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Abstract. As one common precursor for both PM2.5 and O3 pollution, NOx gains great attention because its controls can be 15 

beneficial for reducing both PM2.5 and O3. However, the effectiveness of NOx controls for reducing PM2.5 and O3 are largely 

influenced by the ambient levels of NH3 and VOC, exhibiting strong nonlinearities characterized as NH3-limited/-poor and NOx-

/VOC-limited conditions, respectively. Quantification of such nonlinearities is prerequisite to making suitable policy decisions but 

limitations of existing methods were recognized. In this study, a new method was developed by fitting multiple simulations of a 

chemical transport model (i.e., Community Multi-scale Air Quality Modeling System (CMAQ)) with a set of polynomial functions 20 

(denoted as “pf-RSM”) to quantify responses of ambient PM2.5 and O3 concentrations to changes in precursor emissions. The 

accuracy of the pf-RSM is carefully examined to meet the criteria of a mean normalized error within 2% and a maximal normalized 

error within 10% by using forty training samples with marginal processing. An advantage of the pf-RSM method is that the 

nonlinearity in PM2.5 and O3 responses to precursor emission changes can be characterized by quantitative indicators, including 

(1) peak ratio (denoted as PR) representing VOC-limited or NOx-limited condition, (2) suggested reduction ratio of VOC to NOx 25 

(denoted as VNr) to avoid increasing O3 under VOC-limited condition, (3) flex ratio (denoted as FR) representing NH3-poor or 

NH3-rich condition, and (4) enhanced benefits in PM2.5 reductions from simultaneous reduction of NH3 with the same reduction 

rate of NOx. A case study in Beijing-Tianjin-Hebei region suggested that most urban areas present strong VOC-limited condition 

with PR from 0.4 to 0.8 in July, implying that the NOx emission reduction rate need be greater than 20%-60% to pass the transition 

from VOC-limited to NOx-limited. A simultaneous VOC control (VNr is about 0.5-1.2) can avoid increasing O3 during the 30 

transition. For PM2.5, most urban areas present strong NH3-rich condition with PR from 0.75-0.95, implying the NH3 is sufficiently 

abundant to neutralize extra nitric acid produced by an additional 5%-35% of NOx emissions. Enhanced benefits in PM2.5 reductions 

from simultaneous reduction of NH3 were estimated to be 0.04-0.15 µg m-3 PM2.5 per 1% reduction of NH3 along with NOx, with 

greater benefits in July when the NH3-rich condition is not as strong as in January. Thus, simultaneously reducing NH3 and VOC 

emission along with NOx reduction is recommended to assure the control effectiveness of PM2.5 and O3. 35 
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1. Introduction 

Tropospheric ozone (O3) and fine particulate matter (PM2.5) are two major air pollutants that exert significant effects on human 

health (Forouzanfar et al., 2015; GBD-MAPS, 2016; Cohen et al., 2017) and the global climate (Myhre et al., 2013). Effective 

controls on the anthropogenic sources of O3 and PM2.5 are necessary to reduce their harmful effects on health and climate. As one 

common precursor for both O3 and PM2.5, NOx significantly influences on the ambient concentrations of O3 and PM2.5. Previous 5 

studies suggested that the deterioration of air quality in China over past two decades is highly associated with the increasing trend 

of national NOx emissions (Wang et al., 2011) which are estimated to be increased from 11.0 Mt in 1995 to 26.1 Mt in 2010 (Zhao 

et al., 2013). Since early 2010s, strict regulations have been implemented on power plants and vehicle emissions, leading to a 

considerable NO2 reduction witnessed by the declining trend in satellite-retrieved NO2 column densities (i.e., reduced by 32% from 

2011 to 2015, Liu et al., 2016). However, the reduction in PM2.5 is not as much significant as that in NO2 or SO2 (Fu et al., 2017). 10 

The reason might be associated with the increases of NH3 which has not been well-controlled to date in China and exhibits an 

increasing trend by nearly 20% from 2011 to 2014 observed from satellite-retrievals (Fu et al., 2017). Such increases of NH3 

weakened the control effectiveness of SO2 and NO2 in PM2.5 reduction (Wang et al., 2011; Fu et al., 2017). Worse still, recently O3 

concentrations exhibit an increasing trend in some cities in Yangtze River Delta and Perl River Delta (Li et al., 2014). The number 

of days on which O3 concentration exceeded the national standard (i.e., 8-hour maxima level less than 160 µg m-3) was increased 15 

from 7.2% in 2010 to 12.7% in 2015 in Shanghai. The annual averaged O3 was increased by 0.86 ppb/year from 2006 to 2011 in 

Guangdong, accompanied by a correspondingly NO2 reduction of 0.61 ppb/year (Li et al., 2014). Such increase of O3 is likely to 

be associated with the NOx reductions in the area that located at the VOC-limited condition (i.e., decreased NOx leads to increased 

O3), implying the disbenefit of NOx controls for O3 reduction under VOC-limited condition. How to assure the effectiveness of 

NOx controls for reducing O3 and PM2.5 becomes a difficult challenge for policy design (Cohan et al., 2005; Tsimpidi et al., 2008). 20 

To address that challenge, studies on investigating the relationship between the responses of O3 and PM2.5  to precursor emission 

changes have been conducted. Indicators such as NOy, H2O2/HNO3 and H2O2/(O3+NO2) as well as the degree of sulfate 

neutralization, gas ratio, and adjusted gas ratio are used to define the O3 and PM2.5 chemistry respectively in many studies (Sillman 

et al., 1995; Tonnesen et al., 2000; Zhang et al., 2009; Liu et al., 2010; Ye et al., 2016). The aforementioned indicators can provide 

rapid assumptions for the baseline status of pollution sensitivities to precursor emissions. Modeling studies with chemistry transport 25 

models (CTMs) have been conducted to investigate the responses of O3 and PM2.5 to emission perturbation through sensitivity 

analyses, such as decoupled direct methods (DDMs) and high-order DDMs (Hakami et al., 2003; Cohan et al., 2005), and source 

apportionment technology such as ozone source apportionment technology (Dunker et al., 2002), particulate matter source 

apportioning technology (Wagstrom et al., 2008), integrated source apportionment method (Kwok et al., 2013; 2015). A statistical 

response surface model (RSM) has been developed and successfully used in O3 and PM2.5 response simulations in our previous 30 

studies (Wang et al., 2011; Xing et al., 2011; 2017; Zhao et al., 2015a; 2017). In contrast to sensitivity and source apportionment 

techniques, the RSM provides real-time response to a wide range of emission perturbation, from −100% totally controlled to +20% 

