Supplement of Unprecedented strength of Hadley circulation in 2015-2016 impacts on CO₂ interhemispheric difference

5 Jorgen S. Frederiksen and Roger J. Francey

CSIRO Oceans and Atmosphere, Aspendale, Victoria, AUSTRALIA *Correspondence to*: Jorgen S. Frederiksen (jorgen.frederiksen@csiro.au)

SUPPLEMENTARY INFORMATION

10

1 Topographic Rossby waves during February 2015

As noted in the Introduction, the NASA (2016) OCO-2 CO_2 concentration in Figure 1b shows Rossby wave trains over the eastern Pacific and across South America on 17 February 2015. This episode is characteristic of other times of IH Rossby wave propagation during the boreal winter–spring, and particularly February, of 2015. The average 17 to 18 February 2015

- 15 streamfunction anomaly, from the thirty year 1981–2010 mean for the same period, is shown in Figure 1Sa for the Western Hemisphere (0°W–180°W) between 60°S and 60°N and at the $\sigma = 0.2582$ level. Here $\sigma = \frac{pressure}{surface \, pressure}$ and the corresponding pressure level is circa 260 hPa. We note that the phase lines broadly run from SW to NE between the Southern and Northern Hemispheres but are modulated by some smaller scale features. Moreover the dominant zonal wavenumber m = 4.
- 20 Indeed there are broad similarities between the streamfunction anomaly in Figure 1Sa and the streamfunction for the purely topographic Rossby waves in Figures 3a and b of Frederiksen and O'Kane (2005). For both the observations considered here and the ensemble of nonlinear simulations and statistical closure calculations the phase lines in the Western Hemisphere run SW to NE and the dominant wavenumber is 4. The dominant wavenumber 4 is also clearly seen in the energy spectra in Figure 2 of Frederiksen and O'Kane (2005). The SW to NW phase lines of pure topographic Rossby waves are also seen in
- 25 the linear calculations in Figure 6 of Frederiksen (1982). In both the linear and nonlinear calculations the topographic Rossby waves are generated by the interaction of westerly winds with a conical mountain located at 30° N (an idealized representation of the massive Himalayan orography) and for a situation where the near equatorial winds are westerly. For the observational results in Figure 1Sa, the near equatorial winds between 5°S and 5°N are westerly in the Western Hemisphere broadly above 400 hPa and easterly below (not shown).
- Figure 1Sb shows the 300 hPa zonal wind anomaly corresponding to the average 17 to 18 February streamfunction anomaly in Figure 1Sa. Again the SW to NE phase lines are evident as is the dominant m = 4 wavenumber although the presence of

smaller scale features associated with disturbances in the storm tracks (typically $m \sim 8 - 12$) is perhaps more evident. In Figures 2Sa and 2Sb we depict latitude pressure cross sections of the zonal wind anomalies for 17 to 18 February averaged between $120^{\circ}W-140^{\circ}W$ and $80^{\circ}W-100^{\circ}W$ respectively. We note that the anomaly is largely equivalent barotropic, as expected for topographic Rossby waves, and, by comparing the two panels, the SW to NW phase tilt is evident throughout the atmosphere. It can also be seen that the propagation across the equator into the Southern Hemisphere occurs primarily in

- 5 the atmosphere. It can also be seen that the propagation across the equator into the Southern Hemisphere occurs primarily in the upper troposphere, particularly between 80°W–100°W where the mean westerly winds are weaker (not shown). We have also plotted latitude pressure cross sections of anomalies of the vertical velocity in pressure coordinates, $\omega = dp/dt$ where p is pressure, for 17 to 18 February averaged between 120°W–140°W and 80°W–100°W (not shown). These cross sections indicate that there is strong uplift in the Northern Hemisphere between 10°N and 30°N (negative ω) and
- 10 general descent south of that band to 30° S. The topographic Rossby wave train generated by westerly winds impinging on the Himalayas may interact with a small region of uplift focused over the Andes in Peru (not shown) when it crosses into the Southern Hemisphere. However, in addition it should be noted that the wave train occurs at a time of seasonal minimum in Southern Hemisphere CO₂.

15 2 Interhemispheric exchange of trace gases

Next, we consider the eddy and mean IH exchange of other trace gas species and their correlations with CO_2 and dynamical indices of transport. We focus on Feb-Apr for eddy transport and Jun-Aug for mean transport since these periods were the peaks for correlations of CO_2 IH difference with eddy and mean transport indices respectively. However, there are differences in the seasonal variability in the different trace gas species that are reflected in their transport and for that reason

20 we also briefly mention the results for other time periods. We begin by further examining Mauna Loa minus Cape Grim (mlo–cgo) differences, between 1992-2016, in the routinely monitored CSIRO species CH₄, CO and H₂ in addition to CO₂ that were briefly considered in Frederiksen and Francey (FF16), as well as N₂O (for 1993-2016). Thereafter we discuss mlo– cgo differences in SF₆ data sourced from the NOAA Halocarbons and other Atmospheric Trace Species Group (HATS) program from 1998 (NOAA, 2018).

