
Ì	Deleted: more	
	Deleted: than passive sensors thanks to a lidar high sensitivity	
Ì	Deleted: ¶	
Ì	Deleted: , plotted in a similar way as Figure 11 in RS99 for easier comparison	

22

- 941 latitudes the amplitude of the cycle is weaker for CATS than ISCCP (minimum at -4% instead
 942 of -12%). For high-level clouds over land in the Tropics (15°S-30°N) CATS observes a
 943 maximum during night-time and a minimum at noon; the timing is consistent with ISCCP but
 944 the amplitude is slightly more pronounced with CATS than ISCCP (-12% instead of -7% at
 945 midday). In the Southern hemisphere (15°S-<u>51</u>°S) the similarity between CATS and ISCCP
 946 gets lost, probably because the land surface is small in those latitude ranges and the
 947 observations are not significant.
- In summary, CATS confirms the shape of the Low and High cloud diurnal cycles observed by
 ISCCP except for high tropical clouds. This could be due to the space lidar detecting a larger
 <u>number of</u> optically thinner clouds not directly linked to deep convection, or to the different
 <u>day-night cloud detection sensitivities of active and passive measurements</u>. In most cases,
 the amplitudes of the diurnal cycle observed by CATS differ from those observed by ISCCP.
 Both CATS and ISCCP miss some low clouds that are masked by the presence of high thick
 clouds. So even if CATS and ISCCP diurnal cycles are roughly consistent in low clouds, both
- results might be biased in the same direction. The high clouds diurnal cycle presented hereare more robust than the low clouds ones.
- 957

958 4.2 About the Cloud Fraction profiles observed at fixed local times by space lidars

The CALIOP lidar has provided detailed Cloud Fraction profiles since 2006 at 0130AM and 0130 PM LT. The next spaceborne atmospheric lidar missions ADM-Aeolus, to be launched in late 2018 (Culoma et al., 2017) on a sun-synchronous orbit, will enable measurements at 0600AM and 0600PM LT. After that, the ATLID lidar on the Earth-CARE platform (Illingworth et al., 2015), expected to launch in 2020, will operate at fixed local times close to CALIOP (02:00AM and PM). The CATS dataset may remain for the near future our single source of diurnally distributed cloud profile lidar measurements from space.

966

967 a) Comparison between CATS and CALIPSO

In this section, we first check how CATS sees the day/night variation in cloud profiles also
 documented by CALIOP through its two daily overpasses. Figure 7 shows vertical profiles of

Deleted:	60
----------	----

Deleted: , likely	
Deleted: because	
Deleted: can	
Deleted: more	
Deleted: that are	

Cloud Fraction reported by both datasets at 0130AM and PM, over ocean (left) and land 976 (right), latitude-weighted and averaged between 51°S and 51°N over JJA between 2015 and 977 2017. The black lines show the CF obtained when considering all measurements from both 978 979 instruments. Over land and ocean, we find that both CALIPSO and CATS overall report larger Cloud Fractions at 0130AM (blue) than 0130PM (red), in agreement with the findings of 980 Gupta et al. (2018). Below 2.5 km, this difference is stronger over ocean (+7% in 0130AM 981 CF) than over land. Both datasets report a strong increase in 0130AM CF (almost +7% 982 983 compared to 0130PM) above 15km over land. The CF profiles reported by both datasets agree very well over Ocean (left) in both daytime 984 and nighttime conditions. Over land (right) in daytime (red) conditions, CATS reports slightly 985 more low-level clouds (CF~7% near 1km ASL, ~5% for CALIOP). This difference, which is 986 present at all latitudes above land during daytime (not shown), might be due to the so-987 called single-shot low clouds, for which CALIOP data undergoes a specific processing 988 (Winker et al., 2009). The strongest differences appear for nighttime CF over land (right, 989 990 blue): CALIPSO CF is larger than CATS CF by a 2-3% throughout the entire profile. A perfect agreement between CF from both datasets should not be expected, as the CATS and CALIOP 991 lidars operate in different configurations - wavelengths, pulse repetition frequencies and 992 signal-to-noise ratios are different, for a start. These technical variations lead to differences 993 994 in, for instance, how fast the laser pulse energy of both instruments gets attenuated as it penetrates atmospheres of various compositions, or differences in cloud detection 995 performance, e.g. when sampling optically thin clouds in the upper troposphere, or 996 997 fractionated boundary layer clouds (see Reverdy et al., 2015 for a study of the impact of design choices on lidar retrievals). Both datasets agree quite well on the general vertical 998 pattern of the profile, though. A useful conclusion is that considering CALIPSO observations 999 at both overpass local times (i.e. 0130AM and 0130PM) apparently provides a good 1000 approximation of the daily average Cloud Fraction profile. 1001 Deleted: C Deleted: F 1002 b) Comparison of Cloud Fraction profiles at various times of satellite overpass Deleted: c 1003 Deleted: f 1004 As a final analysis, we represent the range covered by CATS hourly <u>CF</u> profiles over a day Deleted: Cloud Fraction (averaged over the globe - white envelope in Fig. 8) and show CF profiles observed by CATS 1005

1006 ±1 hour around the fixed local observation times of the three sun-synchronous space lidar

1012 missions (CALIPSO, ADM-Aeolus, EarthCare).