(Zhao et al., 2017) or even +100% doubled baseline level (Xing et al., 2011), thus is able to quantify the strong nonlinear 

responsiveness of O3 and PM2.5 to reduction in their precursor emissions, manifested as the volatile organic compound (VOC)-

limited or NOx-limited O3 chemistry (Seinfeld et al., 2006) and NH3-rich or NH3-poor for inorganic PM chemistry (Zhang et al., 35 

2009). The RSM model is based on regression from thousands of “brute-force” simulations with chemical transport model (CTM) 

by using a maximum likelihood estimation - experimental best linear unbiased predictors (hereafter referred as “regression-based 

RSM”). However, such a large amount of CTM simulations required by RSM results in heavy computing burden (usually one 

CTM scenario for a month simulation needs 400 CPU-hour, depending on the simulated domain size and selected mechanism) 

which largely limits the application of RSM. Moreover, the regression-based RSM model is treated as a black box which is not 40 
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easy to investigate the nonlinearity (e.g., peak value, derivative) of the predicted system. 

To address the issue in regression-based RSM, this study aims to develop a polynomial family of functions in RSM model to 

represent the responsive behavior of O3 and PM2.5 concentrations to precursor emissions. The RSM with polynomial functions is 

referred to as “pf-RSM” in the remainder of this paper. Effectiveness of air pollution controls by NOx and other precursor emission 

reductions was investigated by the newly developed pf-RSM. 5 

2. Methods 

2.1. Model setup and data 

The data used in this study were obtained from a recent regression-based RSM study conducted in the Beijing–Tianjin–Hebei 

(BTH) region in China. One baseline scenario and 1100 “brute-force” controlled scenarios were performed using the Community 

Multi-scale Air Quality (CMAQ) Modeling System (version 5.0.1) in a 12 × 12-km domain over the BTH region. The details of 10 

the Weather Research and Forecasting–CMAQ model and emissions were described in a previous study (Zhao et al., 2016). We 

used the SAPRC99 gas-phase chemistry module (Carter, 2003) and the sixth-generation CMAQ aerosol model (AERO6) (Appel 

et al., 2013) with the treatment of organic aerosols replaced with the 2D-VBS (two-dimensional volatility basis set) framework 

(Zhao et al., 2015b; 2017). The simulation period is January and July in 2014 to represent winter and summer respectively. The 

emission data was developed by Tsinghua University based on a bottom-up method with a high spatial and temporal resolution 15 

(Zhao et al., 2016). 

The responses of O3 (daily 1-hour maxima) and PM2.5 (daily 24-hour average) to the emissions of five group of precursors, namely 

NOx, SO2, NH3, VOC + intermediate VOC (denoted as “VOCs”), and primary organic aerosol (POA) from five regions, namely 

Beijing, Tianjin, northern Hebei (denoted as “HebeiN”), eastern Hebei (denoted as “HebeiE”), and southern Hebei (denoted as 

“HebeiS”) were analyzed. The O3 and PM2.5 concentrations were analyzed in urban areas of prefecture-level cities in the five target 20 

regions (Zhao et al., 2017).  The performance of the model system was evaluated in our previous paper (Zhao et al., 2017; Xing et 

al., 2017) which suggested acceptable CMAQ model performance that meets the recommended benchmark in the comparison with 

ground-observed concentrations, as well as acceptable performance of regression-based RSM model with mean normalized errors 

within 3%. 

In the regression-based RSM developed previously, the system supports to investigate different emission changes for 5 precursors 25 

in 5 regions (i.e., extended RSM, ERSM described in Zhao et al., 2015a and Xing et al., 2017). In this study, for simplification, the 

pf-RSM was built on the simultaneous change in one or all regions (i.e., controls separately in individual region, or jointly controls 

in all 5 regions with same control ratio). However, the pf-RSM can be extended to pf-ERSM following the same structure as 

regression-based ERSM but using polynomial functions for PM2.5, O3 and precursors. 

2.2. Development of the pf-RSM 30 

In general, tropospheric O3 and PM2.5 concentrations are contributed by its sources and sinks through a series of atmospheric 

processes, such as horizontal or vertical advection and diffusion, gas phase chemistry, and deposition. The nonlinear behavior in 

each of these processes contributes to the nonlinearity in the responses of concentrations to precursor emissions. Similar responsive 

functions can be expected across regions and time; for example, a universal ozone isopleth diagrams developed using the empirical 

kinetic modeling approach of the U.S. Environmental Protection Agency (Gipson et al., 1981) represents the general O3 35 

responsiveness to NO, and VOC concentrations. A fitting-based model was developed to simplify the O3 responsiveness to 

precursor emissions by using a general formulation (Heyes, et al., 1996). The simplified formulation of concentrations to emissions 
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can be easily applied to optimize control strategies (Heyes et al., 1997), which is a great advantage over the regression-based model. 

Moreover, with the fitting-based RSM, the inclusion of a prior knowledge of pollutant responses to emissions might substantially 

reduce the case number required to build the RSM (see Figure 1). 

