

1 **Analyses of temperature and precipitation in the Indian Jammu-Kashmir for**
2 **the 1980—2016 period: Implications for remote influence and extreme events**

4 Sumira Nazir Zaz¹, Romshoo Shakil Ahmad¹, Ramkumar Thokuluwa Krishnamoorthy^{2*}, and
5 Yesubabu Viswanadhapalli²

6 1. Department of Earth Sciences, University of Kashmir, Hazratbal, Srinagar,
7 Jammu and Kashmir-190006, India

9 2. National Atmospheric Research Laboratory, Dept. of Space, Govt. of India, Gadanki, Andhra Pradesh
10 517112, India

12 **Email:** zaz.sumira@gmail.com, shakilrom@kashmiruniversity.ac.in, tkram@narl.gov.in,
13 yesubabu@narl.gov.in;

15 ***Corresponding author** (tkram@narl.gov.in)

17 **Abstract**

19 Local weather and climate of the Himalayas are sensitive and interlinked with global scale changes in
20 climate as the hydrology of this region is mainly governed by snow and glaciers. There are clear and strong
21 indicators of climate change reported for the Himalayas, particularly the Jammu and Kashmir region situated in the
22 western Himalayas. In this study, using observational data, detailed characteristics of long- and short-term as well as
23 localized variations of temperature and precipitation are analysed for these six meteorological stations, namely,
24 Gulmarg, Pahalgam, Kokarnag, Qazigund, Kupwara and Srinagar of Jammu and Kashmir, India during 1980-2016.
25 In addition to analysis of stations observations, we also utilized the dynamical downscaled simulations of WRF
26 model and ERA-Interim (ERA-I) data for the study period. The annual and seasonal temperature and precipitation
27 changes were analysed by carrying out Student's t-test, Mann-Kendall, Linear regression and Cumulative deviation
28 statistical tests. The results show an increase of 0.8°C in average annual temperature over thirty seven years (from
29 1980 to 2016) with higher increase in maximum temperature (0.97°C) compared to minimum temperature (0.76°C).
30 Analyses of annual mean temperature at all the stations reveal that the high-altitude stations of Pahalgam (1.13°C)
31 and Gulmarg (1.04°C) exhibit a steep increase and statistical significant trends. Precipitation patterns in the valley
32 such as at Gulmarg and Pahalgam show a slight and definite decrease in the annual rainfall at Gulmarg and
33 Pahalgam stations. Seasonal analyses show significant increasing trends in the winter and spring temperatures at all
34 stations with prominent decrease in spring precipitation.. The present study also reveals that variation in temperature
35 and precipitation during winter (December - March) has a close association with the North Atlantic Oscillation
36 (NAO). Further, the observed temperature data (monthly averaged data for 1980-2016) at all the stations show good
37 correlation of 0.86 with the results of WRF and therefore the model downscaled simulations are considered as a
38 valid scientific tool for the studies of climate change in this region. Though the correlation between WRF model and

39 observed precipitation is significantly strong, the WRF model underestimates significantly the rainfall amount,
40 which necessitates the need for the sensitivity study of the model using the various microphysical parameterization
41 schemes. The potential vorticities in the upper troposphere troposphere are obtained from ERA-I over the Jammu
42 and Kashmir region indicate that the extreme weather event of September 2014 occurred due to breaking of intense
43 atmospheric Rossby wave activity over Kashmir. As the wave could transport a large amount of water vapour from
44 both the Bay of Bengal and Arabian Sea and dump them over the Kashmir region through wave breaking, it is
45 probably resulted in the historical devastating flooding of the whole Kashmir valley in the first week of September
46 2014. This was accompanied by extreme rainfall events measuring more than 620 mm in some parts of the Pir
47 Panjal range in the South Kashmir.
48

49 1. Introduction

50

51 Climate change is a real Earth's atmospheric and surface phenomenon and the influences of which on all
52 spheres of life are considered significant almost everywhere in the world in the past few decades. Extreme weather
53 events like anomalously large floods and unusual drought conditions associated with changes in climate play havoc
54 with livelihoods of even established civilizations particularly in the coastal and high-mountainous areas. Jammu and
55 Kashmir, India, located in the Western Himalayan region, is one such cataclysmic mountainous region where
56 significant influence of climate change on local weather has been observed for the last few decades; (1) shrinking
57 and reducing glaciers, (2) devastating floods, (3) decreasing winter duration and rainfall, and (4) increasing summer
58 duration and temperature (Solomon et al., 2007; Kohler and Maselli, 2009; Immerzeel et al., 2010; Romshoo et al.,
59 2015; Romshoo et al., 2017). Western disturbances (WD) is considered as one of the main sources of winter
60 precipitation for the Jammu and Kashmir region, which brings water vapour mainly from the tropical Atlantic
61 Ocean, Mediterranean Sea, Caspian Sea and Black sea. Though WD is perennial, it is most intense during northern
62 winter (December-February; Demri et al., 2015). Planetary-scale atmospheric Rossby-waves have potential to
63 significantly alter the distribution and movement of WD according to their intensity and duration (few to tens of
64 days). Since WD is controlled by planetary-scale Rossby waves in the whole troposphere of the subtropical region,
65 diagnosing different kinds of precipitation characteristics is easier with the help of potential vorticity (PV) at 350K
66 potential temperature (PT) and 200 hPa level pressure surface (PS) as they are considered as proxies for Rossby
67 wave activities (Ertel, 1942; Bartels et al., 1998; Demri et al., 2015 and Hunt et al 2018a). Here onwards, it will be
68 simply called PV at 350 K and 200 hPa surfaces. For example, (Postel and Hitchman, 1999; Hunt 2018b) studied the
69 characteristics of Rossby wave breaking (RWB) events occurring at 350K surface transecting the subtropical
70 westerly jets. Similarly, Waugh and Polvani (2000) studied RWB characteristics at 350K surface in the Pacific
71 region during northern fall–spring with emphasis on their influence on westerly ducts and their intrusion into the
72 tropics. Since PV is a conserved quantity on isentropic and isobaric surfaces (ISOES & ISOBS) when there is no
73 exchange of heat and pressure respectively, it is widely used for investigating large-scale dynamical processes
74 associated with frictionless and adiabatic flows. Moreover, all other dynamical parameters, under a given suitable

75 balanced-atmospheric-background condition, can be derived from PV and boundary conditions (Hoskins et al.,
76 1985).

77
78 Divergence of the atmospheric air flows near the upper troposphere is larger during precipitation, leading to
79 increase in the strength of PV. Because of which, generally there will be a good positive correlation between
80 variations in the strength of PV in the upper troposphere and precipitation over the ground provided that the
81 precipitation is mainly due to the passage of large-scale atmospheric weather systems like western disturbances, and
82 monsoons. Wind flows over topography can significantly affect the vertical distribution of water vapour and
83 precipitation characteristics. Because of this, positive correlation between variations in PV and precipitation can be
84 modified significantly.. These facts need to be taken into account while finding long-term variations of precipitation
85 near mountainous regions like the western Himalaya. The interplay between the flow of western disturbances and
86 topography of the western Himalaya complicates further the identification of source mechanisms of extreme weather
87 events (Das et al., 2002; Shekhar et al., 2010) like the ones that occurred in the western Himalayan region; Kashmir
88 floods in 2014 and Leh floods in 2010 in the Jammu and Kashmir region and Uttrakhand floods in 2013. Kumar et
89 al. (2015) also noted that major flood events in the Himalayas are related to changing precipitation intensity in the
90 region. This necessitates making use of proper surrogate parameters like PV and distinguish between different
91 source mechanisms of extreme weather events associated with both the long-term climatic impacts of remote origin
92 and short-term localized ones like organized convection (Romatschke and Houze 2011; Rasmussen and Houze
93 2012; Houze and Rasmussen 2016; Martius et al., 2012).

94
95 The main aim of the present study is to investigate long-term (climate) variation of surface temperature and
96 precipitation over the Jammu and Kashmir, India region of the western Himalayas in terms of of its connections with
97 NAO and atmospheric Rossby wave activity in the upper troposphere. Since PV is considered as a measure of
98 Rossby wave activity, the present work analyses in detail, for a period of 37 years during 1980-2016, monthly
99 variation of PV (ERA-interim reanalysis data, Dee et al., 2001) in the upper troposphere (at 350 K and 200 hPa
100 surfaces) and compares it with observed surface temperature and rainfall (India Meteorological Department, IMD)
101 at six widely separated mountainous locations with variable orographic features (Srinagar, Gulmarg, Pahalgam,
102 Qazigund, Kokarnag and Kupwara). There exist several reports on climatological variation of meteorological
103 parameters in various parts of the Himalayas. For example, Kumar and Jain (2009) and Bhutiyani et al. (2010) found
104 an increase in the temperature in the north-western Himalayas with significant variations in precipitation patterns.
105 Archer and Fowler (2004) examined temperature data of seven stations in the Karakoram and Hindu Kush
106 Mountains of the Upper Indus River Basin (UIRB) in search of seasonal and annual trends using statistical test like
107 regression analysis. Their results revealed that mean winter maximum-temperature has increased significantly while
108 mean summer minimum-temperature declined consistently. On the contrary, Lui et al. (2009) examined long-term
109 trends in minimum and maximum temperatures over the Tibetan mountain range during1961-2003 and found that
110 minimum temperature increases faster than maximum temperature in all the months. Romshoo et al. (2015)
111 observed changes in snow precipitation and snow-melt-runoff in the Kashmir valley and attributed the observed

112 depletion of stream flow to the changing climate in the region. Bolch et al. (2012) reported that the glacier extent in
113 the Karakoram range is increasing.

114

115 These contrasting findings of long-term variations in temperature and precipitation in the Himalayas need
116 to be verified by analyzing long-term climatological data available in the region. However, the sparse and scanty
117 availability of regional climate data pose challenges in understanding the complex microclimate in this region.
118 Therefore, studying the relationship of recorded regional (Jammu and Kashmir) climatic variations in temperature
119 and precipitation with remote and large-scale weather phenomena such as the North Atlantic Oscillation (NAO), and
120 El Niño Southern Oscillation (ENSO) is necessary for understanding the physical processes that control the locally
121 observed variations (Ghashmi, 2015). Archer and Fowler (2004) and Iqbal and Kashif (2013) found that large-scale
122 atmospheric circulation like NAO influences significantly the climate of the Himalayas. However, detailed
123 information about variation in temperature and precipitation and its teleconnection with observed variations of NAO
124 is inadequately available for this part of the Himalayan region (Kashmir Valley).

125

126 **2. Geographical setting of Kashmir**

127

128 The inter mountainous valley of Kashmir has a unique geographical setting and it is located between the
129 Greater Himalayas in the north and Pir Panjal ranges in the south, roughly within the latitude and longitude ranges
130 of $33^{\circ} 55'$ to $34^{\circ} 50'$ and $74^{\circ} 30'$ to $75^{\circ} 35'$ respectively (Fig.1). The heights of these mountains range from about
131 3,000 to 5,000 m and the mountains strongly influence the weather and climate of the region. Generally the
132 topographic setting of the six stations, though variable, could be broadly categorized into two; (1) stations located on
133 plains (Srinagar, Kokarnag, Qazigund and even Kupwara) and (2) those located in the mountain setting (Gulmarg,
134 Pahalgam). Physiographically, the valley of Kashmir is divided into three regions; Jhelum valley floor, Greater
135 Himalayas and Pir Panjal. In order to represent all the regions of the valley, six meteorological stations located
136 widely with different mean sea levels (msl), namely, Gulmarg (2740m), Pahalgam (2600m), Kokarnag (2000m),
137 Srinagar (1600m), Kupwara (1670m) and Qazigund (1650m) were selected for analyses of observed weather
138 parameters.

139

140 The Kashmir valley is one of the important watersheds of the upper Indus basin harbouring more than 105 glaciers
141 and it experiences the Mediterranean type of climate with marked seasonality (Romshoo and Rashid, 2014).
142 Broadly, four seasons (Khattak et al 2011; Rashid et al., 2015) are defined for the Kashmir valley; winter (December
143 to February), spring (March to May), summer (June to August), and autumn (September to November). It is to be
144 clarified here that while defining the period of NAO (Fig. 4) it is considered December-March as winter months as
145 defined by Archer and Fowler (2004) and Iqbal and Kashif (2013) and in all other parts of the manuscript it is
146 December-February as per the IMD definition. The annual temperature in the valley varies from about -10°C to
147 35°C . The rainfall pattern in the valley is dominated by winter time precipitation associated with western

148 disturbances (Dar et al., 2014) while the snow precipitation is received mainly in winter and early spring season
149 (Kaul and Qadri, 1979).

150

151 **2. Data and Methodology**

152

153 India Meteorological Department (IMD) provided 37 years (1980-2016) of data of daily precipitation,
154 maximum and minimum temperatures for all the six stations. Monthly averaged data were further analysed to find
155 long-term variations of weather parameters. Statistical tests including Mann-Kendall, Spearman Rho, Cumulative
156 deviation, Student's t-test were performed to determine long term-trends and turning point of weather parameters
157 with statistical significances. Similar analyses and tests were performed also for the Weather and Research
158 Forecasting (WRF) model simulated and ERA-Interim reanalyses data (0.75° by 0.75° spatial resolution in the
159 horizontal plane, monthly averaged time resolution) of same weather parameters and for the NAO index. Brief
160 information about these data sets is provided below.

161

162 **3.1 Measurements and model simulations**

163

164 The obtained observational data are analysed carefully for homogeneity and missing values. Analyses of
165 ratios of temperature from the neighbouring stations with the Srinagar station were conducted using relative
166 homogeneity test (WMO, 1970). It is found that there is no significant inhomogeneity and data gap for any station.
167 Few missing data points were linearly interpolated and enough care was taken not to make any meaningful
168 interpretation during such short periods of data gaps in the observations. Annual and seasonal means of temperature
169 and precipitation were calculated for all the stations and years. To compute seasonal means, the data were divided
170 into the following seasons: winter (December to February), spring (March to May), summer (June to August) and
171 autumn (September to November). Trends in the annual and seasonal means of temperature and precipitation were
172 determined using Mann-Kendall (non-parametric test) and linear regression tests (parametric test) at the confidence
173 levels of $S = 99\%$ or (0.01), $S = 95\%$ or 0.05 and $S = 90\%$ or 0.1. These tests have been extensively used in hydro
174 meteorological data analyses as they are less sensitive to heterogeneity of data distribution and least affected by
175 extreme values or outliers in data series. Various methods have been applied to determine change points of a time
176 series (Radziejewski et al., 2000; Chen and Gupta, 2012). In this study, change point in time series of temperature
177 and precipitation was identified using cumulative deviation test and Student's t test (Pettitt, 1979). This method
178 detects the time of significant change in the mean of a time series when the exact time of the change is unknown
179 (Gao et al., 2011).

180

181 Winter NAO index during 1980–2010 were obtained for further analyses from Climatic Research Unit
182 through the web link <https://www.cru.uea.ac.uk/data>. The winter (December - March) NAO index is based on

183 difference of normalized sea level pressure (SLP) between Lisbon, Portugal and Iceland, which is available from
184 1964 onwards. Positive NAO index is associated with stronger-than-average westerlies over the middle latitudes
185 (Hurrell, 1997). Correlation between mean (December-March) temperature, precipitation and NAO index was
186 determined using Pearson correlation coefficient method. To test whether the observed trends in winter temperature
187 and precipitation are enforced by NAO, linear regression analysis (forecast) was performed (Fig. 4e and f). The
188 following algorithm calculates or predicts a future value by using existing values. The predicted value is a y-value
189 for a given w-value. The known values are existing w-values and y-values, and the new value is predicted by using
190 linear regression.

191
192 The syntax is as follows
193

194 FORECAST(x, known_y's, known_w's)

195 W is the data point for which we want to predict a value.

196 Known_y's is the dependent array or range of data (rainfall or temperature).

197 Known_w's is the independent array or range of data (time).

198
199 The equation for FORECAST is $a + bw$, where:

200
$$a = \hat{y} - b\hat{w} \quad \text{and } b = \sum(w - \hat{w})(y - \hat{y}) / \sum(w - \hat{w})^2$$

201

202 and where \hat{w} and \hat{y} are the sample means AVERAGE (known_w's) and AVERAGE (known_y's).

