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Abstract. Changes in aerosols cause a change in net top-of-the-atmosphere (ToA) short-wave and long-wave radiative fluxes,1

rapid adjustments in clouds, water vapour and temperature, and cause an effective radiative forcing (ERF) of the planetary2

energy budget. The diverse sources of model uncertainty and the computational cost of running climate models make it difficult3

to isolate the main causes of aerosol ERF uncertainty and to understand how observations can be used to constrain it. We explore4

the aerosol ERF uncertainty by using fast model emulators to generate a very large set of aerosol-climate model variants5

that span the model uncertainty due to twenty-seven parameters related to atmospheric and aerosol processes. Sensitivity6

analyses shows that the uncertainty in the ToA flux is dominated (around 80%) by uncertainties in the physical atmosphere7

model, particularly parameters that affect cloud reflectivity. However, uncertainty in the change in ToA flux caused by aerosol8

emissions over the industrial period (the aerosol ERF) is controlled by a combination of uncertainties in aerosol (around9

60%) and physical atmosphere (around 40%) parameters. Four atmospheric and aerosol parameters account for around 80%10

of the uncertainty in short-wave ToA flux (mostly parameters that directly scale cloud reflectivity, cloud water content or11

cloud droplet concentrations), and these parameters also account for around 60% of the aerosol ERF uncertainty. The common12

causes of uncertainty mean that constraining the modelled planetary brightness to tightly match satellite observations changes13

the lower 95% credible aerosol ERF value from -2.65 Wm−2 to -2.37 Wm−2. This suggests the strongest forcings (below14

around -2.4 Wm−2) are inconsistent with observations. These results show that, regardless of the fact that the ToA flux is15

two orders of magnitude larger than the aerosol ERF, the observed flux can constrain the uncertainty in ERF because their16

values are connected by constrainable process parameters. The key to reducing the aerosol ERF uncertainty further will be to17

identify observations that can additionally constrain individual parameter ranges and/or combined parameter effects, which can18

be achieved through sensitivity analysis of perturbed parameter ensembles.19

1 Introduction20

Large aerosol radiative forcing uncertainty has persisted through all Intergovernmental Panel on Climate Change assessment21

reports since 1996 despite substantial developments in climate model complexity (Flato et al. 2013, Section 9.1.3), numerous22
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intercomparison projects (Randles et al., 2013; Tsigaridis et al., 2014; Kim et al., 2014; Mann et al., 2014; Pan et al., 2015;23

Lacagnina et al., 2015; Kipling et al., 2016; Ghan et al., 2016; Koffi et al., 2016), and enormous investments in observing24

systems (Khain et al., 2000; Lacagnina et al., 2015; Seinfeld et al., 2016; Reddington et al., 2017). Reducing aerosol forcing25

uncertainty has therefore proven to be one of the most challenging and persistent problems in atmospheric science.26

27

Reduction of uncertainty in aerosol effective radiative forcing (ERF) is an important objective, not least because it would28

improve climate change projections (Andreae et al., 2005; Myhre et al., 2013; Collins et al., 2013; Tett et al., 2013; Seinfeld29

et al., 2016). An improved understanding of the causes of uncertainty would also help to prioritise model developments, sug-30

gest fruitful analyses across multiple models, and point to potential new observations to constrain the uncertainties. However,31

the task remains challenging for multiple reasons. For example, aerosol ERF is usually quantified with reference to a period32

pre-dating the satellite era (usually 1850 or 1750) meaning it is not a directly observable quantity. Satellite-derived observations33

of present-day aerosol-cloud relationships have the potential to constrain the aerosol ERF uncertainty, but require an improved34

understanding of aerosol changes over the industrial period (Gryspeerdt et al., 2017). Some of the ERF uncertainty might35

therefore be irreducible unless pristine present-day environments are shown to be a good proxy for pre-industrial conditions36

(Carslaw et al., 2013; Hamilton et al., 2014; Carslaw et al., 2017). Furthermore, aerosol ERF depends on many poorly under-37

stood interactions of aerosols with components of the physical climate system. Important sources of uncertainty are known38

to be aerosol emission fluxes (Granier et al., 2011), representations of complex sub-grid processes such as clouds (Haerter39

et al., 2009; Lohmann and Ferrachat, 2010; Guo et al., 2013; Gettleman et al., 2013; Golaz et al., 2013; Neubauer et al., 2014;40

Lohmann, 2017), precipitation responses (Tost et al., 2010; Croft et al., 2012; Michibata and Takemura, 2015), aerosol pro-41

cesses (Croft et al., 2012; Textor et al., 2006, 2007; Storelvmo et al., 2009; Kasoar et al., 2016), radiation calculations (Stier42

et al., 2013; Wilcox et al., 2015) and subsequent feedbacks on atmospheric dynamics (Booth et al., 2012; Bollasina et al., 2013;43

Kirtman et al., 2013; Villarini and Vecchi, 2013; Allen et al., 2014) and surface temperatures (Golaz et al., 2013).44

45

Our intention here is to constrain aerosol ERF uncertainty by pursuing a ‘bottom-up’ approach that explores the underlying46

process uncertainty. This approach provides a set of observationally plausible model variants with which near-term climate47

simulations could be performed. Although a lower limit to the global mean aerosol ERF might be found using a ‘top-down’48

approach and historical temperature trends (Stevens, 2015), inferences made about the climate system are very sensitive to the49

simplifying assumptions that are made in top-down approaches (Knutti et al., 2008; Kretzschmar et al., 2017). More impor-50

tantly, such methods do not provide a model with which to make improved climate projections and they provide no information51

about regional variations in forcing, which are known to be important drivers of climate variability (Chalmers et al., 2012; Dun-52

stone et al., 2013; Shindell et al., 2013; Kirtman et al., 2013; Bollasina et al., 2013). Therefore, bottom-up methods that quantify53

aerosol ERF using global climate models whose performance and uncertainty are constrained by observations are required.54

55

Multi-model studies (or model intercomparison projects, MIPs) can provide some information about ERF uncertainty be-56

cause a set of models with different dynamical cores and physical process parametrisations produces a range of aerosol re-57
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sponses. However, such opportunistic sampling has three main disadvantages. Firstly, inter-model comparisons often include58

models with vastly different degrees of complexity (Collins et al., 2013). For example, aerosol indirect effects are not repre-59

sented in many of the models included in such studies and this artificially inflates multi-model forcing uncertainty (Bellucci60

et al., 2017). Secondly, multiple members of an inter-model comparison will share key modules and behaviours (Pennell and61

Reichler, 2010; Collins et al., 2010; Knutti et al., 2013). This leads to compensating effects between groups of models with62

shared structural errors that causes the multi-model mean to outperform the majority of individual models across a range of63

climate metrics (Rougier, 2016). Thirdly, a small set of models (perhaps around twenty) cannot possibly sample the effects of64

dozens of interacting uncertain processes in the individual models (Carslaw et al., 2018). Therefore, inter-model comparisons65

do not provide statistically representative samples (Sexton et al., 2012; Knutti et al., 2013; Collins et al., 2013), making it66

difficult to draw inferences about the causes of aerosol ERF uncertainty and the robustness of any observational constraint.67

Leading experts subjectively assess the uncertainty in aerosol forcing as being larger than that quantified by multi-model stud-68

ies (Morgan et al., 2006).69

70

A complementary approach to exploring aerosol ERF uncertainty in multiple models is to systematically explore the un-71

certainty in underlying parameters and processes within a single model. Much progress has been made in understanding the72

causes of uncertainty in state variables related to aerosol ERF, such as cloud-active aerosol concentrations (Lee et al., 2011,73

2012, 2013; Samset et al., 2014; Mann et al., 2014; Shrivastava et al., 2016; Kipling et al., 2016), precipitation (Lebo and74

Feingold, 2014; Qian et al., 2015; Johnson et al., 2015) and ToA radiative fluxes (Shiogama et al., 2012; Zhou et al., 2013;75

Randles et al., 2013). Furthermore, important sources of aerosol forcing uncertainty (in the absence of rapid atmospheric ad-76

justments) have been identified (Schulz et al., 2006; Haerter et al., 2009; Lohmann and Ferrachat, 2010; Carslaw et al., 2013;77

Myhre et al., 2013; Regayre et al., 2014, 2015). However, no study has comprehensively explored aerosol ERF uncertainty in78

a model that accounts for rapid atmospheric adjustments. Studies that do include rapid adjustments (e.g. Gettleman, 2015) rely79

on one-at-a-time experiments (where individual parameters or model structures are perturbed in isolation) which do a poor job80

of sampling the model uncertainty because they neglect important parameter interactions (Pianosi et al., 2016).81

82

Here we present a perturbed parameter ensemble of the HadGEM3-GA4-UKCA global aerosol-chemistry-climate model83

and use model emulation (Lee et al., 2013) to enable the combined effects of uncertainties in 27 aerosol, cloud and other atmo-84

spheric model processes to be quantified. Compared to our previous studies (Carslaw et al., 2013; Regayre et al., 2014, 2015)85

we take a more holistic approach to exploring model forcing uncertainty here by accounting for both the uncertainty in cloud86

and other physical atmospheric processes, as well as the uncertainties in the aerosol component of the model. We also explore87

for the first time the uncertainty in aerosol ERF (including rapid atmospheric adjustments to aerosols), and in the components88

of ERF from aerosol-radiation interactions (ERFARI ) and aerosol-cloud interactions (ERFACI ). Other attempts to quantify the89

uncertainty in the ToA radiative flux caused by aerosols (Tett et al., 2013; Shiogama et al., 2012) explored only the current90

state of the atmosphere and not how it changes over time.91

92
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The main questions we address in this paper are: 1) How much of the uncertainty in aerosol ERF is caused by aerosol93

processes and how much by physical atmosphere processes? The answer is important because it will tell us how the tuning of94

model processes apparently unrelated to aerosols might inadvertently affect the aerosol ERF that models calculate. 2) What95

are the processes that cause uncertainty in the aerosol ERF and to what extent do they also affect the observable radiative state96

of the atmosphere? This is important because aerosol ERF uncertainty will only be effectively constrained by observations if97

the uncertainty in both the ERF and the observations are driven by the same uncertain processes (Lee et al., 2016). 3) How98

much does tuning the radiative state of the model (i.e., ruling out implausible model settings) affect the range of aerosol ERFs?99

The effect of tuning of, for example, ToA radiative flux (Lohmann and Ferrachat, 2010; Mauritsen et al., 2012) on the aerosol100

ERF is not normally considered. However, we show that many model variants (and parts of uncertain parameter space) can101

be ruled out using ToA flux observations and that such state variable observations can play an important part in reducing the102

overall uncertainty in aerosol ERF. The results from this paper inform our more comprehensive effort to constrain aerosol ERF103

uncertainty using multiple observational quantities (Johnson et al., 2018).104

105

In Section 2 we outline our methodology, then in Section 3.1 we quantify the magnitude of the uncertainty in aerosol ERF,106

ERFARI and ERFACI through comprehensive sampling of model parameter uncertainty. We then analyse the main causes of107

uncertainty in aerosol ERF over multi-century and multi-decadal periods in Section 3.2 and the causes of ToA radiative flux108

uncertainty in Section 3.3 using sensitivity analysis techniques (Section 2). We also quantify the relative importance of atmo-109

spheric and aerosol parameters as sources of uncertainty in aerosol ERF and ToA radiative flux in Section 3.3. In Section 3.4 we110

identify the main causes of uncertainty in aerosol ERF and its components within 11 climatically important regions. Following111