Our first aim is to understand how wind observations made at fixed local time by ADM-1013 Aeolus might be impacted by the cloud diurnal cycle. ADM-Aeolus will provide information 1014 on wind only in absence of clouds. Figure 8 indicates that ADM-Aeolus overpass times are 1015 1016 quite cloudy in both AM and PM compared to the diurnal variability (white envelope). The 1017 PM overpass corresponds to the daily maximum in cloud profiles over both ocean and land, 1018 while AM observations correspond to a time representative of the daily average Gloud 1019 Fraction profile. As more clouds occur in the PM than AM observations, less wind 1020 information will likely be provided by ADM-Aeolus in the afternoon than in the morning. For 1021 the future, another ADM-Aeolus-like mission around midday (minimum Cloud Fraction 1022 profile) would increase the number of wind measurement with respect to the cloud 1023 occurrence. 1024 Our second aim is to understand how well observations made at fixed local times by space 1025 lidar dedicated to clouds studies (CALIPSO and EarthCare) capture the daily variability of 1026 Cloud Fraction profiles. Figure 8 suggests that over land (right), CALIPSO and Earth-CARE retrievals capture only part of the daily CF variability above 8km ASL: the PM measurements 1027 overestimate the daily CF minima and the AM measurements underestimate the daily CF 1028 1029 maxima. Below 8km ASL they are rather representative of the daily average, except below 5km ASL where PM measurements get close to the daily CF maxima. Figure 8 also shows 1030 that over Ocean (left) CALIPSO and Earth-CARE retrievals should be considered as the daily 1031 1032 CF maxima during the nighttime (AM) overpass and as the daily CF minima during the daytime (PM) overpass. This has interesting implications: it suggests that not only CALIPSO 1033 but all the observations dedicated to cloud studies collected by the instruments within the 1034 A-train (CloudSat, CERES, MODIS, PARASOL, etc.) have documented the state of the 1035 atmosphere in the extreme states of the cloud profile diurnal cycle over the last 12 years 1036 1037 over ocean. These conclusions suggest the A-Train observations are likely relevant and 1038 robust to constrain the cloud diurnal cycle extremes in climate models and climate studies. 1039

1040

Deleted: c

Deleted: f

Deleted: c Deleted: f

Deleted: c Deleted: f

1047	5. Conclusions
1048	In this paper, we took advantage of the variable local time of overpass of the International
1049	Space Station to document the diurnal cycle of the cloud vertical profile as seen by the CATS
1050	lidar. This is the first time the diurnal evolution of the vertical cloud profile is documented on
1051	that vertical scale on a large part of the globe, between 51°S and 51°N. Our results are based
1052	on 15 months of systematic observations (3 boreal summers and 2 austral summers)
1053	collected during the 2015-2017 time period, which enable statistically significant results.
1054	The main results follow. We observed that high tropical clouds begin to spread out vertically
1055	in the late afternoon (4-5PM). Their vertical distribution is largest (over 5km) near 10PM,
1056	This <u>spread-out</u> is particularly large in the Summer Hemisphere in DJF. <u>A</u> mid-level cloud
1057	layer (4-8 km ASL) persists, all day long over the tropical continent during summer, with a
1058	weak diurnal cycle (minimum at noon). Southern Ocean results are quite unique; low clouds
1059	(0-2km ASL) cover this ocean all day long in summer and winter. A slight diurnal cycle sees
1060	their CF drop by a few percents during the afternoon (from noon to 6PM), but their vertical
1061	distribution stays constant. High clouds are also frequent over the Southern Ocean, more so
1062	in JJA <u>, They</u> follow a diurnal cycle in summer and winter, with an <u>daytime</u> minimum (from
1063	8AM and 3PM). At all latitudes, continental low clouds are most frequent in the early
1064	afternoon (around 2PM) at about 2.5 km ASL. Finally, our results show that in summer the
1065	diurnal cycle of continental clouds is similar in both hemispheres: a rapid development of
1066	near-surface PBL clouds during sunlit hours, and an increase in cloudiness and wider vertical
1067	distributions during nighttime for high_altitude, clouds (stronger over the SH and the
1068	Tropics). Exceptions are NH Africa, where PBL clouds are very few, and Australia, where high
1069	clouds appear only significant between 8 and 11PM.
1070	We evaluated the diurnal cycle derived from CATS against independent ground-based
1071	observations and found satisfactory agreement. Moreover, our results suggest that over
1072	oceans CALIPSO and Earth-CARE should describe the daily minimum of the Gloud Fraction
1073	profile during their PM overpass, and its daily maximum during their AM overpass, This
1074	supports the idea that data collected by A-train instruments (not only CALIPSO) are very
1075	relevant to document the cloud diurnal cycle. This is also roughly the case over land at
1076	altitudes above 8km ASL, although the amplitude of the diurnal variability is quite