203

204

205 3.2. WRF Model configuration

206
207 The Advanced Research WRF version 3.9.1 model simulation was used in this study to downscale the ERA-Interim
208 (European Centre for Medium Range Weather Forecasting Re Analysis) data over the Indian Monsoon region. The
209 model is configured with 2 two-way nested domains (18 km and 9-km horizontal resolutions), 51 vertical levels and
210 model top at 10 hPa level. The model first domain extends from longitude from 24.8516 E to 115.148E and latitude
211 from 22.1127S to 46.7629 N while the second domain covers the longitudes from 56.3838E to 98.5722E and
212 latitudes from 3.86047 S to 38.2874 N.

213

214

215 The initial and boundary conditions supplied to WRF model are obtained from ERA-Interim 6-hourly data.
216 Model physics used in the study for boundary layer processes is Yonsei University's non-local diffusion scheme
217 (Hong et al., 2006), the Kain-Fritsch scheme for cumulus convection (Kain and Fritsch, 1993), Thomson scheme for
218 microphysical processes, the Noah land surface scheme (Chen and Dudhia, 2001) for surface processes, Rapid

219 Radiation Transfer Model (RRTM) for long-wave radiation (Mlawer et al., 1997), and the Dudhia (1989) scheme for
220 short-wave radiation. The physics options configured in this study are adopted based on the previous studies of
221 heavy rainfall and Monsoon studies over the Indian region (Srinivas et al., 2013, Madala et al., 2016, Ghosh et al.,
222 2016; Srinivas et al., 2018).

223

224 For the present study, the WRF model is initialized on daily basis at 12 UTC using ERA-Interim data and
225 integrated for a 36-hour period using the continuous re-initialization method (Lo et al., 2008; Langodan, et al., 2016;
226 and Viswanadhapalli et al., 2017). Keeping the first 12-hours as model spin-up time, the remaining 24-hour daily
227 simulations of the model are merged to get the data during 1980-2016. To find out the skill of the model, the
228 downscaled simulations of WRF model are validated for six IMD surface meteorological stations. The statistical
229 skill scores such as bias, mean error (ME) and root mean square error (RMS) were computed for the simulated
230 temperature against the observed temperature data of IMD.

231

232 **4. Results and Discussion:**

233

234 **4.1. Trend in annual and seasonal temperature**

235

236 Tables 1& 2 show the results of statistical tests (Mann-Kendall and linear regression, cumulative deviation and
237 Student's t) carried out on the temperature and precipitation data respectively. All the parametric and nonparametric
238 tests carried out for the trend analysis and abrupt changes in the trend showed almost similar results. Table 1,
239 therefore shows results of representative tests where higher values of statistical significance between Mann-
240 Kendall/linear regression test and Cumulative deviation/student's t test are considered. It is evident that there is an
241 increasing trend at different confidence levels in annual and seasonal temperatures of all the six stations (Pahalgam,
242 Gulmarg, Kokarnag, Srinagar, Kupwara and Qazigund), located in different topographical settings (Table 3). During
243 1980-2016, Pahalgam and Gulmarg, located at higher elevations of about 2500m amsl (above mean sea level),
244 registered statistically significant increase in average annual temperature by 1.13°C and 1.04°C (Fig. 2a). It is to be
245 noted that hereafter it will not be mentioned explicitly about the period 1980-2016 and statistically significant means
246 the confidence level is about 90%. Kokarnag and Kupwara, located at the heights of about 1800-2000m amsl,
247 showed an increase of 0.9°C and 1°C respectively (Fig. 2a). However, Srinagar and Qazigund, located at the
248 heights of about 1700m-1600m amsl, exhibited an increase of 0.65°C and 0.44°C (Fig. 2a).

249

250 Analyses of maximum and minimum temperatures (Table 1 and Fig. 2b) for the six stations reveal higher rate
251 increase in maximum temperature. Pahalgam and Kupwara recorded the highest rise of ~1.3°C followed by
252 Kokarnag (1.2°C) and Srinagar (1.1°C). The exception is that Gulmarg and Qazigund (being a hilly station) shows
253 less than 0.6°C in maximum temperature. The minimum temperature exhibits a lowest increase of 0.3°C at Srinagar

254 and highest increase at Gulmarg station of 1.2°C(Fig. 2c). Analyses of composite seasonal mean of minimum and
255 maximum temperatures in the valley reveal higher increase in maximum temperature in winter and spring seasons.
256 Among four stations (Gulmarg, Pahalgam, Kokarnag and Kupwara), Gulmarg indicates an increase of less than 1°C
257 while Pahalgam, Kokarnag and Kupwara shows an increase of 0.9°C, 0.9°C and less than 0.9°C respectively
258 (Table 1 and Fig. 2d). On the contrary, Qazigund and Srinagar showed a slight increase of less than 0.4°C and 0.5°C
259 respectively. Mean spring-temperature shows higher rise comparing to other seasons temperatures for all the
260 stations. Gulmarg shows an increase of less than 1.4°C. Pahalgam, Kupwara, Kokarnag showed increase of 1.3°C
261 at $S = 0.01$. Qazigund and Srinagar revealed 0.6°C and 1°C increase respectively as shown in the Table 1 and Fig.
262 2e. In summer, the temperature rise for Pahalgam is about less than 0.6°C and for Gulmarg and Qazigund, it is about
263 0.4°C and 0.2°C respectively(Table 1). Kupwara, Kokarnag and Srinagar reveal an increase of less than 0.3°C,
264 0.4°C and 0.1°C respectively (Fig. 2f). In Autumn, Gulmarg shows an increase of 0.9°C and Pahalgam exhibit less
265 than 0.6°C. On the contrary Qazigund shows less than 0.4°C at while Srinagar shows no significant increase in
266 observed temperatures (Fig. 2g and Table 1).

267

268 **4.2 Trend in annual and seasonal precipitation**

269

270 The annual precipitation pattern of the valley is comparable to that of temperature with higher decrease
271 observed at the upper elevation stations of Gulmarg and Pahalgam (Fig. 3a and Table 2). Similar to temperature,
272 Table 2 provides in detail the test results of Mann-Kendall, linear regression and Student's t. While Kokarnag and
273 Kupwara show significant decrease, the lower elevated stations, Qazigund and Srinagar, exhibit insignificant
274 decrease (Fig. 3a). Winter precipitation decrease is maximum at Gulmarg and Kokarnag followed by Kupwara and
275 Pahalgam and it is insignificant decrease for Srinagar and Qazigund (Table 2 and Fig. 3b). The spring season
276 precipitation exhibits decreasing trend for all the six stations with the lowest decrease of 42mm precipitation at
277 Kupwara (Table 2).

278

279 During summer months also, precipitation shows decreasing trend for all stations except Qazigund that it is
280 statistically insignificant (Fig. 3d, and Table 2). For Qazigund there is no apparent trend in summer precipitation.
281 The autumn precipitation also shows insignificant decreasing trend for the stations (Fig. 3e and Table 2).
282 Cumulative test was used to determine the “change point” of trend in the annual and seasonal variations of
283 temperature and precipitation. Results reveal that the year 1995 is the year of abrupt increase (change point) in
284 temperature of the valley (Fig. 4a) and the same year is identified as the year of abrupt decrease for precipitation
285 (Fig. 4b).

286

287

288 **4.3 Influence of North Atlantic Oscillation (NAO) on the winter precipitation over the**
289 **Kashmir valley**

290

291 The present study also investigates the tele-connection between the activity of North Atlantic Oscillation
292 (NAO) and the variations in temperature and precipitation over the Kashmir valley, particularly during winter
293 season (December - March). It is found that there is a significant negative/positive correlation (-0.54/0.68) between
294 NAO (NAO index) and precipitation/temperature (Fig. 4c). This suggests that winter precipitation and temperature
295 over the Kashmir valley has a close association with the winter NAO. Higher precipitation over Kashmir is
296 associated with positive phase of NAO. Further the “change point” year, 1995, in the trend of temperature and
297 precipitation coincides with that of the NAO index. To test whether the trends in temperatures and precipitation over
298 the Kashmir valley are forced by the NAO, regression analysis was performed on winter temperature and
299 precipitation (Figs. 4e and f) and the results indicate that there is a significant connection between NAO and
300 precipitation over Kashmir,

301

302 The observed annual and seasonal variation of temperature at all stations except Qazigund is strongly
303 correlated with WRF downscaled simulations. Overall, the simulations show correlation of 0.66, 0.67, 0.72, 0.62,
304 0.79 and 0.47 for Srinagar, Gulmarg, Kokarnag, Kupwara, Pahalgam and Qazigund respectively. The annual mean
305 simulated temperature shows very good correlation (0.85) with observations. Figure 5 shows annual and seasonal
306 correlations between trends of observed and simulated temperatures (location of Kokarnag is considered for WRF
307 data). However, root mean square error (RMSE) analysis indicates that model simulations underestimate slightly
308 the observations by an average value of -0.43°C. Similar to Figure 5, Figure 6 shows the comparison between WRF
309 model simulated and observed precipitation. Even though the trend is similar, WRF model severely underestimates
310 the rainfall amount. A detailed study on this topic will be presented in a separate paper.

311

312 **4.4. Discussion**

313

314 The Himalayan mountain system is quite sensitive to global climate change as the hydrology of the region
315 is mainly dominated by snow and glaciers, making it one of the ideal sites for early detection of global warming
316 (Solomon et al., 2007; Kohler and Maselli, 2009). Various reports claim that in the Himalayas significant warming
317 had occurred in the last century (Fowler and Archer, 2006; Bhutiyani et al., 2007). Shrestha et al. (1999) analysed
318 surface temperature at 49 stations located across the Nepal Himalayas and the results indicate warming trends in the
319 range of 0.06 to 0.12°C per year. The observations of the present study are in agreement with the studies carried out
320 by Shrestha et al. (1999), Archer and Fowler (2004) and Butiyani (2007). In the present study, it is observed that rise
321 in temperature is larger at higher altitude stations of Pahalgam (1.13°C) and Gulmarg (1.04°C) and it is about 0.9°C,
322 0.99°C, 0.04°C, and 0.10°C for the other stations, Kokarnag, Kupwara, Srinagar and Qazigund respectively during

323 1980-2016. Liu et al. (2009) and Liu and Chen (2000) also report higher warming trends at higher altitudes in the
324 Himalayan regions. In the future, the impacts of climate change will be intense at higher elevations and in regions
325 with complex topography, which is consistent with the model results of Wiltshire (2013).

326
327 The noteworthy observation in the present study is that statistically significant steep increase in the
328 temperature (change point) occurred in the year 1995 and it has been continuing thereafter. The mega El Nino in
329 1998 has been considered as one of the strongest El-Nino's in history that led worldwide increase in temperature
330 (Epstein et al., 1998). Contrastingly, the El Nino in 1992 led to a decrease in temperature throughout the northern
331 hemisphere, which is ascribed to the Mt. Pinatubo volcanic eruption (Swanson et al., 2009; IPCC, 2013). Also this
332 event interrupted the direct sunlight to reach on the surface of the earth for about two months (Barnes et al., 2016).

333
334 Studies of trends in seasonal-mean temperature in many regions across the Himalayas indicate higher
335 warming trends in winter and spring months (Shrestha et al., 1999; Archer and Fowler, 2004; Butiyani, 2009). The
336 seasonal difference found in the present study is consistent with other studies carried out for the Himalayas (Archer
337 and Fowler, 2004; Sheikh et al., 2009 and Roe et al., 2003), Lancang Valley, China (Yunling and Yiping, 2005),
338 Tibet (Liu and Chen, 2000) and the Swiss Alps (Beniston et al., 2010), where almost all stations recorded higher
339 increase in the winter and spring temperatures comparing to autumn and summer temperatures. Recent studies found
340 that reducing the extent depth of snow cover and shrinking glaciers may also be one of the contributing factors for
341 the observed higher warming, as the reduction in the percentage of snow and glacier can alter the surface albedo
342 over a region, which in turn can increase the surface air temperatures (Kulkarni et al., 2002; Groisman et al., 1994).
343 Romshoo et al. (2015) and Murtaza and Romshoo (2016) have also reported that reduction of snow and glacier
344 cover in the Kashmir regions of the Himalayas during the recent decades could be one of the reasons of occurrence
345 of higher warming particularly on the higher elevated stations of Gulmarg and Pahalgam.

346
347 In the Himalayan mountain system, contrasting trends have been noted in precipitation over the recent
348 decades (IPCC, 2001). Borgaonkar et al. (2001), Shrestha et al. (2000) and Archer and Fowler (2004) observed
349 increasing precipitation patterns over the Himalayas while Mooley and Parthasarathy (1983), Kumar and Jain (2009)
350 and Demri and Dash (2012) reported large-scale decadal variation with increasing and decreasing precipitation
351 periods. The results of the present study indicate that decrease in annual precipitation is slightly insignificant at all
352 the six stations except the spring season. Increasing trend in temperature can trigger large-scale energy exchanges
353 that become more intricate as complex topography alters the precipitation type and intensity in many ways
354 (Kulkarni et al., 2002; Groisman et al., 1994). Climate model simulations (Zarenistana et al., 2014; Rashid et al.,
355 2015) and empirical evidence (Vose et al., 2005; Romshoo et al., 2015) also confirm that increasing temperature
356 results in increased water vapour leading to more intense precipitation events even when the total annual
357 precipitation reduces slightly. The increase in temperature therefore enhances the risks of both floods and droughts.
358 For example, the disaster flood event of September 2014 occurred in the Kashmir valley due to high frequency and
359 high intense precipitation.

360 The North Atlantic Oscillation (NAO) is one of the strongest northern atmospheric weather phenomena
361 occurring due to the difference of atmospheric pressure at sea level between the Iceland low and Azores high. It
362 controls the strength and direction of westerly winds across the northern hemisphere. Surface temperatures have
363 increased in the northern hemisphere in the past few decades (Mann et al., 1999; Jones et al., 2001; Hijioka et al.,
364 2014), and the rate of warming has been especially high ($\sim 0.15^{\circ}\text{C decade}^{-1}$) in the past 40 years (Folland et al.,
365 2001; Hansen et al., 2001; Peters et al., 2013; Knutti et al., 2016). NAO causes substantial fluctuations in the climate
366 of the Himalayas (Hurrell, 1997; Syed et al., 2006; Archer and Fowler, 2004). Several workers found a strong
367 connection between the NAO and temperature and precipitation in the north-western Himalayas (Archer and Fowler,
368 2004; Bhutiyani et al., 2007; Bookhagen, 2010; Sharif et al., 2012; Iqbal and Kashif, 2013). A substantial fraction of
369 the most recent warming is linked to the behaviour of the NAO (Hurrell, 1997; Thompson et al., 2003; Madhura et
370 al., 2015). The climate of the Kashmir Himalayas is influenced by western disturbances in winter and spring
371 seasons. Figs. 4c and d show correlation between winter time NAO and temperature and precipitation over the
372 Kashmir region. While temperature shows negative correlation of -0.54, precipitation shows positive correlation of
373 0.68. From linear regression analyses, it is found that considerable variation in winter precipitation and temperature
374 over Kashmir is forced by winter NAO. The weakening link of NAO after 1995 has a close association with
375 decreased winter precipitation and increased winter temperature in the valley. Similarly, Bhutiyani et al. (2009) and
376 Dimri and Dash (2012) also found statistically significant decreasing trend in precipitation which they related to
377 weakening of NAO index. However, for establishing a detailed mechanism incorporating these variations requires
378 thorough investigation.

379

380 The WRF model simulations compare well with observations (significantly strong correlation of 0.85) and
381 the correlation is more fore elevated stations than valley stations of Srinagar and Kupwara. However, it is expected
382 that the good correlation can result if more precise terrain information is incorporated in the WRF model
383 simulations. Earlier studies (e.g. Kain and Fritsch, 1990, 1993; Kain, 2004) also found good correlation between
384 observed and WRF simulated rainfall events. In conjunction with large-scale features such as NAO and ENSO, it
385 can result in large-scale variability in the climate of this region (Ogura and Yoshizaku, 1988). Furthermore,
386 incorporation of mesoscale teleconnections and their associations in the WRF model can further help in
387 understanding large-scale weather forecasting over this region.