In this study, the prior knowledge of pollutant responses to emissions was characterized as a series polynomial functions by the 

previous developed regression-based RSM. The coefficients of the function was estimated by fitting the function with training 5 

samples selected “brute-force” cases to match with the regression-based RSM prediction (i.e., isopleth validation) and the CMAQ 

simulations (i.e., out-of-sample validation). The flow scheme of the development of the pf-RSM is displayed in Figure 2. The 

structure of the polynomial function to be fitted is expressed as follows: 

ܿ݊݋ܥ∆ = ∑ ௜ܺ ∙ ሺܧேை௫ሻ௔೔ ∙ ሺܧௌைଶሻ௕೔ ∙ ሺܧேுଷሻ௖೔ ∙ ሺܧ௏ை஼௦ሻௗ೔ ∙ ሺܧ௉ை஺ሻ௘೔௡
௜ୀଵ   (E1) 

where:  10 

 is the response of O3 and PM2.5 concentrations (i.e., change to the baseline concentration), the concentration value can be ܿ݊݋ܥ∆

hourly, monthly or annual averages at either single grid cell or aggregated grids in target region; 

ENOx, ESO2, ENH3, EVOCs, and EPOA is the change ratio of NOx, SO2, NH3, VOCs, and POA emissions, respectively, related to baseline 

(i.e., baseline = 0); 

ܽ௜ , ௜ܾ , ܿ௜, ݀௜, and ݁௜ represent the nonnegative integer powers of ENOx, ESO2, ENH3, EVOCs, and EPOA, respectively; and 15 

௜ܺ  is the coefficient of term i. 

ேை௫ܧ) is calculated from a polynomial function of five variables  ܿ݊݋ܥ∆  ,௉ை஺ ). The number of terms (n)ܧ , ௏ை஼௦ܧ , ேுଷܧ , ௌைଶܧ , 

coefficients ( ௜ܺ) and degree (ܽ௜ , ܾ௜, ܿ௜, ݀௜, ݁௜) of each term were determined using the following steps. 

2.2.1. Degree examination 

First, the degrees of the five variables were determined individually by fitting the responsive function with a polynomial of a single 20 

indeterminate plot (Figure 3). The PM2.5 responses to the change in each precursor emission estimated using the RSM were fitted 

by a series of polynomials of a single indeterminate plot with different orders from the first (linear) to the fifth degree, as shown 

in following functions (similar to E1): 

ܿ݊݋ܥ∆ = ∑ ௜ܣ ∙ ሺܧ௉ሻ௜௔
௜ୀଵ   (E2) 

where: 25 

 ;is the response of O3 and PM2.5 concentrations to changes in individual precursor emissions  ܿ݊݋ܥ∆

 ௉ is the change ratio of one precursor (the subscript P can represent NOx, SO2, NH3, VOCs, or POA) emission relatedܧ

to baseline; 

௜ܣ  is the coefficient of term i; and 

the superscript a is the degree of precursor P, which determined the order of the best fitting polynomials. 30 

Figure 3(a) presents PM2.5 responses to changes in NOx, shows that PM2.5 responses cannot be well fitted with polynomials of order 

lower than 3. Thus the degree of NOx to PM2.5 should be 4. By contrast, PM2.5 responses to changes in SO2 (Figure 3a) can be well 

fitted linearly; thus, the degree of SO2 to PM2.5 is 1. The degrees of five precursors to O3 and other pollutants were also examined, 

and the results are summarized in Table 1. Highly nonlinear responses were found for both O3 and PM2.5 to the NOx, VOC and 

NH3 emissions. That might be associated with the strong nonlinearity in the atmospheric oxidation reactions and aerosol 35 

thermodynamics which are parameterized with SAPRC99 gas-phase chemistry module and the AERO6 with 2D-VBS module, 

respectively in CMAQ used in this study. 
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2.2.2. Term selection 

The correlation among variables (i.e., product term) was determined in pairs by fitting the responsive function with a polynomial 

of a two-indeterminate isopleth, expressed as follows:  

ܿ݊݋ܥ∆ = ∑ ௜ܤ ∙ ሺܧ௉ଵሻ௔೔
భ

∙ ሺܧ௉ଶሻ௔೔
మ௕

௜ୀଵ   (E3) 

where: 5 

 ;is the response of O3 and PM2.5 concentrations to changes in individual precursor emissions  ܿ݊݋ܥ∆

 ௉ଶare the change ratios of two precursor (P1 and P2 can represent any two of NOx, SO2, NH3, VOCs, or POA)ܧ ௉ଵ andܧ

emission related to baseline; 

௜ܤ  is the coefficient of product term i; 

ܽ௜
ଵ and ܽ௜

ଶ are the degrees of precursors P1 and P2, respectively; and 10 

the superscript b is the number of total interaction terms between P1 and P2 (i.e., ܽ௜
ଵ multiplied by ܽ௜

ଶ). 

The product term ܧ௉ଵܧ௉ଶ represents the interaction between P1 and P2. If no such interaction occurs, the product term ܧ௉ଵܧ௉ଶ is 

0. The interaction examination was conducted by comparing predicted responses to joint changes in two precursor emissions 

between with-interaction (E4) and no-interaction (E5).  

ܿ݊݋ܥ∆ = ∑ ௜ܣ ∙ ሺܧ௉ଵሻ௜௔
௜ୀଵ + ∑ ௝ܣ

ᇱ ∙ ሺܧ௉ଶሻ௝௔ᇲ

௝ୀଵ + ∑ ௜ܤ ∙ ሺܧ௉ଵሻ௔೔
భ

∙ ሺܧ௉ଶሻ௔೔
మ௕

௜ୀଵ   (E4) 15 

ܿ݊݋ܥ∆ = ∑ ௜ܣ ∙ ሺܧ௉ଵሻ௜௔
௜ୀଵ + ∑ ௝ܣ

ᇱ ∙ ሺܧ௉ଶሻ௝௔ᇲ

௝ୀଵ       (E5)  

If responses calculated using eq (E5) are equal or approximate to those calculated using eq (E4), no interactions between P1 and 

P2 would occur (i.e., the product term ܧ௉ଵܧ௉ଶ is 0). If responses are not equal or approximate to each other, interactions between 

P1 and P2 cannot be overlooked. However, we wanted to limit the number of terms in the polynomial function; thus, we did not 

include all interaction terms between P1 and P2 in the function. Instead, we gradually selected interaction terms between P1 and 20 

P2 from eq (E3), until the responses matched with those calculated using eq (E4). 

An example was shown in Figure S1 which presents PM2.5 responses to joint changes in NOx and NH3 emissions in July. The PM2.5 

response calculated using eq (E4) (with all interaction terms) was consistent with that estimated using the regression-based RSM. 

The PM2.5 response calculated using eq (E5) (with no interaction terms) exhibited a noticeable discrepancy compared with those 

calculated using eq (E4) and estimated using the regression-based RSM. With one selected interaction term, the PM2.5 response 25 

exhibited a substantial improvement compared with that calculated using eq (E4), thereby indicating interactions between NOx and 

NH3 emissions for PM2.5. 