Lohmann and Ferrachat (2010), we then explore how constraint of the model state using present-day ToA flux observations112

influences the plausible range of aerosol ERF (Sections 3.5.1 and 3.5.4). We show that while the relationships between the113

important driving parameters and individual parameter ranges are well constrained by ToA flux measurements (Sections 3.5.2114

and 3.5.3), the range of credible aerosol ERFs is only moderately (10%) constrained. We investigate the causes of the modest115

constraint in sections 3.5.2, 3.5.3 and 4.116

117

2 Methods118

2.1 Set-up of the HadGEM-UKCA aerosol-climate model119

We used the UK Hadley Centre Met Office Unified Model (HadGEM3, 2017) including release version 8.4 of the UK Chemistry120

and Aerosol (UKCA) model, within which the evolution of particle size distribution and size-resolved chemical composition121

of aerosols are calculated using the GLObal Model of Aerosol Processes (GLOMAP; Spracklen et al., 2005; Mann et al.,122

2010). The model has a 1.25◦x1.875◦ horizontal resolution and 85 vertical hybrid pressure levels. The aerosol size distribution123

is defined by seven log-normal modes: one soluble nucleation mode as well as soluble and insoluble Aitken, accumulation124

and coarse modes. The aerosol chemical components are sulphate, sea salt, black carbon, particulate organic carbon and dust.125
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Secondary organic aerosol material is produced from the first stage oxidation products of biogenic monoterpenes under the as-126

sumption of zero vapour pressure. After kinetic condensation onto existing aerosols organic aerosols (primary and secondary)127

are treated as one chemical tracer.128

129

The GLOMAP model resolves new particle formation, particle coagulation, gas-to-particle transfer, cloud processing (aque-130

ous chemistry) and the deposition of gases and aerosols. Sulphate particles form by binary homogeneous nucleation (Vehkamäki131

et al., 2002) throughout the atmosphere and by organically-mediated nucleation (Metzger et al., 2010) in the boundary layer.132

The activation of aerosol particles into cloud droplets is calculated using distributions of sub-grid vertical velocities (West133

et al., 2014) and the removal of cloud droplets by autoconversion into rain drops is calculated by the physical atmosphere134

model. Aerosol removal by impaction scavenging of falling raindrops (within and below clouds) in the physical atmosphere135

model depends partly on the collocation of clouds and precipitation (Boutle et al., 2014). Soluble particles grow according to136

the relative atmospheric humidity using composition dependent hygroscopicity factors (κ) in accordance with ‘Köhler theory’137

(Petters and Kreidenweis, 2007).138

139

Successive versions of the GLOMAP model have been widely evaluated against global measurements of particle number140

concentration (Spracklen et al., 2010; Reddington et al., 2011), chemical compositions (Spracklen et al., 2011b; Schmidt et al.,141

2011; Browse et al., 2012) and cloud active aerosol concentrations (Korhonen et al., 2008; Spracklen et al., 2011a; Pringle142

et al., 2012). The HadGEM models are subject to constant monitoring for ongoing use in numerical weather prediction and143

have informed successive Coupled Model Inter-comparison Project (CMIP) experiments (Taylor et al., 2012). HadGEM capa-144

bly represents changes in cloud regime (Nam et al., 2012); one of the requirements for simulating rapid adjustments to aerosol145

perturbations (Stevens and Feingold, 2009; Zhang et al., 2015). Cloud water responses to aerosols may be too strong in the146

HadGEM model because the current model version does not represent enhanced drying in polluted clouds (Toll et al., 2017).147

However, over multiple cloud regimes the cloud water response is not of a sufficient magnitude to be climatically important148

(Malavelle et al., 2017).149

150

Anthropogenic emission scenarios prepared for the Atmospheric Chemistry and Climate Model Inter-comparison Project151

(ACCMIP; Lamarque et al., 2010) and prescribed in some of the CMIP Phase 5 experiments (Taylor et al., 2012) are pre-152

scribed here. Carbonaceous aerosol emissions from fires were prescribed using a ten year average of 2002 to 2011 monthly153

mean data from the Global Fire and Emissions Database (GFED3; van der Werf et al., 2010).154

155

Model horizontal winds were relaxed (nudged) towards winds from the European Centre for Medium-Range Weather Fore-156

casts (ECMWF) ERA-Interim reanalysis above around 2 km. Nudging of atmospheric states is used primarily to evaluate157

output from global models (Telford et al., 2008) or to ensure that pairs of simulations have near-identical atmospheric states,158

so that aerosol and/or chemistry perturbations can be applied and their effects quantified using single realisations of each simu-159

lation. In ‘free-running’ (non-nudged) simulations radiative fluxes need to be averaged over many decades in order to produce160
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signals stronger than the noise resulting from internal variability (Kooperman et al., 2012). Nudging to horizontal winds above161

around 2 km forces synoptic-scale dynamical features to be consistent across the ensemble, whilst allowing boundary layer162

atmospheric adjustments in response to changes in aerosols to be affected by the parameter perturbations.163

164

Each simulation was subject to a seven-month spin-up period from a consistent starting simulation, with parameters set to165

their median values for the first four months. Parameter perturbations were applied during the final three months of the spin-up166

period, after which a full year of data was produced for each ensemble member. Aerosol ERF is calculated as the difference in167

net ToA short-wave plus long-wave radiative fluxes between pairs of simulations with identical parameter settings but distinct168

prescriptions of anthropogenic emissions (1850, 1978 and 2008). The aerosol ERF and its components were calculated based169

on the method of Ghan (2013).170

171

2.2 Parameter sampling172

The 27 parameters perturbed in the ensemble, as well as the roles they play in the model, are presented in Table A1. We per-173

turbed 9 parameters in the physical atmosphere model known to affect the properties and distribution of clouds and humidity174

within the boundary layer (atmospheric parameters; Sexton et al. 2018) in combination with 18 aerosol emission, deposition175

and process parameters (aerosol parameters) known to affect cloud droplet number concentrations (Lee et al., 2013) and/or176

aerosol cloud-albedo effect forcing (the ERFACI without accounting for rapid adjustments) at the global (Carslaw et al., 2013;177

Regayre et al., 2014) and/or regional scale (Regayre et al., 2015). Some parameters have been included in the ensemble because178

they represent model structural advances with inherent process uncertainty (Yoshioka et al., In prep.).179

180

We did not attempt to include an exhaustive set of uncertain parameters in the experimental design. Current supercomputing181

resources are too valuable to justify an uninformed, exhaustive exploration of model uncertainty. Instead, we used one-at-a-182

time perturbation screening experiments (not shown) to identify the parameters most likely to influence radiative forcing within183

the model. The parameters included in the preliminary screening process were identified by model domain experts as the key184

parameters within individual model schemes (e.g. cloud microphysics) and/or model processes (e.g. cloud droplet activation)185

with the potential to significantly affect aerosol ERF. Our results may change slightly with the inclusion of additional param-186

eters. However, we went through a thorough parameter screening and prioritisation process so we consider the parametric187

uncertainty to be close to an upper limit. Furthermore, with many possible opportunities for parameter compensation, addi-188

tional parameters only very gradually increase the overall uncertainty.189

190

The parameters we perturb here are likely to have readily identifiable counterparts in other climate models. All global cli-191

mate models have similarities because they describe the same physical processes and although process parametrisations can192

differ between models they often share common biases when compared to measurements (Knutti et al., 2013). Therefore, our193

aim to identify the main causes of aerosol ERF uncertainty in the HadGEM model (Section 3) will provide valuable clues for194
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reducing the aerosol ERF uncertainty in other models.195

196

2.2.1 Definition of atmospheric parameters197

Rad_Mcica_Sigma: The fractional standard deviation of the sub-grid cloud condensate as seen by radiation. This parameter198

controls the inhomogeneity of cloud condensate within vertically overlapping sub-grid clouds (Räisänen et al., 2004) which199

is used to calculate cloud radiative fluxes. Higher values of Rad_Mcica_Sigma increase cloud condensate inhomogeneity and200

hence reduce cloud albedo (because of the non-linear relationship between albedo and cloud condensate; Barker and Räisänen,201

2005). Atmospheric temperature profiles respond to changes in the cloud radiative fluxes and can induce changes in precipita-202

tion rates and cloud amount. The effect of perturbing Rad_Mcica_Sigma on reflected radiation is largest in regions of persistent203

stratocumulus cloud where low-altitude, high-albedo clouds occupy a substantial fraction of each model grid box.204

205

C_R_Correl: Cloud and rain sub-grid horizontal correlation. The collocation of clouds and rain within the model is impor-206

tant because it determines the accretion rate of cloud droplets and aerosols by rain drops. Higher values cause more accretion207

because regions of high cloud water are closely correlated with regions of high precipitation. Perturbations to this parameter208

affect cloud radiative properties by altering in-cloud interstitial aerosol concentrations and cloud amount.209

210

Niter_BS: Number of microphysics iteration substeps. The microphysical processing of in-cloud interstitial aerosols and211

cloud droplets is controlled by the cloud microphysics scheme within the physical atmosphere model. The values of this pa-212

rameter determine the degree of processing within a model timestep. Each iteration of the microphysics scheme allows drops213

to grow larger before precipitation occurs. Therefore, higher parameter values allow for greater microphysical processing and214

cause the model to produce less light rain. This affects the amount of liquid water within clouds and alters the amount of cloud215

which is important for cloud radiative effects.216

217

Ent_Fac_Dp: Entrainment amplitude scale factor. This convection scheme parameter controls the shape of the convective218

mass flux and the sensitivity of convection to relative humidity. Higher values reduce the depth of convection and suppress219

convective precipitation. This parameter is important for cloud radiative effects for several reasons. First, the retention of cloud220

water increases cloud amount and short-wave reflectivity. Second, lower altitude clouds have a higher cloud top temperature221

and attenuate less of the long-wave energy emitted by the Earth’s surface. Third, if atmospheric moisture is not precipitated222

convectively, the increase in relative humidity causes more large-scale, frontal precipitation which affects spatial distributions223

of aerosols and clouds and hence the aerosol ERF.224

225

Amdet_Fac: Mixing detrainment rate scale factor. This parameter controls the rate of humidification of the atmosphere226

and the shape of the convective heating profile. Amdet_Fac is important for cloud radiative effects for similar reasons to227

Ent_Fac_Dp. Both parameters affect clouds through their influence on convection but through different mechanisms. Higher228
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values of Amdet_Fac increase atmospheric humidity and temperature leading to enhanced convection.229

230

Dbsdtbs_Turb_0: The cloud erosion rate. This parameter alters the radiative properties of clouds by altering the rate at231

which unresolved sub-grid motions mix clear and cloudy air. Higher values cause more rapid mixing of clear, dry air into232

clouds, thereby reducing cloud liquid water content, autoconversion of cloud droplets to rain drops and cloud amount. The233

atmospheric lifetimes of aerosols and precursor gases are noticeably affected by this parameter.234

235

Mparwtr: Maximum value of the function controlling convective parcel maximum condensate. Convective parcels near the236

Earth’s surface precipitate when the amount of moisture reaches the threshold set by this parameter. Higher values increase237

cloud amount and lifetime by reducing convective precipitation. As with other convective parameters Mparwtr affects cloud238

radiative effects and aerosols by altering the spatial distributions of clouds and precipitation.239

240

Dec_Thres_Cld: The threshold for cloudy boundary layer decoupling. Boundary layer stability plays an important role in241

determining the magnitude of cloud radiative effects because a well-mixed, stable boundary layer retains more heat and permits242

more dynamic activity. This parameter is the threshold at which the boundary layer decouples from the rest of the atmosphere.243