388

389

390 **4.5. Physical mechanisms of climate and weather of Jammu & Kashmir**

391

392 Large-scale spatial and temporal variations in the meridional winds could be due to the passage of
393 planetary-scale Rossby waves (RW) in the atmospheric winds. When RWs break in the upper troposphere, it could
394 lead to vertical transport of atmospheric air between the upper troposphere and lower stratosphere and an
395 irreversible horizontal transport of air mass between the subtropics and extra tropics (McIntyre and Palmer, 1983).

396 Rossby waves have the characteristic of remaining coherent over many days and propagate long distances of the
397 order of synoptic to planetary scales leading to tele-connection of remote atmospheres of global extent. The study
398 by Chang and Yu (1999) indicates that during northern winter months of December–January–February, Rossby
399 wave packets can be most coherent over a large distance of from the northern Africa to the Pacific through the
400 southern Asia. There are reports on extreme weather events connected to Rossby waves of synoptic to planetary
401 scales in the upper troposphere (e.g. Screen and Simmonds, 2014). In northern India, there is an increasing trend in
402 heavy rainfall events, particularly over the Himachal Pradesh, Uttrakhand and Jammu and Kashmir (Sinha Ray and
403 Srivastava, 2000; Nibanupudi et al., 2015). Long-scale Rossby waves can lead to generation of alternating
404 convergence and divergence in the upper troposphere that in turn can affect surface weather parameters like
405 precipitation through generation of instabilities in the atmospheric air associated with convergence and divergence
406 (Niranjan Kumar et al., 2016).

407

408 Using observations and MERRA (Modern-Era Retrospective Analysis for Research and Applications
409 reanalysis data; <http://gmao.gsfc.nasa.gov/research/merra/>), Rienecker et al. (2011) showed strong correlation
410 between 6-10 day periodic oscillations associated with Rossby waves in the upper tropospheric winds and surface
411 weather parameters like atmospheric pressure, winds, temperature, relative humidity and rainfall during a severe
412 weather event observed at the Indian extratropical station, Nainital (29.45° N, 79.5° E), in November–December
413 2011. They also note that when the upper troposphere shows divergence, the lower troposphere shows convergence
414 and as a result more moisture gets accumulated there leading to enhancement of relative humidity and hence
415 precipitation. It was asserted that Rossby waves in the upper troposphere can lead to surface weather related events
416 through the action of convergence or divergence in the atmospheric air. It is to be noted that a passing Rossby wave
417 can cause fluctuations in divergence and convergence in the atmosphere at periodicities (typically 6-10 days, 12-20
418 days) corresponding to the Rossby waves at a particular site.

419

420 It was reported that Rossby waves account for more than 30% of monthly mean precipitation and more than
421 60% of surface temperature over many extra tropical regions and influence short-term extreme weather phenomena
422 (Schubert et al., 2011). Planetary waves affecting weather events severely for long duration of the order of months
423 have been reported by many researchers (Petoukhov et al., 2013; Screen and Simmonds, 2014; Coumou et al.,
424 2014). Screen and Simmonds (2014) found that in the mid latitudes, there was a strong association between
425 enhanced Rossby wave activity, surface temperature and extreme precipitation events in 1979–2012. Since slowly
426 propagating Rossby waves can influence weather at a particular site for long periods lasting more than few weeks, it
427 is can be seen the imprint of climatic variations of Rossby waves in weather events from monthly mean atmospheric
428 parameters.

429

430 To understand the present observation of different precipitation characteristics over different stations, it is
431 compared between monthly variation of PV in the upper troposphere and precipitation. Potential vorticity at 350K
432 surface is identified for investigating Rossby waves as their breakage (can be identified through reversal of

433 gradient in PV) at this level can lead to exchange of air at the boundary between the tropics and extra tropics
434 (Homeyer and Bowman, 2013). Similarly PV at 200 hPa pressure surface is more appropriate for identifying Rossby
435 wave breaking in the subtropical regions (Garfinkel and Waugh, 2014).

436

437 Since the Srinagar city is located on comparatively plain land than the other all six stations of the Kashmir
438 valley, precipitation associated with western disturbances here is under the direct influence of planetary-scale
439 Rossby waves. Accordingly, correlation between PV at the 350 K (located near the core of the subtropical jet,
440 Homeyer and Bowman, 2013) and 200 hPa pressure surfaces and precipitation is found significantly larger over
441 Srinagar than other stations. Orographic effects at other stations can have significant influence on planetary Rossby
442 waves. Therefore, PV (ERA-Interim data, Dee et al., 2011) in the upper troposphere varies in accordance with
443 precipitation, which is clearly depicted in Fig. 7, during the entire years of 1984, 1987, 1988, 1990, 1993, 1994,
444 1995, 1996, 1999, 2006 and 2009. In general, it is observed that sometimes PV at 350K surface and at other times at
445 200 hPa pressure surface follows precipitation. This would be due to the influence of Rossby waves generated due to
446 baroclinic or and barotropic instabilities. Particularly, the correlation between PV (sometimes either one or both) and
447 precipitation is significantly positive during the Indian summer monsoon months of June-September for all the years
448 from 1980 to 2009 except 1983, 1985, 1989, 2000-2005 and 2009. At present it is not known why this relation
449 became weak during 1999-2010.

450

451 For Kokarnag (Fig. 8), the topography of which is similar to Srinagar but it is located in the vicinity of high
452 mountains, the relation between PV and precipitation particularly during the Indian summer-monsoon is almost
453 similar to that of Srinagar during 1983, 1985, 1989, 1991, 1998, 1999, 2000-2005.. The deterioration of the link
454 between PV and rainfall over Kokarnag and Srinagar during 1999-2010 is intriguing and it may be associated with
455 climate change. In the northern Kashmir region of Kupwara (Fig. 9), msl higher by ~1 km than Srinagar, the relation
456 between PV and precipitation is good in the years 1982-1983, 1985-1988, 1990-1994, 1995-1996, 1999, and 2006.
457 Similar to Srinagar and Kokarnag, Kupwara also shows a poor link during 1999-2010. Particularly during the
458 summer monsoon period, the PV-precipitation relation is good in all the years except 1989, 1998, 2000-2005, and
459 2009. One interesting observation is that in 1983, 1985 and 1991 the correlation between PV and precipitation for
460 Kupwara is better than Srinagar and Kokarnag. Since Kupwara is located near elevated Greater Himalayan mountain
461 range, Rossby waves associated with topography would have contributed to the good correlation between PV and
462 precipitation here, which is not the case for Srinagar and Kokarnag. In the case of Pahalgam, (Fig.10), located near
463 the Greater Himalayas, generally the link between PV and precipitation is good in almost all the years 1980-2016
464 but with a difference that sometimes both the PVs and on other times only either of them follow precipitation.
465 Particularly during summer monsoon months, similar to Kupwara, these years 1989, 2000-2003, 2005 and 2009
466 show poor correlation. In general, precipitation near the Greater Himalayas is significantly influenced by Rossby
467 waves associated with topography.

468

469 For the hilly station of Qazigund (Fig. 11), located in the south Kashmir region (above ~3 km msl) near the
470 foot hills of Pir Panjal mountain range, the relation between PV and precipitation is better than that of the northern
471 station Kupwara. For example, in 1988, the relation is much better over Qazigund than Kupwara. However the
472 opposite is true in 1987. Interestingly, in 1985, both Kupwara and Qazigund show similar variation in PV and
473 precipitation. This may be due to the effect of the nature of limited equatorward propagation of Rossby waves from
474 mid-latitudes. In 1995, 1997 and 1998, PV and precipitation follow similar time variation at both Kupwara and
475 Qazigund except for January-March during which precipitation over Qazigund but not Kupwara follows PV.
476 Interestingly, in the whole year of 1999, precipitation at both the stations, follows exceedingly well with PV;
477 however in 1998, only Qazigund but not Kupwara shows good relation. In 2009, precipitation does not follow PV
478 for both the stations. Interestingly in all the months of 2006, PV follows well with precipitation for both Kupwara
479 and Qazigund. However in September, Kupwara but not Qazigund shows good relation. In 2004, only PV at 350K
480 surface follows well with precipitation for both the stations. For the summer monsoon period of June-September,
481 these years, namely, 1983, 1985, 1989, 1990, 2000-2003, 2005, 2007-2009, do not show good correlation, which is
482 almost similar to Srinagar and Kokarnag.

483

484 In the case of Gulmarg (Fig. 12), PV and precipitation follow each other well in the years of 1988, 1993,
485 1994 and 1995. In 1996, during the Indian summer monsoon period of June-September, only PV at 350K surface
486 follows precipitation. Overall, during the summer monsoon period, the relationship between PV and precipitation is
487 appreciable for all the years except for 1983, 1989, 1990, 1999 and 2000-2009, which is almost similar to Kupwara
488 and Pahalgam. It may be noted that these stations are located near relatively elevated mountains and hence
489 topographically induced Rossby waves could have contributed to this good relation. The observations suggest that
490 high altitude mountains affect the precipitation characteristics through topography generated Rossby waves. The
491 interesting finding here is that irrespective of the different heights of mountains, all the stations show that during
492 1999-2010 the correlation between upper tropospheric PV and surface precipitation found to be poor, indicating that
493 some unknown new atmospheric dynamical concepts would have played significant role in disturbing the
494 precipitation characteristics significantly over the western Himalayan region. This issue needs to be addressed in the
495 near future by invoking suitable theoretical models so that predictability of extreme weather events can be improved
496 in the mountainous Himalaya.

497

498 During 2011-2016 (Fig. 13), it may be observed that for Gulmarg the link between PV and precipitation
499 holds good in general for all these years except around July 2012, July-December 2013 and 2015. It is interesting to
500 note here that during the historical flood event of September 2014, the PV and precipitation follow each other but in
501 the preceding and following years of 2013 and 2015 their linkage is poor as noted earlier. Similarly, all the other
502 stations (Srinagar, Pahalgam, Kokarnag, Kupwara, and Qazigund) also show that the link between PV and
503 precipitation is good around September 2014. This would indicate clearly that the extreme weather event occurred
504 during September 2014 is due to intense large-scale Rossby wave activity rather than any localized adverse
505 atmospheric thermodynamical conditions such as local convection. In Srinagar, most of the times PV and

506 precipitation follow each other very well as observed during January 2011-June 2012, January-July of 2013 & 2014,
507 whole 2015 and 2016. In Qazigund, this relation is good only during January-July and September-October 2014,
508 during the entire 2015 and 2016 (similar to Srinagar). For Kupwara, PV follows precipitation well during whole of
509 2011, January-July 2012, January-May 2013, January-November 2014, whole of 2015 and 2016. In the case of
510 Kokarnag, good relation is observed during March-August 2012, January-June 2013 and 2014, around September
511 2014. In contrast, the relationship is very poor in the entire years of 2015 and 2016. Pahalgam interestingly shows
512 good correlation between PV and precipitation during the whole years of 2011 and 2012. In 2013, 2014, 2015 and
513 2016, it is good only during January-June in addition to exceptionally good in September 2014.

514

515 Finally, it may be observed that the ERA-interim reanalysis data of meridional wind velocity (12UT) at ~3
516 km altitude above the mean seal level show alternating positive (southerly) and negative values, resembling the
517 atmospheric Rossby waves in the subtropical region during 1-6 September 2014 (Fig. 14). The meridional winds
518 associated with Rossby waves could be easily noted to have their extensions in both the Arabian Sea and Bay of
519 Bengal, indicating that water vapour from both the regions was transported towards the Jammu and Kashmir, India
520 region as the converging point of Rossby waves was located near this region. It may be easily noticed that the waves
521 got strengthened on 4th and weakened on 5th and ultimately dissipated on 6th September. This dissipation of Rossby
522 waves led to dumping of the transported water vapour over this region thus caused the historical-record heavy-
523 flooding during this period. This is one clear example of how synoptic scale Rossby waves can reorganize water
524 vapour over large scale and lead to extreme rainfall event. It is well known that subtropical westerly jet is one of
525 many important sources of Rossby waves in the mid to tropical latitudes. If the subtropical jet drifts climatically
526 northward then the surface weather events associated with them also will drift similarly, leading to unusual weather
527 changes climatically.

528

529 Published reports Barnes and Polvani, 2013; Lu et al., 2014) indicate that long-term variations in Rossby
530 wave breaking activities and stratospheric dynamics have close association with global climate change. (Meridional
531 shift of the center of subtropical jets, arising due to enhanced polar vortex and upper-tropospheric baroclinicity are
532 possible due to the consequences of global warming, has been successfully linked to climatic changes in Rossby
533 wave breaking events caused by baroclinic instabilities (Wittman et al., 2007; Kunz et al., 2009; Rivière, 2011;
534 Wilcox et al., 2012). The long-term increase in the tropospheric warming arising due to baroclinic forcing of Rossby
535 waves is more prominent in the mid-latitudes than in the tropical regions (Allen et al., 2012; Tandon et al., 2013).
536 This mid-latitude warming plays a critical role in driving poleward shift of the subtropical jet responding to climate
537 change (Ceppi et al., 2014). It is to be remembered that the combined effect of tropospheric baroclinic forcing
538 (warming) and stratospheric polar vortex can gradually move the subtropical jet from about 27° to 54° (Garfinkel
539 and Waugh, 2014). Using Global circulation models (GCM), linear wave theory predicts that in response to
540 increased greenhouse gas (GHG) forcing, mid-latitude eddy-driven jets, arising due to strong coupling between
541 synoptic scale eddy activity and jet streams in both the hemispheres, will be shifted poleward (Fourth report of
542 Intergovernmental Panel on Climate Change (IV-IPCC), Meehl et al., 2007). However, mid-latitude Rossby waves

543 and the associated wave dissipation in the subtropical region are predicted to move climatologically towards equator
544 due to the spherical geometry of the Earth (Hoskins et al., 1977; Edmon et al., 1980). This propagation of location of
545 wave breaking towards the equator will have long-term (climatic) impact on relation between variations in upper
546 tropospheric PV associated with Rossby waves and surface precipitation in the subtropical latitude regions. This
547 may be one of the reasons that during 1999-2010, the relation between PV and precipitation became poor as
548 observed in the present study.

549

550 Regarding surface temperature, except for its linear long-term trend, there is no clear evidence of strong
551 link between variations in the upper tropospheric potential vorticities and surface temperature for all the six stations
552 mentioned. It seems that long-term (climatic) variations in the upper tropospheric vorticities have significantly less
553 influence on surface temperature variations.

554

555

556 **5. Conclusions**

557

558

559 In this study, trends and variations in surface temperature and precipitation over the Jammu and
560 Kashmir, India region of the western Himalayas are carried out for a period of 37 years during 1980-2016. Analyses
561 of the observations reveal that the annual temperature increased by 0.8°C during this period. Higher increase in
562 annual temperature accompanied by insignificant decrease in annual precipitation is noted for stations located at
563 higher altitudes. Long-term variation of winter temperature and precipitation has good correlation with winter NAO
564 index. To provide more conclusive evidence on our observations, we employed WRF model simulations which
565 show good correlation of 0.85 with the observed data. It is found that in the recent decades, precipitation associated
566 with both the monsoons and western disturbances has been decreasing significantly. While the monsoon deficiency
567 is associated with decreasing difference in surface temperature between the Indian landmass and nearby Indian
568 Ocean, the deficiency associated with western disturbances during winter is due to the climatic northward
569 displacement of the subtropical westerly jet. This subtropical jet wind helps to enhance the moisture transport
570 associated with disturbances from the tropical Atlantic Ocean, Mediterranean and Caspian Seas to the Himalayan
571 region. Regarding historical extreme weather event associated with September 2014 floods in Jammu and Kashmir,
572 it is found that breaking of intense Rossby wave activity over Kashmir played an important role as the wave could
573 transport lots of water vapor from both the Bay of Bengal and Arabian Sea and dump them here through its breaking
574 during the first week of September, 2014, leading to the extreme rainfall event measuring more than 620 mm in
575 southern parts of the Kashmir.

576

577

578

579 **Acknowledgements:**

580
581 Thanks are due to the India Meteorological Department, Pune, India, ERA-Interim reanalyses and WRF model
582 simulation teams for the data of meteorological parameters employed in the present work. Prof. Shakil Romshoo and
583 Dr. Sumaira Zaz gratefully acknowledge the support of the Department of Science and Technology (DST),
584 Government of India under the research project titled “Himalayan Cryosphere: Science and Society”. Dr. T. K.
585 Ramkumar and Dr. V. Yesubabu acknowledge the support of Dept. of Space, Govt. of India. The authors express
586 gratitude to the two anonymous reviewers and Editor for their valuable comments and suggestions on the earlier
587 version of the manuscript that has greatly improved its content and structure.