Deleted: ¶

	¶	
	Deleted: are the following	$\overline{}$
1	Deleted: the	\leq
ll	Deleted: start getting	
\parallel	Deleted: thicker late	
11	Deleted: and reach their maximum thickness of 4-	$\overline{}$
II,	Deleted: near 10PM	\square
//	Deleted: thickening	
7	Deleted: intense	\Box
7	Deleted: Our results reveal a	\square
4	Deleted: ent	\square
4	Deleted: this ocean is covered by	\square
4	Deleted: thickness stays	
ĥ	Deleted: ,	
1	Deleted: and	
1)	Deleted: all year long	
1)	Deleted: n	
Ņ	Deleted: earlier	
2	Deleted: early morning to early afternoon	
/	Deleted: O	$ \ge $
6	Deleted: also	_
7	Deleted: the diurnal cycle of	_
2	Deleted: in summer share similar features	$ \rightarrow$
	Deleted: over continents	_
	Deleted: the	$ \rightarrow$
	Deleted: cloud thickness	\prec
	Deleted: at	\prec
~	Deleted:	\prec
$\langle \rangle$	Deleted: s	\prec
Ś	Deleted: during nighttime	\prec
	Deleted: rare	\prec
~	Deleted: we discussed the implications of our results for	3]
/	Deleted: cloud profiles from	\prec
	Deleted: over oceans	\prec
<	Deleted: nearly	\prec
\langle	Deleted: c	\prec
	Deleted: f	\prec
$\langle \rangle$	Deleted: vertical	\prec
	Deleted: ,	\prec
/	Deleted: which	\prec
	(Deleted: all	

1123	underestimated.	
1124	Questions remain about how several factors could affect our ability to retrieve the vertical	
1125	variability of clouds from lidar-based measurements through the day. More specifically, the	
1126	irruption of solar noise in daytime conditions requires increased horizontal averaging to	
1127	keep CATS detection sensitivity stable. High clouds with very small optical depths (lower	
1128	than 0.005), which CATS can detect in the nighttime, will be probably missed in the daytime.	
1129	Meanwhile, the occurrence and extent of fragmented boundary layer clouds might be	
1130	overestimated. Even though prior work using the similarly-affected CALIPSO data suggests	
1131	the observed diurnal changes in clouds are too large to be solely due to those effects, their	
1132	impact on the retrieved cycles needs to be quantified. In the same manner, how extinction	
1133	by high clouds impacts the retrieved Cloud Fractions at low altitude needs to be	
1134	investigated.	
1135	In the future, it would be possible to consider CATS measurements at smaller scales, to	
1136	identify regionally consistent cloud populations and diurnal behaviors over specific regions	
1137	of interest. It would also be possible to use CATS detection of opaque cloud layers to identify	
1138	the best local time of observation from space to study local cloud radiative effects. We will	 Deleted: hope to
1139	address these lines of research in upcoming papers.	
1140	Acknowledgments	
1141	CATS and CALIPSO data were obtained through the NASA Langley Research Atmospheric←	 Formatted: Heading 1, Justified, Line spacing: 1,5 lines
1142	Science Data Center (ASDC) and the AERIS and ICARE/CGTD Data services. ARM-ENA and	 Deleted: CALIPSO and CloudSat datasets were provided by
1143	ARM-SGP data were obtained through the ARM portal at http://www.arm.gov, SIRTA data	Deleted: through
1144	were obtained through the ReOBS portal at http://sirta.ipsl.fr/reobs.html. Data were	
1145	analyzed on the Climserv IPSL computing facilities. This research was made possible through	
1146	support by CNRS and CNES. We want to thank JL. Baray and N. Montoux for useful	
1147	discussions	 Deleted: ¶
I		1