Hence, higher parameter values lead to a more well-mixed boundary layer, increased cloudiness and longer in-cloud processing244

times for aerosols.245

246

Fac_Qsat: Rate of change of convective parcel maximum condensate with altitude. The maximum amount of moisture a con-247

vective parcel can hold transitions from the threshold set by the parameter Mparwtr at the surface to a much smaller threshold248

at high altitudes. Fac_Qsat controls the rate at which this threshold changes with altitude. Fac_Qsat therefore influences cloud249

radiative effects through similar mechanisms to Mparwtr (higher values suppress precipitation and increase cloud amount and250

lifetime) but is more important in the upper boundary layer.251

252

2.2.2 Definition of the aerosol parameters253

Ageing: Ageing of hydrophobic aerosols. Carbonaceous aerosols are assumed to be non-hygroscopic when emitted into the254

atmosphere and cannot act as cloud condensation nuclei until sufficient layers of sulphuric acid and condensible organic mat-255

ter coat their surface. This parameter is the number of monolayers of soluble material required to convert initially insoluble256

aerosols into cloud condensation nuclei. Higher values reduce the conversion rate of hydrophobic to hygroscopic aerosols. This257

parameter is important for aerosol ERF because it affects cloud condensation nuclei and the removal rate of highly-absorbing258

carbonaceous aerosols from the atmosphere.259

260

Cloud_pH: pH of cloud droplets. The pH of cloud droplets is used in the aqueous chemistry module of GLOMAP to cal-261

culate the conversion of SO2 into sulphate particles. Cloud droplet pH depends on kinetic and thermodynamic processes that262
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are not explicitly simulated. Therefore, we use a globally defined value of cloud droplet pH to control the reaction rate. Un-263

certainty in this parameter accounts for the simplification in its application. Higher values of this parameter increase sulphate264

production near SO2 emission sites and tend to reduce aerosol concentrations in remote regions (through effects on new parti-265

cle formation). Therefore, the cloud pH parameter affects the spatial distribution of aerosols which is important for aerosol ERF.266

267

Carb_BB_Ems: Carbonaceous biomass burning emission scale factor. Higher values of this scale factor increase the268

amount of carbonaceous aerosols emitted into the atmosphere from large-scale biomass burning. Carbonaceous aerosols are269

important for aerosol ERF because they absorb solar radiation and the resulting energy redistribution affects boundary layer270

temperatures and stability and can affect cloud cover (Gnanadesikan et al., 2017).271

272

Carb_BB_Diam: Carbonaceous biomass burning emission diameter (nm). This parameter determines the size of carbona-273

ceous aerosols at time of emission. Higher values cause fewer, larger carbonaceous aerosols to be emitted for a given value274

of Carb_BB_Ems. Therefore, the total carbonaceous aerosol particle number is reduced, leading to fewer cloud condensation275

nuclei and a change in aerosol optical properties.276

277

Sea_Spray: Sea spray aerosol emission scale factor. Aerosol ERF is sensitive to emission fluxes of natural aerosols because278

they strongly influence the pre-industrial background aerosol concentration and the relative magnitude of the change in aerosols279

over the industrial period. Perturbations to the wind-driven emission fluxes affect aerosol distributions in marine and coastal280

regions.281

282

Anth_SO2: Anthropogenic SO2 emission scale factor. SO2 gas forms H2SO4 molecules which condense to form sulphate283

particles. Furthermore, SO2 condenses onto existing particles increasing their size and solubility. Therefore, scaling anthro-284

pogenic SO2 emissions affects aerosol ERF by influencing the concentrations and composition of present-day aerosols.285

286

Volc_SO2: Volcanic SO2 emission scale factor. Volcanic SO2 emissions are treated identically to anthropogenic SO2 emis-287

sions. However, they are present in both the pre-industrial and present-day atmospheres so exert an influence on aerosol ERF288

through a similar mechanism as Sea_Spray by altering the pre-industrial aerosol concentration.289

290

BVOC_SOA: Biogenic secondary aerosol formation from volatile organic compounds scale factor. Secondary organic291

aerosols form through multi-stage oxidation reactions of biogenic volatile organic compounds (monoterpenes in this case).292

This parameter scales the secondary organic aerosol emission flux, with higher values producing larger emissions. Perturbing293

this parameter changes the aerosol concentration and size distribution in the pre-industrial and present-day atmosphere.294

295

DMS: Dimethylsulphide surface ocean concentration scale factor. Perturbing the concentration of DMS in the oceans alters296

the wind-driven flux of DMS into the atmosphere. DMS is important for aerosol ERF because it is a source of natural aerosols297
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which affect the pre-industrial aerosol background concentrations. Similar to the Sea_Spray parameter, DMS affects aerosol298

concentrations in marine and coastal regions. However, marine DMS concentrations increase with ocean temperature so per-299

turbations to this parameter will have the greatest influence on aerosol ERF in warmer months.300

301

Dry_Dep_Acc: Accumulation mode dry deposition velocity scale factor. Aerosols are removed from the atmosphere at a302

velocity calculated using Brownian diffusion, impaction and interception. This calculation in the GLOMAP model depends on303

wind speeds and surface roughness. High values of this parameter more readily remove accumulation mode aerosols from the304

atmosphere causing a reduction in cloud condensation nuclei concentrations.305

306

Dry_Dep_SO2: SO2 dry deposition velocity scale factor. This parameter determines the removal of SO2 gas from air masses307

that interact with the surface. The removal of SO2 is important for aerosol ERF because SO2 is a precursor for sulphate parti-308

cles and condenses onto existing particles causing them to grow to the larger sizes needed to act as cloud condensation nuclei.309

Higher values of this parameter increase the removal rate of SO2 from the atmosphere. This affects aerosol size distributions310

by simultaneously reducing particle formation rates and the growth rates of existing aerosols.311

312

Kappa_OC: Köhler coefficient of organic carbon. Aerosol water uptake efficiency is determined by ‘Köhler theory’ using313

size and composition dependent hygroscopicity factors (κ; Petters and Kreidenweis, 2007). Higher values of this parameter314

increase the water uptake efficiency of the organic material in the particles. Perturbations to this parameter will change the315

light-scattering efficiency of the particles and the droplet activation process, thereby affecting cloud microphysical processes.316

In particular, cloud-active aerosol concentrations in the pre-industrial atmosphere are expected to be susceptible to this param-317

eter value (Liu and Wang, 2010).318

319

Sig_W: Updraft vertical velocity standard deviation. This parameter controls the width of the probability distribution of320

sub-grid vertical velocities used to calculate the activation of aerosols into cloud droplets. Higher Sig_W values widen the dis-321

tribution of updraft velocities. The largest sub-grid updrafts within the distribution have the greatest influence on cloud droplet322

concentrations because, for any given supersaturation, a larger updraft velocity will cause a greater proportion of relatively323

small aerosols to activate. Higher values of Sig_W therefore increase cloud droplet concentrations, decrease precipitation ef-324

ficiency (through reduced autoconversion rates), cloud liquid water content and cloud albedo. Sig_W perturbations have the325

greatest influence on cloud droplet concentrations in regions of relatively high aerosol concentrations because in such environ-326

ments droplet activation is updraft-limited rather than aerosol-limited.327

328

Dust: Dust emission scale factor. Dust aerosols are large, insoluble particles when emitted, but are treated as hygroscopic329

once sufficiently aged by the condensation of soluble material onto the particle surface (as defined by the ‘ageing’ parameter).330

We perturb dust emissions in our ensemble because they are important for the ERFARI component of aerosol ERF. Further-331

more, dust influences cloud-active aerosol concentrations (Manktelow et al., 2010) and cloud droplet concentrations (Karydis332
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et al., 2017).333

334

Rain_Frac: Fraction of cloud-covered area in large-scale clouds where scavenging occurs. Rain and clouds do not correlate335

perfectly (as discussed in the C_R_Correl definition). Higher values of this parameter allow aerosols to be scavenged by rain336

drops over a greater fraction of cloudy areas. The value of this parameter is important for aerosol ERF because it affects aerosol337

atmospheric lifetimes.338

339

Cloud_Ice_Thresh: Threshold of cloud ice fraction above which nucleation scavenging of aerosol material is suppressed.340

The scavenging of aerosol material in dynamic rain systems is controlled partly by the rain formation process - either collision-341

coalescence process that efficiently removes many aerosol particles in raindrops or the Wegener-Bergeron-Findeisen process342

in mixed-phase clouds, which leads to less aerosol scavenging and seems to account for the efficient winter-time transport of343

aerosols to the Arctic (Barrett et al., 2011; Browse et al., 2012). In our previous studies (Regayre et al., 2014, 2015) we de-344

fined a temperature below which scavenging was suppressed. Here, we instead use the mass fraction of ice to define a threshold345

above which no nucleation scavenging occurs. Higher values require a greater proportion of ice to be present before scavenging346

is suppressed. This parameter is important for high latitude aerosol concentrations and cloud radiative effects (Browse et al.,347

2012; Regayre et al., 2015; Yoshioka et al., In prep.).348

349

BC_RI: Imaginary part of the black carbon refractive index. This parameter controls the absorption of radiation as it passes350

through aerosols containing black carbon. Higher values of the imaginary refractive index cause more energy to be absorbed351

and re-emitted by black carbon aerosols. The real part of the refractive index is defined according to the imaginary part mean-352

ing that this parameter also controls the scattering of radiation by black carbon aerosols. Higher values of the real part cause353

more incoming radiation to be refracted towards the Earth’s surface (more forward scattering). Perturbations to BC_RI affect354

ERFARI as well as the vertical profile of atmospheric heating and hence convection, cloud amount and cloud radiative effects.355

Our simulations do not account for effect of depositing light-absorbing carbonaceous aerosols on snow (Bond et al., 2013), nor356

the air-sea interactions that enhance rapid adjustments in marine regions (Gnanadesikan et al., 2017).357

358

OC_RI: Imaginary part of the organic carbon refractive index. The absorption of radiation by organic carbon is controlled359

by this parameter. Unlike BC_RI, the real part of the organic carbon refractive index is held constant. Therefore, perturba-360

tions to this parameter have no effect on the refractive properties of organic carbon. Otherwise, OC_RI affects the atmosphere361

through the same mechanisms as BC_RI.362

363

One potentially important parameter that we did not perturb is the autoconversion rate of cloud droplets into rain drops (al-364

though we did perturb Rain_Frac and C_R_Correl which affect aerosol and cloud droplet removal by rain drops). The coupling365

between the GLOMAP model and the cloud microphysics scheme is currently one-way: cloud droplet concentrations calcu-366

lated in GLOMAP are used in the autoconversion scheme and thereby affect precipitation rates, cloud liquid water content and367
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albedo. However, precipitation only alters the cloud droplet concentrations in HadGEM and not aerosol concentrations within368

the GLOMAP model. For aerosol concentrations to be directly altered by the autoconversion process, the coupling would need369

to be two-way so that cloud droplet concentrations in GLOMAP were consistent with those calculated in the atmospheric370

model’s microphysics scheme.371

372

Other HadGEM simulations showed that over multiple cloud regimes cloud liquid water path is not substantially affected373

by aerosols through autoconversion (Malavelle et al., 2017), suggesting that neglecting the uncertainty in this process is not374

important to our results. However, in relatively polluted regions (such as the North Atlantic) cloud liquid water path responses375

to aerosols in low-altitude clouds (particularly Stratocumulus) are likely to be overestimated in the model because of known376

structural errors (Toll et al., 2017). The cloud liquid water path response to aerosols in low, warm clouds is weaker in HadGEM377

than in other global climate models (Ghan et al., 2016). Therefore, autoconversion may seem more important in other models,378

but will likely be overstated (Toll et al., 2017). This process should be considered in future uncertainty analysis studies once379

shared model structural errors are addressed and the process uncertainty better quantified.380