588
589

590 **References:**

591
592 Allen, R. J., Sherwood, S. C., Norris, J. R. and Zender, C. S.: Recent Northern Hemisphere tropical expansion
593 primarily driven by black carbon and tropospheric ozone, *Nature*, 485, 350–354, doi:10.1038/nature11097, 2012.
594
595 Archer, D. R. and Fowler, H. J.: Spatial and temporal variations in precipitation in the Upper Indus Basin, global
596 teleconnections and hydrological implications, *J. of Hyd. and Earth Sys. Sci.*, 8, 47–61, 2004.
597
598 Barnes, E. A., S. Solomon, and L. M. Polwani, Robust wind and precipitation responses to the Mount Pinatubo
599 eruption, as simulated in the CMIP5 Models, *J. of Clim.*, DOI: 10.1175/JCLI-D-15-0658.1, 2016.
600
601 Barnes, E. A. and Polvani, L.: Response of the mid latitude jets, and of their variability, to increased greenhouse
602 gases in the CMIP5 models, *J. Climate*, 26, 7117–7135, doi:10.1175/JCLI-D-12-00536.1, 2013.
603
604 Bartels, J., Peters, D. and Schmitz, G.: Climatological Ertel’s potential vorticity flux and mean meridional
605 circulation in the extratropical troposphere–lower stratosphere, *Ann. Geophys.*, 16, 250–265, 1998.
606
607 Beniston, M.: Impact of climatic change on water and associated economic activities in the Swiss Alps, *J. of
608 Hydrology*, 1-6, 2010.
609
610 Bhutiyani, M. R., Kale, V. S. and Pawar, N. J.: Long-term trends in maximum, minimum and mean annual air
611 temperatures across the north western Himalaya during the 20th century, *Climatic Change*, 85, 159–177, 2007.
612

613 Bhutiyani, M. R., Kale, V. S. and Pawar, N. J.: Climate change and the precipitation variations in the north western
614 Himalaya: 1866–2006, *Int. J. of Climatology*, 30(4), 535–548, 2009.

615

616 Bhutiyani, M. R., Kale, V. S. and Pawar, N. J.: Climate change and the precipitation variations in the north western
617 Himalaya: 1866–2006, *Int. J. of Climatology*, 30, 535-548, 2010.

618

619 Bolch, T., Kulkarni, A., Kaab. Al.: The state and fate of Himalayan glaciers, *Science*, 336, 310-314, 2012.

620

621 Bookhagen, B.: Appearance of extreme monsoonal rainfall events and their impact on erosion in the Himalaya.
622 *Geomatics, Natural Hazards and Risk*, 1(1), 37-50. Doi: 10.1080/19475701003625737, 2010.

623

624 Borgaonkar, H. P. and Pant, G. B.: Long-term climate variability over monsoon Asia as revealed by some proxy
625 sources, *Mausam*, 52, 9–22, 2001.

626

627 Ceppi, P., Zelinka, M. D. and Hartmann, D. L.: The response of the southern hemispheric eddy-driven jet to future
628 changes in shortwave radiation in CMIP5, *Geophys. Res. Lett.*, 41, 3244–3250, doi:10.1002/2014GL060043, 2014.

629

630 Chang, E. K. M. and Yu, D. B.: Characteristics of Wave Packets in the Upper Troposphere. Part I: Northern
631 Hemisphere Winter, *J. Atmos. Sci.*, 56, 1708–1728, 1999.

632

633 Chen, J. and Gupta, A. K.: *Parametric Statistical Change Point Analysis*, Birkhauser, Boston, MA, 240, 2012.

634

635 Collins, D.: Climatic warming, glacier recession and runoff from Alpine basins after the Little Ice Age maximum.
636 *Ann. of Glac.*, 48(1), 119–124, 2008.

637

638 Coumou, D., Petoukhov, V., Rahmstorf, S., Petri, S. and Schellnhuber, H. J.: Quasi-resonant circulation regimes and
639 hemispheric synchronization of extreme weather in boreal summer, *P. Natl. Acad. Sci. USA*, 111, 12331–12336,
640 doi:10.1073/pnas.1412797111, 2014.

641

642 Dar, R. A., Romshoo, S. A., Chandra, R. and Ahmad, I.: Tectono-geomorphic study of the 4 Karewa Basin of
643 Kashmir valley, *J. of Asian Earth Sciences*, 92, 143–156, 2014.

644

645 Das, M. R., Mukhopadhyay, R. L., Dandekar, M. M. and Kshirsagar, S. R.: Pre-monsoon western disturbances in
646 relation to monsoon rainfall, its advancement over NW India and their trends, *Current Science*, 82(11), 1320-1321,
647 2002.

648

649 Dee, D. P. and Coauthors: The ERA-Interim reanalysis: Configuration and performance of the data assimilation
650 system, Quart. J. of Royal Met. Soc., 137, 553–597, doi:10.1002/qj.828, 2011.

651

652 Dimri, A. P., Niyogi, D., Barros, A. P., Ridley, J., Mohanty, U. C., Yasunari, T. and Sikka, D. R.: Western
653 Disturbances: A Review, Rev. of Geophys., 2014RG000460, Doi: 10.1002/2014RG000460, 2015.

654

655 Dimri, A. P. and Dash. S. K.: "Winter time climatic trends in the western Himalayas," Climatic Change, Springer,
656 111(3), pages 775-800, 2012.

657

658 Edmon, H. J., Hoskins, B. J. and McIntyre, M. E.: Eliassen-Palm cross sections for the troposphere, J. Atmos. Sci.,
659 37, 2600–2615, 1980.

660

661 Epstein, P. R. et al.: Extreme Weather Events: The Health and Economic Consequences of the 1997/98 El Niño and
662 La Niña. Center for Health and the Global Environment, Harvard Medical School, Boston. Database available on
663 website [<http://www.chge2.med.harvard.edu/enso/disease.html>], 1998.

664

665 Ertel, H.: Einneuer hydrodynamischer Wirbelsatz. Meteor. Z., 59, 277–281, 1942.

666

667 Folland, C. K., Rayner, N. A., Brown, S. J., Smith, T. M., S. P. Shen, Parker, D. E., Macadam, I., Jones, P. D.,
668 Nicholls, R. N. N. and Sexton, D. M. H.: "Global temperature change and its uncertainties since 1861," Geophys.
669 Res. Lett., 28, 2621-2624, DOI:10.1029/2001GL012877, 2001.

670

671 Gao, P., Mu, X. M., Wang, F., and Li, R.: Changes in stream flow and sediment discharge and the response to
672 human activities in the middle reaches of the Yellow River, Hydrology and Earth System Sciences, 15, 1–10, 2011.

673

674 Garfinkel, C. I. and Waugh, D. W.: Tropospheric Rossby wave breaking and variability of the latitude of the eddy-
675 driven jet, J. of Cli., 27, 7069-7085, DOI: 10.1175/JCLI-D-14-00081.1, 2014.

676

677 Ghasemi, A. R.: Changes and trends in maximum, minimum and mean temperature series in Iran, Atmos. Sci. Lett.,
678 16, 201-230, 2015.

679

680 Ghasemi, A. R.: Changes and trends in maximum, minimum and mean temperature series in Iran, DOI:
681 10.1002/asl2.569, Atmos. Sci. Lett., 16, 366–372, 2015.

682

683 Groisman, Pavel, Ya, Karl, T. R., Richard, Knight, W., Georgiy, L. and Stenchikov: Changes of snow cover,
684 temperature, and radiative heat balance over the Northern Hemisphere, J. of Climate, 7:1633–1656, 1994.

685

686 Hansen, A. R., Nastrom, G. D. and Eaton, F. D.: Seasonal variation of gravity wave activity at 5–20 km observed
687 with VHF radar at White Sands Missile Range, New Mexico. *J. of Geophys. Res.*, 106: doi:
688 10.1029/2001JD900137. issn: 0148-0227, 2001.

689

690 Hewitt, K.: ‘The Karakoram anomaly? Glacier expansion and the ‘elevation effect,’ Karakoram, Himalaya.’
691 *Mountain Research and Development*, 25(4), 332-340, 2005.

692

693 Hijioka, Y., Lin, E., Pereira, J. J., Corlett, R. T., Cui, X., Insarov, G. E., Lasco, R. D., Lindgren, E. and Surjan, A.:
694 Asia. In: Barros VR et al. (eds), *Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional*
695 *Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of*
696 *Climate Change*. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2014.

697

698 Homeyer, C. R. and Bowman, K. P.: Rossby Wave Breaking and Transport between the Tropics and Extratropics
699 above the Subtropical Jet, *J. of Atmos. Sci.*, 70, 607-626, DOI: 10.1175/JAS-D-12-0198.1, 2013.

700

701 Hoskins, B. J., Simmons, A. J. and Andrews, D. G.: Energy dispersion in a barotropic atmosphere, *Quart. J. Roy.*
702 *Meteor. Soc.*, 103, 553–567, 1977.

703

704 Hoskins, B. J., McIntyre, M. E. and Robertson, A. W.: On the use and significance of isentropic potential vorticity
705 maps, *Quart. J. Roy. Meteor. Soc.*, 111, 877–946, 1985.

706

707 Hunt, K. M. R., Turner, A. G. and Shaffrey, L. C.: Extreme daily rainfall in Pakistan and north India: scale-
708 interactions, mechanisms, and precursors, *Mon. Wea. Rev.*, 146 (4), 1005-1022. ISSN 0027-0644
709 DOI <https://doi.org/10.1175/MWR-D-17-0258.1>, 2018a.

710

711 Hunt, K. M. R., Turner, A. G. and Shaffrey, L. C.: The evolution, seasonality and impacts of western disturbances,
712 *Quart. J. Roy. Meteor. Soc.*, 144 (710), 278-29. ISSN 1477-870X, <https://doi.org/10.1002/qj.3200>, 2018b.

713

714 Hurrell, J. W. and van Loon, H.: Decadal variations in climate associated with the North Atlantic Oscillation,
715 *Climatic Change*, 36, 301–326, *Res. Lett.*, 23, 665–668, 1997.

716

717 Immerzeel, W., Van Beek, L. P. H. and Bierkens, M. F. P.: Climate change will affect the Asian water towers.
718 *Science*, 328, 1382-1385, 2010.

719

720 IPCC Climate Change 2013: . T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels,
721 Y. Xia, V. Bex, P.M. Midgley (Eds.), *The Physical Science Basis. Contribution of Working Group I to the Fifth*

722 Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge,
723 United Kingdom and New York, NY, USA, 1535, 2013.

724

725 IPCC Climate change (2001): Impacts, adaption and vulnerability. Contribution of Working Group II to the Third
726 Assessment Report of the Intergovernmental Panel of Climate Change, Intergovernmental Panel on Climate Change,
727 Cambridge, U.K, 2001.

728

729 Iqbal, M. J. and Kashif, I.: Influence of Icelandic Low pressure on winter precipitation variability over northern part
730 of Indo-Pak Region Arabian, J. of Geosc., 6, 543–548, DOI 10.1007/s12517-011-0355-y, 2013.

731

732 Jones, P. D., Osborn, T. J. and Briffa, K. R.: The evolution of climate over the last millennium, Science, 292, 662–
733 667, 2001.

734

735 Niranjan Kumar, K., Phanikumar, D. V., Ouarda, T. M. B. J., Rajeevan, M., Naja, M. and Shukla, K. K.: Modulation
736 of surface meteorological parameters by extratropical planetary-scale Rossby waves, Ann. Geophys., 34, 123–132,
737 doi:10.5194/angeo-34-123-2016, 2016.

738

739 Kaul, V. and Qadri, B. A.: Seasons of Kashmir. Geographic Revision India. 41(2), pp123-130, 1979.

740

741 Khattak, M. S., Babel M. S., and Sharif, M.: Hydro-meteorological trends in the upper Indus River basin in
742 Pakistan,” Inter-Research, Climate Research, 46, 103–119, 2011 doi: 10.3354/cr00957, 2011.

743

744 Knutti, R., Rogelj, J., Sedláček, J., Fischer, E. M.: A scientific critique of the two-degree climate change target,
745 Nature Geoscience, 9(1), 13–18, 2016.

746

747 Kohler, T. and Maselli, D.: Mountains and climate change from understanding to action. Berne: Swiss Agency for
748 Development and Cooperation, 2009.

749

750 Kulkarni, A. V., Mathur, P., Rathore, B. P., Suja Alex., Thakur, N. and Manoj et al.: Effect of global warming on
751 snow ablation pattern in the Himalaya. Current Science, 83, 120– 123, 2002.

752

753 Kumar, N. Yadav, B. P., Gahlot, S and Singh, M.: Winter frequency of western disturbances and precipitation
754 indices over Himachal Pradesh, India: 1977-2007. Atmósfera 28(1), 63-70.Doi:
755 [http://dx.doi.org/10.1016/S0187\(6236\(15\)72160\)0](http://dx.doi.org/10.1016/S0187(6236(15)72160)0), 2015.

756

757 Kumar, V and Jain, S. K.: Trends in seasonal and annual rainfall and rainy days in Kashmir valley in the last
758 century, Quaternary International. doi:10.1016/j.quaint.2009.08.006, 2009.

759

760 Kunz, T., Fraedrich, K. and Lunkeit, F.: Response of idealized baroclinic wave life cycles to stratospheric flow
761 conditions, *J. Atmos. Sci.*, 66, 2288–2302, doi:10.1175/2009JAS2827.1, 2009.

762

763 Lau, W. K. M. and Kim, K-M.: The 2010 pakistan flood and Russian heat wave: Teleconnection of hydro
764 meteorological Extremes, *J. of Hydro Meteorological*, 13(1), 392-403, DOI:10.1175/jhm-D-11-016.1, 2012.

765

766 Langodan S., Yesubabu V., Hoteit I.: The impact of atmospheric data assimilation on wave simulations in the Red
767 Sea, *Ocean Engineering*, 116, 200-215, doi:10.1016/j.oceaneng.2016.02.020, 2016.

768

769 Liu, X, Cheng, Z., Yan, L., Yin, Z. Y.: Elevation dependency of recent and future minimum surface air temperature
770 trends in the Tibetan Plateau and Its surroundings. *Global Planet Change* 68: 164-174, 2009.

771

772 Liu, X. B. and Chen.: Climatic warming in the Tibetan Plateau during recent decades, *J. of Clim.*, 20, 1729–1742,
773 2000.

774

775 Lo, J. C. F., Yang, Z. L., Pielke, R. A. Sr.: Assessment of three dynamical climate downscaling methods using the
776 weather research and forecasting (WRF) model, *J. Geophys. Res.* 113. D09112, doi: 10.1029/2007JD009216, 2008.

777

778 Lu, J., Sun, L., Wu, Y. and Chen, G.: The role of subtropical irreversible PV mixing in the zonal mean circulation
779 response to global warming-like thermal forcing, *J. Climate*, 27, 2297–2316, doi:10.1175/JCLI-D-13-00372.1, 2014.

780

781 Madala, S., Satyanarayana, A. N. V., Narayana Rao, T.: Performance evaluation of PBL and cumulus
782 parameterization schemes of WRF ARW model in simulating severe thunderstorm events over Gadanki MST radar
783 facility — Case study, *Atmos. Res.*, 139, 1-17, doi:10.1016/j.atmosres.2013.12.017, 2014.

784

785 Madhura, R. K., Krishnan, R., Revadekar, J. V., Mujumdar, M. and Goswami, B. N.: Changes in western
786 disturbances over the Western Himalayas in a warming environment. *Climate Dynamics*, 44, 3-4, 1157-1168, Doi:
787 10.1007/s00382-014-2166-9, 2015.

788

789 Mann, M. E., Bradley, R. S. and Hughes, M. K.: Northern Hemisphere Temperature During Past Millennium:
790 Inferences, uncertainties and Limitations, *Geophys. Res. Lett.*, 26(6), 759-762, 1999.