25

2.1 Pacific westerly duct and eddy IH transport of CSIRO monitored trace gases

The IH exchange of the trace gas species CH₄, CO and H₂, in addition to CO₂, and the role of the Pacific westerly wind duct was also considered in FF16. In particular, the covariance, of the mlo–cgo difference in these routinely monitored CSIRO species with u_{duct} , is shown in Figure 5 of FF16. We recall that the u_{duct} index is the average zonal wind in the region 5°N to 5°S, 140°W to 170°W at 300hPa. As noted in FF16, the extreme cases of Pacific westerly duct closure in 1997–98 and

30 to 5°S, 140°W to 170°W at 300hPa. As noted in FF16, the extreme cases of Pacific westerly duct closure in 1997–98 and 2009–10 show up in the absence of seasonal IH exchange for CH₄ and CO as well as CO₂. The similar behaviour of detrended anomalies of mlo–cgo difference in CH₄, CO and CO₂ and their correlations with u_{duct} is shown in Table 1S for Feb–Apr. We note the quite high correlations of CH₄ and CO with CO₂ (r = 0.697 and r = 0.645 respectively) and the

significant anti-correlations of all these three species with u_{duct} (r = -0.448, r = -0.605 and r = -0.500 respectively). In fact, for Mar-May the correlation between CH₄ and CO₂ is even larger at r = 0.728 (and with u_{duct} it is r = -0.474) while between CO and CO₂ it is r = 0.611 (and with u_{duct} it is r = -0.507). These results are of course consistent with Figure 5 of FF16 and are further evidence of similarities of IH transient eddy transport of these three gases. Table 1S also

- 5 shows that the Feb-Apr correlation of H₂ with CO₂ and anti-correlation with u_{duct} have smaller magnitudes (r = 0.296 and r = -0.218 respectively) although the Nov-Apr anti-correlation of H₂ with u_{duct} is more comparable with r = -0.463. These results for anomalies are probably related to corresponding similarities and differences in the seasonal mean values (not shown) of these gases in Feb-Apr, as discussed below.
- Anomalies in mlo–cgo differences in CSIRO monitored N₂O are generally poorly correlated with those in CO₂ as shown for 10 Feb-Apr and Jun-Aug in Tables 1S and 2S respectively (the maximum 3 month average correlation is r = 0.274 for Mar-May) and this is reflected in generally poor correlation with the dynamical indices shown in Tables 1S and 2S. This reflects the fact that natural exchanges with equatorial agriculture and oceans are the main sources (Ishijima et al., 2009), and the seasonal range in mlo-cgo difference is only around 0.2% of the mean N₂O level, more than 10 times less than is the case for the other species.

15

20

2.2 Hadley circulation and mean IH transport of CSIRO monitored trace gases

We examine the role of the Hadley circulation on the mean transport of trace gases focusing on the boreal summer period of Jun–Aug. Table 2S shows the correlations between the detrended anomalies of mlo–cgo difference in CH₄, CO and H₂ with CO₂ and with the dynamical indices ω_P and v_P . Recall that ω_P is the 300 hPa vertical velocity in pressure coordinates, between 10° N–15° N, and v_P is the 200 hPa meridional wind, between 5° N–10° N, and both are averaged over the 120°E–240°E Pacific sector. We note that the largest Jun-Aug correlation is between H₂ and CO₂ (r = 0.680) and the correlations between CH₄ and CO with CO₂ are considerably smaller (r = 0.246 and r = 0.108 respectively) while for Apr-Jun the

latter correlations are more comparable at r = 0.583 and r = 0.496 respectively.

These correlations with CO₂ are also reflected in the respective correlations of the other trace gases with ω_p and v_p . We note from Table 2S that the Jun-Aug correlations of H₂ with ω_p and v_p are r = 0.427 and r = 0.442 respectively which is slightly less than the corresponding correlations between CO₂ and the dynamical indices (r = 0.522 and r = 0.539 respectively) but considerably larger than for CH₄ and CO. For May-Jul the correlation of H₂ with ω_p is slightly larger with r = 0.526.

Again, the different behaviour of the trace gas anomalies may be related to their different seasonal mean values; the seasonal

30 mean IH difference for H_2 peaks in boreal summer while for CH_4 and CO it is relatively low with a minimum in August. The distribution and variability of surface exchange is different for each of the trace gases and there is potential for this to interact with the restricted extent and seasonal meandering of the regions of uplift to influence IH exchange of a species. For example, 70% of the global total CH_4 emissions are from mainly equatorial biogenic sources that include wetlands, rice agriculture, livestock, landfills, forests, oceans and termites (Denman et al., 2007) and CO emissions contain a significant contribution from CH₄ oxidation and from tropical biomass burning.