381

2.3 Statistical methodology382

Maximin Latin Hypercube sampling was used to create a parameter combination design of 162 points with excellent space-383

filling properties that provide information on model output across the 27-dimensional parameter uncertainty space. A simula-384

tion with all parameters set to their median values (from distributions described in table A1) was also included in the ensemble.385

Emulators were then constructed which describe individual model outputs (ToA flux, aerosol ERF and its components) over386

the 27-dimensional space of the uncertain parameters. Emulators provide a statistical representation of model output for all387

points within the multi-dimensional parameter space and have been widely used to analyse climate models (Lee et al., 2013;388

Carslaw et al., 2013; Tett et al., 2013; Regayre et al., 2014; Hamilton et al., 2014; Regayre et al., 2015; Johnson et al., 2015;389

Lee et al., 2016) as well as complex models in many other areas of science, including hydrology (Liu and Gupta, 2007), galaxy390

formation (Rodrigues et al., 2017) and disease transmission (Andrianakis et al., 2017).391

392

In total 217 perturbed parameter simulations were created for each anthropogenic emission period including a set of 54393

simulations with parameter combinations that augment the original design and were used to validate the emulators. Twenty-six394

simulations did not complete an annual cycle in at least one of the anthropogenic emission periods (1850, 1978 and 2008)395

because the combinations of parameters caused the model to fail. Hence, the ensemble of simulations for each period was396

made up of the remaining 191 simulations. Once emulators were validated, by ensuring that at least 75% of the validation397

simulations produced output within the relatively small emulator uncertainty bounds, new emulators conditioned on output398

from the 191 perturbed parameter simulations (with better space-filling properties) were created by combining the validation399

simulations with the original set of simulations.400

401
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Probability density functions (pdfs; Table A1) were used to represent expert beliefs about parameter uncertainty. We pre-402

dominantly used trapezoidal distributions (Hetzel, 2012) to represent parameter uncertainty in order to avoid having an overly-403

centralized multi-variate sample (Yoshioka et al., In prep.).404

405

By combining perturbed parameter ensembles with model emulation and then densely sampling emulator output using the406

extended-FAST sampling method (Saltelli et al., 1999), we were able to perform sensitivity analyses (Saltelli et al., 1999, 2000;407

Lee et al., 2012) and decompose the variance in model output into individual components. We used the percentage reduction408

in variance which would be achieved if a parameter value was known exactly as our main statistic for identifying the causes409

of uncertainty. Emulation and sensitivity analyses were applied at the individual model gridbox level (degraded to N48 model410

resolution) as well as at the regional and global mean level for the ToA flux as well as the forcing terms. For the sensitivity411

analyses, samples of 270000 members were drawn from the emulators at parameter combinations determined by the param-412

eter pdfs. The sensitivity analysis results are therefore informed by expert knowledge about the model behaviour in relation413

to the uncertain processes. However, for the constraint of aerosol ERF using ToA flux observations we sampled one million414

model variants using uniform pdfs. This sampling approach uses the expert-elicited parameter pdfs to determine the ranges of415

uniform pdfs for sampling but neglects expert prior beliefs about parameter value likelihoods. As such, the effects of applying416

the observational constraint and expert knowledge can be quantified and compared. Furthermore, the effect of applying the417

observational constraint on the uncertain parameter space can be more readily assessed when uniform pdfs are used to create418

the original sample because parameter combinations are more evenly spaced throughout the 27-dimensional parameter space.419

420

Preliminary parameter combination screening tests revealed that values of Ent_Fac_Dp higher than around 1.8 in combi-421

nation with values of Amdet_Fac higher than around 8.0 caused model simulations to fail. This part of the 27-dimensional422

parameter space (a corner of a 2D plane) was removed from the ensemble design and analyses. The sampling method used to423

perform the sensitivity analyses, was adapted to reject samples from the 2D corner of parameter space not included in the de-424

sign. Rejected combinations of the Ent_Fac_Dp and Amdet_Fac parameters were re-sampled from the restricted 2D parameter425

space without affecting the sampling frequency across the remaining 25-dimensional parameter space.426

427

3 Results428

3.1 Uncertainty in aerosol ERF and its components429

Figure A1 shows pdfs of the global mean aerosol ERF (from 1850 to 2008) and its components; ERFARI and ERFACI . The430

95% credible interval of aerosol ERF used in the sensitivity analysis is -2.18 to -0.71 Wm−2. Most of the uncertainty in aerosol431

ERF comes from the ERFACI component, which has a credible interval of -2.20 to -0.61 Wm−2 and captures much of the432

recognised uncertainty in this forcing term (Myhre et al., 2013; Shindell et al., 2013). We also account for above-cloud aerosols433

(Ghan, 2013) in our calculation of ERFACI and ERFARI which affects the balance between these two components of aerosol434
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ERF (Yoshioka et al., In prep.). This adjustment results in distributions of weaker ERFARI values and stronger ERFACI values435

in our sample compared to (Myhre et al., 2013). We discuss these effects further in Section 3.1.2.436

437

The sample of aerosol ERFs in Fig. A1 has already been constrained by our choice of probability distributions for the uncer-438

tain parameters (Table A1). When we use uniform parameter distributions to sample parameter combinations (Section 2.3) the439

credible range (95%) of aerosol ERFs is -2.65 to -0.68 Wm−2. By applying expert beliefs about parameter value likelihoods440

the aerosol ERF credible range is only -2.18 to -0.71 Wm−2 (Fig. A1(a)). This implies that by applying the combined knowl-441

edge of experts with an understanding of the model processes and parametrisations we have effectively reduced the aerosol442

ERF credible range by around 25%.443

444

The strongest aerosol ERFs in our distribution would lead to a negative forcing when combined with best estimates of445

changes in other forcing agents over the industrial period. A net negative forcing is incompatible with the observed increase in446

global mean surface temperatures over the industrial period (e.g. HadCRUT4, 2017). However, there is substantial uncertainty447

in the ERFs of multiple other forcing agents (Myhre et al., 2013; Fig. 8.16 and 8.18) so our most negative aerosol ERF values448

cannot be considered implausible using this criteria. Structural aspects of the model could account for the strongest forcings.449

For example, our model is missing marine sources of organic aerosols and related processes (Gantt et al., 2015) which, if in-450

cluded, would act as an important source of ice-nucleating particles (Vergara-Temprado et al., 2017) and pre-industrial aerosols451

(Gordon et al., 2017) which would weaken the aerosol forcing (Carslaw et al., 2013). However, our perturbed parameter ranges452

were to some extent intended to encompass the uncertainty caused by those structural deficiencies we were aware of. The453

values in the tails of the aerosol ERF pdf are likely to be the result of setting multiple parameters important for aerosol ERF454

to extreme values, which are also likely to cause extreme present-day ToA flux values and be considered implausible when455

compared to observations (Sections 3.5).456

457

Figure A1 also shows the separate effects of the 18 combined aerosol parameters and the 9 combined physical atmosphere458

model uncertainties. Neglecting the uncertainty in aerosol parameters (by setting them to their median values in the all model459

variants) results in a 95% credible aerosol ERF interval of -1.98 to -1.04 Wm−2, while neglecting uncertainty in atmospheric460

parameters results in a credible interval of -2.00 to -0.90 Wm−2. Summary statistics of forcing from these samples are pre-461

sented in Table A2. The distribution of aerosol ERF (as well as ERFARI and ERFACI ) is wider and flatter (has a larger462

variance) in the combined sample than the distributions of atmosphere-only and aerosol-only sampled values. This suggests463

that important interactions between atmospheric and aerosol parameters cause the most extreme aerosol ERF values. The ef-464

fects of the aerosol and physical model uncertainties do not have an additive effect on the aerosol ERF uncertainty because465

of compensating effects between the groups of parameters. These results show that both atmospheric and aerosol parameter466

perturbations are required to comprehensively sample model uncertainty. The main atmospheric and aerosol sources of aerosol467

ERF uncertainty are identified in Section 3.2.1.468

469
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3.1.1 Uncertainty in ERFACI470

Maps of the means and standard deviations of ERFACI resulting from perturbations to our 27 atmospheric and aerosol pa-471

rameters are presented in Fig. A2. Forcings stronger than -3.5 Wm−2 are concentrated over anthropogenic aerosol sources472

(particularly Asia, America and Europe) and in marine stratocumulus regions (Atlantic Ocean, North Pacific Ocean and the473

South Pacific Ocean off the South American coast). The standard deviation of ERFACI is largest (up to 6 Wm−2) in the same474

regions and is typically of the same order of magnitude as the mean regional value. The spatial distribution of mean ERFACI is475

very similar to the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) multi-model mean pattern476

(Shindell et al., 2013). However, the magnitudes of forcing differ, particularly over remote marine regions. For example, our477

mean ERFACI is stronger than -5 Wm2 over much of the North Pacific Ocean, whereas the ACCMIP mean aerosol ERF in the478

Pacific is stronger than -3.5 Wm2 only in coastal regions near to anthropogenic sources. These strong remote marine ERFACI479

values go some way to explaining the differences in global mean ERFACI between our sample (around -1.4 Wm2) and the480

ACCMIP multi-model mean (around -0.9 Wm2). In part, the magnitude of our ERFACI values are caused by the above-cloud481

aerosol adjustment (Ghan, 2013). Our model has a relatively weak cloud liquid water path response to aerosols (Ghan et al.,482

2016; Malavelle et al., 2017), which suggests that our very negative marine forcing values are not caused by an overly strong483

aerosol second indirect effect.484

485

3.1.2 Uncertainty in ERFARI486

Fig. A3 shows the spatial pattern of mean ERFARI and its standard deviation. Global mean ERFARI is near zero (95% cred-487

ible range -0.19 to 0.13 Wm−2; Fig. A1; Table A2). Although the possibility of a globally positive ERFARI has previously488

been considered unlikely (Boucher et al., 2013), it has important implications for our understanding of interactions between489

absorbing aerosols, cloud-processes and boundary-layer dynamics. The near-zero global mean ERFARI results from the can-490

cellation of positive and negative regional forcings. Positive mean ERFARI values (up to 10 Wm−2) occur in regions where491

carbonaceous aerosols often overlie relatively high-albedo clouds (continental Asia and off the west coasts of Africa and South492

America). It is in these regions that the standard deviation of ERFARI is also largest (up to 5 Wm−2). Light-absorbing aerosols493

above cloud heat the local atmosphere, which can suppress convection and affect cloud cover. This is important for calculating494

the ERFARI from our simulations because we account for above-cloud scattering and absorption of aerosols in line with Ghan495

(2013). Neglecting the effects of above-cloud aerosols in the ERFARI produces no positive values for this forcing component496

(95% credible interval -0.69 to -0.24; Yoshioka et al., In prep.). Therefore, the magnitude of ERFARI over Asia, Africa and497

South America (where it is positive and reduces cloud cover) determines the sign of global mean ERFARI .498

499
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3.2 Sources of uncertainty in aerosol ERF and its components500

3.2.1 Sources of uncertainty in global mean ERFACI501

Fig. A4 summarises the causes of variance (sometimes referred to as the ‘main effects’) in global mean ERFACI , ERFARI and502

aerosol ERF. Natural aerosol emissions (here, predominantly Sea_Spray, DMS and BB_Diam) persist as important sources of503

industrial-period ERFACI uncertainty, as in previous studies of several climate models (Wilcox et al., 2015) and the aerosol-504

only component of a global model (Carslaw et al., 2013). Here, natural aerosols are responsible for around 63% of the propor-505

tion of ERFACI variance caused by aerosol parameters, compared to 45% of the variance in aerosol-cloud-albedo effect forcing506

in the absence of rapid atmospheric adjustments (Carslaw et al., 2013). However, by far the largest source of uncertainty is507

the Rad_Mcica_Sigma parameter. This cloud radiation parameter affects the spatial homogeneity of simulated clouds, altering508