791

792 Martius, O., Sodemann, H., Joos, H., Pfahl, S., Winschall, A., Croci-Maspoli, M., Graf, M., Madonna, E., Mueller,
793 B., Schemm, S., Sedlaćek, J. Sprenger M, Wernli H.: The role of upper-level dynamics and surface processes for
794 the Pakistan flood of July 2010, *Q. J. R. Meteorol. Soc.*, 139, 1780–1797, doi:10.1002/qj.2082, 2012.

795

796 McIntyre, M. E. and Palmer, T. N.: Breaking planetary waves in the stratosphere. *Nature*, 305, 593–600, 1983.

797

798 Meehl, G. A., Covey, C., Delworth, T., Latif, M., McAvaney, B., Mitchell, J. F. B., Stouffer, R. J. and Taylor, K. E.:

799 The WCRP CMIP3 multi-model dataset: A new era in climate change research, *Bull. Amer. Meteor. Soc.*, 88, 1383–

800 1394, 2007.

801

802 Mooley, D. A. and Parthasarthy, B.: Fluctuations of all India summer monsoon rainfall during 1871–1978. *Climate*

803 Change, 6, 287–301, 1984.

804

805 Murtaza, K. O. and Romshoo, S. A.: Recent Glacier Changes in the Kashmir Alpine Himalayas, India, *Geocarto*

806 International, 32 (2), 188-205, 2016.

807

808 Nibanupudi, H. K., Gupta, A. K., and Rawat, P. K.: Mountain Hazards and Disaster Risk, (2015): Mitigating

809 Climatic and Human Induced Disaster Risks Through Ecosystem Resilience: Harmonizing Built and Natural

810 Environments in the KHK Region, editedby: Nibanupudi, H. K. and Shaw, R., 139–158, doi:10.1007/978-4-431-

811 55242-0, Springer, Tokyo, Japan, 2015.

812

813 Peters, G. P., Andrew, R. M., Boden, T., Canadell, J. G., Ciais, P., Le Quéré C., et al.: The challenge to keep global

814 warming below 2°C, *Nature*, *Climate Change*, 3(1), 4–6, 2013.

815

816 Petoukhov, V., Rahmstorf, S., Petri, S., and Schellnhuber, H. J.: Quasi resonant amplification of planetary waves

817 and recent Northern Hemisphere weather extremes, *P. Natl. Acad. Sci., USA*, 110, 5336–5341, 2013.

818

819 Pettitt, A. N.: A non-parametric approach to the change point problem, *App. Stats.*, 28, 126–135, 1979.

820

821 Postel, G. A., and Hitchman, M. H.: Climatology of Rossbywave breaking along the subtropical tropopause, *J.*

822 *Atmos. Sci.*, 56,359–373, 1999.

823

824 Priyanka Ghosh, Ramkumar, T. K., Yesubabu, V. and Naidu, C. V.: Convection-generated high-frequency gravity

825 waves as observed by MST radar and simulated by WRF model over the Indian tropical station of Gadanki, *Q. J. R.*

826 *Meteorol. Soc.*, DOI:10.1002/qj.2887, 2016.

827

828 Radziejewski, M., Bardossy, A., Kundzewicz, Z. W.: Detection of change in river flow using phase randomization,

829 *Hydrological Sciences Journal*, 45, 547–558, 2000.

830

831 Rashid, .I, Romshoo, A. S., Chaturvedi, R. K., Ravindranath, N. H., Raman Sukumar, Mathangi Jayaraman,
832 Thatiparthi Vijaya Lakshmi and Jagmohan Sharma: Projected Climate Change Impacts on Vegetation Distribution
833 over Kashmir Himalaya, Climatic Change, DOI: 10.1007/s10584-015-1456-5, 2015.

834

835 Rasmussen, K. L. R., and Houze, R.: A Flash-Flooding Storm At The Steep Edge Of High Terrain: Disaster in the
836 Himalayas, Bull. Ame. Meteorol. Soc., 93, 1713-1724, doi:10.1175/BAMS-D-11-00236.1, 2012.

837

838 Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich , M. G., Schubert, S. D.,
839 Takacs, L., Kim, G.-K., Bloom, S., Chen, J., Collins, D., Conaty, A., daSilva, A., Gu, W., Joiner, J., Koster, R. D.,
840 Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P., Redder, C. R., Reichle, R., Robertson, F. R. , Ruddick,
841 A. G., Sienkiewicz, M., and Woollen, J.: MERRA: NASA's Modern-Era Retrospective Analysis for Research and
842 Applications, J. Climate, 24, 3624–3648, doi:10.1175/JCLI-D-11-00015.1, 2011.

843

844 Rivière, G.: A dynamical interpretation of the poleward shift of the jet streams in global warming scenarios, J.
845 Atmos. Sci., 68, 1253–1272, doi:10.1175/2011JAS3641.1, 2011.

846

847 Roe, G. H., Montgomery, D. R. and Hallet, B.: Orographic climate feedbacks and the relief of mountain ranges, J. of
848 Geophys. Res., 108, doi: 10.1029/2001JB001521, 2003.

849

850 Romatschke, U., and Houze, R.: Characteristics of Precipitating Convective Systems in the Premonsoon Season of
851 South Asia, J. Hydrometeorology, 12, 157-180, doi:10.1175/2010JHM1311.1, 2011.

852

853 Romshoo, S. A. and Rashid, I.: Assessing the impacts of changing land cover and climate on Hokarsar wet land in
854 Indian Himalayas, Arabian J. of Geoscience, DOI: 10.1007/s12517-012-0761-9, 7 (1): 143-160, 2014.

855

856 Romshoo, S. A., Altaf, S., Rashid, I, and Dar, R. A.: Climatic, geomorphic and anthropogenic drivers of the 2014
857 extreme flooding in the Jhelum basin of Kashmir, India. Geomatics, Natural Hazards and Risk, 9 (1), 224-248, 2017.

858

859 Romshoo, S. A., Dar, R. A., Rashid, I., Marazi, A., Ali, N. and Zaz, S. N.: Implications of Shrinking Cryosphere
860 under Changing Climate on the Stream flows of the Upper Indus Basin, Arctic, Antarctic and Alpine Research,
861 47(4), 627-644, ISSN: 1938-4246, 2015.

862

863 Schubert, S., Wang, H., and Suarez, M.: Warm season subseasonal variability and climate extremes in the Northern
864 Hemisphere: The Role of Stationary Rossby Waves, J. Clim., 24, 4773–4792, 2011.

865

866 Screen, J. A. and Simmonds, I.: Amplified mid-latitude planetary waves favour particular regional weather
867 extremes, Nature Climate Change, 4, 704–709, 2014.

868

869 Sharif, M., Archer, R. D., Fowler, J. H. and Forsythe, N.: Trends in timing and magnitude of flow in the Upper
870 Indus Basin. *Hydrology and Earth System Science*. 9, 9931–9966, 2012.

871

872 Sheikh, M. M., Manzoor, N., Adnan, M., Ashraf, J. and Khan, A. M.: Climate Profile and pastclimate changes in
873 Pakistan GCISC-RR-01Global Change Impact studies Center Islamabad, Pakistan, ISBN: 978-969-9395-04, 2009.

874

875 Shekhar, M. S., Chand, H., Kumar, S., Ganju, Ashwagosh: Climate change studies in western Himalaya, *Annals of*
876 *Glaciology* 51(54):105-112, 2010.

877

878 Shrestha, A. B., Wake, C. P., Dibb, J. E. and Mayewski, P. A: Precipitation fluctuations in the Nepal Himalaya and
879 its vicinity and relationship with some large scale climatological parameters, *Int. J. of Climatology*, 20, 317–327,
880 1999.

881

882 Shrestha, M. L.: Interannual variation of summer monsoon rainfall over Nepal and its relation to Southern
883 Oscillation Index, *Meteor. and Atmos. Physics*, 75, 21–28, doi: 10.1007/s007030070012, 2000.

884

885 Singh, P., Kumar, V., Thomas, M., Arora et al.: Changes in rainfall and relative humidity in river basins in
886 northwest and central India *Hydrological Processes*, 22, 16, 2982-2992, 2008.

887

888 Sinha Ray, K. C. and Srivastava, A. K.: Is there any change in extreme events like drought and heavy rainfall? *Curr.*
889 *Sci. India*, 79, 155–158, 2000.

890

891 Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. and Miller, H. L. (eds):
892 *Climate change 2007: the physical science basis*, 2007.

893

894 Srinivas, C. V., Hariprasad, D., Bhaskar Rao, D. V., Anjaneyulu, Y., Baskaran, R., Venkatraman, B.: Simulation of
895 the Indian summer monsoon regional climate using advanced research WRF model, *Int. J. Climatol.*, 33, 1195-1210.
896 doi:10.1002/joc.3505, 2013.

897

898 Srinivasa, C. V., Yesubabu, V., Hari Prasad, D., Hari Prasad, K. B. R. R., Greeshmaa, M. M., Baskarana, R.,
899 Venkatramana, B.: Simulation of an extreme heavy rainfall event over Chennai, India using WRF: Sensitivity to grid
900 resolution and boundary layer physics, 210: 66–82, 2018.

901

902 Swanson, D. K., Wooten and Orr, T.: Buckets of Ash Track Tephra Flux FromHalema’uma’u Crater, Hawai’i, *Eos*
903 *Trans.. AGU*, 90(46), 427, 2009.

904

905 Syed, F. S., Giorgi, F., Pal, J. S., King, M. P.: Effect of remote forcings on the winter precipitation of central
906 southwest Asia part 1: observations, *Theor. Appl. Climatol.*, doi:10.1007/200704-005-0217-1, 2006.

907

908 Tandon, N. F., Gerber, E. P. Sobel, A. H. and Polvani, L. M.: Understanding Hadley cell expansion versus
909 contraction: Insights from simplified models and implications for recent observations, *J. Climate*, 26, 4304–4321,
910 doi:10.1175/JCLI-D-12-00598.1, 2013.

911

912 Thompson, L. G., Mosley-Thompson, E., Davis, M. E.. Lin, P. N., Henderson. K., et al.: “Tropical glacier and ice
913 core evidence of climate change on annual to millennial time scales”. *Climatic Change* 59: 137-155, 2003.

914

915 Viswanadhapalli, Y., Dasari, H. P., Langodan, S., Challa, V. S. and Hoteit, I: Climatic features of the Red Sea from
916 a regional assimilative model. *Int. J. Climatol.*, 37: 2563-2581. doi:10.1002/joc.4865, 2017.

917

918 Vose, R. S., Easterling, D. R. and Gleason, B.: Maximum and minimum temperature trends for the globe: an update
919 through 2004, *Geophys. Res. Lett.*, 32, 1–5, 2005.

920

921 Waugh, D. W., and Polvani, L. M.: Climatology of intrusions in to the tropical upper troposphere, *Geophys. Res.*
922 *Lett.*, 27, 3857–3860, 2000.

923

924 Wilcox, L. J., Charlton-Perez, A. and Gray, L. J.: Trends in austral jet position in ensembles of high-and low-top
925 CMIP5 models, *J. Geophys. Res.*, 117, D13115, doi:10.1029/2012JD017597, 2012.

926

927 Wiltshire, A. J.: Climate change implications for the glaciers of the Hindu-Kush Karakoram and Himalayan region.
928 *Cryosphere*, 7, 3717–3748, 2013.

929

930 Wittman, M. A., Charlton, A. J. and Polvani, L. M.: The effect of lower stratospheric shear on baroclinic instability,
931 *J. Atmos. Sci.*, 64, 479–496, doi:10.1175/JAS3828.1., 2007.

932

933 World Meteorological Organization: Guide to Meteorological practices, 2nd Ed.WMO No 168. Tech Paper, 82,
934 Geneva, Switzerland, 1970.

935

936 Yunling, H. and Yiping, Z.: Climate change from 1960-2000 in the Lancang River Valley, China, *Mountain*
937 *Research and Development*, 25, 341-348, 2005.

938

939 Zarenistana, K. M., Dhorde, A. G., and Kripalani, R. H.: Temperature analysis over southwest Iran: trends and
940 projections, *Theoretical and Applied Climatology*, 116, 103–117, 2014.

941

942 **Table:**

943

944 Table 1. Annual and Seasonal temperature trend in Kashmir Valley during 1980-2016

945 Table 2. Annual and Seasonal Precipitation trends in Kashmir valley during 1980-2016

946 Table 3: Mean temperature increase at each station from 1980 to 2016

947

948

949 **Table 1 Annual and Seasonal temperature trend in Kashmir Valley during 1980-2016**

950

Stations (Mann Kendall test)	Temperature Trends	Annual	Min	Max	Winter	Spring	Summer	Autumn	Abrupt Change (student's T test
Gulmarg Critical Values a=0.10 (1.654) a=0.05(1.96) a=0.01(2.567)	Increasing trend	S=0.01	S=0.01	S=0.1	S=0.05	S=0.01	NS	S=0.05	1995
	Z statistics	3.976	3.059	1.564	2.43	2.806	0.486	2.159	
Pahalgam	Increasing trend	S=0.01	S=0.01	S=0.01	S=0.01	S=0.01	S=0.1	S=0.05	1995
	Z statistics	4.119	3.6	3.519	3.118	3.438	1.71	2.416	
Srinagar	Increasing trend	S=0.05	S=0.1	S=0.01	S=0.05	S=0.05	S=0.1	NS	1995
	Z statistics	2.108	1.392	2.804	1.992	2.413	0.374	0.198	
Kupwara	Increasing trend	S=0.01	S=0.1	S=0.01	S=0.05	S=0.01	S=0.1	S=0.1	1995
	Z statistics	3.433	1.819	3.246	1.988	2.719	1.78	1.865	
Kokarnag	Increasing trend	S=0.01	S=0.05	S=0.01	S=0.01	S=0.01	S=0.1	S=0.1	1995
	Z statistics	3.467	2.363	3.11	3.195	3.195	1.46	0.68	
Qazigund	Increasing trend	S=0.1	S=0.1	S=0.1	S=0.05	S=0.05	NS	S=0.1	1995
	Z statistics	1.717	1.77	1.68	2.026	2.236	-0.714	-1.501	

951

952

953

954

955

956

957

958

959 **Table 2. Annual and Seasonal Precipitation trends in Kashmir valley during 1980-2016**

960

961

962

963

964

Stations (Mann Kendall test)	Precipitation Trends	Annual	Winter	Spring	Summer	Autumn	Abrupt Change (student' s T test
Gulmarg Critical Values a=0.10 (1.654) a=0.05(1.96) a=0.01(2.567)	decreasing trend	S=0.05	S=0.1	S=0.01	NS	NS	1995
	Z statistics	-1.988	-1.53	-2.515	-0.445	-0.394	
Pahalgam	decreasing trend	S=0.1	S=0.1	S=0.05	NS	NS	1995
	Z statistics	-1.442	-1.136	-2.151	-0.556	0.034	
Srinagar	decreasing trend	S=0.05	NS	S=0.01	NS	NS	1995
	Z statistics	-2.532	0.051	-2.060	-0.105	-1.003	
Kupwara	decreasing trend	S=0.1	S=0.1	S=0.01	NS	NS	1995
	Z statistics	-1.962	-0.817	-2.919	-0.986	-0.153	
Kokarnag	decreasing trend	S=0.1	S=0.1	S=0.05	NS	NS	1995
	Z statistics	-1.326	-1.53	-2.276	0.186	-0.119	
Qazigund	decreasing trend	S=0.05	NS	S=0.05	NS	NS	1995
	Z statistics	-1.275	-0.764	-2.413	0.359	-0.232	

965

966

967

968

969

970

971

972

973

974

975

976

977 **Table 3: Mean temperature increase at each station from during 1980-2016.**

Stations	Elevation in meters	Topography	Increase annual temperature in °C	978
Pahalgam	2600mts	Located on mountain top	1.13	980
Gulmarg	2740mts	Located on mountain top	1.04	981
Srinagar	1600mts	Located on plane surface in an urbanized area	0.55	982
Kupwara	1670mts	Located on plane surface bounded on three sides by mountains	0.92	983
Kokarnag	2000mts	Located on plane surface	0.99	984
Qazigund	1650mts	Located on plane surface	0.78	985

988

989

990

991 **Figure captions:**

992

993 Fig. 1 Geographical setting of the Kashmir valley (b) inside the Jammu and Kashmir state (a) of India (c) along with
994 marked locations of six meteorological observation stations: Srinagar, Gulmarg, Pahalgam, Kokarnag, Qazigund and
995 Kupwara

996

997 Fig. 2(a-g) Trends in surface temperature (°C) at the six interested locations of the Kashmir valley (a) for annual
998 mean temperature, (b) maximum temperature, (c) minimum temperature, (d) winter mean temperature during
999 December-February, (e) spring mean temperature (March-May), (f) summer mean temperature (June-August) and
1000 (g) autumn mean temperature (September-November).