A more detailed examination of the inter–annual variation of the mlo–cgo difference in H₂ during boreal summer is presented in Figure 3S. It shows the detrended H₂ data in comparison with the corresponding CO₂ data and with the ω_P and v_P indices.

- 5 First we note that the detrended CO_2 data in the top panel has very similar inter–annual variation to the FF–adjusted $C^*_{mlo-cgo}$ in Figure 6b. We also see that the qualitative behaviour of H₂ mirrors many aspects of CO₂, as expected from the correlations in Table 2S. In particular, the increase in the IH difference of H₂ in 2010 is even more pronounced than for CO₂. For CO₂ and for H₂ there is a steady reduction in the IH difference from around 2013 leading to a local minimum in 2016. In both of these respects these gases broadly follow the changes in the Hadley circulation including the strengthening during 2015–
- 10 2016. Vertical lines in Figure 3S indicate other times between 1992 and 2016 when transitions occur in both these trace gases and in the Hadley circulation characterized by ω_P and v_P . Surface exchanges of H₂ have similarities to those of CO₂ in that they occur mostly at mid–northern latitudes and are mainly

due to emissions from Fossil Fuel combustion. However H₂ also has mid–northern latitude photochemical sources peaking in August (Price et al., 2007). These boreal summer sources are almost offset by a combined soil and hydroxyl sink, but the overall interhemispheric partial pressure difference is boosted by a significant reduction in the Southern Hemisphere photochemical source at that time. For both species, the most northern excursions of the inter–tropical convergence zone that

occurs at Pacific latitudes encounter increasing concentrations of both gases. As noted above, anomalies in mlo–cgo differences in N₂O are poorly correlated with those in CO₂ and in dynamical indices (Tables 1S and 2S). Indeed the 3 month average anti-correlation with u_{duct} that has the largest magnitude is r = -0.133

20 for Mar-May and the largest correlations with ω_P is r = 0.359 for Apr-Jun and with v_P is r = 0.350 for May-Jul.

2.3 Interhemispheric exchange of SF₆

In the case of SF6 we have analysed the mlo–cgo difference in available NOAA HATS data from 1998 to 2012 when cgo HATS measurements ceased. Correlations of detrended anomalies in IH differences in SF₆ with those in CO₂ are as follows: 25 the Feb–Apr correlation is r = 0.619, the Mar-May correlation is = 0.722, the Apr-Jun correlation is r = 0.595, the May–Jul correlation is r = 0.303 and the Jun–Aug correlation is r = 0.223. The corresponding correlations with dynamical indices are as follows: for Feb–Apr the correlation with u_{duct} is r = -0.617, the May–Jul correlations with ω_p is r = 0.465, the Jun–Aug correlation with ω_p is r = 0.433, the May–Jul correlation with v_p is r = 0.517 and the Jun–Aug correlation with v_p is r = 0.385. We note that SF₆ has an anti-correlation with u_{duct} for Feb-Apr that has larger

30 magnitude than for CO_2 and even CH_4 . Thus, there is again a significant influence of the Pacific westerly duct, in late boreal winter and spring, and of the Hadley circulation, in boreal summer and late spring, as measured by these indices, on the mlo– cgo differences of SF_6 ; these SF_6 differences exhibit a similar step change in 2009-2010 as shown for CO_2 in Figures 2 and 6.

2.4 Implications for constaining terrestrial biosphere exchange

The sign and strength of zonal winds in the Pacific westerly duct (u_{duct}) are correlated with corresponding changes in nearequatorial transient kinetic energy (Fig. 6, Frederiksen and Webster 1988) resulting in changes in the mixing of trace gases. This effect may not be adequately represented in the parameterizations used in atmospheric transport models. Model

- 5 determinations of short term variations in the Hadley circulation exchange are also susceptible to uncertainties in representations of the equatorial convective dynamics (Lintner et al. 2004). By identifying spatial changes due to transport and providing empirical indices that describe short-term variations in both Pacific westerly duct and Hadley transfers there is potential to improve atmospheric constraints on Dynamic Vegetation modelling.
- 10 Acknowledgements. The dynamics contributions were prepared using data and software from the NOAA/ESRL Physical Sciences Division web site: <u>http://www.esrl.noaa.gov/psd/</u>. The trace gas data for CSIRO monitored species CO₂, CH₄, CO, H₂ and N₂O and the NOAA monitored SF₆ are available from the World Data Centre for Greenhouse Gases website: <u>https://ds.data.jma.go.jp/gmd/wdcgg/cgi-bin/wdcgg/catalogue.cgi</u>