(amongst other things) reflected radiation, tropospheric temperature profiles and cloud amount (Section 3.3). Therefore, by509

altering the radiative state of clouds in the pre-industrial and present-day atmospheres Rad_Mcica_Sigma affects uncertainty510

in the simulated change in cloud radiative state (the ERFACI ). Model process parameters Sig_W and C_R_Correl cause un-511

certainty in ERFACI by altering the efficiency of the cloud droplet activation and deposition processes respectively. Other512

parameters cause a small amount of the ERFACI uncertainty but only in individual months. Therefore, the six parameters513

and associated processes identified here are the key to understanding the uncertainty in the global, annual mean ERFACI in514

HadGEM.515

516

3.2.2 Sources of uncertainty in global mean ERFARI517

The sources of global mean ERFARI variance are summarised in Fig. A4(b). Parameters related to the emission and radiative518

properties of carbonaceous absorbing aerosols (BC_RI, OC_RI and BB_Ems) are amongst the largest sources of ERFARI519

variance in all months. However, the emission flux of carbonaceous aerosols (BB_Ems) and the radiative properties of organic520

carbonaceous aerosols (OC_RI) cause much more of the ERFARI variance in high emission months (Jun - Aug) than they do in521

the annual mean. In other months with lower concentrations of carbonaceous aerosols, uncertainty in anthropogenic emissions522

(here, Anth_SO2) is the largest source of global mean ERFARI variance. Anthropogenic emissions affect the ERFARI by in-523

fluencing aerosol properties in the present-day atmosphere. Other parameters (notably, Rad_Mcica_Sigma and Sig_W) affect524

the balance between ERFACI and ERFARI by altering cloud radiative properties which are important for calculating above-525

cloud aerosol effects (Ghan, 2013). Rad_Mcica_Sigma and Sig_W are the only parameters identified as important causes of526

uncertainty in both ERFACI and ERFARI .527

528
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3.2.3 Sources of uncertainty in industrial-period global mean aerosol ERF529

The aerosol ERF is the sum of the ERFACI and ERFARI . Therefore, the sources of aerosol ERF variance are also sources530

of variance in the forcing components. The causes of aerosol ERF variance are summarised in Fig. A4(c). Aerosol ERF531

shares more sources of variance with ERFACI than with ERFARI because ERFACI is the stronger and more uncertain forcing532

component (Fig. A1). Natural aerosol emissions (Sea_Spray, DMS and BB_Diam) and model process parameters (Sig_W and533

C_R_Correl) collectively cause over half of the aerosol ERF variance. Each of these key parameters causes a similar proportion534

of the aerosol ERF and ERFACI variances. However, the cloud radiation parameter (Rad_Mcica_Sigma) causes more of the535

ERFACI variance (around 35%) than aerosol ERF variance (less than 30%), despite also causing around 25% of the ERFARI536

variance. This suggests that the ERFACI and ERFARI responses to Rad_Mcica_Sigma are of opposite sign and thus partially537

cancel in the aerosol ERF calculation. The other main difference between sources of aerosol ERF and ERFACI variance comes538

from anthropogenic emissions. Anthropogenic emission uncertainty (Anth_SO2) causes up to 10% of the aerosol ERF variance539

in all months. However, Anth_SO2 only causes a small percentage of the ERFACI variance in a few months. Therefore, this540

parameter’s contribution to aerosol ERF variance is predominantly through its influence on the ERFARI component of forcing.541

542

3.2.4 Sources of uncertainty in multi-decadal aerosol ERF543

The causes of aerosol radiative forcing uncertainty are known to depend on the anthropogenic emission period examined544

(Carslaw et al., 2013; Regayre et al., 2014). A more detailed understanding of the causes of uncertainty in aerosol ERF re-545

quires sensitivity analyses over multiple time periods. In this section, we examine the pattern of uncertainty in multi-decadal546

(1978-2008) aerosol ERF, identify the main causes of uncertainty in multi-decadal aerosol ERF and discuss how these results547

inform our understanding of aerosol ERF on longer time scales.548

549

Fig. A5 shows the spatial pattern of mean aerosol ERF and its standard deviation over the 1978-2008 period. Global anthro-550

pogenic sulphate emissions peaked in the late 1970s (Lamarque et al., 2010) then decreased in Europe and North America as551

a result of clean air legislation, but increased significantly in Asia (Smith et al., 2011). Therefore, there are distinct regions552

of positive and negative aerosol ERF in the 1978-2008 period. The cancellation of the regional aerosol ERFs of opposite sign553

cause a near-zero global mean aerosol ERF (95% credible range of -0.6 to 0.8 Wm−2). Over continental land masses, the554

aerosol ERF standard deviation is largest (between 0.5 and 5 Wm−2) in regions of substantial mean aerosol ERF (absolute555

mean larger than around 1 Wm−2). The aerosol ERF standard deviation is larger than around 0.3 Wm−2 over most marine556

regions and is largest over regions of persistent stratocumulus cloud, even when the mean forcing is near-zero (e.g. off the west557

coast of South America). This suggests the sign of recent-decadal aerosol ERF forcing is uncertain over those regions.558

559

The sources of variance in aerosol ERF and its components over the 1978 to 2008 period are summarised in Fig. A6. The560

sign of the aerosol ERF over the 1978-2008 period is uncertain for much of the year and is only definitively negative in the561
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Northern Hemisphere summer. The cancellation of positive and negative regional aerosol ERFs has three main implications562

for the global mean sensitivity analysis. Firstly, not all of the causes of regional aerosol ERF will be evident in the global mean563

analysis (Regayre et al., 2015). Nevertheless, the causes of uncertainty in global mean 1978-2008 aerosol ERF will inform564

our understanding. Secondly, the causes of global mean aerosol ERF uncertainty are seasonally dependent because changes in565

the magnitude of incoming solar radiation determine the relative importance of regional uncertainties. Thirdly, the competing566

regional effects cause the total variance accounted for by individual parameters to be much less than 100% (as low as 55% in567

some months) with many parameters causing only a small amount (around 5%) of the variance. This suggests that important568

interactions between multiple parameters in multiple regions are causing much of the global mean aerosol ERF variance in569

recent decades.570

571

There are multiple ways in which the causes of aerosol ERF uncertainty in the 1978-2008 period differ from those in the572

1850-2008 period. Firstly, natural aerosol emission parameters have little influence on recent-decadal aerosol ERF uncertainty573

because the global mean 1978-2008 aerosol ERF depends more linearly on changing anthropogenic emissions than the 1850-574

2008 aerosol ERF (Carslaw et al., 2013). Secondly, the cloud radiation parameter Rad_Mcica_Sigma causes very little (less575

than 3%) of the 1978-2008 aerosol ERF variance. The reduced importance of this parameter as a cause in aerosol ERF un-576

certainty results from the cancellation of regional aerosol ERFs of opposite sign, which also depends on the linearity of the577

multi-decadal aerosol ERF response to anthropogenic emission changes. Thirdly, in the 1978-2008 period anthropogenic and578

model process parameters are a larger source of aerosol forcing uncertainty, as in previous analysis of this period (Regayre579

et al., 2014). Here, uncertainty in the deposition rates of aerosols and aerosol precursor gases account for most (around 20%580

each) of the multi-decadal aerosol ERF variance. The aerosol process parameter Cloud_pH causes another 10% of the 1978-581

2008 aerosol ERF variance. The anthropogenic emission parameter Anth_SO2 and other model process parameters (Sig_W,582

Rain_Frac, and BC_RI) each cause only a small amount (around 3%) of the variance.583

584

3.3 Sources of uncertainty in ToA radiative flux585

Identifying the sources of ToA reflected shortwave radiation (RSR) uncertainty will inform our understanding of how radiative586

flux measurements can help to constrain the aerosol ERF uncertainty (Lohmann and Ferrachat, 2010) because the aerosol ERF587

is essentially the aerosol-forced change in RSR between the pre-industrial (or 1978) and present-day atmospheres (plus addi-588

tional small changes in outgoing long-wave radiation). The causes of present-day ToA RSR variance are summarised in Fig.589

A7 and are very similar in the pre-industrial and 1978 atmospheres (not shown).590

591

The dominant source of ToA RSR uncertainty is the cloud radiation parameter Rad_Mcica_Sigma, which was also the592

dominant parameter for the pre-industrial to present-day aerosol ERF. Uncertainty in this parameter alone causes over 60% of593

the RSR variance by altering the total cloud albedo. The dominant role of this cloud radiative parameter in causing uncertainty594

in the ToA radiative flux and aerosol ERF suggests that constraining this parameter to a very narrow range should constrain the595
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uncertainty in radiative fluxes (Haerter et al., 2009; Lohmann and Ferrachat, 2010) and consequentially in aerosol ERF (Lee596

et al., 2016). But of course, there are a number of other parameters (Dbsdtbs_Turb_0, Ent_Fac_DP, Sig_W and C_R_Correl)597

that cause ToA RSR uncertainty by altering the amount and/or albedo of clouds in the model. The mechanisms for altering598

cloudiness and therefore the ToA radiative flux are different for each parameter. The Dbsdtbs_Turb_0 parameter causes around599

10% of the ToA RSR variance by altering the mixing rate of clean and cloudy air masses. Increasing the proportion of dry600

air in clouds has a dramatic effect on the amount of low-altitude cloud simulated in the model, making Dbsdtbs_Turb_0 the601

dominant cause of uncertainty in low-altitude cloud-fraction (Fig. A8). The Ent_Fac_Dp, Sig_W and C_R_Correl parameters602

each cause around 5% of the RSR variance. The Ent_Fac_Dp parameter affects the strength of convection which also alters603

precipitation rates and the vertical distribution of simulated clouds. Sig_W controls the activation of cloud condensation nuclei604

into cloud droplets (affecting droplet effective radius and cloud albedo) and C_R_Correl alters the rate of cloud droplet accre-605

tion by precipitating rain drops. The only parameter to cause ToA RSR variance (around 10%) by directly altering atmospheric606

aerosol concentrations is Sea_Spray.607

608

Figure A9 summarises the relative contributions of atmospheric and aerosol parameters to uncertainty in global mean values609

of present-day ToA RSR (from Fig. A7) and aerosol ERFs over the periods 1978-2008 (Fig. A6) and 1850-2008 (Fig. A4).610

Atmospheric parameters cause the majority (around 80%) of the variance in present-day ToA radiative flux, but only around611

30% of the variance in 1850-PD aerosol ERF, and less than 10% of the 1978-PD aerosol ERF variance. The rest of the un-612

certainty is attributable to the aerosol model. This disparity arises because contributions to variance in aerosol ERF depend on613

how parameters influence the atmosphere’s response to the change in anthropogenic emissions, while RSR variance depends614

on how they influence the state of the atmosphere.615

616

3.4 Identifying the sources of uncertainty at the regional level617

3.4.1 Regional sources of uncertainty618

Regional forcings can be important drivers of global and regional climate change (Chalmers et al., 2012; Booth et al., 2012;619

Bollasina et al., 2013; Shindell et al., 2013; Kirtman et al., 2013; Villarini and Vecchi, 2013; Allen et al., 2014). Further-620

more, important sources of aerosol forcing uncertainty may be overlooked if regional sensitivity analysis results are neglected621