1001

1002 Fig. 3(a-e) Same as Fig. 2 but for precipitation (mm) and only for means of (a) annual, (b) winter, (c) spring, (d)
1003 summer and (e) autumn.

1004

1005 Fig. 4(a) Cumulative testing for defining change point of temperature (averaged for all the six stations of the
1006 Kashmir valley), (b) same as (a) but for precipitation, (c) comparison of trends of Kashmir temperature with North
1007 Atlantic Ocean (NAO index (d) same as (c) but for precipitation, (e) regression analysis of winter temperature and
1008 (f) regression analysis of winter precipitation.

1009

1010 Fig. 5 (a) Comparision between observed and WRF model (location of Kokarnag is considered) simulated annually
1011 averaged temperature (averaged for all the stations) variations for the years 1980-2016, (b) same as (a) but for spring
1012 season, (c) for summer, (d) for autumn, (e) winter, (f) for minimum temperature and (g) maximum temperature

1013

1014 Fig. 6. Same as Fig. 5 but for precipitation. Here the minimum and maximum precipitation are not considered
1015 because it cannot be defined them properly in a day.

1016

1017 Fig. 7 (a-f) Observed monthly-averaged surface temperature and precipitation and ERA-interim potential vorticities
1018 at the 350 K potential temperature and 200 hPa level pressure surfaces for the station, Srinagar during the years
1019 1980-2016.

1020

1021 Fig. 8 (a-f) Same as the Fig. 6 but for Kokarnag.

1022

1023 Fig. 9 (a-f) Same as the Fig. 7 but for Kupwara.

1024

1025 Fig. 10 (a-f) Same as the Fig. 8 but for Pahalgam.

1026

1027 Fig. 11 (a-f) Same as the Fig. 9 but for Qazigund.

1028

1029 Fig. 12 (a-f) Same as the Fig. 10 but for Gulmarg.

1030

1031 Fig. 13 (a-f) Same as the Fig. 11 but for all the stations and during the years 2011-2016.

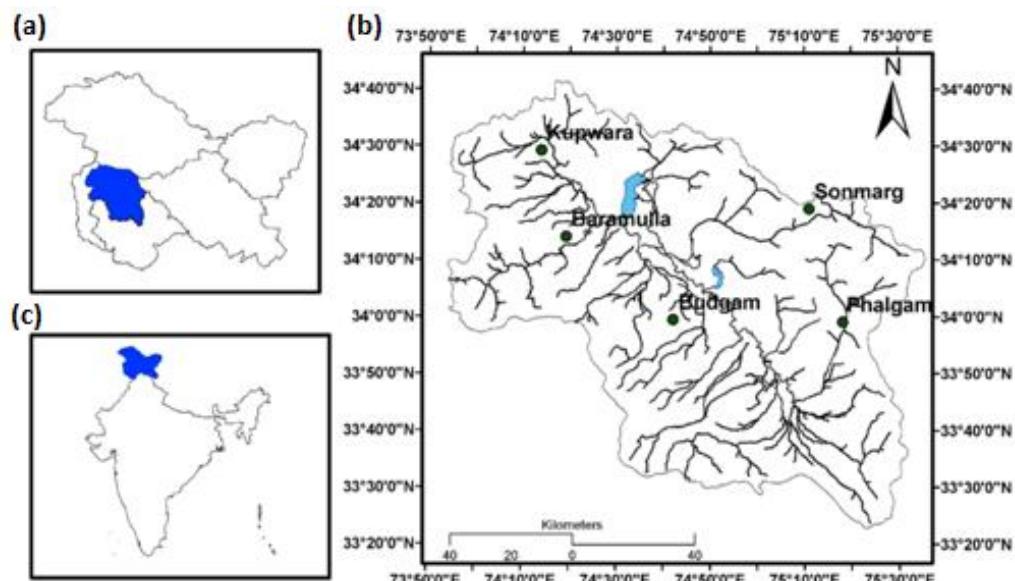
1032

1033 Fig. 14. (a-f) Synoptic scale ERA-interim meridional wind velocity covering the Jammu and Kashmir region for sis
1034 days from 01 to 06 September 2014 (historical record flooding rainfall over this region).