The results of term selections for both O3 and PM2.5 are summarized in Figure 4. The interaction terms of NOx and VOCs are 

included for both pollutants. SO2 and POA did not interact with other species.  

2.2.3 Sampling optimization 30 

Training samples were generated to fit the polynomial function for each pollutant. The number of training samples needed to be as 

small as possible, but greater than the number of terms (i.e., unknown coefficients) in the polynomial function. Our previous study 

(Xing et al., 2011) suggested that samples generated through uniform methods, such as Latin hypercube sampling (LHS), and a 

Hammersley quasi-random sequence sample (HSS), could provide even distributions for individual sources. However, additional 

marginal processing is recommended for its ability to improve the performance of prediction at margins. 35 

Sensitivity analysis of the number and distributions of training samples was conducted in this study. Groups of 22, 30, 40, 50 

training samples were sampled using uniform-distributed HSS. Additional marginal processing was conducted using a power 

function (n = 2) from uniform-distributed HSS on the samples, expressed as follows: 
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ܶܺ = ൞
ቀ௑ି௔

௕ି௔
ቁ

ଶ
× 2 × ሺܾ − ܽሻ + ܽ,                    ܺ ≤ ܽ + ௕ି௔

ଶ

൤1 − ቀ
௕ି௑

௕ି௔
ቁ

ଶ
× 2൨ × ሺܾ − ܽሻ + ܽ,         ܺ > ܽ +

௕ି௔

ଶ

  (E6) 

where: 

X is sampled from a uniform-distributed HSS in section [a, b] (in this study we selected [0, 1.2], which denotes that emission 

changes were from all- controlled to a 20% increase); and 

TX represents the samples after the marginal processing. 5 

The training samples were predicted using the regression-based RSM and subsequently used to fit the polynomial function for all 

pollutants. We selected two datasets as out-of-samples to validate the fitting polynomial function, i.e., jointly controls in 5 regions 

(denoted as “OOS100”) and single regional controls (denoted as “OOS15”) (see Table 2). The control matrixes of these two datasets 

are provided in supplementary information (Table S1). 

The predictive performance of the pf-RSM was evaluated using five statistical indices, namely the mean normalized error 10 

(MeanNE), maximal normalized error (MaxNE), mean fractional error (MeanFE), maximal fractional error (MaxFE) and 

correlation coefficient (R), each calculated as follows: 

ܧܰ݊ܽ݁ܯ =
ଵ

ே
∑

|ெ೔ିை೔|

ை೔

ே
௜ୀଵ   (E7) 

ܧܰݔܽܯ = max ቀ
|ெ೔ିை೔|

ை೔
ቁ  (E8) 

ܧܨ݊ܽ݁ܯ =
ଵ

ே
∑

|ெ೔ିை೔|

ெ೔ାை೔

ே
௜ୀଵ × 2  (E9) 15 

ܧܨݔܽܯ = max ቀ
|ெ೔ିை೔|

ெ೔ାை೔
× 2ቁ  (E10) 

ܴ = ට ൣ∑ ሺெ೔ିெഥሻሺை೔ିைതሻಿ
೔సభ ൧

∑ ሺெ೔ିெഥሻమಿ
೔సభ ∑ ሺை೔ିைതሻమಿ

೔సభ
  (E11) 

where: 

௜ and ௜ܱܯ  are the pf-RSM -predicted and CMAQ-simulated value of the ith data in the series which can be a series of days, 

grid cells or control cases; and  20 

ഥܯ  and തܱ are the average pf-RSM-predicted and CMAQ-simulated value over the series. 

2.3 Indicators for representing nonlinearity in responses to precursor emissions 

In our previous RSM studies, indicators representing the nonlinearity of O3 and PM2.5 responses to precursor emissions have been 

defined as the peak ratio (PR) for O3 (Xing et al., 2011)  and flex ratio (FR) for PM2.5 (Wang et al., 2011), respectively.  

For O3, the PR is the NOx emissions that produce maximum O3 concentrations under baseline VOC emissions (see in Figure 5a). 25 

A PR lower than 1 (i.e., baseline) indicates that the baseline condition is VOC –limited; in all other cases, the baseline condition is 

NOx –limited.  

The previous calculations for the PR were performed through a looping procedure in the RSM statistical system, which is not 

straightforward. One advantage of the pf-RSM is that the PR can be directly calculated from the polynomial function as follows: 

ܴܲ = 1 + ேை௫|ങ∆಴೚೙೎ೀయܧ
ങಶಿೀೣ

ୀ଴
,ேை௫߳ሾܽܧ         ܾሿ  (E12) 30 

where 

డ∆஼௢௡௖ೀయ

డாಿೀೣ
 is the first derivation of the ܿ݊݋ܥைଷ response to ܧேை௫ . 

In addition, we can further quantify how much simultaneous control of VOC is required to avoid increasing O3 from the NOx 

controls under VOC-limited condition (see in Figure 5b). The suggested VOC controls can be represented as the ratio of VOC to 
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NOx (denoted VNr) which can be calculated as follows: 

ݎܸܰ = ܺ|ങ∆಴೚೙೎ೀయ
ങಶಿೀೣ

ୀ଴
ܴܲ ℎ݁݊ݓ      < 1 , ܺ = ௏ை஼ܧ

ேை௫ܧ
ൗ   (E13) 

where 

డ∆஼௢௡௖ೀయ

డாಿೀೣ
 is the first derivation of the ܿ݊݋ܥைଷ response to ܧேை௫  when ܧ௏ை஼ = ܺ ×  ேை௫ܧ

For PM2.5, here we defined the FR as the NH3 emission ratio at the flex nitrate (or PM2.5) concentrations (i.e., when the second 5 

derivation of the function of concentration sensitivities to NH3 emissions is zero) under baseline NOx emissions (see in Figure 6a). 

A FR greater than 1 indicates that the baseline condition is NH3 –poor (i.e., large sensitivity of PM2.5 to NH3); in all other cases, 

the baseline condition is NH3 –rich (small sensitivity of PM2.5 to NH3). The values of FR also suggest the transition point between 

two schemes. 