(Regayre et al., 2015). Examining how these sources of regional forcing uncertainty combine to cause uncertainty in global622

mean forcing uncertainty will inform our understanding of how to best observationally constrain the uncertainty. We identified623

regions of substantial aerosol ERF (ensemble mean stronger than around -2.5 Wm−2) for more in-depth analysis (Table A3624

and Fig. A10). Emulators of regional-mean aerosol ERFs and its components were created so that the key causes of variance625

in each region could be identified (Fig. A11).626

627
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The main causes of regional aerosol ERF uncertainty are often those parameters that cause global mean uncertainty. How-628

ever, there are substantial differences between regions. Some parameters are important causes of global mean aerosol ERF629

uncertainty because they cause a small amount (at least 5%) of the uncertainty in nearly all regions. For example, the DMS630

parameter causes around 5% of the aerosol ERF variance in most regions and consequentially causes around 15% of the global631

mean variance. The cloud radiation parameter Rad_Mcica_Sigma (which causes nearly 30% of the industrial-period aerosol632

ERF variance) also causes aerosol ERF variance in most regions. But, the amount of regional aerosol ERF variance accounted633

for by this parameter ranges from less than 3% (R9) to around 35% (R2, R3, R4).634

635

Other parameters are important causes of global mean aerosol ERF uncertainty despite being important causes of uncertainty636

in only around half of the regions examined. For example, the Sea_Spray parameter (which causes nearly 20% of the global637

mean aerosol ERF variance) is by far the largest source (around 60%) of aerosol ERF variance in the North Pacific (R1) and638

causes between 10 and 30% of the variance in several other marine regions. However, in tropical marine regions (R6 and R10)639

and regions containing continental land mass (R3, R8 and R11) Sea_Spray causes less than 3% of the aerosol ERF variance.640

The land-based regions (R3, R8, R11) are also where the cloud updraft parameter Sig_W causes aerosol ERF variance. The641

importance of Sig_W over continents suggests cloud albedo is most sensitive to uncertainty in updraft velocity in the most-642

polluted regions where cloud droplet concentrations are updraft-limited (Reutter et al., 2009; Sullivan et al., 2016).643

644

Anth_SO2 makes its greatest contribution to aerosol ERF uncertainty in tropical marine regions (R6 and R10) by causing645

uncertainty in ERFARI . The Anth_SO2 parameter also causes up to 40% of the ERFARI variance near anthropogenic sources646

(R3 and R8) and up to 30% in outflow regions (R1, R2, R5). However, these substantial causes of ERFARI variance translate647

into small (less than 10%) causes of aerosol ERF variance in most regions. The aerosol deposition parameter (Dry_Dep_Acc)648

also causes more of the regional ERFARI variance (up to 45%) than regional aerosol ERF variance (less than 15%). However,649

despite being an important cause of 1850-2008 aerosol ERF uncertainty in several regions, the dry deposition parameter is not650

an important cause of global mean aerosol ERF uncertainty over this period (Fig. A4(c)).651

652

The importance of carbonaceous aerosol parameters (Carb_BB_Ems, Carb_BB_Diam, BC_RI and OC_RI) as causes of653

aerosol ERF uncertainty are highly region dependent. Uncertainty in the emission flux of carbonaceous aerosols Carb_BB_Ems654

causes between 25 and 45% of the ERFARI variance in and near biomass burning regions (R4, R7 and R9). However, this only655

translates into a cause of aerosol ERF uncertainty in regions R7 and R9 where the Carb_BB_Ems parameter also causes uncer-656

tainty in ERFACI . Uncertainty in the size of emitted carbonaceous absorbing aerosols (Carb_BB_Diam) is more important as657

a cause of uncertainty in ERFACI than in ERFARI because it determines the capacity for carbonaceous aerosols to act as cloud658

condensation nuclei. Therefore, Carb_BB_Diam predominantly causes aerosol ERF variance (up to 15%) in the cloudiest659

regions (R1, R5, R6 and R9). Uncertainty in the radiative properties of carbonaceous aerosols (BC_RI and OC_RI) collec-660

tively cause ERFARI variance in almost all regions. However, uncertainty in aerosol ERF is affected by these parameters only661

over China (R11) and near to India (R10). Over China the anthropogenic emission parameter (Anth_SO2) is surpassed by the662
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BC_RI and OC_RI parameters as causes of ERFARI and aerosol ERF uncertainty, despite carbonaceous aerosols making up663

a relatively small proportion of aerosol emissions in these regions (Granier et al., 2011). The BC_RI parameter causes around664

50% of the ERFARI variance and around 25% of the variance in aerosol ERF in China. However, anthropogenic emissions665

do cause uncertainty in ERFARI and aerosol ERF in the Pacific (an outflow region for Chinese emissions). Near India, uncer-666

tainty in BC_RI and OC_RI cause around 30% and 10% of the aerosol ERF variance respectively and cause a smaller amount667

(between 5 and 10%) of variance in each of the forcing components. Despite being important sources of forcing uncertainty at668

the regional level, Carb_BB_Diam is the only parameter related to carbonaceous aerosols which causes uncertainty in global,669

annual mean aerosol ERF.670

671

Figure A11 (d)-(f) shows that atmospheric parameters combined can cause up to around 50% of the regional aerosol ERF672

variance despite causing only around 30% of the global mean aerosol ERF variance. However, there are multiple regions where673

uncertainty in the physical atmosphere parameters causes less than 20% of the aerosol ERF variance. Where atmospheric pa-674

rameters are an important source of regional aerosol ERF uncertainty, the Rad_Mcica_Sigma parameter is almost always the675

most important. On its own uncertainty in Rad_Mcica_Sigma causes over 20% of the aerosol ERF variance in coastal Pacific676

regions (R2 and R4) as well as continental regions (R3 and R8). The atmospheric parameter controlling the accretion rate677

of aerosols by rain drops (C_R_Correl) causes around 10% of the aerosol ERF variance in several tropical or sub-tropical678

regions off the western coast of continents (R2, R4, R6 and R9). These are all regions of persistent stratocumulus cloud where679

cloud albedo is highly susceptible to changes in aerosol concentrations and size distributions. The clear- and cloudy- air mix-680

ing parameter Dbsdtbs_Turb_0 causes between 5 to 10% of the variance in aerosol ERF and its components in the Northern681

Hemisphere regions of persistent stratocumulus cloud (R2 and R6) but not in Southern Hemisphere regions (R4 and R9). This682

suggests that the relatively polluted Northern Hemisphere stratocumulus clouds are more sensitive to the sub-grid mixing of683

clear- and cloudy air masses. In tropical regions (R6, R9 and R10) the convective parameter Mparwtr causes a small amount684

(3 to 5%) of the aerosol ERF variance. This parameter alters the timing of precipitation and therefore affects cloud and aerosol685

amount, and the ERFACI near the equator where convective instability and precipitation are greatest. The regions where phys-686

ical atmosphere parameters cause the least aerosol ERF variance are either near to anthropogenic emission sources (R9, R10687

and R11) or downwind of them (R1 and R7).688

689

These results show that the relative importance of individual parameters as sources of uncertainty differ between regions.690

However, the most important causes of global mean aerosol ERF uncertainty also cause uncertainty at the regional level.691

692
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3.5 Observational constraint of the aerosol ERF uncertainty693

3.5.1 Effect of ToA RSR constraint on aerosol ERF uncertainty694

We now explore the extent to which present-day measurements of global mean ToA RSR could in principle help to constrain695

the change in flux between two time periods (the aerosol ERF), which was previously explored by Lohmann and Ferrachat696

(2010) who perturbed four physical atmosphere parameters. We expect some constraint of aerosol ERF uncertainty based on697

the common causes of uncertainty in ToA RSR and aerosol ERF. Observational constraint of a model output variable can lead698

to constraint of the uncertain parameters. Therefore, when two model output variables share common causes of uncertainty699

we can expect that constraint of one output will lead to constraint of the other. Our approach of drawing large samples of one700

million parameter combinations from model emulators (using uniform pdfs for each parameter; Section 2.3) enables this link701

through the uncertain parameters to be understood, which is not possible just from a perturbed parameter ensemble alone (e.g.702

Lohmann and Ferrachat, 2010).703

704

Our analysis reveals substantial overlap in the combinations of parameters causing uncertainty in 1850-2008 aerosol ERF705

and present-day ToA RSR. The parameters Rad_Mcica_Sigma, Sea_Spray, C_R_Correl and Sig_W account for about 60%706

of the aerosol ERF uncertainty and about 80% of the ToA flux uncertainty. It is important to note that it is irrelevant for707

the observational constraint process that the ToA flux is much larger than the aerosol ERF. The important factor is that their708

uncertainties are caused by common uncertain parameters, so constraint of one of them will constrain the other through the709

constraint of the plausible parameter ranges and relationships.710

711

Figure A12 shows the effect of constraining the modelled present-day global, annual mean RSR to within ±0.25Wm−2 of712

98.3 Wm−2, the multi-year average of observations from the Clouds and the Earth’s Radiant Energy System (CERES; Loeb713

et al., 2009). The ±0.25Wm−2 represents within-CERES product uncertainty (Loeb et al., 2012) and neglects multiple other714

sources of satellite observational uncertainty (Loeb et al., 2009; Hartmann et al., 2013). We also neglect uncertainty caused by715

unknown model structural errors (Goldstein and Rougier, 2004; Sexton et al., 2012; Stier et al., 2013), observation representa-716

tiveness errors (Schutgens et al., 2017) and the emulators themselves (Oakley and O’Hagan, 2004) which are of the same order717

of magnitude as the observational uncertainty. Therefore, our RSR observational constraint provides an upper bound on the po-718

tential reduction in aerosol ERF uncertainty. This tight constraint eliminates 97% of the model variants and the observationally719

constrained RSR range is less than 2% of the original unconstrained range. Consequently, the smaller set of model variants also720

predicts reasonably constrained 1978 and 1850 RSR ranges (Fig. A12(a)). However, despite reducing the plausible parameter721

space by 97% and the RSR range by 98% the impact on the aerosol ERF uncertainty is more modest (Fig. A12(b) and (c)). The722

effect of applying the RSR observational constraint is to rule out 1850-2008 aerosol ERF values lower than around -2.4 Wm−2,723

which represents around 15% of the original aerosol ERF range (-2.7, -0.7 Wm−2). However, the 95% credible range is only724

reduced by around 10% because the distribution of aerosol ERFs in the constrained sample is skewed towards weaker forcings725

and the upper bound of the credible interval (-0.6 Wm−2) is larger (Table A4). This reduction in aerosol ERF range is much726
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less than the 56% reduction found by Lohmann and Ferrachat (2010) based on a set of 169 perturbed parameter simulations727

(compared to our one million model variants). We discuss the reasons for this modest reduction in aerosol ERF uncertainty in728

sections 3.5.2 and 3.5.3.729

730

3.5.2 Constraining the relationships between the aerosol ERF and uncertain parameters731

Fig. A13 shows how aerosol ERF is related to the values of the four main causes of aerosol ERF uncertainty before and after732

applying the observational constraint. There are clear relationships between the aerosol ERF and the individual parameters,733

but they are highly uncertain (even in the constrained sample) because there are many compensating errors among the other734

parameters (i.e., many ways to combine the parameters to get the same ToA RSR but very different aerosol ERF; Fig. A12).735

This diversity of credible model variants would be overlooked had we perturbed parameters individually, as is the case with736

one-at-a-time perturbation experiments (e.g. Gettleman, 2015).737

738

For each of the one million model variants in our unconstrained sample individual parameter values were drawn from uni-739

form distributions with ranges defined by the expert elicited pdfs. Therefore, prior to applying the observational constraint the740

model variants were evenly dispersed across every two-dimensional parameter subspace. We are therefore able to quantify the741

effect of the observational constraint on the plausibility of individual and combined parameter values.742