1035

1036

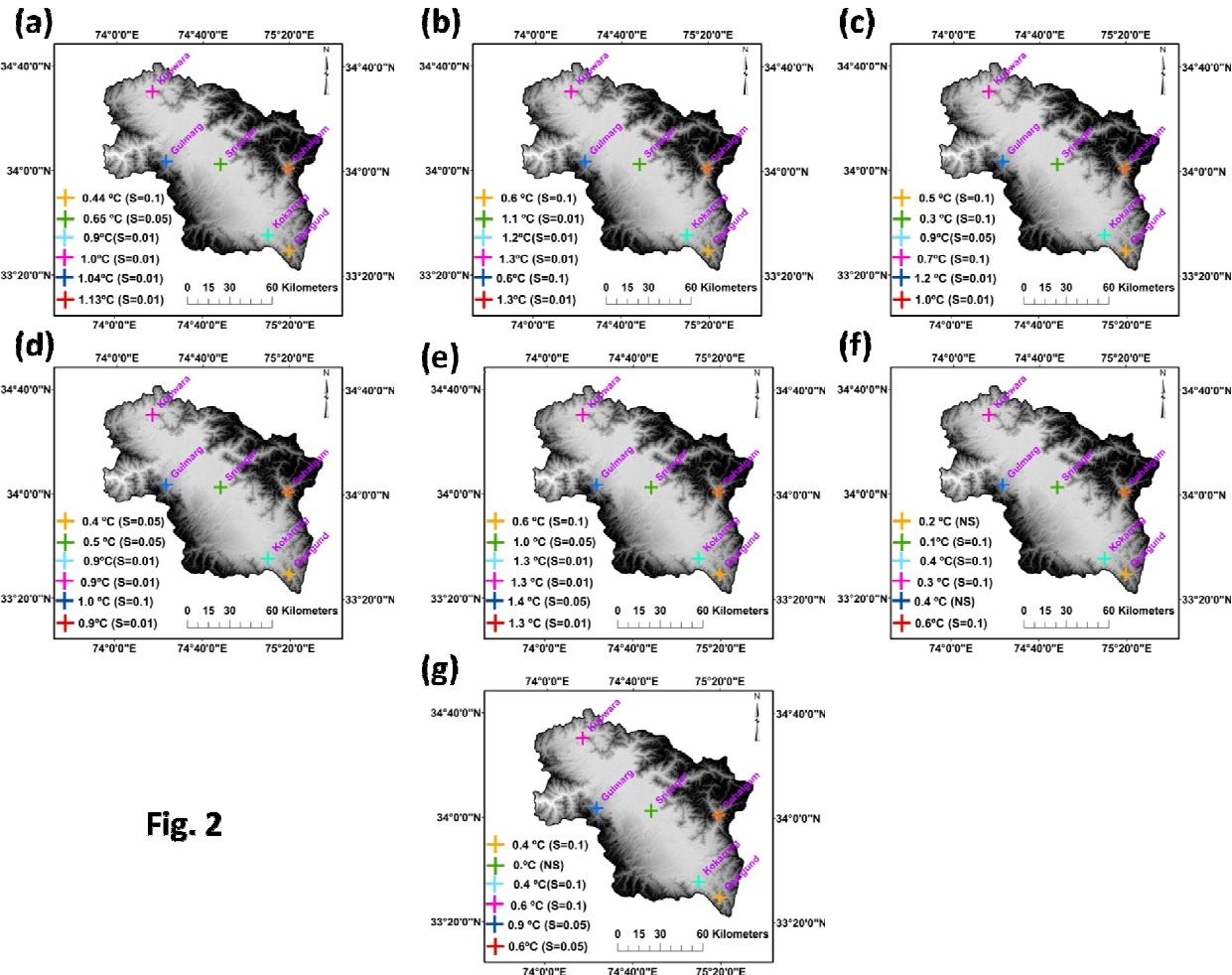
1037


1038

1039

1040

1041


1042
1043
1044
1045
1046
1047
1048
1049

1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065

Fig. 1

1066
1067
1068

Fig. 2

1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081

1082
1083
1084

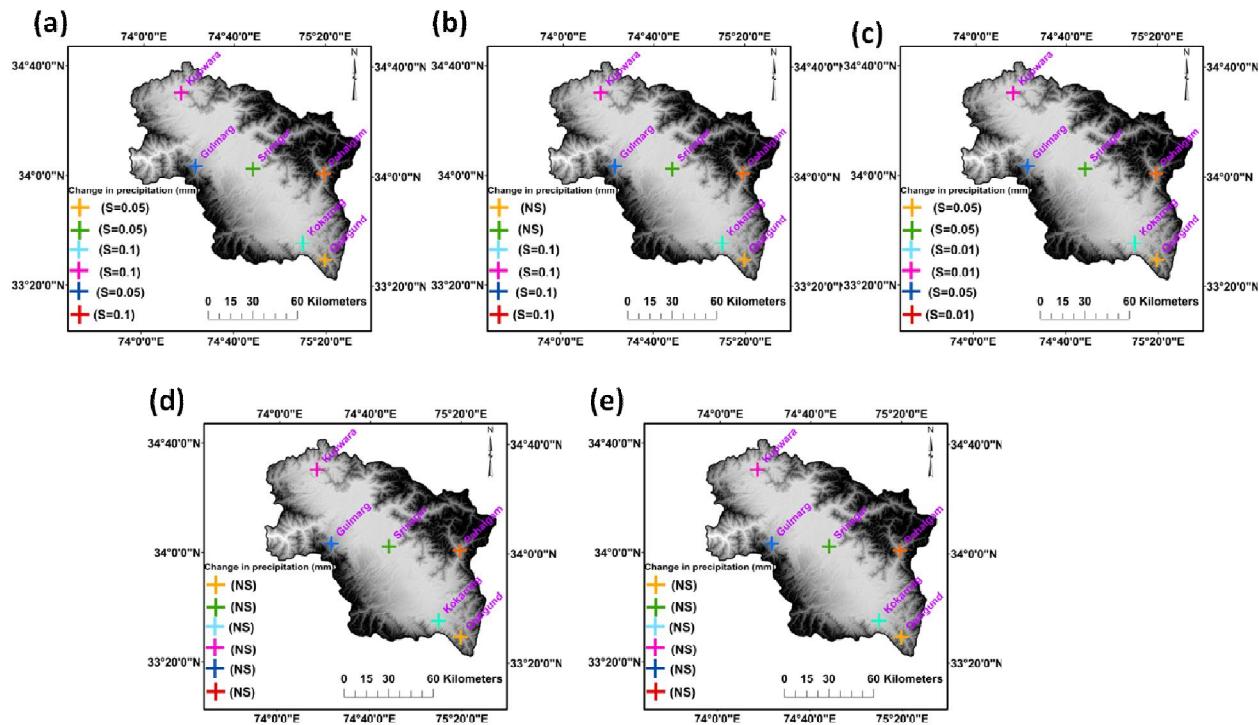


Fig. 3

1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102

1103
1104
1105

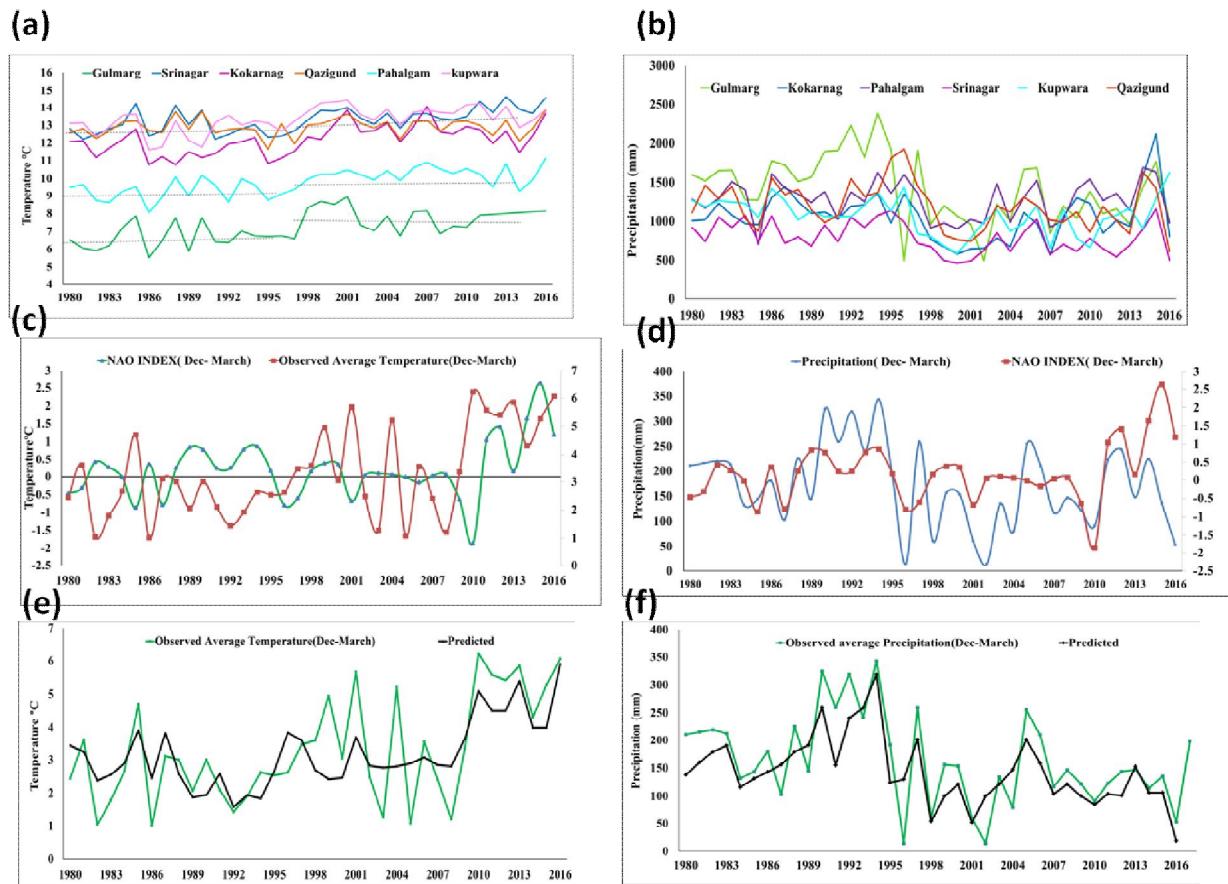


Fig. 4

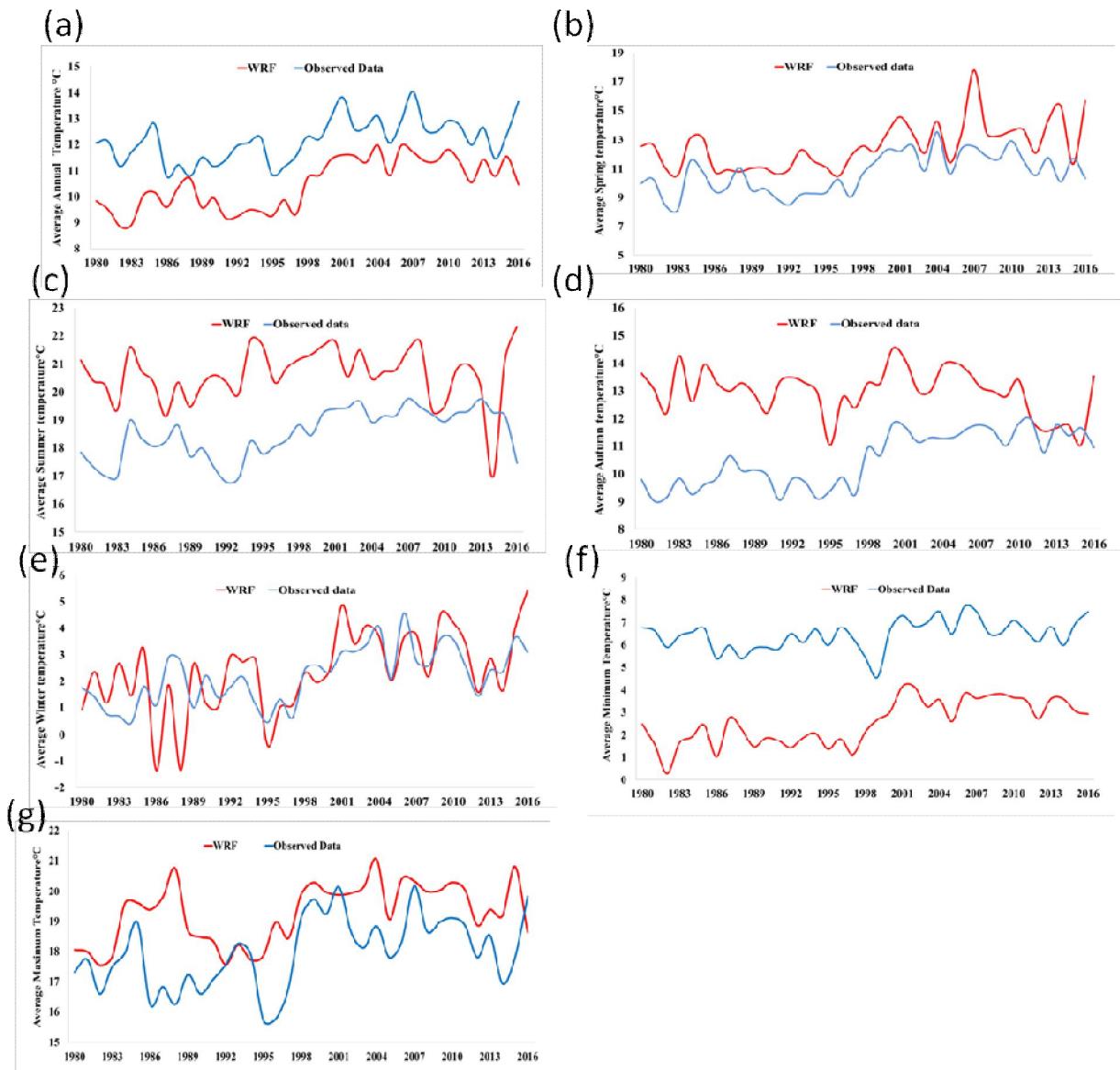
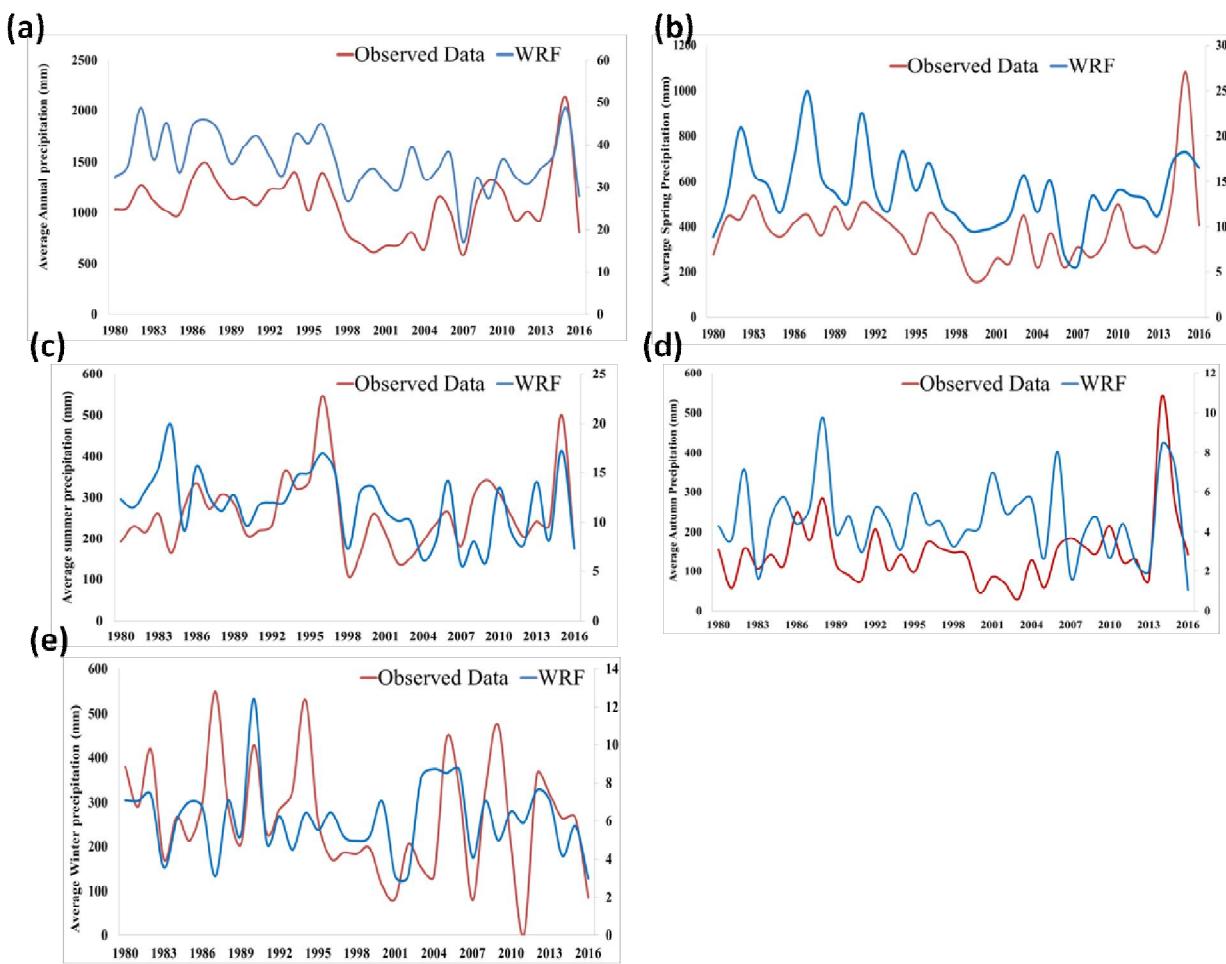