1153	Refer	ences	
1154			
1155	•	Ackerman, T. P., and G. M. Stokes (2003), The Atmospheric Radiation Measurement	
1156		Program Phys. Today, 56, 38–44, doi:10.1063/1.1554135	
1157	•	Bouniol, D., R. Roca, T. Fiolleau, and D.E. Poan, 2016: Macrophysical, Microphysical,	
1158		and Radiative Properties of Tropical Mesoscale Convective Systems over Their Life	
1159		<u>Cycle.</u> J. Climate, 29 , 3353–3371, <u>doi:10.1175/JCLI-D-15-0551.1</u>	
1160		Bourgeois, E., D. Bouniol, F. Couvreux, F. Guichard, J. H. Marsham, L. Garcia-Carreras,	
1161		C. E. Birch, and D. J. Parker (2018), Characteristics of mid-level clouds over West	
1162		Africa, <i>QJRMS</i> , <i>113</i> , D04210–17, doi:10.1002/qj.3215.	
	-		
1163	•	Ceppi, P., F. Brient, M. D. Zelinka, and D. L. Hartmann, 2017: Cloud feedback mechanisms and their representation in global climate models, WIREs Climate	
1164		Change 2017, e465. Doi: 10.1002/wcc.465	
1165			
1166	•	Cesana, G., and H. Chepfer (2013), Evaluation of the cloud thermodynamic phase in a	
1167		climate model using CALIPSO-GOCCP, J. Geophys. Res., 118(14), 7922–7937,	
1168		doi:10.1002/jgrd.50376.	
1169	•	Cesana, G., H. Chepfer, D.M. Winker, B. Getzewich, X. Cai, H. Okamoto, Y. Hagihara, O.	Formatted: English (US)
1170		Jourdan, G. Mioche, V. Noel, M. Reverdy, 2016: Using in situ airborne measurements	Formatted: English (US)
1171		to evaluate three cloud phase products derived from CALIPSO, J. Geophys. Res.	
1172		<u>Atmos.,121, 5788_5808, doi:10.1002/2015JD024334</u>	Formatted: English (US)
1173	•	Chepfer, H., Bony, S., Winker, D., Cesana, G., Dufresne, J. L., Minnis, P., Stubenrauch,	
1174		C. J. and Zeng, S.: The GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP), J.	
1175		Geophys. Res., 115(1), 23073–13, doi:10.1029/2009JD012251, 2010.	Formatted: English (UK)
1176	•	Chepfer H., G. Cesana, D. Winker, B. Getzewich, and M. Vaughan, 2013: Comparison	Formatted: English (US)
1177		of two different cloud climatologies derived from CALIOP Level 1 observations: the	Formatted: Indent: Hanging: 0,88 cm
1178		CALIPSO-ST and the CALIPSO-GOCCP, J. Atmos. Ocean. Tech., doi.10.1175/JTECH-D-	
1179		<u>12-00057.1</u>	Formatted: English (US)
1180	•	Chiriaco M., S. Bastin, P. Yiou, M. Haeffelin, JC. Dupont, L. Klenov, M. Stéfanon,	Deleted: <#>
1181		2014: European heat-wave in July 2006: observations and modelling showing how	

1183		local processes amplify conducive large-scale conditions. Geophys. Res. Let., 41 issue		
1184		15, 5644 – 5652.		
1185	•	Chiriaco, M., Dupont, JC., Bastin, S., Badosa, J., Lopez, J., Haeffelin, M., Chepfer, H.,	(Formatted: English (US)
1186		and Guzman, R.: ReOBS: a new approach to synthesize long-term multi-variable		
1187		dataset and application to the SIRTA supersite, Earth Syst. Sci. Data, 10, 919-940,		
1188		https://doi.org/10.5194/essd-10-919-2018, 2018		
1189	•	_Culoma A., A. Elfving, R. Meynart, A. Straume, D. Wernham, "AEOLUS mission: the		Deleted: <#>Chiriaco, M., Dupont, JC., Bastin, S., Badosa, J., Lopez, J., Haeffelin, M., Chepfer, H., and Guzman, R.:
1190		latest preparations before launch", Proc. SPIE 10423, Sensors, Systems, and Next-		ReOBS: a new approach to synthetize long-term multi-
1191		Generation Satellites XXI, 1042303 (29 September 2017); doi: 10.1117/12.2282159		variable dataset and application to the SIRTA supersite, Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2017-101, in review.¶
1192	•	Dong, X., B. Xi, K. Crosby, C. N. Long, R. S. Stone, and M. D. Shupe (2010), A 10 year		
1193		climatology of Arctic cloud fraction and radiative forcing at Barrow, Alaska, J.		
1194		Geophys. Res., 115(D17), D17212, doi:10.1029/2009JD013489.		
l 1195	•	Dupont, J. C., M. Haeffelin, Y. Morille, V. Noel, P. Keckhut, D. Winker, J. Comstock, P.		
1196		Chervet, and A. Roblin (2010), Macrophysical and optical properties of midlatitude		
1197		cirrus clouds from four ground-based lidars and collocated CALIOP observations, J.		
1198		Geophys. Res., 115(D4), D00H24–15, doi:10.1029/2009JD011943.		
1199	•	Elouragini, S. and Flamant, P. H.: Iterative method to determine an averaged lidar		
1200		ratio and the range resolved extinction in cirrus, Appl. Opt., 35, 1512–1518, 1996.		
1201	•	Gray, W. M., and R. W. Jacobson, 1977: Diurnal variation of deep cumulus convection.		
1202		Mon. Wea. Rev., 105, 1171–1188, doi:10.1175/1520-		
1203		0493(1977)105,1171:DVODCC.2.0.CO;2		
1204	•	Greenwald, T. J. and Christopher, S. A.: Daytime variation of marine stratocumulus		
1205		microphysical properties as observed from geostationary satellite, Geophysical		
1206		Research Letters, 26(1), 1723–1726, doi:10.1029/1999GL900346, 1999.		
1207	•	Guzman, R., H. Chepfer, V. Noel, T. Vaillant de Guélis, J. E. Kay, P. Raberanto, G.		
1208		Cesana, M. A. Vaughan, and D. M. Winker (2017), Direct atmosphere opacity		
1209		observations from CALIPSO provide new constraints on cloud-radiation interactions,		
1210		J. Geophys. Res., 1–20, doi:10.1002/2016JD025946.		
1211	•	Haeffelin M et al. (2005) SIRTA a ground-based atmospheric observatory for cloud		