743

The cloud radiation parameter Rad_Mcica_Sigma is negatively correlated with the ToA radiative flux and this leads to a pos-744

itive correlation with aerosol ERF: Increasing its value decreases the simulated cloud albedo and hence the ToA RSR. But, ToA745

RSR is more sensitive to Rad_Mcica_Sigma in the present-day atmosphere than in the pre-industrial (because higher aerosol746

concentrations increase the cloud albedo), so increasing the parameter value weakens the aerosol ERF. Figure A13 shows that747

low values of Rad_Mcica_Sigma (less than around 0.4 in the scaled range 0 to 1) are inconsistent with the observed RSR. The748

proportion of model variants with Rad_Mcica_Sigma values less than 0.4 drops from 40% in the unconstrained sample to just749

8% in the constrained case. In other words, the observational constraint suggests the plausible lower limit of this parameter is750

higher than we assumed in our expert elicitation. We can therefore state that the strongest aerosol ERFs are also implausible751

(as shown in Fig. A12) because they are associated with low values of Rad_Mcica_Sigma.752

753

Figure A13 also shows that the aerosol ERF is weaker for larger Sea_Spray and DMS values. An abundance of natural754

aerosols increases background (pre-industrial) atmospheric aerosol concentrations and limits the influence of anthropogenic755

aerosol emissions on clouds and radiation (Carslaw et al., 2013). Figure A13 shows that the observed ToA radiative flux is756

more consistent with low emissions of natural aerosols (the density of Sea_Spray values larger than 0.5 decreases from 50% to757

44% after constraint of the ToA flux). The decreased likelihood of higher natural aerosol emissions in the constrained sample758

suggests that the weakest aerosol ERF values are less congruent with observed ToA RSR. However, there remain many obser-759
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vationally plausible model variants with high natural aerosol emissions.760

761

The largest values of the cloud updraft parameter (Sig_W) are also less plausible in the constrained sample (Fig. A13; 27%762

of the sample are larger than 0.7, instead of 30%). This suggests that present-day RSR observations are more consistent with763

lower vertical velocities, but the largest values cannot be ruled out completely because of the way that other compensating764

parameters affect RSR. Lower values of Sig_W weaken the aerosol ERF by reducing cloud droplet concentrations primarily765

in the present-day polluted atmosphere, because cloud droplet activation is more sensitive to Sig_W in the present-day atmo-766

sphere than in the aerosol-limited pre-industrial atmosphere. Therefore, observational constraint of ToA radiative flux reduces767

the likelihood of weak aerosol ERFs through a constraint of the distribution of Sig_W values.768

769

3.5.3 Constraining the relationships between uncertain parameters770

Fig. A13 also shows the important parameter inter-dependencies revealed by observationally constraining the ToA radiative771

flux. The Rad_Mcica_Sigma and Sea_Spray parameters are positively correlated in the observationally constrained sample.772

For example, a modelled ToA RSR consistent with observations can be achieved using high values of Rad_Mcica_Sigma773

(which decreases cloud albedo) and relatively high values of Sea_Spray (which increases cloud albedo). In other words, these774

parameters have compensating effects on the ToA radiative flux. The same compensation applies to the aerosol ERF: the weak-775

est ERFs in our pdf (larger than around -1 Wm−2) are associated with high Rad_Mcica_Sigma and high Sea_Spray values.776

However, the RSR and aerosol ERF depend on these two parameters in quite different ways. Higher Rad_Mcica_Sigma values777

weaken the aerosol ERF by reducing the present-day ToA RSR, whilst higher Sea_Spray values weaken the aerosol ERF by778

increasing present-day RSR. Hence, constraining the relationship between the two largest sources of aerosol ERF uncertainty779

using observations of present-day RSR has not drastically reduced the aerosol ERF uncertainty.780

781

The cloud droplet activation parameter (Sig_W) is also positively correlated with Rad_Mcica_Sigma in the observationally782

constrained sample (Fig. A13). As with sea spray emissions, higher values of Sig_W increase cloud albedo and compensate783

for the effect of high Rad_Mcica_Sigma values on ToA RSR. These parameters both exert a greater influence on present-784

day cloud radiative properties; in the case of Sig_W, cloud radiative properties are more susceptible to this parameter in the785

present-day simulations because cloud droplet activation is more likely to be updraft-limited (rather than aerosol-limited) in786

an anthropogenically-polluted atmosphere. Therefore, in contrast to the Sea_Spray and Rad_Mcica_Sigma relationship, the787

Sig_W and Rad_Mcica_Sigma parameters have additive (not compensating) effects on aerosol ERF. Parameters with additive788

effects on the aerosol ERF are more susceptible to the effects of model equifinality. Therefore, the relationship between aerosol789

ERF and Sea_Spray is better constrained than the relationship between aerosol ERF and Sig_W.790

791

The Sig_W and Sea_Spray parameters both act to counter the effect of Rad_Mcica_Sigma on cloud albedo in the con-792

strained sample. Therefore, the density of model variants with simultaneously large (above around 0.6) Sig_W and Sea_Spray793
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values is lower in the constrained sample (down from 16% to 11%). No such restrictions apply to simultaneously small values794

(less than 0.4) of these two parameters. In fact the proportion of simultaneously small Sig_W and Sea_Spray in the sample795

increases from 16% to 19% after applying the constraint which rules out other parts of parameter space. This suggests that in796

simulations with low natural aerosol emissions and low cloud droplet activation efficiency, there are multiple other contributing797

factors keeping the ToA RSR in agreement with observations. For example, by limiting the mixing rates of clear and cloudy air798

masses, a low value of the Dbsdtbs_Turb_0 parameter (an important source of ToA RSR uncertainty) can compensate for the799

decrease in cloud droplet concentrations caused by a low value of the cloud droplet activation parameter. A replacement source800

of aerosols large enough to act as cloud condensation nuclei is also required to compensate for low natural aerosol emissions.801

There are multiple ways in which this could be achieved. For example, a low value of the dry deposition velocity parameter802

Dry_Dep_Acc (known to be important for cloud active aerosol concentrations; Lee et al., 2013) increases the atmospheric803

lifetime of aerosols, allowing them to grow in size and activate to form cloud droplets, even in a low activation efficiency804

simulations.805

806

The DMS parameter has no obvious relationships with the other main sources of aerosol ERF uncertainty in the constrained807

sample. This is despite DMS affecting aerosol ERF in the same regions as other key parameters and causing aerosol ERF808

uncertainty through a similar mechanism to Sea_Spray. In other words, higher values of DMS and Sea_Spray suppress the809

aerosol ERF by increasing background (1850) aerosol concentrations. Therefore, the value of the DMS parameter is more810

likely (54% of the time) to be small (lower than 0.5) when the value of Sea_Spray is high (above 0.8). In summary, model811

variants with high values of both of the important natural aerosol emission parameters are less likely to be consistent with the812

observed ToA RSR.813

814

These results highlight the importance of understanding the potential causes of equifinality when interpreting results from815

such a complex model (Beven and Freer, 2001). Reducing the remaining uncertainty in global mean aerosol ERF will require816

observations which further constrain the relationships between aerosol ERF and the key sources of uncertainty.817

818

3.5.4 Regional constraint of global mean aerosol ERF uncertainty819

Our overall aim is to constrain the uncertainty in global annual mean aerosol ERF because the total ERF is commonly used to820

quantify the multi-model diversity in historically forced changes to the climate (Myhre et al., 2013; pp 661). However, regional821

variations in aerosol forcing can be important drivers of climate variability (Chalmers et al., 2012; Booth et al., 2012; Bollasina822

et al., 2013; Shindell et al., 2013; Kirtman et al., 2013) and can contribute to global mean forcing uncertainty in complex823

ways (Regayre et al., 2015). Therefore we now use satellite observations of the North Pacific (region R1; latitude 32N-54N;824

longitude 125W-144E; the largest regional contribution to global mean aerosol ERF) ToA RSR from July to further constrain825

annual, global mean aerosol ERF uncertainty.826

827
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The regionally averaged CERES observed ToA RSR is 162.8 Wm−2 (CERES, 2017) with an estimated uncertainty of ±2%828

(Hartmann et al., 2013, 2.3.1, pp 181). The original sample of one million model variants is reduced to around 10% by apply-829

ing the North Pacific July mean RSR constraint and to just 0.5% of the original sample by applying both the global mean and830

North Pacific constraints together (Table A4). In combination with the global mean observation, the North Pacific RSR con-831

straint has little additional effect on the credible forcing ranges (-2.30 to -0.56 Wm−2 compared to -2.37 to -0.59 Wm−2). The832

range of plausible aerosol ERF values has been further reduced by only around 2%. This suggests that the regional observation833

has provided little additional constraint on the relationships between aerosol ERF and the main sources of uncertainty (Fig. S1).834

835

4 Conclusions836

We sampled the uncertainty in 18 aerosol and 9 atmospheric parameters within a single global climate model, identified the837

important causes of aerosol ERF uncertainty and constrained this uncertainty using ToA radiative flux measurements. The838

credible range of aerosol ERF values in our original sample of one million model variants was -2.65 to -0.68 Wm−2 when839

we assume the parameter values have equal likelihood of being at any point in the elicited ranges. The aerosol ERF uncer-840

tainty decreases when we constrain global mean ToA RSR (-2.37 to -0.59 Wm−2) and when we constrain both North Pacific841

and global RSR (-2.30 to -0.56 Wm−2). These results suggest that additional constraint of aerosol ERF uncertainty could be842

achieved using multiple regional ToA flux observations. However, a greater reduction (25%) in the aerosol ERF uncertainty843

(95% credible range, -2.18 to -0.71 Wm−2) can be achieved by applying probability distributions to the parameters based on844

expert elicitation (Section 3.1). These results suggest that the strongest aerosol ERF values (about 20% of the unconstrained845

range) can be considered implausible based on expert opinion and observational evidence.846

847

Our results reveal that aerosol parameters take a dominant role over atmospheric parameters as the leading cause of aerosol848

ERF uncertainty over the industrial period and in recent decades. Atmospheric parameters cause the majority (over 80%) of the849

uncertainty in present-day ToA reflected short-wave radiation but only around 30% of the aerosol ERF variance. A handful of850

the aerosol and atmospheric parameters that we have examined dominate the uncertainty in global mean aerosol ERF. A cloud851

radiation parameter, natural aerosol emissions and model process parameters that affect cloud droplet formation and removal852

are the key sources of global mean aerosol ERF uncertainty over the industrial period. The most important causes of 1978-2008853

aerosol ERF uncertainty are model process parameters controlling the deposition rates of aerosols and aerosol precursor gases.854

Our analysis shows that uncertainties in aerosol parameters are of secondary importance for determining present-day ToA855

radiative flux, but they are a much more important source (over half) of the uncertainty in the change in atmospheric radiative856

balance (the aerosol ERF) on multi-century and multi-decadal timescales.857

858

Uncertainty in the ERFARI component of forcing (-0.19 to 0.13 Wm−2) is largely caused by parameters related to car-859

bonaceous aerosols. However, these parameters contribute little to uncertainty in the total aerosol ERF, which is dominated by860
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uncertainty in the ERFACI component of forcing (-2.20 to 0.61 Wm−2) in our analyses. In our simulations light-absorbing861

aerosols heat the local atmosphere above clouds, suppress convection and affect cloud cover. However, we do not represent862

all of the processes that determine the magnitude of carbonaceous aerosol forcing. For example, we neglect the deposition863

of absorbing-aerosols onto high-albedo land surfaces. Therefore, despite the large uncertainties in our carbonaceous aerosol864

parameters, our global mean ERFARI uncertainty range does not span the range of values found by Bond et al. (2013).865

