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Responses to comments on “Contrasting behaviors of the ��

atmospheric CO2 interannual variability during two types of ��

El Ninos ��

Dear Referee and Editor,�Thank you very much for your efforts to deal with our ��

manuscript and provide constructive comments. We have tried our best to ��

re-summarize the results, and modify this manuscript accordingly. The following is ��

our point-by-point reply to the comments.  	�

 
�

Responses to Referee #1 ��

Wang et al describe the different behaviour of CO2 fluxes during the two types of El ���

Nino event, the eastern Pacific (EP) and central pacific (CP) El Ninos. They use the ���

atmospheric CO2 growth rate and dynamic global vegetation models, and show dif- ���

ferences for the two types of El Nino in the global CO2 fluxes, as well as CO2 fluxes ���

separated regionally and by process. This is a relevant subject within the scope of ���

ACP, the results will be useful and the paper is generally clearly written. I ���

recommend the paper for publication after minor revision.  ���

Detailed comments  �	�

(1) Given the strong similarity of broad focus of this work with the recent Chylek et �
�

al paper, it might be worth adding a paragraph to the discussion that summarises ���

the differences and similarities in approach and results e.g. exclusion of events ���

that coincide with volcanic eruptions, identification of different events, inclusion ���

of TRENDY and inversion results, focus on lag by Chylek, conclusions etc. Do ���

you also see a difference in the lag? Is there anything from the TRENDY results ���

that could shed light on the hypothesis from Chylek that the shorter time lag ���

between the temperature rise and an increase in CO2 emissions with CP El Ninos ���



� ��

is influenced by fire response, while the longer time lag in EP El Ninos is ���

dominated by vegetation response, noting although that the TRENDY models �	�

exclude or underestimate the effect of fire (maybe therefore there isn’t anything �
�

you can add here, but at least worth thinking about)? Although there is a strong ���

overlap of focus of this work with Chylek there are also significant differences, so ���

I do believe that there is value in both studies.  ���

Reply: Thanks very much. We have added a paragraph in the discussion section to ���

simply illustrate the differences and similarities between our work and Chylek et al. ���

(2018). Details can be referred to the text “As above mentioned, when finalizing our ���

paper, we noted the publication of Chylek et al. (2018) who also focused on ���

atmospheric CO2 interannual variability during EP and CP El Niño events. We here ���

simply illustrated some differences and similarities. In the method of the identification �	�

of EP and CP El Niño events, Chylek et al. (2018) took the Niño1+2 index and Niño4 �
�

index to categorize El Niño events, while we adopted the results of Yu et al. (2012), ���

based on the consensus of three different identification methods, and additionally ���

excluded the events that coincided with volcanic eruptions. The different methods ���

made some differences in the identification of EP and CP El Niño events…”. ���

We can still hardly determine whether the fire response can explain the early CGR ���

anomaly response in CP El Nino, because of TRENDY models exclude or ���

underestimate the effect of wildfires. However, as shown in Figure 4d, the evolution ���

of GPP anomaly in CP El Nino plays an important role in FTA anomaly.  ���

Consider adding a figure (perhaps in the Supplement) with the CO2 flux behaviour of �	�

separate El Nino events for EP and CP shown in comparison with the composite, to �
�

show how much the individual events vary from the composite.  ���

Reply: Thanks very much. We have added a figure with the CGR anomalies in the ���

individual EP and CP El Nino events in the supplementary file (Fig. S5).  ���



� ��

(2) page 2, line 36 - mention near the beginning of the sentence that you are ���

considering the two types, e.g. "... evolutions of MLO CGR anomaly during the ���

two El Nino types have three clear ..." otherwise it isn’t clear until you get to the ���

end of the long sentence.  ���

Reply: Thanks for your constructive suggestion. We have modified it accordingly.  ���

(3) page 2, line 44 - the sentence that begins "Regionally, significant anomalous ..." is �	�

long and you don’t know which type of El Nino event this sentence refers to until �
�

the end. I suggest beginning the sentence something like "Regional analysis shows ���

that during EP El Nino events significant anomalous ..." or some other way to ���

mention EP at the start.  ���

Reply: Thanks for your suggestions. We have modified it accordingly.  ���

(4) Page 5, line 111 - word "carefully" should be unnecessary  ���

Reply: Thanks very much. We have deleted it. ���

(5) Page 7, line 154 - did the more recent version of LPX-Bern satisfy the minimum ���

performance requirement?  ���

Reply: Thanks very much. The recent version of LPX-Bern can satisfy the �	�

requirement.  �
�

(6) Page 8, line 181 - say (broadly) what quantities you are calculating the anomalies ���

in (e.g in model results, observations)  	��

Reply: Thanks very much. We have modified it accordingly.  	��

(7) Page 9, line 198 - ".. with noticeable increases *in CO2 growth rate* during ..."  	��

Reply: Thanks very much. We have modified it as “…with noticeable increases in 	��

CGR during El Nino and decreases during La Nina, respectively”. 	��



� ��

(8) page 9, line 210-212 - ".. and a similar regression analysis as done with the MLO 	��

CGR shows a sensitivity of 0.64 PgC yr−1 K−1" - Rather than describing it in this 	��

way, it would be clearer to say exactly what this is "and regression analysis of 		�

FTA with Nino3.4 shows a sensitivity of 0.64 PgC yr−1 K−1".  	
�

Reply: Thanks very much for your suggestion. We have modified it accordingly.  	��

(9) page 12, line 267 - how are you defining the MLO CGR peak here?  
��

Reply: Thanks very much. We have added the definition in the text. We define the 
��

peak duration as the period above the 75% of the maximum CGR or FTA anomaly, in 
��

which the variabilities of less than 3 months below the threshold are also included.  
��

(10) page 14, line 305 - "GPP anomalously increases ...etc" Can you check this 
��

sentence reflects the variations in Fig 4b? Would it be more accurate to say that 
��

there is a peak in GPP during austral fall (yr0), and is low from austral spring and 
��

winter (yr1)? Because austral summer spans from one year into the next, be more 
	�

precise when you mention austral summer. Also be careful with the word increase 

�

(could be interpreted as talking about the trend) versus high values through this 
��

section.  ���

Reply: Thanks very much for your suggestions. We have checked it and modified into ���

“GPP showed an anomalous positive value during austral fall (yr0), and an ���

anomalous negative value from austral fall (yr1) to winter (yr1), with the minimum ���

around April (yr1) during the EP El Niño (Fig. 4b), …” ���

(11) page 16, line 349 - perhaps swap the order of figs S3 and S4 in the supplement, as ���

S4 is always discussed before S3.  ���

Reply: Thanks for your suggestion. We have swapped their order.  �	�



� ��

(12) page 16, line 356-357 - "GPP is the dominant factor to FTA anomaly here" - I �
�

can see from Fig 4b that the GPP dominates globally at this time. Both GPP and ���

TER look strongly anomalous in Feb-Aug, equator to 20N in Figs S3a and b, but ����

the area of strongest flux is smaller for TER presumably therefore causing the ����

dominance of GPP globally. If this is correct, maybe it is worth pointing out.  ����

Reply: Thanks for your suggestions. We have pointed out this and modified as “Both ����

GPP and TER showed the anomalous decreases (Supplementary Figs. S3a and b), ����

and stronger decrease in GPP than in TER makes the anomalous carbon releases here ����

(Fig. 6c).” ����

(13) page 16, line 364 - "others" - other what? periods? regions? both?  ��	�

Reply: Thanks. The “others” here refer to the other regions and periods. We have ��
�

modified it as “… and other regions and periods were dominated by GPP” ����

(14) page 17, line 378 - could mention the lag estimates from Chylek for CP and EP ����

here.  ����

Reply: Thanks very much. We have mentioned the lag estimates from Chylek in the ����

added discussion paragraph. ����

(15) page 18, line 402 - is there a better way to refer to this report? The url in the text ����

did not work for me, as the new line added characters (403) to the hyperlink that ����

shouldn’t be in the url. Maybe use UNDP (2017) in the text, and remove the ����

hyperlink from the url in the references.  ��	�

Reply: Thanks very much. We have modified it as a citation “Thomalla, F., and ��
�

Boyland, M.: Enhancing resilience to extreme climate events: Lessons from the ����

2015-2016 El Niño event in Asia and the Pacific. UNESCAP, Bangkok.” ����



� ��

(16) Fig 1 - the light red shaded area is difficult to see unless the size of the figure is ����

increased on the screen - perhaps increase the size of the figure on the page. Other ����

figures are also small in the printed copy and it is difficult to see some of their ����

details.  ����

Reply: Thanks very much. We have the vectorgraph in pdf/ps format, and will supply ����

them to the editor during the publishing procedure.  ����

(17) Fig 1 or text - it should be known by most people, but it wouldn’t hurt to include ��	�

some- where that high values of Nino3.4 correspond to El Nino (perhaps in the ��
�

Fig 1 caption or on page 6 at line 140).  ����

Reply: Thanks very much. Actually, in Fig. 1b we have plotted some bars in yellow ����

and blue which represented the CP and EP El Ninos. Correspondingly, we can see ����

their Nino3.4 Index in Fig.1a.  ����

(18) Minor editing is need to improve the English in some places.  ����

Reply: Thanks very much. We have polished the English writing by LetPub.  ����

 ����

 ����

Responses to Referee #2 ��	�

This paper investigates the relationship between atmospheric CO2 inter-annual ��
�

variability and El Nino events through dynamic vegetation models using the ����

composite analysis technique. Several meteorological factors are considered in the ����

analysis, for example, precipitation and temperature; and radiation data was not ����

included in the analysis. The authors discussed the potential impacts radiation ����

variability could have on the land biosphere dynamics and, subsequently, the ����

atmospheric CO2 inter-annual variability. The title of the paper emphasizes two types ����

of El Nino events, and the authors present a lot of details about these two types of ����



� 	�

events, but it would be great if the authors could articulate to readers why it’s ����

important to separate the two types of El Nino, and its importance to the atmospheric ��	�

CO2 inter-annual variability and global carbon cycle. In general, I recommend this ��
�

paper be published.  ����

Some detailed comments and questions:  ����

(1) For the TRENDY simulations, are consistent vegetation data used amongst the ����

models?  ����

Reply: Thanks for your comments. In the text, we have illustrated that TRENDY ����

models were forced by a common set of climatic datasets (CRNCEPv6), atmospheric ����

CO2 concentration, and land use datasets and followed the same experimental ����

protocol. And these models are basically Dynamical Global Vegetation Models, so ����

they do not explicitly need the vegetation data (like LAI etc.).  ��	�

(2) The composite analysis technique is very important in this study. Maybe it’s better ��
�

for the authors to explain briefly in the paper what this technique really is?  ����

Reply: Thanks for your suggestions. We have added a sentence to illustrate the ����

composite analysis as “More specifically, in terms of the composite analysis, we ����

calculated the averages of the carbon flux anomaly (CGR, FTA i.e.) during the ����

selected EP and CP El Niño events, respectively.” ����

(3) The English used in the paper needs further edits to eliminate some grammatical ����

and word usage mistakes.  ����

Reply: Thanks for your suggestions.  We have polished the English writing by ����

LetPub. ��	�
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�
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Abstract  ����

El Niño has two different flavors, eastern Pacific (EP) and central Pacific (CP) El ����

Niños, with different global teleconnections. However, their different impacts on the ����

interannual carbon cycle variability remain unclear. We here compared the behaviors ����

of interannual atmospheric CO2 variability and analyzed their terrestrial mechanisms ����

during these two types of El Niños, based on the Mauna Loa (MLO) CO2 growth rate ����

(CGR) and the Dynamic Global Vegetation Model’s (DGVM) historical simulations. ����

The composite analysis showed that evolution of the MLO CGR anomaly during EP ��	�

and CP El Niños had three clear differences: (1) negative and neutral precursors in the ��
�

boreal spring during an El Niño-developing year (denoted as “yr0”), (2) strong and ����

weak amplitudes, and (3) durations of the peak from December (yr0) to April during ����

an El Niño-decaying year (denoted as “yr1”) and from October (yr0) to January (yr1), ����

respectively. The global land–atmosphere carbon flux (FTA) simulated by ����

multi-models was able to capture the essentials of these characteristics. We further ����

found that the gross primary productivity (GPP) over the tropics and the extratropical ����

southern hemisphere (Trop+SH) generally dominated the global FTA variations during ����

both El Niño types. Regional analysis showed that during EP El Niño events ����

significant anomalous carbon uptake caused by increased precipitation and colder ��	�

temperatures, corresponding to the negative precursor, occurred between 30°S and ��
�

20°N from January (yr0) to June (yr0). The strongest anomalous carbon releases, ����

largely due to the reduced GPP induced by low precipitation and warm temperatures, ����

occurred between the equator and 20°N from February (yr1) to August (yr1). In ����

contrast, during CP El Niño events, clear carbon releases existed between 10°N and ����

20°S from September (yr0) to September (yr1), resulting from the widespread dry and ����

warm climate conditions. Different spatial patterns of land temperatures and ����
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precipitation in different seasons associated with EP and CP El Niños accounted for ����

the evolutionary characteristics of GPP, terrestrial ecosystem respiration (TER), and ����

the resultant FTA. Understanding these different behaviors of interannual atmospheric ����

CO2 variability, along with their terrestrial mechanisms during EP and CP El Niños, is ����

important because the CP El Niño occurrence rate might increase under global ��	�

warming. ��
�

 ����

1 Introduction ����

The El Niño–Southern Oscillation (ENSO), a dominant year-to-year climate variation, ����

leads to a significant interannual variability in the atmospheric CO2 growth rate (CGR) ����

(Bacastow, 1976; Keeling et al., 1995). Many studies, including measurement ����

campaigns (Lee et al., 1998; Feely et al., 2002), atmospheric inversions (Bousquet et ����

al., 2000; Peylin et al., 2013), and terrestrial carbon cycle models (Zeng et al., 2005; ����

Wang et al., 2016), have consistently suggested the dominant role of terrestrial ����

ecosystems, especially tropical ecosystems, in contributing to interannual atmospheric ��	�

CO2 variability. Recently, Ahlstrom et al. (2015) further suggested ecosystems over ��
�

the semi-arid regions played the most important role in the interannual variability of ����

the land CO2 sink. Moreover, this ENSO-related interannual carbon cycle variability �	��

may be enhanced under global warming, with approximately a 44% increase in the �	��

sensitivity of terrestrial carbon flux to ENSO (Kim et al., 2017). �	��

Tropical climatic variations (especially in surface air temperature and precipitation) �	��

induced by ENSO and plant and soil physiological responses can largely account for �	��

interannual terrestrial carbon cycle variability (Zeng et al., 2005; Wang et al., 2016; �	��

Jung et al., 2017). Multi-model simulations involved in the TRENDY project and the �	��

Coupled Model Intercomparison Project Phase 5 (CMIP5) have consistently �		�
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�
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suggested the biological dominance of gross primary productivity (GPP) or net ����

primary productivity (NPP) (Kim et al., 2016; Wang et al., 2016; Piao et al., 2013; ����

Ahlstrom et al., 2015). However, debates continue regarding which is the dominant ����

climatic mechanism (temperature or precipitation) in the interannual variability of the ����

terrestrial carbon cycle (Wang et al., 2013; Wang et al., 2014; Cox et al., 2013; Zeng ��	�

et al., 2005; Ahlstrom et al., 2015; Wang et al., 2016; Qian et al., 2008; Jung et al., ��
�

2017).  ����

The atmospheric CGR or land–atmosphere carbon flux (FTA – if this is positive, this ����

indicates a flux into the atmosphere) can anomalously increase during El Niño, and ����

decrease during La Niña episodes (Zeng et al., 2005; Keeling et al., 1995). Cross ����

correlation analysis shows that atmospheric CGR and FTA lags the ENSO by several ����

months (Qian et al., 2008; Wang et al., 2013; Wang et al., 2016). This is due to the ����

period needed for surface energy and soil moisture adjustment following ����

ENSO-related circulation and precipitation anomalies (Gu and Adler, 2011; Qian et al., ����

2008). However, considering the variability inherent in the ENSO phenomenon ��	�

(Capotondi et al., 2015), the atmospheric CGR and FTA can show different behaviors ��
�

during different El Niño events (Schwalm, 2011; Wang et al., 2018).  ����

El Niño events can be classified into eastern Pacific El Niño (EP El Niño, also termed ����

as conventional El Niño) and central Pacific El Niño (CP El Niño, also termed as El ����

Niño Modoki) according to the patterns of sea-surface warming over the tropical ����

Pacific (Ashok et al., 2007; Ashok and Yamagata, 2009). These two types of El Niño ����

have different global climatic teleconnections, associated with contrasting climate ����

conditions in different seasons (Weng et al., 2007; Weng et al., 2009). For example, ����

positive winter temperature anomalies are located mostly over the northeastern US ����

during an EP El Niño, while warm anomalies occur in the northwestern US during a ��	�
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CP El Niño (Yu et al., 2012). The contrasting summer and winter precipitation ��
�

anomaly patterns associated with these two El Niño events over the China, Japan, and ����

the US were also discussed by Weng et al. (2007; 2009). Importantly, Ashok et al. ����

(2007) suggested that the occurrence of the CP El Niño had increased during recent ����

decades compared to the EP El Niño. This phenomenon can probably be attributed to ����

the anthropogenic global warming (Ashok and Yamagata, 2009; Yeh et al., 2009). ����

However, the contrasting impacts of EP and CP El Niño events on carbon cycle ����

variability remain unclear. In this study, we attempt to reveal their different impacts. ����

We compared the behavior of interannual atmospheric CO2 variability and analyzed ����

their terrestrial mechanisms corresponding to these two types of El Niños, based on ��	�

Mauna Loa long-term CGR and TRENDY multi-model simulations.  ��
�

This paper is organized as follows: section 2 describes the datasets used, methods, and ����

TRENDY models selected. Section 3 reports the results regarding the relationship ����

between ENSO and CGR and EP and CP El Niño events, in addition to a composite ����

analysis on carbon cycle behaviors, and terrestrial mechanisms. Section 4 contains a ����

discussion of the results, and section 5 presents concluding remarks. ����

 ����

2 Datasets and Methods ����

2.1 Datasets used ����

Data for monthly atmospheric CO2 concentrations between 1960 and 2013 was ��	�

collected from the National Oceanic and Atmospheric Administration (NOAA) Earth ��
�

System Research Laboratory (ESRL). The annual CO2 growth rate (CGR) in Pg C ����

yr−1 was derived month by month according to the approach described by Patra et al., ����

(2005) and Sarmiento et al. (2010). The calculation is as follows: ����
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"#$ % = ' ∙ [*"+, % + 6 − *"+, % − 6 ]               (1) �	��

where ' = 2.1276 Pg C ppm−1; *"+, is the atmospheric partial pressure of CO2 in �	��

ppm; and t is the time in months. The detailed calculation of the conversion factor,	', �	��

can be found in the appendix (Sarmiento et al., 2010). �		�

Temperature and precipitation datasets for 1960 through 2013 were obtained from �	
�

CRUNCEPv6 (Wei et al., 2014). CRUNCEP datasets are the merged product of �	��

ground observation-based CRU data and model-based NCEP-NCAR Reanalysis data �
��

with a 0.5°×0.5° spatial resolution and 6-hour temporal resolution. These datasets �
��

are consistent with the climatic forcing used to run dynamic global vegetation models �
��

in TRENDY v4 (Sitch et al., 2015). The sea surface temperature anomalies (SSTA) �
��

over the Niño3.4 region (5°S–5°N, 120°–170°W) were obtained from the NOAA’s �
��

Extended Reconstructed Sea Surface Temperature (ERSST) dataset, version 4 (Huang �
��

et al., 2015). �
��

The inversion of FTA from the Jena CarboScope was used for comparison with the �
	�

TRENDY multi-model simulations from 1981 to 2013. The Jena CarboScope Project �

�

provided the estimates of the surface-atmosphere carbon flux based on atmospheric �
��

measurements using an “atmospheric transport inversion”. The inversion run used ����

here was s81_v3.8 (Rodenbeck et al., 2003).  ����

 ����

2.2 TRENDY simulations ����

 We analyzed eight state-of-the-art dynamic global vegetation models from TRENDY ����
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v4 for the period 1960–2013: CLM4.5 (Oleson et al., 2013), ISAM (Jain et al., 2013), ����

JSBACH (Reick et al., 2013), JULES (Clark et al., 2011), LPX-Bern (Keller et al., ����

2017), OCN (Zaehle and Friend, 2010), VEGAS (Zeng et al., 2005), and VISIT (Kato ��	�

et al., 2013) (Table 1). Since LPX-Bern was excluded in the analysis of TRENDY v4, ��
�

due to it not fulfilling the minimum performance requirement, the output over the ����

same time period of a more recent version (LPX-Bern v1.3) was used. These models ����

were forced using a common set of climatic datasets (CRUNCEPv6), and followed ����

the same experimental protocol. The ‘S3’ run was used in this study, in which ����

simulations forced by all the drivers including CO2, climate, land use, and land cover ����

change (Sitch et al., 2015). ����

The simulated terrestrial variables (NBP, GPP, TER, soil moisture, and others) were ����

interpolated into a consistent 0.5°×0.5° resolution using the first-order conservative ����

remapping scheme (Jones, 1999) by Climate Data Operators (CDO): ��	�

9: =
;
<=

>?@                          (2) ��
�

where 9: denotes the area-averaged destination quantity; @: is the area of cell A; ����

and > is the quantity in an old grid which has overlapping area with the destination ����

grid. Then the median, 5%, and 95% percentiles of the multi-model simulations were ����

calculated grid by grid to study the different effects of EP and CP El Niños on ����

terrestrial carbon cycle interannual variability.  ����

 ����
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2.3 El Niño criterion and classification methods ����

El Niño events are determined by the Oceanic Niño Index (ONI) [i.e. the running ����

3-month mean SST anomaly over the Niño3.4 region]. This NOAA criterion is that El ����

Niño events are defined as 5 consecutive overlapping 3-month periods at or above the ��	�

+0.5° anomaly.  ��
�

We classified El Niño events into EP or CP based on the consensus of three different ����

identification methods directly adopted from a previous study (Yu et al., 2012). These ����

identification methods included the El Niño Modoki Index (EMI) (Ashok et al., 2007), ����

the EP/CP-index method (Kao and Yu, 2009), and the Niño method (Yeh et al., 2009). ����

 ����

2.4 Anomaly calculation and composite analysis ����

To calculate the anomalies, we first removed the long-term climatology for the period ����

from 1960 to 2013 from all of the variables used here, in order to eliminate seasonal ����

cycle. We then detrended them based on a linear regression, because (1) the trend in ��	�

terrestrial carbon variables was mainly caused by long-term CO2 fertilization and ��
�

climate change, and (2) the trend in CGR primarily resulted from the anthropogenic ����

emissions. We used these detrended monthly anomalies to investigate the impacts of ����

El Niño events on the interannual carbon cycle variability.  ����

More specifically, in terms of the composite analysis, we calculated the averages of ����

the carbon flux anomaly (CGR, FTA i.e.) during the selected EP and CP El Niño ����

events, respectively. We use the Bootstrap Methods (Mudelsee, 2010) to estimate the ����

95% confidence intervals and the Student’s %-test to estimate the significance levels ����

in the composite analysis. An 80% significance level was selected, as per Weng et al. ����
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(2007), due to the limited number of EP El Niño events. �
��

 �
��

3 Results �
��

3.1 The relationship between ENSO and interannual atmospheric CO2 �
��

variability �
��

The interannual atmospheric CO2 variability closely coupled with ENSO (Fig. 1) with �
��

noticeable increases in CGR during El Niño and decreases during La Niña, �
	�

respectively (Bacastow, 1976; Keeling and Revelle, 1985). The correlation coefficient �

�

between the MLO CGR and the Niño3.4 Index from 1960 to 2013 was 0.43 (* <�
��

0.01). A regression analysis further indicated that a per unit increase in the Niño3.4 ����

Index can lead to a 0.60 Pg C yr−1 increase in the MLO CGR.  ����

The variation in the global FTA anomaly simulated by TRENDY models resembled the ����

MLO CGR variation, with a correlation coefficient of 0.54 (* < 0.01;	Fig. 1b). This ����

was close to the correlation coefficient of 0.61 (* < 0.01;	Fig. 1b) between the MLO ����

CGR and the Jena CarboScope s81 for the time period from 1981 to 2013. This ����

indicates that the terrestrial carbon cycle can largely explain the interannual ����

atmospheric CO2 variability, as suggested by previous studies (Bousquet et al., 2000; ��	�

Zeng et al., 2005; Peylin et al., 2013; Wang et al., 2016). Moreover, the correlation ��
�

coefficient of the TRENDY global FTA and the Niño3.4 Index reached 0.49 (* <����

0.01), and a similar regression analysis of FTA with Niño3.4 showed a sensitivity of ����

0.64 Pg C yr−1 K−1. However, owing to the diffuse light fertilization effect induced by ����

the eruption of Mount Pinatubo in 1991 (Mercado et al., 2009), the Jena CarboScope ����
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s81 indicated that the terrestrial ecosystems had an anomalous uptake during the ��
�

1991/92 El Niño event, making the MLO CGR an anomalous decrease. However, ����

TRENDY models did not capture this phenomenon. This was not only due to a lack of ����

a corresponding process representation in some models, but also because the ����

TRENDY protocol did not include diffuse and direct light forcing.  ����

 ����

3.2 EP and CP El Niño events ����

Schematic diagrams of the two types of El Niños (EP and CP) are shown in Fig. 2. ����

During EP El Niño events (Fig. 2a), a positive sea surface temperature anomaly ����

(SSTA) occurs in the eastern equatorial Pacific Ocean, showing a dipole SSTA pattern ��	�

with the positive zonal SST gradient. This condition forms a single cell of Walker ��
�

circulation over the tropical Pacific, with a dry downdraft in the western Pacific and ����

wet updraft in the central-eastern Pacific. In contrast, an anomalous warming in the ����

central Pacific, sandwiched by anomalous cooling in the east and west, is observed ����

during CP El Niño events (Fig. 2b). This tripole SSTA pattern makes the ����

positive/negative zonal SST gradient in the western/eastern tropical Pacific, resulting ����

in an anomalous two-cell Walker circulation over the tropical Pacific. This alteration ����

in atmospheric circulation produces a wet region in the central Pacific. Moreover, ����

apart from these differences in the equatorial Pacific, the SSTA in other oceanic ����

regions also differ remarkably (Weng et al., 2007; Weng et al., 2009). ��	�

Based on the NOAA criterion, a total of 17 El Niño events were detected from 1960 ��
�

through 2013. The events were then categorized into an EP or a CP El Niño based on ����
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a consensus of three identification methods (EMI, EP/CP-index, and Niño methods) ����

(Yu et al., 2012). Considering the effect of diffuse radiation fertilization induced by ����

volcano eruptions (Mercado et al., 2009), we removed the 1963/64, 1982/83, and ����

1991/92 El Niño events, in which Mount Agung, El Chichón, and Pinatubo erupted, ����

respectively. In addition, we closely examined those extended El Niño events that ����

occurred in 1968/70, 1976/78, and 1986/88. Based on the typical responses of MLO ����

CGR to El Niño events (anomalous increase lasting from the El Niño developing year ��	�

to El Niño decaying year; Supplementary Fig. S1), we retained 1968/69, 1976/77, and ��
�

1987/88 El Niño periods. Finally, we got 4 EP El Niño and 7 CP El Niño events in ����

this study (Table 2; Fig. 1b), with the composite SSTA evolutions as shown in �	��

Supplementary Fig. S2. �	��

 �	��

3.3 Responses of atmospheric CGR to two types of El Niños �	��

Based on the selected EP and CP El Niño events, a composite analysis was conducted �	��

with the non-smoothed detrended monthly anomalies of the MLO CGR and the �	��

TRENDY global FTA to reveal the contrasting carbon cycle responses to these two �	��

types of El Niños (Fig. 3). In addition to the differences in the location of anomalous �		�

SST warming and the alteration of the atmospheric circulation in EP and CP El Niños �	
�

shown in Fig. 2, the following findings were elucidated: (1) different El Niño �	��

precursors: the SSTA was significantly negative in EP El Niño during the boreal �
��

winter (JF) and spring (MAM) in yr0 (hereafter yr0 and yr1 refer to the El Niño �
��

developing and decaying year, respectively). Conversely, the SSTA was neutral in CP �
��
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El Niño; (2) different tendencies of SST (DEEF D%): the tendency of SST in EP El ����

Niño was stronger than that in CP El Niño; (3) different El Niño amplitudes: due to ����

the different tendencies of SST, the amplitude of EP El Niño was basically stronger ��	�

than that of CP El Niño, though they all reached maturity in November or December ��
�

of yr0 (Figs. 3a and 3c). ����

Correspondingly, behaviors of the MLO CGR during these two types of El Niño ����

events also displayed some differences (Figs. 3b and 3d). During EP El Niño events ����

(Fig. 3b), the MLO CGR was negative in boreal spring (yr0) and increased quickly ����

from boreal fall (yr0), whereas it was neutral in boreal spring (yr0) and slowly ����

increases from boreal summer (yr0) during the CP El Niño episode (Fig. 3d). The ����

amplitude of the MLO CGR anomaly during EP El Niño events was generally larger ����

than that during CP El Niño events. Importantly, the duration of the MLO CGR peak ����

during EP El Niño was from December (yr0) to April (yr1), while the MLO CGR ��	�

anomaly peaked from October (yr0) to January (yr1) during CP El Niño. We here ��
�

simply defined the peak duration as the period above the 75% of the maximum CGR ����

(or FTA) anomaly, in which the variabilities of less than 3 months below the threshold ����

were also included. The positive MLO CGR anomaly ended around September (yr1) ����

in both cases (Figs. 3b and 3d). During the finalization of this paper, we noted the ����

publication of Chylek et al. (2018) who also found CGR amplitude difference in ����

response to the two types of events. ����

A comparison of the MLO CGR with the TRENDY global FTA anomalies (Figs. 3b ����
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and 3d) indicated that the TRENDY global FTA effectively captured the characteristics ����

of CGR evolution during the CP El Niño. In contrast, the amplitude of the TRENDY ����

global FTA anomaly was somewhat underestimated during the EP El Niño, causing a ����

lower statistical significance (Fig. 3b). This underestimation of the global FTA ����

anomaly can, for example, be clearly seen in a comparison between the TRENDY and ����

the Jena CarboScope during the extreme 1997/98 EP El Niño (Fig. 1b). Also, other ����

characteristics can be basically captured. Therefore, insight into the mechanisms of ����

these CGR evolutions during EP and CP El Niños, based on the simulations by ����

TRENDY models, is still possible.  ��	�

 ��
�

3.4 Regional contributions, characteristics, and their mechanisms ����

We separated the TRENDY global FTA anomaly by major geographic regions into two ����

parts: the extratropical northern hemisphere (NH, 23°N–90°N), and the tropics plus ����

extratropical southern hemisphere (Trop+SH, 60°S–23°N) (Fig. 4). In a comparison of ����

the contributions from these two parts, it was found that the FTA over Trop+SH played ����

a more important role in the global FTA anomaly in both cases (Figs. 4b and 4d), and ����

this finding was consistent with previous studies (Bousquet et al., 2000; Peylin et al., ����

2013; Zeng et al., 2005; Wang et al., 2016; Ahlstrom et al., 2015; Jung et al., 2017). ����

The FTA over Trop+SH was negative in austral fall (MAM; yr0), increased from ��	�

austral spring (SON; yr0), and peaked from December (yr0) to April (yr1) during the ��
�

EP El Niño (Fig. 4b). Conversely, it was nearly neutral in austral fall (yr0), increased ����

from austral winter (JJA; yr0), and peaked from November (yr0) to March (yr1) ����
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during the CP El Niño (Fig. 4d). These evolutionary characteristics in the FTA over the �
��

Trop+SH were generally consistent with the global FTA and the MLO CGR (Figs. 3b �
��

and 3d). In contrast, the contributions from the FTA anomaly over the NH were �
��

relatively weaker (or nearly neutral) (Figs. 4a and 4c).  �
��

According to the equation 9G< = −HIJ = FK$ − #JJ + L (where D is the carbon �
��

flux caused by the disturbances such as the wildfires, harvests, grazing, land cover �
	�

change etc.), the variation in FTA can be explained by the variations in GPP, TER, and �

�

D. The D simulated by TRENDY was nearly neutral during both El Niño types (Fig. �
��

4). Therefore, GPP and TER largely accounted for the variation in FTA.  ����

More Specifically, in Trop+SH, GPP anomalies dominated the variations in FTA for ����

both El Niño types, but their evolutions differed (Figs. 4b and 4d). The GPP showed ����

an anomalous positive value during austral fall (yr0), and an anomalous negative ����

value from austral fall (yr1) to winter (yr1), with the minimum around April (yr1) ����

during the EP El Niño (Fig. 4b). Conversely, the GPP anomaly was always negative, ����

with the minimum occurring around October or November (yr0) during the CP El ����

Niño (Fig. 4d). The variation in the TER in both El Niños was relatively weaker than ��	�

that of the GPP (Figs. 4b and d). The anomalous positive TER during austral spring ��
�

(yr0) and summer (yr1) accounted for the increase in FTA, and it partly canceled the ����

negative GPP in austral fall (yr1) and winter (yr1) during the EP El Niño (Fig. 4b). In 	���

contrast, the TER had a reduction in yr0 during the CP El Niño (Fig. 4d). Over the 	���

NH, though the FTA anomaly was relatively weaker, the behaviors of GPP and TER 	���
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differed in EP and CP El Niños. GPP and TER consistently decreased in the growing 	���

season of yr0 and increased in the growing season of yr1 during the EP El Niño (Fig. 	���

4a), whereas they only showed some increase during boreal summer (yr1) during the 	���

CP El Niño (Fig. 4c).  	���

These evolutionary characteristics of GPP, TER, and the resultant FTA principally 	���

resulted from their responses to the climate variability. Figure 5 shows the 	�	�

standardized observed surface air temperature, precipitation, and TRENDY simulated 	�
�

soil moisture contents. Over the Trop+SH, taking into consideration the regulation of 	���

thermodynamics and hydrological cycle on surface energy balance, variations in 	���

temperature and precipitation (soil moisture) were always opposite during the two 	���

types of El Niños (Figs. 5b and d). Additionally, adjustments in soil moisture lagged 	���

precipitation by approximately 2–4 months, owing to the so-called ‘soil memory’ of 	���

water recharge (Qian et al., 2008). The variations in GPP in both the El Niño types 	���

were closely associated with variations in soil moisture, namely water availability 	���

largely dominated by precipitation (Figs. 4b and 4d and 5b and 5d), and this result 	���

was consistent with previous studies (Zeng et al., 2005; Zhang et al., 2016). Warm 	�	�

temperatures during El Niño episodes can enhance the ecosystem respiration, but dry 	�
�

conditions can reduce it. These cancellations from warm and dry conditions made the 	���

amplitude of TER variation smaller than that of GPP (Figs. 4b and 4d). Over the NH, 	���

variations in temperature and precipitation were basically in the same direction (Figs. 	���

5a and 5c), as opposed to their behaviors over the Trop+SH. This was due to the 	���
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different climatic dynamics of the two regions (Zeng et al., 2005). During the EP El 		��

Niño event, cool and dry conditions in the boreal summer (yr0) inhibited GPP and 		��

TER, whereas warm and wet conditions in the boreal spring and summer (yr1) 		��

enhanced them (Figs. 5a and 4a). In contrast, only the warm and wet conditions in 			�

boreal summer (yr1) enhanced GPP and TER during the CP El Niño event. (Figs. 5c 		
�

and 4c). These different configurations of temperature and precipitation variations 		��

during EP and CP El Niños form the different evolutionary characteristics of GPP, 	
��

TER, and the resultant FTA.  	
��

Detailed regional evolutionary characteristics can be seen from the Hovmöller 	
��

diagrams in Fig. 6 and in Supplementary Figs. S3 and S4. Obvious large anomalies in 	
��

FTA consistently occurred from 20°N to 40°S during EP and CP El Niños (Figs. 6c and 	
��

6f), consistent with the above analyses (Figs. 4b and 4d). Moreover, there was a clear 	
��

anomalous carbon uptake between 30°S and 20°N during the period from January 	
��

(yr0) to June (yr0) during the EP El Niño (Fig. 6c). This uptake corresponded to the 	
	�

negative precursor (Figs. 3b and 4b). This anomalous carbon uptake comparably came 	

�

from the three continents (Supplementary Figs. S3 a–c). Biological process analyses 	
��

indicated that GPP dominated between 5°N and 20°N, and between 30°S and 15°S 	���

(Supplementary Fig. S4a), which was related to the increased amount of precipitation 	���

(Fig. 6b). In contrast, TER dominated between 15°S and 5°N (Supplementary Fig. 	���

S4b), largely due to the colder temperatures (Fig. 6a). Conversely, the strongest 	���

anomalous carbon releases occurred between the equator and 20°N during the period 	���
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from February (yr1) to August (yr1) during the EP El Niño (Fig. 6c). The largest 
���

contribution to these anomalous carbon releases came from the South America 
���

(Supplementary Fig. S3c). Both GPP and TER showed the anomalous decreases 
���

(Supplementary Figs. S4a and S4b), and stronger decrease in GPP than in TER made 
���

the anomalous carbon releases here (Fig. 6c). Low precipitation (with a few months of 
���

delayed dry conditions; Fig. 6b) and warm temperatures (Fig. 6a) inhibited GPP, 
���

causing the positive FTA anomaly (Fig. 6c). In contrast, significant carbon releases 
���

were found between 10°N and 20°S from September (yr0) to September (yr1) during 
�	�

the CP El Niño (Fig. 6f). More specifically, these clear carbon releases largely 
�
�

originated from South America and tropical Asia (Supplementary Figs. S3 d–f). TER 
���

dominated between 15°S and 10°N during the period from January (yr1) to September 
���

(yr1), and other regions and periods were dominated by GPP (Supplementary Figs. 
���

S4c and S4d). Widespread dry and warm conditions (Figs. 6d and e) effectively 
���

explained these GPP and TER anomalies, as well as the resultant FTA behavior. For 
���

more detailed information on the other regions, refer to Supplementary Figs. S3 and 
���

S4.  
���

 
���

4 Discussion  
�	�

El Niño shows large diversity in individual events (Capotondi et al., 2015), thereby 
�
�

creating large uncertainties in composite analyses (Figs. 3–5). Four EP El Niño events 
���

during the past five decades were selected for this study to research their effects on 
���

interannual carbon cycle variability (Table 1). Due to the small number of samples 
���
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and large inter-event spread (Supplementary Fig. S5), the statistical significance of 
�	�

the composite analyses will need to be further evaluated with upcoming EP El Niño 
�
�

events occurring in the future. However, cross-correlation analyses between the 
���

long-term CGR (or FTA) and the Niño Index have shown that the responses of CGR 
	��

(or FTA) lag ENSO by a few months (Zeng et al., 2005; Wang et al., 2016; Wang et al., 
	��

2013). This phenomenon can be clearly detected in the EP El Niño composite (Fig. 
	��

3b). Therefore, the composite analyses in this study can still give us some insight into 
	��

the interannual variability of the global carbon cycle.  
	��

Another caveat is that the TRENDY models seemed to underestimate the amplitude of 
	��

the FTA anomaly during the extreme EP El Niño events (Fig. 1b). This 
	��

underestimation of FTA may partially result from a bias in the estimation of carbon 
		�

releases induced by wildfires. As expected, the carbon releases induced by wildfires 
	
�

in such 1997/98 strong El Niño event played an important role in global carbon 
	��

variations (van der Werf et al., 2004; Chen et al., 2017) (Supplementary Fig. S6). 

��

However, some TRENDY models (ISAM, JULES, and OCN) do not include a fire 

��

module to explicitly simulate the carbon releases induced by wildfires (Table 1), and 

��

those TRENDY models that do contain a fire module generally underestimate the 

��

effects of wildfires. For instance, VISIT and JSBACH clearly underestimated the 

��

carbon flux anomaly induced by wildfires during the 1997/98 EP El Niño event 

��

(Supplementary Fig. S6).   

��

The recent extreme 2015/16 El Niño event was not included in this study, because the 
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TRENDY v4 datasets covered the time span from 1860 to 2014. As shown in Wang et 
���

al. (2018), the behavior of the MLO CGR in the 2015/16 El Niño resembled the ����

composite result of the CP El Niño events (Fig. 3d). But the 2015/16 El Niño event ����

had the extreme positive SSTA both over the central and eastern Pacific. Its equatorial ����

eastern Pacific SSTA exceeded +2.0 K, comparable to the historical extreme El Niño ����

events (e.g. 1982/83, 1997/98); the central Pacific SSTA marked the warmest event ����

since the modern observation (Thomalla and Boyland, 2017). Therefore, the 2015/16 ����

El Niño event evolved not only in a similar fashion to the EP El Niño dynamics that ����

rely on the basin-wide thermocline variations, but also in a similar fashion to the CP ��	�

El Niño dynamics that rely on the subtropical forcing (Paek et al., 2017; Palmeiro et ��
�

al., 2017). The 2015/16 extreme El Niño event can be treated as the strongest mixed ����

EP and CP El Niño that caused different climate anomalies compared with the ����

extreme 1997/98 El Niño (Paek et al., 2017; Palmeiro et al., 2017), which had ����

contrasting terrestrial and oceanic carbon cycle responses (Wang et al., 2018; Liu et ����

al., 2017; Chatterjee et al., 2017). ����

As above mentioned, when finalizing our paper, we noted the publication of Chylek et ����

al. (2018) who also focused on interannual atmospheric CO2 variability during EP and ����

CP El Niño events. We here simply illustrated some differences and similarities. In ����

the method of the identification of EP and CP El Niño events, Chylek et al. (2018) ��	�

took the Niño1+2 index and Niño4 index to categorize El Niño events, while we ��
�

adopted the results of Yu et al. (2012), based on the consensus of three different ����

�2*� ��resembles ����

�2*� �� ����
(https://reliefweb.int/report/world/enhancing-resilience-extre����
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identification methods, and additionally excluded the events that coincided with ����

volcanic eruptions. The different methods made some differences in the identification ����

of EP and CP El Niño events. Chylek et al. (2018) suggested that the CO2 rise rate had ����

different time delay to the tropical near surface air temperature, with the delay of ����

about 8.5 and 4 months during EP and CP El Niños, respectively. Although we did not ����

find out the exactly same time delay, we suggested that MLO CGR anomaly showed ����

the peak duration from December (yr0) to April (yr1) in EP El Niños, and from ��	�

October (yr0) to January (yr1) in CP El Niños. Additionally, we suggested the ��
�

differences of MLO CGR anomaly in precursors and amplitudes during EP and CP El ����

Niños. Furthermore, we revealed their terrestrial mechanisms based on the inversion ����

results and the TRENDY multi-model historical simulations.  ����

 ����

5 Concluding Remarks ����

In this study, we investigate the different impacts of EP and CP El Niño events on the ����

interannual carbon cycle variability in terms of the composite analysis, based on the ����

long-term MLO CGR and TRENDY multi-model simulations. We suggest that there ����

are three clear differences in evolutions of the MLO CGR during EP and CP El Niños ��	�

in terms of their precursor, amplitude, and duration of the peak. Specifically, the MLO ��
�

CGR anomaly was negative in boreal spring (yr0) during EP El Niño events, while it ����

was neutral during CP El Niño events. Additionally, the amplitude of the CGR ����

anomaly was generally larger during EP El Niño events than during CP El Niño ����

#)$*���(
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or will be more frequent under global warming, compared ����
with EP El Niño. This shift of El Niño types will alter the ����
response patterns of terrestrial carbon cycle interannual ����
variability, and encourage us to have further studies in the ��	�
future. ��
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events. Also, the duration of the MLO CGR peak during EP El Niño events occurred ��	�

from December (yr0) to April (yr1), while it peaked from October (yr0) to January ��
�

(yr1) during CP El Niño events.  ����

The TRENDY multi-model simulated global FTA anomalies were able to capture these �	��

characteristics. Further analysis indicated that the FTA anomalies over the Trop+SH �	��

made the largest contribution to the global FTA anomalies during these two types of El �	��

Niño events, in which GPP anomalies, rather than TER anomalies, generally �	��

dominated the evolutions of the FTA anomalies. Regionally, during EP El Niño events, �	��

clear anomalous carbon uptake occurred between 30°S and 20°N during the period �	��

from January (yr0) to June (yr0), corresponding to the negative precursor. This was �	��

primarily caused by more precipitation and colder temperatures. The strongest �		�

anomalous carbon releases happened between the equator and 20°N during the period �	
�

from February (yr1) to August (yr1), largely due to the reduced GPP induced by low �	��

precipitation and warm temperatures. In contrast, clear carbon releases existed �
��

between 10°N and 20°S from September (yr0) to September (yr1) during CP El Niño �
��

events, which were caused by widespread dry and warm climate conditions.  �
��

Some studies (Yeh et al., 2009; Ashok and Yamagata, 2009) have suggested that the �
��

CP El Niño has become or will be more frequent under global warming compared �
��

with the EP El Niño. Because of these different behaviors of the interannual carbon �
��

cycle variability during the two types of El Niños, this shift of El Niño types will alter �
��

the response patterns of interannual terrestrial carbon cycle variability. This �
	�
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possibility should encourage researchers to perform further studies in the future.  �����

 �����

Data availability. The monthly atmospheric CO2 concentration is from NOAA/ESRL �����

(https://www.esrl.noaa.gov/gmd/ccgg/trends/index.html). The Niño3.4 Index is from �����

ERSST4 (http://www.cpc.ncep.noaa.gov/data/indices/ersst4.nino.mth.81-10.ascii). �����

Temperature and precipitation are from CRUNCEP v6 �����

(ftp://nacp.ornl.gov/synthesis/2009/frescati/temp/land_use_change/original/readme.ht�����

m). TRENDY v4 data are available from S. Sitch (s.a.sitch@exeter.ac.uk) upon your ���	�
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Tables and Figures �����

Table 1 TRENDY models used in this study. �����

No. Model 
Resolution 
(lat×lon) 

Fire 
Simulation 

References 

1 CLM4.5 0.94°×1.25° yes Oleson et al., 2013 

2 ISAM 0.5°×0.5° no Jain et al., 2013 

3 JSBACH 1.875°×1.875° yes Reick et al., 2013 

4 JULES 1.6°×1.875° no Clark et al., 2011 

5 LPX-Bern 1°×1° yes Keller et al., 2017 

6 OCN 0.5°×0.5° no Zaehle et al., 2010 

7 VEGAS 0.5°×0.5° yes Zeng et al., 2005 

8 VISIT 0.5°×0.5° yes Kato et al., 2013 

 �����

Table 2 Eastern Pacific (EP) and Central Pacific (CP) El Niño events used in this �����

study, as identified by a majority consensus of three methods.  �����

EP El Niño CP El Niño 
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Figure 1. Interannual variability in the Niño3.4 Index and the carbon cycle. (a) �����

Niño3.4. (b) Mauna Loa (MLO) CO2 growth rate (CGR, black line), as well as �����

TRENDY multi-model median (red line) and Jena inversion (green line) of the global ���	�

land–atmosphere carbon flux (FTA, positive value means into the atmosphere, units in ���
�

Pg C yr−1), which were further smoothed by the 3-month running average. The light �����

red shaded represents the area between the 5% and 95% percentiles of the TRENDY ��	��

simulations. The bars represent the El Niño events selected for this study, with the EP ��	��

El Niño in blue and the CP El Niño in yellow.  ��	��

 ��	��

 ��	��

Figure 2. Schematic diagram of the two types of El Niños. (a) sea surface temperature ��	��

anomaly (SSTA) over the tropical Pacific associated with the anomalous Walker ��	��

(a) EP El Niño (b) CP El Niño
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�2*� ��in ��	
�



� ���

Circulation in an EP El Niño. (b) SSTA with two cells of the anomalous Walker ��	��

Circulation in a CP El Niño. Red colors indicate warming, and blue colors indicate ��
��

cooling. Vectors denote the wind directions.  ��
��

 ��
��

 ��
��

Figure 3. Composites of El Niño and the corresponding carbon flux anomaly (Pg C ��
��

yr−1). (a) The Niño3.4 Index composite during EP El Niño events. (b) Corresponding ��
��

MLO CGR and TRENDY v4 global FTA composite during EP El Niño events. (c) The ��
��

Nino3.4 Index composite during CP El Niño events. (d) Corresponding MLO CGR ��
	�

and TRENDY v4 global FTA composite during CP El Niño events. The shaded area ��

�

denotes the 95% confidence intervals of the variables in the composite, derived from ��
��

1000 bootstrap estimates. The bold lines indicate the significance above the 80% level �����
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estimated by the Student’s t-test. The black and red dash lines in b and d represent the �����

thresholds of the peak duration (75% of the maximum CGR or FTA anomaly).   �����
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 �����

Figure 4. Composites of anomalies in the TRENDY FTA (black lines), gross primary �����

productivity (GPP, green lines), terrestrial ecosystem respiration (TER, brown lines), �����

and the carbon flux caused by disturbances (D, blue lines) during two types of El ���	�

Niños over the extratropical northern hemisphere (NH, 23°N–90°N) and the tropics ���
�

and extratropical southern hemisphere (Trop+SH, 60°S–23°S). The shaded area �����

denotes the 95% confidence intervals of the variables in the composite, derived from �����

1000 bootstrap estimates. The bold lines indicate the significance above the 80% level �����

estimated by the Student’s t-test. The black dash lines in b and d represent the �����

thresholds of the peak duration. �����
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Figure 5. Composites of the standardized land surface air temperature (Tas, red lines), �����

precipitation (green lines), and TRENDY simulated soil moisture content (SM, blue �����

lines) anomalies in two types of El Niños over the NH, Trop+SH. Shaded area �����

denotes the 95% confidence intervals of the variables in the composite, derived in ���	�

1000 bootstrap estimates. The bold lines indicate the significance above the 80% level ���
�

estimated by Student’s t-test. �����
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Figure 6. Hovmöller diagrams of the anomalies in climate variables and the FTA �����

(averaged from 180°W to 180°E) during EP and CP El Niño events. (a and d) surface �����

air temperature anomalies over land (units: K); (b and e) precipitation anomalies over �����

land (units: mm d−1); (c and f) TRENDY simulated FTA anomalies (units: g C m−2 yr−1) ���	�

during EP and CP El Niño events. The dotted areas indicate the significance above the ���
�

80% level as estimated using the Student’s t-test. �����
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