1218		and aerosol research, Annales Geophysicae, 23(2), 253–275, doi:10.5194/angeo-23-	
1219		253-2005.	
1220	•		
1221		heating characteristics of earth's cloudy atmosphere from vertically resolved active	
1222		sensors. Geophys Res Lett 40:624–904 630. doi:10.1002/grl.50145.	Formatted: English (US)
1223	•	Hoareau, C., P. Keckhut, V. Noel, H. Chepfer, and J. L. Baray (2013), A decadal cirrus	
1224		clouds climatology from ground-based and spaceborne lidars above the south of	
1225		France (43.9° N–5.7° E), Atmos. Chem. Phys., 13(14), 6951–6963, doi:10.5194/acp-	
1226		<u>13-6951-2013.</u>	
1227	•	Hogan, R. J., A. J. Illingworth, E. J. O'Connor, and J. P. V. Poiares Baptista (2003),	
1228		Characteristics of mixed-phase clouds. II: A climatology from ground-based lidar,	
1229		<u>QJRMS, 129, 2117–2134.</u>	Formatted: English (US)
1230	•	Hu, Y. et al. (2009), CALIPSO/CALIOP Cloud Phase Discrimination Algorithm, J. Atmos.	
1231		<u>Oceanic Technol., 26, 2293–2309.</u>	
 1232	•	_Illingworth, A. J. et al. (2015), The EarthCARE Satellite: The Next Step Forward in	
1233		Global Measurements of Clouds, Aerosols, Precipitation, and Radiation, Bull. Am.	
1234		Met. Soc, 96(8), 1311–1332, doi:10.1175/BAMS-D-12-00227.1.	
1235	•	Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert	
1236		(1999), Trimodal Characteristics of Tropical Convection, J. Climate, 12(8), 2397–2418,	
1237		doi:10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2.	
1238	•	_Kato, S., F. G. Rose, S. S. Mack, W. F. Miller, and co-authors (2011), Improvements of	
1239		top-of-atmosphere and surface irradiance computations with CALIPSO-, CloudSat-,	
1240		and MODIS-derived cloud and aerosol properties. J Geophys Res 116:D19209.	
1241		doi:10.1029/2011JD016050	
1242	•	Kollias, P., Bharadwaj, N., Widener, K., Jo, I. and Johnson, K.: Scanning ARM Cloud	
1243		Radars. Part I: Operational Sampling Strategies, J. Atmos. Oceanic Technol., 31(3),	
1244		<u>569–582, doi:10.1175/JTECH-D-13-00044.1, 2014.</u>	
1245	•	Konsta, D., J. L. Dufresne, H. Chepfer, A. Idelkadi, and G. Cesana (2016), Use of A-train	
1246		satellite observations (CALIPSO–PARASOL) to evaluate tropical cloud properties in the	