Similarly, the FR can be directly calculated from the polynomial function as follows: 10 

ܴܨ = 1 + ேுଷ|ങమ∆಴೚೙೎ುಾܧ
ങಶಿಹయ

మ ୀ଴
,ேுଷ߳ሾܽܧ         ܾሿ (E14) 

where 

డమ∆஼௢௡௖ುಾ

డாಿಹయ
మ  is the second derivation of the ܿ݊݋ܥ௉ெ  response to ܧேு . 

Further, we can quantify the extra benefit in PM2.5 reductions (denoted as ∆ܥ) from simultaneous reduction of NH3 along with the 

control of NOx (see in Figure 6b)., which can be calculated as follows: 15 

ܥ∆ = ቀడ∆஼௢௡௖ುಾమ.ఱ

డாಿೀೣ
|ாಿಹయୀாಿೀೣ

ቁ − ቀడ∆஼௢௡௖ುಾమ.ఱ

డாಿೀೣ
|ாಿಹయୀ଴ቁ (E15) 

where 

డ∆஼௢௡௖ುಾమ.ఱ

డாಿೀೣ
|ாಿಹయୀாಿೀೣ  is the first derivation of the ܿ݊݋ܥ௉ெଶ.ହ response to ܧேை௫  when ܧேுଷ =  ;ேை௫ܧ

డ∆஼௢௡௖ುಾమ.ఱ

డாಿೀೣ
|ாಿಹయୀ଴ is the first derivation of the ܿ݊݋ܥ௉ெଶ.ହ response to ܧேை௫ when ܧேுଷ = 0 

The PR and FR are the results of 1 + ேை௫ and 1ܧ +  ேுଷ, respectively, corresponding to the extreme value point and inflexion 20ܧ

point of ܿ݊݋ܥைଷ and ܿ݊݋ܥ௉ெ , respectively, in section [a, b] (i.e., [0, 1.2] in this study. The VNr and ∆ܥ were estimated for the five 

regions in BTH. 

3. Results 

3.1 Sensitivity analysis on training sample number and distribution 

Table 3 summarizes the performance of the pf-RSM with different training samples for predicting PM2.5 and O3. Generally, good 25 

agreement was observed in all cases. Even with 20 training samples (only five more than the number of terms in the polynomial 

function), the MeanNE and MeanFE were lower than 3.1% and 1.5% respectively, and the MaxNE and MaxFE were lower than 

15.1% and 7.0%, respectively. The R values were greater than 0.8. The performance improved with an increase in training sample 

number. When 50 training samples were selected, the MeanNE and MeanFE were lower than 1.7% and 0.8% respectively, and the 

MaxNE and MaxFE were lower than 8.7% and 4.2%, respectively. The R values were greater than 0.94. 30 

Additional marginal processing improved the performance of PM2.5 and O3 prediction by reducing the maximal errors rather than 

the mean errors. In all cases, the MaxNE and MaxFE in O3 decreased from 12.4% and 5.8%, to 5.5% and 2.7%, respectively. The 

MaxNE and MaxFE in PM2.5 slightly decreased from 15.1% and 6.98%, to 15.0% and 6.97% respectively. 

To meet the criteria of MeanNE within 2% and MaxNE within 10% (which is comparable to the performance of previous 

regression-based RSM), use of 40 training samples with marginal processing (to improve boundary conditions) is recommended.  35 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-2
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 11 January 2018
c© Author(s) 2018. CC BY 4.0 License.



8 
 

One kind of visual comparison, i.e., isopleth validation of the pf-RSM with different training samples was conducted, and its details 

are shown in supplementary information (Figures S2–S9). The performance of the pf-RSM with less than 40 training samples 

exhibited a noticeable discrepancy (i.e., spatial pattern of the response under the controls) compared with that of the regression-

based RSM. The 40 training samples presented good agreement with the predictions of the regression-based RSM. Additional 

marginal processing also improved the performance of the pf-RSM. 5 

3.2 Application of the polynomial function at different locations and times 

First, we applied the pf-RSM in each grid cell in the simulated domain. The base case and 40 controlled scenarios simulated by 

the CMAQ model (41 training samples in total) were used to fit the function of each grid cell. Two out-of-sample CMAQ cases 

(i.e., Case 1: moderate control with ENOx, ESO2, ENH3, EVOCs and EPOA = -49%, -45%, -20%, -64%, and -20% respectively; Case 2: 

strict control with ENOx, ESO2, ENH3, EVOCs and EPOA = -76%, -79%, -81%, -83%, and -73%, respectively) were used to validate the 10 

performance of the pf-RSM. 

Figures 7 and 8 presents the spatial distribution of CMAQ-simulated and pf-RSM-predicted PM2.5 and O3 in baseline and their 

responses in two control scenarios. PM2.5 predictions by the pf-RSM exhibited the same values in the baseline scenario as those 

simulated by the CMAQ model because the ∆ܿ݊݋ܥ is 0 with no perturbations in emissions (E1). With the reduction of emissions 

in the two control cases, the PM2.5 and O3 concentrations were reduced substantially in the CMAQ and pf-RSM predictions. The 15 

pf-RSM and CMAQ made very similar predictions for both cases, with normalized errors all within 5.6% for PM2.5 and 2.0% for 

O3 across the domain. 

The performance of PM2.5 and O3 prediction in the pf-RSM across grid cells was summarized in Table S2. Larger errors were 

shown in Case 2 than in Case 1 because of relatively poor performance at the margin areas, where emissions were greatly controlled 

(Xing et al., 2011). Under moderate control condition (i.e., Case 1), smaller errors were observed in polluted regions for PM2.5 and 20 

O3 because of larger denominators (i.e., a high concentration). However, under strict control conditions (i.e., Case 2), larger errors 

were evident in more polluted regions, particularly for PM2.5, indicating that the biases due to marginal effects were more prevalent 

in polluted regions. 