Fig. 5

1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

Fig. 6

Fig. 7

1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155

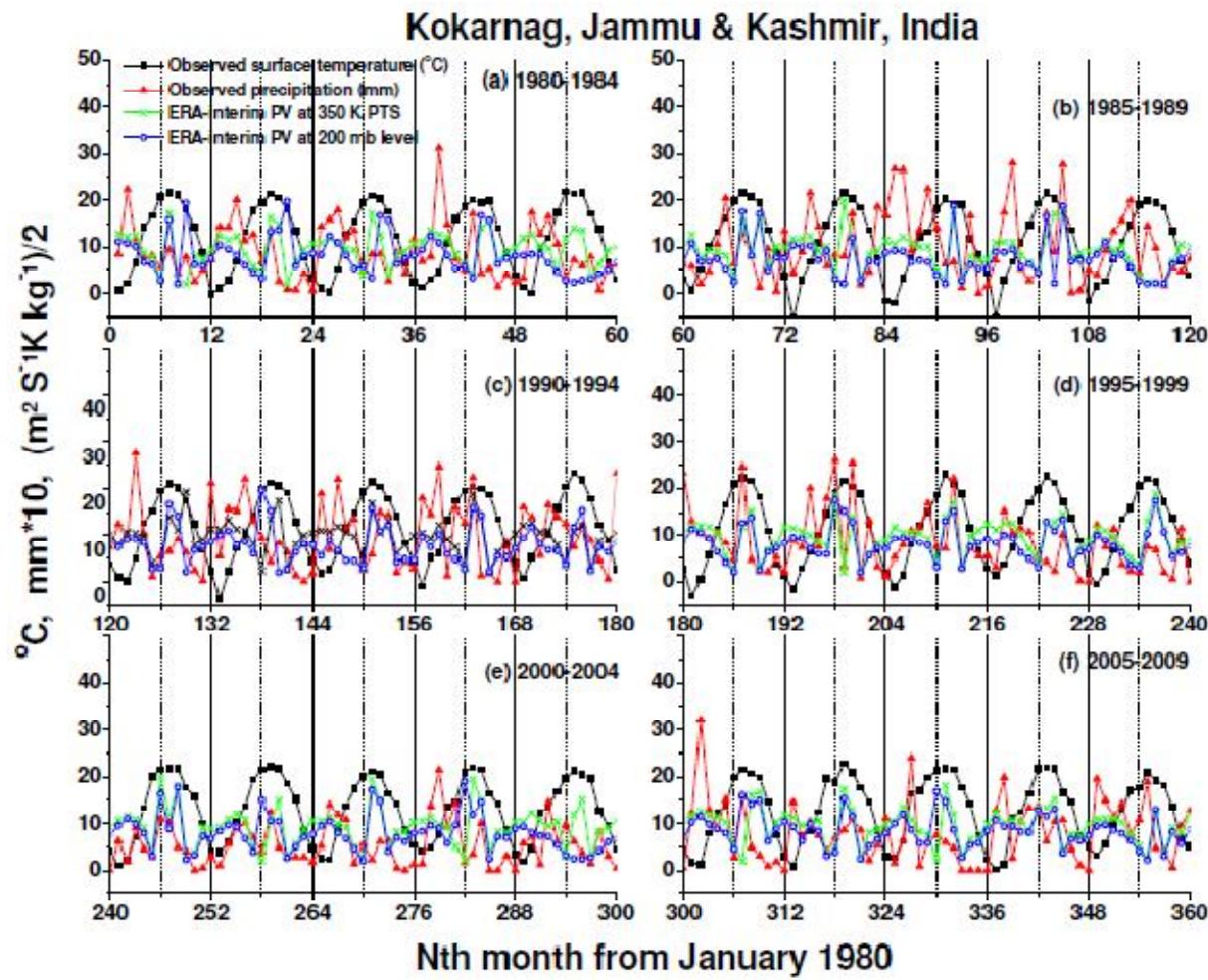


Fig. 8

1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172

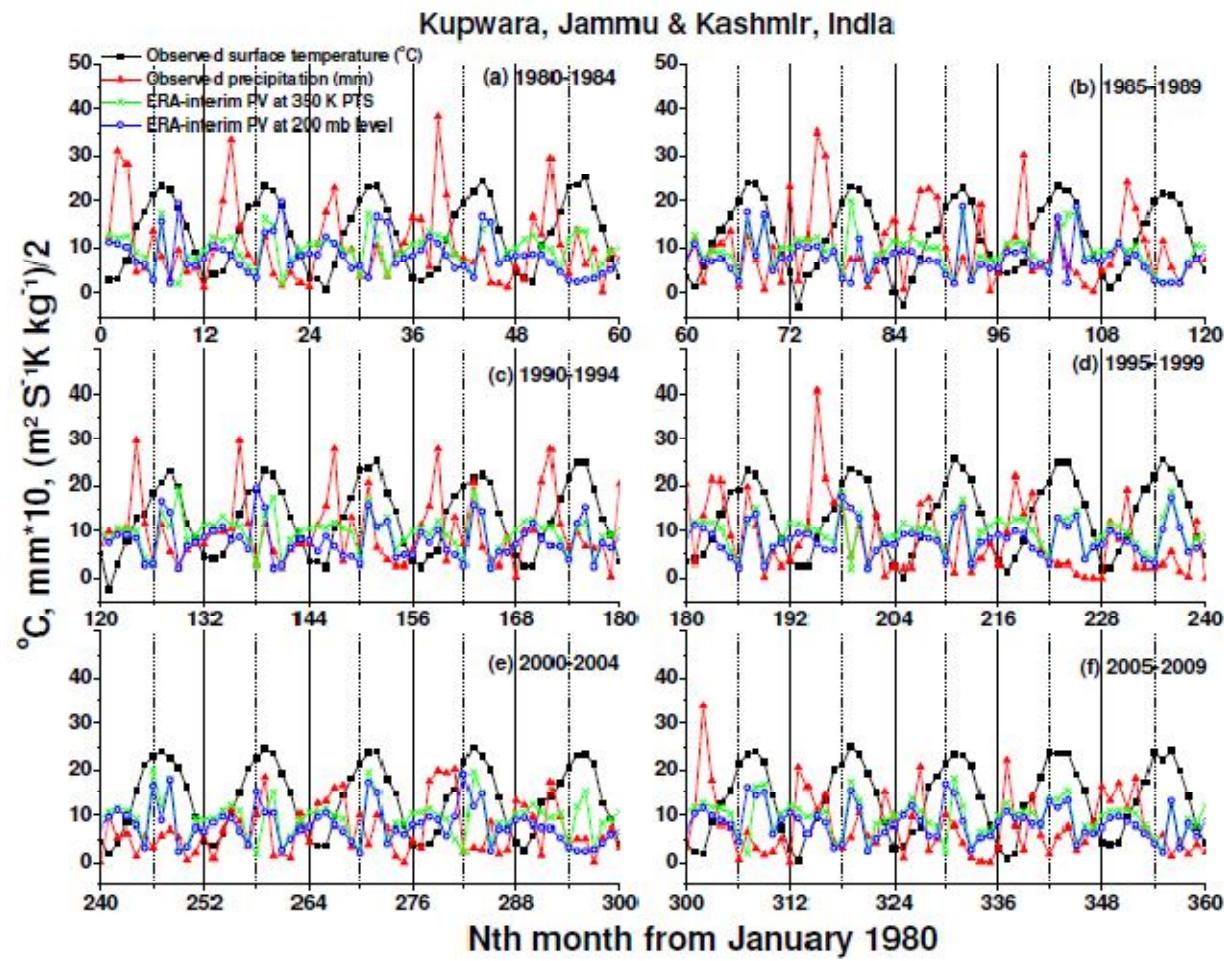


Fig. 9

1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189

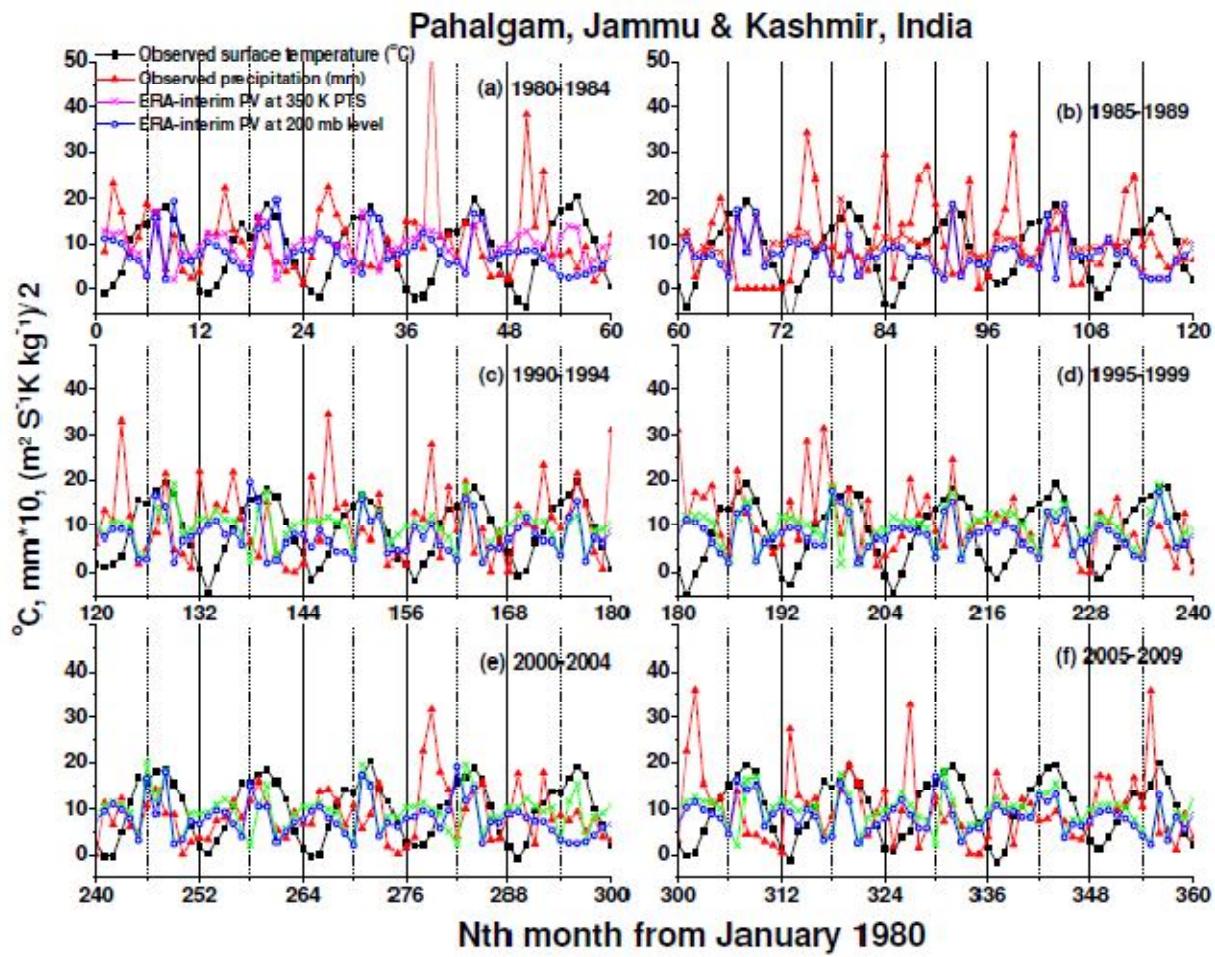


Fig. 10

1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206

Qazigund, Jammu & Kashmir, India

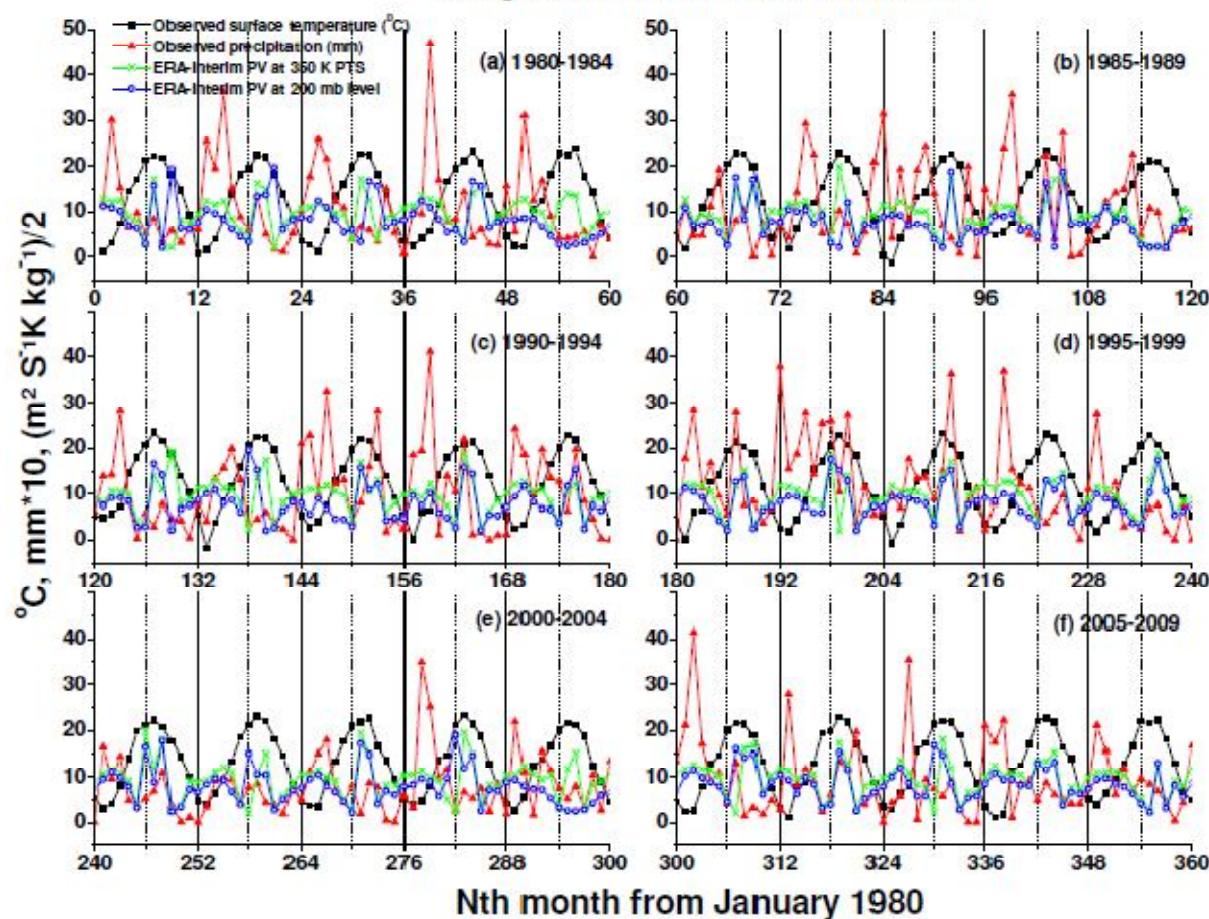


Fig. 11

1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223

Gulmarg, Jammu & Kashmir, India

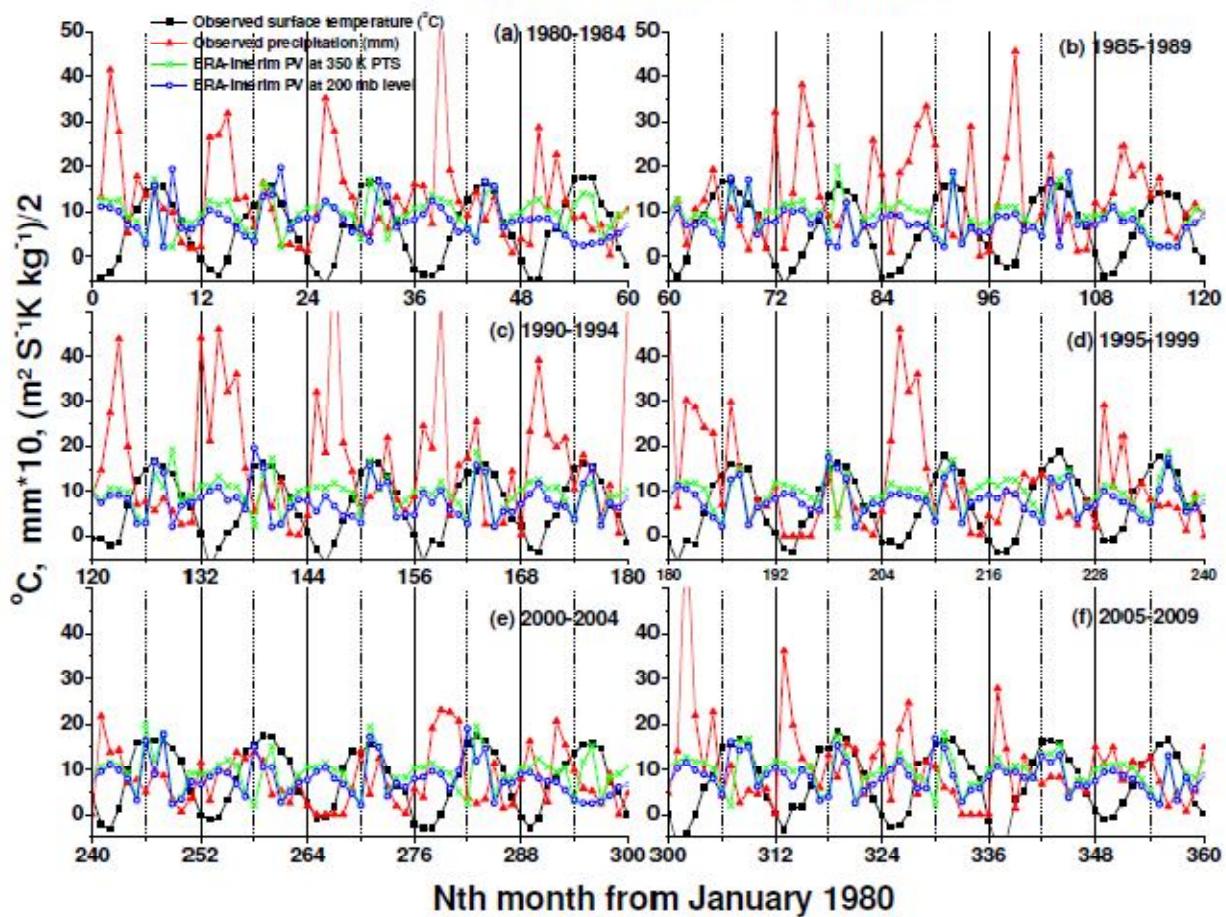


Fig. 12

1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240

Monthly averaged Surface temperature, precipitation, potential vorticity during 2011-2016

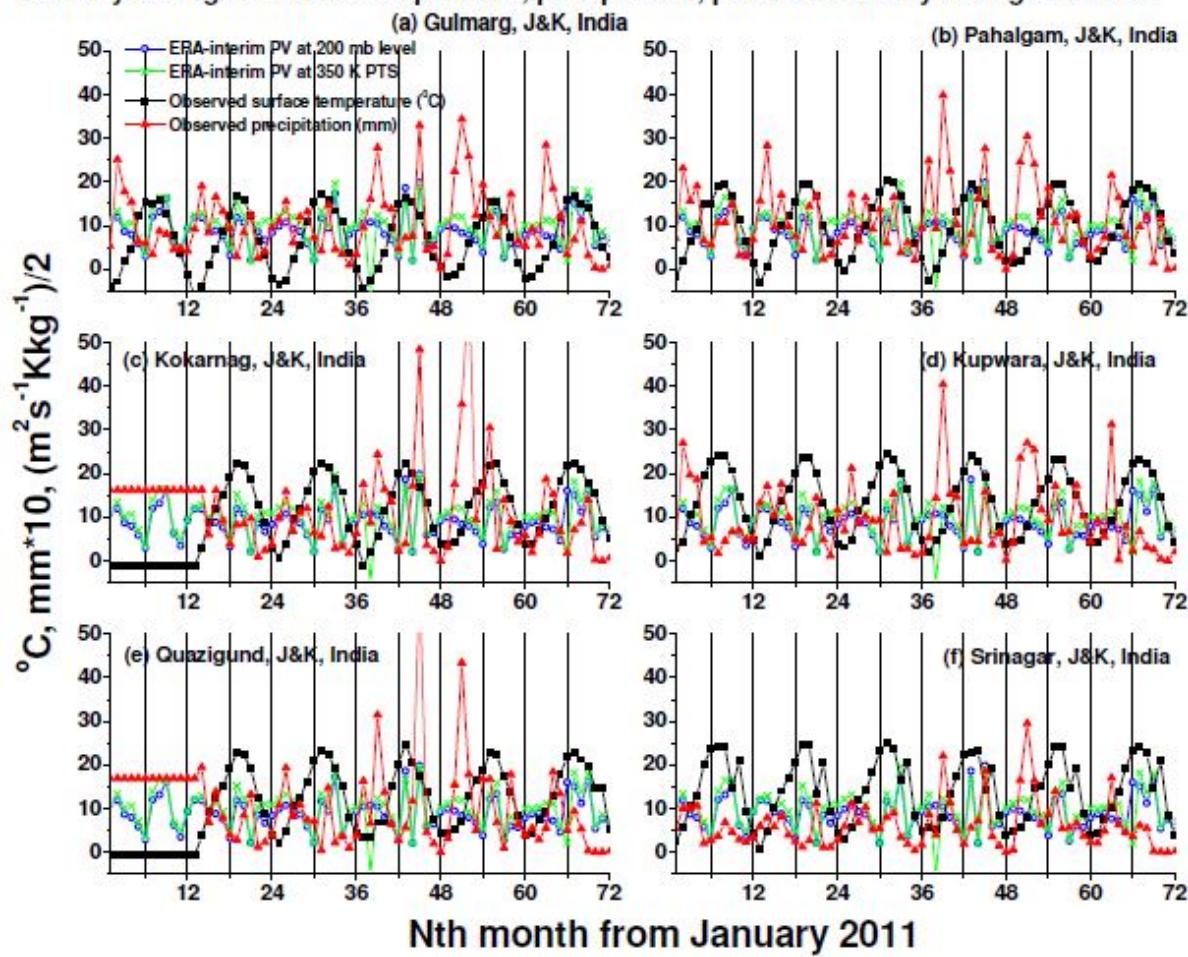


Fig. 13

1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256

Rossby wave pattern in the ERA-Interim meridional wind velocity at ~3 km at 12 UT (-12 to 12 m/s, +ve (red) southerly winds)

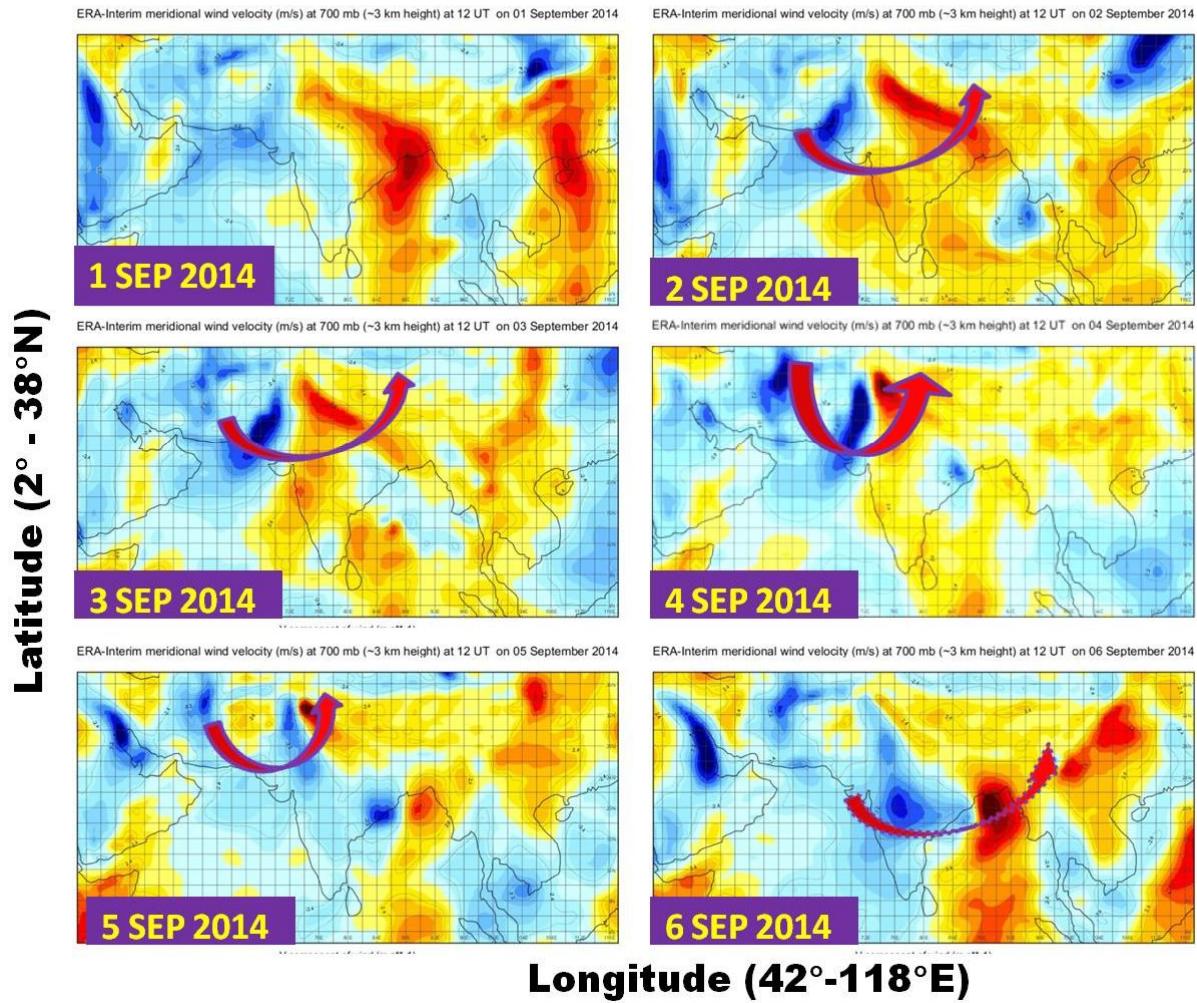


Fig. 14