1247		LMDZ5 GCM, Clim. Dyn., 1–22, doi:10.1007/s00382-015-2900-y.		
1248	•	Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson (1998), The Tropical		
1249		Rainfall Measuring Mission (TRMM) sensor package, J. Atmos. Oceanic Technol., 15,		
1250		809–817.		
1251	•	L'Ecuyer, T. S., N. B. Wood, T. Haladay, G. L. Stephens, and P. W. Stackhouse		
1252		Jr. (2008), Impact of clouds on atmospheric heating based on the R04 CloudSat fluxes		
1253		and heating rates data set, J. Geophys. Res., 113, D00A15,		
1254		doi: <u>10.1029/2008JD009951</u> .		
1255	•	L'Ecuyer, T. S., and J. H. Jiang, 2010: Touring the atmosphere aboard the A-Train.		
1256		Physics Today, vol .63 (7), 36-40.		
1257	•	Liu, Z., M. A. Vaughan, D. Winker, C. Kittaka, B. Getzewich, R. Kuehn, A. Omar, K. A.		
1258		Powell, C. Trepte, and C. Hostetler (2009), The CALIPSO lidar cloud and aerosol		
1259		discrimination: Version 2 algorithm and initial assessment of performance, J. Atmos.		
1260		<u>Oceanic Technol., 26, 1198–1213.</u>		
1261	•	Masunaga, H., T.S. L'Ecuyer, and C.D. Kummerow, 2005: Variability in the		Formatted: English (US)
1262		Characteristics of Precipitation Systems in the Tropical Pacific. Part I: Spatial		Field Code Changed Formatted: English (US)
1263		Structure., J. Climate, 18, 823–840, https://doi.org/10.1175/JCLI-3304.1		Formatted: English (US)
				Field Code Changed
1264	•	McGill, M. J., J. E. Yorks, V. S. Scott, A. W. Kupchock, and P. A. Selmer (2015), The	11	Formatted: English (US)
1265		Cloud-Aerosol Transport System (CATS): A technology demonstration on the	· · · ·	Formatted: English (US)
1266		International Space Station, Proc. SPIE 9612, Lidar Remote Sensing for Environmental		
1267		Monitoring XV, 96120A, doi:10.1117/12.2190841.		
1268	•	Naud, C., Del Genio, A. D., Haeffelin, M., Morille, Y., Noel, V., Dupont, JC., Turner, D.,		Deleted: Moran, K. P., B. E. Martner, M. J. Post, R. A.
1269		Lo, C., and Comstock, J. M., 2010: Thermodynamic phase profiles of optically thin		Kropfli, D. C. Welsh, and K. B. Widener (1998), An unattended cloud-profiling radar for use in climate
1270		midlatitude clouds and their relation to temperature. J. Geophys. Res., 115 D11202		research, Bull. Am. Meteorol. Soc., 79, 443–455. Formatted: English (US)
1271	•	Noel, V. and Haeffelin, M., 2007: Midlatitude Cirrus Clouds and Multiple Tropopauses		Formatted: English (US)
1272		from a 2002-2006 Climatology over the SIRTA observatory. J. Geophys. Res., 112		
1273		<u>D13206</u>		
1274	•	Wang, Z., and K. Sassen, 2001: Cloud type and macrophysical property retrieval using		Formatted: Font: Not Italic
1275		multiple remote sensors. J. Appl. Meteor., 40, 1665-1682		
12,3		maniple remote Sensors strappin meteor, 40, 1005-1002		

1280	•	Palm, S. P., D. L. Hlavka, P. Selmer, R. Pauly, 2016: the Cloud Aerosol Transport System	
1281		(CATS) Data Product Catalog release 3.0. Retrieved on January 23rd 2018 from	
1282		https://cats.gsfc.nasa.gov/media/docs/CATS_Data_Products_Catalog.pdf	
1283	•	Pappalardo, G., Amodeo, A., Apituley, A., Comeron, A., Freudenthaler, V., Linné, H.,	
1284		Ansmann, A., Bösenberg, J., D'Amico, G., Mattis, I., Mona, L., Wandinger, U., Amiridis,	
1285		V., Alados-Arboledas, L., Nicolae, D., and Wiegner, M.: EARLINET: towards an	
1286		advanced sustainable European aerosol lidar network, Atmos. Meas. Tech., 7, 2389-	
1287		2409, doi:10.5194/amt-7-2389-2014, 2014	
1288	•	Philippon, N. et al. (2016), Analysis of the diurnal cycles for a better understanding of	
1289		the mean annual cycle of forests greenness in Central Africa, Agricultural and Forest	
1290		Meteorology, 223, 81–94, doi:10.1016/j.agrformet.2016.04.005.	
1291	•	Protat, A., J. Delanoë, A. Plana-Fattori, P. T. May, and E. J. O'Connor (2009), The	
1292		statistical properties of tropical ice clouds generated by the West African and	
1293		Australian monsoons, from ground-based radar-lidar observations, QJRMS, 136(S1),	
1294		<u>345–363, doi:10.1002/qj.490.</u>	
1295	•	Reverdy, M., Noel, V., Chepfer, H., & Legras, B. (2012). On the origin of subvisible	
1296		cirrus clouds in the tropical upper troposphere. Atmospheric Chemistry and Physics,	
1297		12(24), 12081–12101. http://doi.org/10.5194/acp-12-12081-2012	
1298	•	Reverdy, M., H. Chepfer, D. Donovan, V. Noel, G. Cesana, C. Hoareau, M. Chiriaco, and	
1299		S. Bastin (2015), An EarthCARE/ATLID simulator to evaluate cloud description in	
1300		climate models, J. Geophys. Res., 120(2), 11, doi:10.1002/2015JD023919.	Formatted: English (UK)
1301	•	Rossow, W. B., 1989: Measuring cloud properties from space: A review. J. Climate, 2,	
1302		<u>201–213</u>	
1303	•	Rozendaal, M. A., Leovy, C. B., and Klein, S. A.: An Observational Study of Diurnal	
1304		Variations of Marine Stratiform Cloud, J. Climate, 8, 1795–1809, 1995.	
1305	•	Sassen, K., and S. Benson (2001), A midlatitude Cirrus Cloud Climatology from the	
1306		Facility for Atmospheric Remote Sensing. Part II : microphysical properties derived	
1307		from lidar depolarisation, J. Atmos. Sci., 58, 2103–2112, doi:10.1175/1520-	
1308		0469(2001)058<2103:AMCCCF>2.0.CO;2.	Formatted: English (UK)