Second, we applied the pf-RSM on each day in 2 simulated months (i.e., January and July, 2014). The same 41 training samples 

and 2 additional CMAQ cases were used to fit and validate the pf-RSM on each day. 25 

The daily series of the CMAQ-simulated and pf-RSM-predicted 24-hour averaged PM2.5 and 1-hour maxima O3 in baseline and 

two control scenarios are shown in Figure 9. Generally, the pf-RSM-predicted daily PM2.5 and O3 concentrations fairly well matched 

with CMAQ model simulations, with normalized errors within 12.7% and 6.5% for PM2.5 and O3, respectively. Substantial 

reductions in PM2.5 were observed in Case 2, where strict controls were applied. Noticeable biases were observed on January 23rd 

when PM2.5 levels were high in Beijing and HebeiS. Reductions in O3 were noticeable in both control cases, particularly on days 30 

when O3 levels were high. However, increases in O3 were observed on July 21-23, after the controls were applied and when O3 

levels were low. This can be explained by the O3 chemistry scheme being in a strong VOC-limited condition on days with low O3 

levels, resulting in enhanced O3 from NOx controls (Xing et al., 2011). The pf-RSM also reproduced increases in O3 on those days. 

The performance of PM2.5 and O3 prediction in the pf-RSM throughout the simulation period was summarized in Table S3. The 

MeanNEs for PM2.5 and O3 were within 3.7% and 1.3% respectively. Larger errors were evident in Case 2 than in Case 1 because 35 

of poor performance at margin areas, where emissions are greatly controlled (Xing et al., 2011). These biases in Case 2 became 

larger on more polluted days, particularly for PM2.5, suggesting that marginal biases were more evident during polluted period. 
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3.3 Quantification of nonlinearities in control effectiveness for reducing PM2.5 and O3 

The nonlinear effectiveness of emission control for reducing PM2.5 and O3 can be quantified by the indicators defined in Section 

2.3. The FR values across grid cells were calculated using eq (E14) for PM2.5 chemistry in January (Figure 10a). Most of the study 

regions exhibited FR values lower than 1, suggesting a strong NH3-rich condition. These results are consistent with those of 

previous studies (Liu et al., 2010; Wang et al., 2011). Larger FR values (slightly lower than 1.0) were observed in the central and 5 

southern regions (i.e., Beijing, Tianjin and HebeiS) than in other regions, suggesting that the PM2.5 concentrations were sensitive 

to both NOx and NH3 controls, possibly because of the high SO2 and NOx emissions in Beijing, Tianjin and HebeiS (Zhao et al., 

2016), which led to the high consumption of NH3 neutralized with H2SO4 and HNO3, as well as high PM2.5 concentrations (Figure 

5). 

Table 4 summarized the indicators at urban areas of prefecture-level cities in the five target regions. In both January and July, most 10 

of the urban areas present NH3-rich condition with FR from 0.75-0.95 (Table 4), implying the NH3 is sufficiently abundant to 

neutralize extra nitric acid produced by an additional 5%-35% (i.e., =1/FR-1) of NOx emissions, which is consistent with our 

previous study (Wang et al., 2011). The extra benefit in PM2.5 reductions from simultaneous reduction of NH3 along with the control 

of NOx was estimated to be 0.04-0.15 µg m-3 PM2.5 per 1% reduction of NH3. Larger benefit in PM2.5 reductions by simultaneous 

reduction of NH3 was found in July when the NH3-rich condition is not as strong as in January. 15 

The PR values for O3 chemistry in July were calculated using eq (E12), as shown in Figure 10b. Different PR values were observed 

in urban and downwind areas, which is consistent with the findings of previous studies (Xing et al., 2011). Smaller PRs (0.4–0.8, 

see Table 4) were evident in urban areas (i.e., megacities such as Beijing, Tianjin, Shijiazhuang, and Tangshan), where NOx 

emissions are saturated, resulting in a strong VOC-limited condition. This indicates that the control of NOx could result in an 

increase of O3; however, O3 would decrease with 20%–60% (i.e., =1-PR) control of NOx. To avoid increasing O3 during the 20 

transition from VOC-limited to NOx-limited condition, a simultaneous VOC reduction by 0.5-1.2 times as the rate of NOx reduction 

is recommended.  Stronger VOC-limited condition is found in January, while O3 concentration is considerably lower than in July. 

However, the strong VOC-limited condition in January will also lead to a considerable disbenefit of NOx reduction for PM2.5 

controls (see the isopleth plot of PM2.5 response to NOx and NH3 emission changes in Figure S6, also found in Zhao et al., 2017) 

because the enhanced atmospheric oxidation ability by reducing NOx under VOC-limited condition will facilitate the formation of 25 

secondary aerosols. Therefore simultaneous VOC reduction can help avoid such increase of PM2.5 associated with NOx controls 

under strong VOC-limited condition in January. Notably, the O3 discussed in this paper refers to the monthly averages of daily 1-

hour maximum values. The PR values varied considerably between the clean and polluted days, suggesting a mostly NOx-limited 

condition during polluted periods which are usually subject to a more severe O3 burden (Xing et al., 2011). Nevertheless, the control 

of NOx emissions is critical for reducing regional O3 and PM2.5, however, it is recommended to simultaneously reduce VOC and 30 

NH3 emission along with NOx reduction to avoid the risk of increasing O3 and gain extra benefit in PM2.5 reduction. 

4. Summary and Conclusion 

Quantification of the effectiveness of air pollution controls by emission mitigations needs an accurate representation of the 

nonlinear responses of ambient O3 and PM2.5 concentrations to precursor emission changes. To address this challenge, this study 

proposed a new method by fitting multiple simulations of a chemical transport model with a set of polynomial functions, called 35 

“pf-RSM”. The pf-RSM method was successfully applied in a study of BTH region in China. The pf-RSM method characterizes 

the nonlinearity in the air quality response to emission changes. In the polynomial functions developed in this study, high degrees 

were found for the responses to the emissions of NOx, VOC and NH3 which exhibit stronger nonlinear behavior than SO2 and POA. 
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The interaction terms of NOx and VOC are included for both PM2.5 and O3, indicating that atmospheric oxidations play significant 

role in the nonlinearity of air quality responses. The interaction term of NOx and NH3 emissions is also considered for PM2.5, 

suggesting the nonlinearity in nitrate formation and aerosol thermodynamics. 