References

 Denman, K. L., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P. M., Dickinson, R. E., Hauglustaine, D., Heinze, C., Holland, E., Jacob, D., Lohmann, U., Ramachandran, S., da Silva Dias, P. L., Wofsy, S. C., & Zhang, X.: Couplings Between Changes in the Climate System and Biogeochemistry. In: *Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change* [Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. & Miller, H.L. (eds.)]. Cambridge

20

- 2. Francey, R. J., & Frederiksen, J. S.: The 2009–2010 step in atmospheric CO₂ interhemispheric difference, Biogeosciences, 13, 873–885, doi:10.5194/bg-13-873-2016, 2016.
- Frederiksen, J. S.: Eastward and westward flows over topography in nonlinear and linear barotropic models, J. Atmos. Sci., 39, 2477–2489, 1982.
- Frederiksen, J. S. & O'Kane, T. J.: Inhomogeneous closure and statistical mechanics for Rossby wave turbulence over topography, J. Fluid Mech., 539, 137–165, 2005.
 - Frederiksen, J. S. & Webster, P. J.: Alternative theories of atmospheric teleconnections and low-frequency fluctuations, Rev. Geophys., 26, 459–494, 1988.
 - 6. Ishijima, K., Nakazawa, T., & Aoki, S.: Variations of atmospheric nitrous oxide concentration in the northern and

30 western Pacific, Tellus B, 61:2, 408–415, doi: 10.1111/j.1600-0889.2008.00406.x, 2009.

University Press, Cambridge, United Kingdom and New York, NY, USA, 2007.

 Lintner, B. R., Gilliland, A. B., & Fung, I. Y.: Mechanisms of convection-induced modulation of passive tracer interhemispheric transport interannual variability, J. Geophys. Res., 109, D13102, doi:10.1029/2003JD004306, 2004.

- 8. NASA: Following carbon dioxide through the atmosphere, 2016. https://www.nasa.gov/feature/goddard/2016/eye-popping-view-of-co2-critical-step-for-carbon-cycle-science
- 9. Price, H., Jaegle', L., Rice, A., Quay, P., Novelli, P. C., & Gammon, R.: Global budget of molecular hydrogen and its
- 5 deuterium content: Constraints from ground station, cruise, and aircraft observations, J. Geophys. Res., 112, D22108, doi:10.1029/2006JD008152, 2007.

10. NOAA, 2018. http://www.esrl.noaa.gov/gmd/

Tables

10

15

Table 1S: Correlations (*r*) between the detrended mlo–cgo gas anomalies for CO₂, CH₄, CO and H₂ with CO₂ and u_{duct} index of transient transport averaged between Feb–Apr for 1992–2016. Also shown are corresponding correlations for N₂O

and 1993-2016 and for SF_6 and 1998-2012.

Gas	<i>CO</i> ₂	u_{duct}
<i>CO</i> ₂	<i>r</i> = 1.0	r = -0.500
CH ₄	<i>r</i> = 0.697	r = -0.448
СО	r = 0.645	r = -0.605
H ₂	<i>r</i> = 0.296	<i>r</i> = -0.218
N ₂ O	<i>r</i> = 0.215	r = -0.088
SF ₆	<i>r</i> = 0.619	r = -0.617

Table 2S: Correlations (*r*) between the detrended mlo–cgo gas anomalies for CO₂, CH₄, CO and H₂ with CO₂ and indices of mean transport, ω_P and v_P averaged between Jun–Aug for 1992–2016. Also shown are corresponding correlations for N₂O and 1993-2016 and for SF₆ and 1998-2012.

Gas	<i>CO</i> ₂	ω_P	v_P
<i>CO</i> ₂	<i>r</i> = 1.0	<i>r</i> = 0.520	<i>r</i> = 0.534
CH ₄	<i>r</i> = 0.246	<i>r</i> = 0.195	r = 0.250
СО	<i>r</i> = 0.108	<i>r</i> = 0.205	<i>r</i> = 0.236
H ₂	<i>r</i> = 0.680	<i>r</i> = 0.427	r = 0.442
N ₂ O	r = -0.010	<i>r</i> = 0.290	r = 0.266
SF ₆	<i>r</i> = 0.223	<i>r</i> = 0.433	r = 0.385

Figures

Figure 1S

5

Figure 1S: The average 17 to 18 February 2015 (a) streamfunction anomaly at $\sigma = 0.2582$ in kms⁻¹ and (b) zonal wind anomaly at 300 hPa in ms⁻¹ where the anomalies are with respect to the thirty year 1981–2010 mean for the same period.

Figure 2S: Latitude pressure cross sections of zonal wind anomalies in ms⁻¹ for 17 to 18 February 2015 averaged between 5 (a) 120°W–140°W and (b) 80°W–100°W.

Figure 3S

Figure 3S: Time series of June–August and Annual averages of detrended mlo–cgo differences in CO₂ and H₂ and June– 5 August average dynamical indices ω_P and v_P .