1309	•	Sassen, K., Z. Wang, and D. Liu (2009), Cirrus clouds and deep convection in the	 Formatted: English (US)
1310		tropics: Insights from CALIPSO and CloudSat, J. Geophys. Res., 114, D00H06,	
1311			 Formatted: French
1212		Sassen, K., and Z. Wang (2012), The Clouds of the Middle Troposphere: Composition,	
1312 1313	-	Radiative Impact, and Global Distribution, <i>Surveys in Geophysics</i> , 33(3-4), 677–691,	
1314		doi:10.1007/s10712-011-9163-x.	 Formatted: English (UK)
1314			
1315	•	Sèze, G., J. Pelon, M. Derrien, H. Le Gléau, and B. Six (2014), Evaluation against	
1316		CALIPSO lidar observations of the multi-geostationary cloud cover and type dataset	
1317		assembled in the framework of the Megha-Tropiques mission, QJRMS, 141(688),	
1318		774–797, doi:10.1002/qj.2392.	 (Formatted: English (UK)
1319	•	Shang, H., H. Letu, T. Y. Nakajima, Z. Wang, R. Ma, T. Wang, Y. Lei, D. Ji, S. Li, and J. Shi	
1320		(2018), Diurnal cycle and seasonal variation of cloud cover over the Tibetan Plateau	
1321		as determined from Himawari-8 new-generation geostationary satellite data,	
1322		<u>Scientific Reports, 1–8, doi:10.1038/s41598-018-19431-w.</u>	
1323	•	Soden, B. J. (2000), The diurnal cycle of convection, clouds, and water vapor in the	
1324		tropical upper troposphere. Geophys. Res. Lett. 27 (15), 2173-2176. doi:	
1325		10.1029/2000GL011436	
1326	•	Stephens, G. L., & Kummerow, C. D. (2007). The Remote Sensing of Clouds and	
1327		Precipitation from Space: A Review. Journal of the Atmospheric Sciences, 64(11),	
1328		3742-3765. http://doi.org/10.1175/2006JAS2375.1	
1329	•	Stephens, G., D. Winker, J. Pelon, C. Trepte, D. Vane, C. Yuhas, T. L'Ecuyer, and M.	 Formatted: English (US)
1330		Lebsock, 2018: CloudSat and CALIPSO within the A-Train: Ten Years of Actively	 Field Code Changed
1331		Observing the Earth System. Bull. Amer. Meteor. Soc., 99, 569–	 Formatted: English (US) Formatted: English (US)
1332		581, https://doi.org/10.1175/BAMS-D-16-0324.1	e of marcear English (65)
1333	•	Stubenrauch, C.J., A. Chédin, G. Rädel, N.A. Scott, and S. Serrar, 2006: Cloud	 Deleted: Stephens, G., D. Winker, J. Pelon, C. Trepte, D.
1334		Properties and Their Seasonal and Diurnal Variability from TOVS Path-B. J. Climate,	Vane, C. Yuhas, T. L'Ecuyer, and M. Lebsock, 2017: CloudSat and CALIPSO within the A-Train. Ten years of actively
1335		<u>19, 5531–5553, https://doi.org/10.1175/JCLI3929.1</u>	observing the Earth system. Bull. Amer. Meteor. Soc. doi:10.1175/BAMS- D-16-0324.1, in press.
1336	•	Taylor, S., Stier, P., White, B., Finkensieper, S., and Stengel, M.: Evaluating the diurnal	
1337		cycle in cloud top temperature from SEVIRI, Atmos. Chem. Phys., 17, 7035-7053,	