After the application of a prior knowledge of the pollutant responsiveness to emissions in the RSM system, the cases required for 

single regional pf-RSM development were substantially decreased to 40 samples, compared with the previous requirement of over 5 

100 samples, imply that the fitting-based RSM (i.e., pf-RSM) is three time faster than previous regression-based RSM. The pf-

RSM system in this study operates rapidly, and thus can quickly generate responses with high spatial and temporal resolutions, 

thereby further facilitating cost-benefit optimization and enabling further assessment studies to be conducted. The polynomial 

functions developed in this study have been successfully applied in all grid cells across the simulated domain and all days across 

the simulated periods for both January and July, indicating the combination of terms selected in this study is spatially / temporally 10 

independent as it mainly depends on the nonlinearity in the atmospheric processes. It means that only the “coefficients” of terms 

need to be fitted with training samples in another case (Step 3 in Figure 2), as seen in Table S4 which provides the coefficients of 

15 terms for PM2.5 and O3 in BTH region. The degrees and selected terms (Step 1-2 in Figure 2) do not need to be recalculated 

unless there have significant updates in chemistry mechanism in the CTM. However, it might need further confirmed by more 

applications in other regions outside BTH. 15 

Based on the pf-RSM, a series of indicators were calculated from the polynomial function to represent the nonlinearity in control 

effectiveness for reducing PM2.5 and O3, including Peak Ratio (i.e., PR), suggested VOC/NOx Ratio to avoid increasing O3 (i.e., 

VNr), Flex Ratio (i.e., FR) and the extra benefit from simultaneous reduction of NH3 (µg m-3 PM2.5
 per 1% reduced NH3). We 

found a strong VOC-limited condition and NH3-rich condition for O3 and PM2.5 respectively, in most of urban areas of BTH. 

Results suggest that NOx emission reduction rate need be greater than 20%-60% to pass the transition from VOC-limited to NOx-20 

limited, and a simultaneous VOC reduction by 0.5-1.2 times as the rate of NOx reduction is recommended to avoid increasing O3 

during the transition in July. Along with the control of NOx, the simultaneous reduction of NH3 can provide a considerable benefit 

in PM2.5 reduction by 0.04-0.15 µg m-3 per 1% reduction of NH3. Our results demonstrate the importance of simultaneous 

reductions of VOC and NH3 emissions to enhance the effectiveness of air pollution controls by NOx emission reductions in Beijing-

Tianjin-Hebei region in China. 25 

5. Data availability 

Model outputs and pf-RSM code package are available upon request from the corresponding author. 
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Table 1. Degree of variables in the polynomial function of response to emission changes 

pollutant ENOx ESO2 ENH3 EVOCs EPOA 
PM2.5 4 1 3 2 1 

O3 5 1 1 3 1 
* ENOx, ESO2, ENH3, EVOCs, and EPOA is the change ratio of NOx, SO2, NH3, VOCs, and POA emissions, respectively. 
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Table 2. Out of sample dataset for validation 

Description Control factor Number of cases 
Jointly controls in 5 regions 
(OOS100) 

5 precursors including NOx, SO2, NH3, 
VOCs and POA in all regions 

100, Latin Hypercube Sampling between 
0.0 to 1.2 (baseline =1.0) 

Single regional controls (OOS15) 5 precursors including NOx, SO2, NH3, 
VOCs and POA in individual region 

15, 3 samples in each region by 0.1, 0.5 
and 1.15 (baseline =1.0) 
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Table 3. Performance of PM2.5 and O3 prediction using pf-RSM with different training samples 

Num. Dataset Dist. 

PM2.5 O3 

Jan Jul Jan Jul 
MeanNE MaxNE MeanFE MaxFE R MeanNE MaxNE MeanFE MaxFE R MeanNE MaxNE MeanFE MaxFE R MeanNE MaxNE MeanFE MaxFE R 

20 

OOS100
Even 2.50% 15.09% 1.24% 6.98% 0.94 1.03% 5.56% 0.52% 2.77% 0.99 2.04% 10.33% 1.01% 4.90% 0.99 0.23% 1.50% 0.12% 0.74% 1.00 

Margin 3.07% 15.02% 1.52% 6.97% 0.93 1.66% 6.89% 0.83% 3.59% 0.98 1.73% 5.53% 0.87% 2.74% 1.00 0.22% 0.86% 0.11% 0.43% 1.00 

OOS15 
Even 0.76% 1.86% 0.38% 0.93% 0.99 1.79% 3.33% 0.91% 1.69% 0.97 2.48% 4.84% 1.23% 2.38% 0.96 1.08% 3.29% 0.54% 1.69% 0.92 

Margin 1.61% 3.38% 0.80% 1.66% 0.96 2.59% 5.23% 1.27% 2.53% 0.95 2.83% 4.69% 1.39% 2.27% 0.96 1.13% 2.49% 0.56% 1.23% 0.84 

30 

OOS100
Even 1.89% 9.90% 0.94% 4.71% 0.97 1.14% 4.34% 0.57% 2.12% 0.99 1.25% 12.41% 0.64% 5.77% 0.99 0.19% 1.46% 0.09% 0.73% 1.00 

Margin 2.19% 11.96% 1.09% 5.63% 0.97 1.07% 4.11% 0.53% 2.03% 0.99 1.65% 4.87% 0.82% 2.39% 1.00 0.24% 0.89% 0.12% 0.44% 1.00 

OOS15 
Even 1.13% 2.32% 0.57% 1.18% 0.99 1.49% 2.64% 0.75% 1.34% 0.98 1.52% 2.82% 0.77% 1.44% 0.99 0.59% 2.48% 0.29% 1.22% 0.92 

Margin 0.74% 1.77% 0.37% 0.89% 0.99 1.21% 2.35% 0.60% 1.17% 0.99 1.61% 2.73% 0.80% 1.35% 0.99 0.70% 2.10% 0.35% 1.04% 0.90 

40 

OOS100
Even 1.79% 8.60% 0.89% 4.12% 0.98 0.81% 5.37% 0.40% 2.61% 0.99 1.54% 10.11% 0.79% 5.46% 0.99 0.19% 1.34% 0.09% 0.67% 1.00 

Margin 1.88% 8.25% 0.93% 3.95% 0.98 1.00% 4.28% 0.50% 2.17% 0.99 1.19% 3.96% 0.60% 2.03% 1.00 0.19% 0.78% 0.09% 0.39% 1.00 

OOS15 
Even 0.35% 0.79% 0.18% 0.39% 1.00 1.12% 2.05% 0.56% 1.03% 0.99 1.04% 2.34% 0.53% 1.19% 0.99 0.66% 2.03% 0.33% 1.00% 0.92 

Margin 0.85% 1.80% 0.43% 0.91% 0.99 1.07% 2.08% 0.54% 1.05% 0.99 0.99% 2.34% 0.49% 1.16% 0.99 0.58% 1.93% 0.29% 0.96% 0.93 

50 

OOS100
Even 1.53% 8.17% 0.76% 3.92% 0.98 0.74% 3.77% 0.37% 1.88% 1.00 0.98% 6.50% 0.49% 3.10% 1.00 0.15% 1.07% 0.08% 0.54% 1.00 

Margin 1.71% 8.66% 0.84% 4.15% 0.98 0.86% 3.81% 0.43% 1.89% 0.99 1.39% 4.71% 0.70% 2.30% 1.00 0.18% 0.66% 0.09% 0.33% 1.00 

OOS15 
Even 0.88% 1.39% 0.44% 0.70% 0.99 0.72% 1.92% 0.36% 0.97% 0.99 1.10% 2.42% 0.55% 1.22% 0.99 0.54% 1.96% 0.27% 0.97% 0.96 

Margin 0.93% 2.48% 0.47% 1.26% 0.99 0.81% 1.70% 0.41% 0.86% 0.99 1.20% 2.33% 0.59% 1.15% 0.99 0.45% 1.90% 0.23% 0.94% 0.94 

*PM2.5 and O3 responses are calculated based on monthly averaged concentrations in averages of urban sites 

  

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-2
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 11 January 2018
c© Author(s) 2018. CC BY 4.0 License.



17 
 

Table 4. Estimation of indicators that representing the nonlinear control effectiveness for reducing PM2.5 and O3 in Beijing-
Tianjin-Hebei region 

indicator Month Beijing Tianjin HebeiN HebeiE HebeiS 
Peak Ratio (PR) January 0.11 0.10 0.19 0.15 0.13 

July 0.76 0.45 >1.2 0.74 0.59 
suggested reduction ratio of VOC to NOx to 
avoid increasing O3 (VNr) 

January 3.8 3.5 2.5 2.8 3.0 
July 0.6 1.2 - 0.5 1.1 

Flex Ratio (FR) January 0.77 0.73 0.76 0.77 0.79 
July 0.91 0.92 - 0.77 0.94 

extra benefit from simultaneous reduction of 
NH3 (µg m-3 PM2.5 per 1% reduced NH3) 

January 0.064 0.128 0.041 0.077 0.064 
July 0.148 0.145 - 0.138 0.126 

*Indicators are calculated based on monthly averaged concentrations at urban areas of prefecture-level cities in the five target 
regions 
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Figure 1. Schematic plot of comparison between traditional RSM (regression-based) and RSM with polynomial function 
(denoted as “pf-RSM”, fitting-based) 
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Figure 2. Flow scheme of pf-RSM development 
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(a) NOx (b) SO2 

  

(c) NH3 (d) VOCs 

  

(e) POA  

 
 

 

Figure 3. Fitting the PM2.5 responsive function with a polynomial of a single indeterminate plots 
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pollutant num selected terms in the polynomial function 
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Figure 4. Term selections for PM2.5 and O3 in the polynomial function 
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(a) peak ratio (PR) 

 

(b) VNr (suggested 
VOC/NOx Ratio to 
avoid increasing O3) 

 
 

Figure 5. Definition of Peak Ratio (PR) and suggested VOC/NOx Ratio (VNr) basing on the 2-D isopleths of O3 sensitivity 
to NOx and VOC emission changes (an example in Beijing in July) 
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(a) flex ratio (FR) 

 

(b) extra benefit 
(ΔCPM2.5) from 
simultaneous reduction 
of NH3 

 
 

Figure 6. Definition of Flex Ratio (FR) and extra benefit from simultaneous reduction of NH3 basing on the 2-D isopleths 
of PM2.5 sensitivity to NOx and NH3 emission changes (an example in Beijing in July)  
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 Baseline PM2.5 ΔPM2.5 in Case1 (moderate control) ΔPM2.5 in Case2 (strict control) 

CMAQ 

   

pf-RSM 

   

Figure 7. Spatial distribution of CMAQ-simulated and pf-RSM-predicted PM2.5 in baseline and PM2.5 responses in two 
control scenarios (monthly averages in January 2014, unit: µg m-3, the ENOx, ESO2, ENH3, EVOCs and EPOA in case1 and case2 
are -49%, -45%, -20%, -64%, -20%  and -76%, -79%, -81%, -83%, -73% respectively)  
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 Baseline O3 ΔO3 in Case1 (moderate control) ΔO3 in Case2 (strict control) 

CMAQ 

   

pf-RSM 

   

Figure 8. Spatial distribution of CMAQ-simulated and pf-RSM-predicted O3 in baseline and O3 responses in two control 
scenarios (monthly averages of daily 1-hour maxima O3 in July 2014, unit: ppb, the ENOx, ESO2, ENH3, EVOCs and EPOA in 
case1 and case2 are -49%, -45%, -20%, -64%, -20%  and -76%, -79%, -81%, -83%, -73%  respectively) 
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 (a) PM2.5 (January) (b) O3 (July) 
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Figure 9. Daily series of CMAQ-simulated and pf-RSM-predicted daily averaged PM2.5 in January and daily 1-hour 
maxima O3 in July 2014 in baseline and two control scenarios (the ENOx, ESO2, ENH3, EVOCs and EPOA in case1 and case2 
are -49%, -45%, -20%, -64%, -20%  and -76%, -79%, -81%, -83%, -73% respectively) 
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(a) FR in January (b) PR in July 

  

Figure 10. Spatial distribution of the indicators for PM2.5 (flex ratio, FR) in January and O3 chemistry (peak ratio, 
PR) in July, 2014 
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