1343		https://doi.org/10.5194/acp-17-7035-2017, 2017
1344	•	Vaughan, M. A., K. A. Powell, D. M. Winker, C. A. Hostetler, R. E. Kuehn, W. H. Hunt, B.
1345		J. Getzewich, S. A. Young, Z. Liu, and M. J. McGill (2009), Fully Automated Detection
1346		of Cloud and Aerosol Layers in the CALIPSO Lidar Measurements, J. Atmos. Oceanic
1347		Technol., 26(10), 2034–2050, doi:10.1175/2009JTECHA1228.1.
1348	•	Wilson, A. M. and Barros, A. P.: Orographic Land–Atmosphere Interactions and the
1349		Diurnal Cycle of Low-Level Clouds and Fog, J. Hydrometeor., 18(5), 1513–1533,
1350		
1351	•	Winker, D., M. A. Vaughan, A. Omar, Y. Hu, and K. A. Powell (2009), Overview of the
1352		CALIPSO mission and CALIOP data processing algorithms, J. Atmos. Oceanic Technol.,
1353		26, 2310–2323.
1354	•	Winker DM, Pelon J, Coakley JA Jr, Ackerman SA, Charlson RJ, Colarco PR, Flamant P,
1355		Fu Q, Hoff RM, Kittaka C, Kubar TL, Le Treut H, McCormick MP, Me´gie G, Poole L,
1356		Powell K, Trepte C, Vaughan MA, Wielicki BA. 2010. The CALIPSO mission: A global 3D
1357		view of aerosols and clouds. Bull. Am. Meteorol. Soc. 91: 1211–1229.
1358	•	Winker, D., Chepfer, H., Noel, V. and X. Cai. : Observational Constraints on Cloud
1359		Feedbacks: The Role of Active Satellite Sensors. Surve in Geophys (2017).
1360		Doi:10.1007/s10712-017-9452-0
1361	•	Wylie, D. (2008), Diurnal Cycles of Clouds and How They Affect Polar-Orbiting
1362		Satellite Data, J. Climate, 21(16), 3989–3996, doi:10.1175/2007JCLI2027.1.
1363	•	Yin, J., & Porporato, A. (2017). Diurnal cloud cycle biases in climate models. <i>Nature</i>
1364		Communications, 8(1), 2269.
1365	•	Yorks, J. E., D. L. Hlavka, W. D. Hart, M. J. McGill, 2011: Statistics of Cloud Optical
1366		Properties from Airborne Lidar Measurements. J. Atmos. Oceanic Technol., 28, 869–
1367		883. doi: http://dx.doi.org/10.1175/2011JTECHA1507.1
1368	•	Yorks, J. E., M. J. McGill, S. P. Palm, D. L. Hlavka, P. A. Selmer, E. P. Nowottnick, M. A.
1369		Vaughan, S. D. Rodier, and W. D. Hart (2016a), An overview of the CATS level 1
1370		processing algorithms and data products, Geophys. Res. Lett., 43, 4632–4639,
1371		doi: <u>10.1002/2016GL068006</u> .

1372	•	Yorks, J. E., S. P. Palm, M. J. McGill, D. L. Hlavka, W. D. Hart, P. A. Selmer, E.
1373		Nowottnick (2016b), CATS Algorithm Theoretical Basis Document, Level 1 and Level 2
1374		Data Products, release 1.2. Retrieved on February 13th 2018 from
1375		https://cats.gsfc.nasa.gov/media/docs/CATS_ATBD.pdf
1376	•	Yorks, J. E., S.D. Rodier, E. Nowottnick, P.A. Selmer, M.J. McGill, S.P. Palm, and M. A.
1377		Vaughan (2018), CATS Level 2 Vertical Feature Mask Algorithms and Data Products:
1378		An Overview and Initial Assessment, Atmos. Meas. Tech. Discuss., in preparation.
1379	•	Zhao, W., R. Marchand, and Q. Fu (2017), The diurnal cycle of clouds and

- 1380 precipitation at the ARM SGP site: Cloud radar observations and simulations from the
- 1381 multiscale modeling framework, J. Geophys. Res., 122(14), 7519–7536,
- 1382 doi:10.1002/2016JD026353.

Page 9: [1] Deleted Vincent Noel 6/13/18 12:24:00

), while RL cloud detections are available since 1998 (Ackerman and Stokes, 2003).

•			
Page 9: [2] Deleted	Vincent Noel	6/13/18 12:24:00 PM	
In the framework of the present study we did no specific processing of data from these			
instruments. Instead, we compare CATS cloud retrievals over the SGP site with the			
descriptions made by Zhao et a	al. (2017, Fig. 3a) and Dupont et	al. (2011, Fig. 3) of the diurnal	
cycle of clouds over SGP based	on 14 years of MMCR cloud de	tections and 10 years of RL	
cloud detections in Sect. 3.3			

Page 26: [3] Deleted	Vincent Noel	6/13/18 4:15:00 PM		
we discussed the implications of our results for spaceborne instruments from sun-				
synchronous satellite missions	(CALIPSO and the A-train, ADM, E	arth-CARE). O		