866

At the regional level, uncertainty in aerosol ERF is predominantly caused by the same parameters that cause global mean867

aerosol ERF uncertainty. Some parameters such as the cloud radiation parameter Rad_Mcica_Sigma and the natural aerosol868

emission parameter DMS are important for global mean aerosol ERF uncertainty because they cause at least a small amount869

(5%) of the uncertainty in nearly all regions. Other important causes of global mean aerosol ERF uncertainty (Sea_Spray,870

Sig_W and Anth_SO2) are amongst the largest causes of the aerosol ERF uncertainty in some regions (marine, polluted and871

polluted-marine regions respectively) but cause very little of the uncertainty elsewhere. We show that because carbonaceous872

aerosols only cause aerosol ERF uncertainty in high-emission months and in regions close to emission sources, most of the873

carbonaceous aerosol parameters (with the exception of Carb_BB_Diam) are not important for global, annual mean aerosol874

ERF uncertainty.875

876

One important source of ERFACI uncertainty we did not include in our study is the autoconversion rate of cloud drops into877

rain drops (Michibata and Takemura, 2015; Malavelle et al., 2017; Toll et al., 2017). Were we to include the autoconversion rate878

as an additional source of uncertainty the credible range of aerosol ERFs would be larger. If the autoconversion rate were an879

important cause of uncertainty in both ToA flux and aerosol ERF, the constraint on ERF uncertainty would likely be stronger.880

However, if autoconversion were to affect ToA flux and aerosol ERF in different ways or to different extents then including881

this additional source of uncertainty may amplify the equifinality problem by introducing another important degree of freedom.882

The additional uncertainty from autoconversion could be constrained to a large extent using collocated observations of changes883

in liquid water path, cloud fraction and aerosol concentrations. We expect such observations of cloud-aerosol relationships will884

be particularly useful for constraining a model’s ability to represent transitions between cloud regimes and we plan to test their885

efficacy as constraints in the next phase of our research.886

887

A well-constrained multi-decadal historical aerosol ERF would provide more policy-relevant information on near-term888

temperature change than industrial-period ERF which remains challenging to constrain (Hawkins et al., 2017). Constrain-889

ing recent-decadal aerosol ERF uncertainty may prove to be an easier task than constraining uncertainty in industrial-period890

forcing because the multi-decadal uncertainty is caused by model process parameters that could be observed directly. Global891

mean aerosol ERF in recent decades depends more linearly on changing anthropogenic emissions than industrial-period aerosol892

ERF. Therefore, the causes of aerosol ERF uncertainty in recent decades (1978-2008) are model deposition rates (model pro-893

cess parameters) and anthropogenic emissions, whilst the 1850-2008 aerosol ERF is most sensitive to natural aerosol emissions894

(which collectively cause around 63% of the aerosol contribution to ERFACI variance). The magnitude of global mean aerosol895
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forcing on the decadal timescale depends on the combination of uncertain positive and negative regional forcings (Regayre896

et al. 2015; Fig. A5). Hence, projects designed to improve our understanding of the state and behaviour of aerosol-cloud-897

radiation interactions on regional scales and within specific cloud regimes will aid efforts to constrain global mean forcing. In898

summary, reducing the uncertainty in aerosol ERF will require a much deeper understanding of how the uncertainties in state899

variables, model parameters and the relationships between them combine at the regional and global levels in complex global900

climate models. We develop our understanding of the potential to constrain regional aerosol ERF uncertainty using multiple901

observable quantities (e.g. aerosol optical depth and aerosol concentrations) in Johnson et al. (2018).902

903

Climate models are routinely tuned to match present-day ToA radiative fluxes (in conjunction with multiple other obser-904

vational metrics) so as to ensure accurate characterisation of the state of the atmosphere (Kay et al., 2012; Mauritsen et al.,905

2012; Flato et al., 2013; Hourdin et al., 2017). Our sensitivity analysis shows that the ToA radiative flux and the 1850-2008906

aerosol ERF share common sources of uncertainty. Therefore, observational constraint of ToA flux representing just 0.5% of907

the model’s prior range has reduced the 95th percent credible interval of our simulated global mean aerosol ERF by around908

10%. These results counter the belief that observations of ToA reflected short-wave radiation should not constrain the aerosol909

ERF (because RSR values are two orders of magnitude larger than the aerosol ERF). However, comprehensively sampling910

model uncertainty provides a densely populated multi-dimensional parameter space which connects the observed value (RSR)911

to the model variable of interest (the aerosol ERF). The RSR observation constrains the parameter space and in doing so912

constrains the aerosol ERF uncertainty. However, we caution that the constraint will only be robust if all relevant parameters913

affecting RSR have been explored.914

915

Our results show that the plausible ranges of individual parameters as well as the relationships between them are constrained916

by present-day observations, thereby substantially reducing the model parameter space that can be considered observationally917

plausible. We use RSR observations with a small observational uncertainty to demonstrate their potential use as a constraint918

on aerosol ERF uncertainty. However, despite a very large reduction in plausible parameter space, the effectiveness of the ob-919

servational constraint is modest because it is hampered by compensating effects between multiple uncertain parameters, which920

results in multiple equally plausible solutions (sometimes referred to as ‘equifinality’; Beven and Freer 2001; Lee et al. 2016).921

The challenge now is to find optimum combinations of constraints that overcome this problem using a more robust framework922

that accounts for all quantifiable sources of uncertainty (Sexton et al., 2012; Williamson et al., 2013). For aerosol ERF this923

means simultaneously constraining aerosols, clouds, and radiation state variables as well as the relationships between them so924

as to constrain uncertainty in the change of state on multiple timescales.925

926

By highlighting how different parameters and processes control the change in planetary radiative balance in a single state of927

the art model, our results suggest that compensating effects between groups of uncertain parameters and associated processes928

are one important reason why uncertainty in aerosol ERF has persisted through several generations of climate model develop-929

ment. Given the huge range of interacting processes and uncertainties, it is highly unlikely that single observational constraints930
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(as employed in so-called emergent constraint studies; e.g. Cherian et al. (2014)) will enable a robust reduction in aerosol931

ERF uncertainty. Our results, combined with those of other studies that have comprehensively sampled model uncertainties932

(Calisto et al., 2014; Lee et al., 2016; Ghan et al., 2016), suggest that reducing aerosol ERF uncertainty further will require the933

simultaneous application of a large number of observational constraints (Sanderson, 2010; Sexton et al., 2012; Collins et al.,934

2012; Reddington et al., 2017) covering polluted and pristine environments (Carslaw et al., 2013; Hamilton et al., 2014) and935

targeting the specific processes and relationships identified here.936
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Table A1. Descriptions of the perturbed parameters. Parameters are grouped according to their source within the model as either ‘Atm’ for

atmospheric or ‘Aer’ for aerosol parameters.

Name Source Description PDF

Rad_Mcica_Sigma Atm Fractional standard deviation of sub-grid Trapezoid (0.1,0.4,1.5,2.2,2,2)

condensate seen by radiation

C_R_Correl Atm Cloud and rain sub-grid horizontal spatial correlation Trapezoid (0.0, 0.6, 0.9, 1.0, 1.8, 1. 1, 1.5)

Niter_BS Atm Number of microphysics iteration sub-steps Uniform (5, 20)

Ent_Fac_Dp Atm Entrainment amplitude scale factor Trapezoid (0, 0.5, 2, 4, 2, 2)

Amdet_Fac Atm Mixing detrainment rate scale factor Trapezoid (0, 0.5, 10.0, 15.0, 2, 2)

Dbsdtbs_Turb_0 Atm Cloud erosion rate (s−1) Trapezoid (0, 1e-04, 5e-04, 1e-03, 2, 2)

Mparwtr Atm Maximum value of function controlling convective parcel Trapezoid (1e-3, 1e-3, 1.5e-3, 2e-3, 2, 2)

maximum condensate

Dec_Thres_Cld Atm Threshold for cloudy boundary layer decoupling Trapezoid (0.01, 0.011, 0.1, 0.8, 2, 4, 4)

Fac_Qsat Atm Rate of change in convective parcel maximum condensate Uniform (0.25, 1)

Ageing Aer Ageing of hygrophobic aerosols Trapezoid (0.3, 1, 5, 10, 2, 2)

(no. of monolayers of organic material)

Cloud_pH Aer pH of cloud droplets Trapezoid (4.6, 5.3, 6.3, 7, 4, 2)

Carb_BB_Ems Aer Carbonaceous biomass burning emission scale factor Trapezoid (0.25,0.8,2.2,4,2,2)

Carb_BB_Diam Aer Carbonaceous biomass burning emission diameter (nm) Trapezoid (90, 160, 240, 300, 2, 2)

Sea_Spray Aer Sea spray aerosol emission scale factor Trapezoid (0.125, 0.6, 3, 8, 4, 3)

Anth_SO2 Aer Anthropogenic SO2 emission scale factor Trapezoid (0.6, 0.81, 1.09, 1.5, 2, 2)

Volc_SO2 Aer Volcanic SO2 emission scale factor Trapezoid (0.71, 0.99, 1.7, 2.38, 4, 1.1)

BVOC_SOA Aer Biogenic secondary aerosol formation from volatile Trapezoid (0.81, 1.08, 3.5, 5.4, 3, 3)

organic compounds scale factor

DMS Aer Dimethylsulphide surface ocean SO2 concentration scale factor Trapezoid (0.5, 1.26, 1.82, 2, 2, 3)

Dry_Dep_Acc Aer Accumulation mode dry deposition velocity scale factor Trapezoid (0.1, 0.32, 3.16, 10, 2, 2)

Dry_Dep_SO2 Aer SO2 dry deposition velocity scale factor Trapezoid (0.2, 0.56, 1.78, 5, 2, 2)

Kappa_OC Aer Köhler coefficient of organic carbon Trapezoid (0.1, 0.14, 0.25, 0.6, 4, 4)

Sig_W Aer Updraft vertical velocity standard deviation Trapezoid (0.1, 0.36, 0.44, 0.7, 2, 2)

Dust Aer Dust emission scale factor Trapezoid (0.5, 0.7, 1.4, 2, 2, 2)

Rain_Frac Aer Fraction of cloud covered area in large-scale clouds where Trapezoid (0.3, 0.31, 0.55, 0.7, 2, 3)

scavenging occurs

Cloud_Ice_Thresh Aer Threshold of cloud ice fraction above which nucleation scavenging Trapezoid (0.1, 0.105, 0.35, 0.5, 2, 3)

is suppressed

BC_RI Aer Imaginary part of the black carbon refractive index Trapezoid (0.2, 0.352, 0.616, 0.8, 4, 2)

OC_RI Aer Imaginary part of the organic carbon refractive index Trapezoid (0, 0, 0.05, 0.1, 2, 6)
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Table A2. Summary statistics for the pdfs of 1850-2008 aerosol ERF, ERFARI and ERFACI presented in Fig. 1. Perturbations to atmospheric

and/or aerosol parameters cause the uncertainty in model output in each case. All values are in Wm−2. For all samples the null hypotheses

of equivalent means or standard deviations are rejected at the 99% confidence level using Welch’s t (Welch, 1947) and Bartlett (Snedecor

and Cochran, 1989) tests respectively.

Sample Perturbations Mean Standard deviation 95% Credible interval Credible range

ERF Atmosphere and aerosol -1.46 0.38 (-2.18, -0.71) 1.46

Atmosphere only -1.51 0.25 (-1.98, -1.04) 0.94

Aerosol only -1.47 0.29 (-2.01, -0.90) 1.11

ERFARI Atmosphere and aerosol -0.03 0.08 (-0.19, 0.13) 0.31

Atmosphere only 0.00 0.04 (-0.08, 0.08) 0.16

Aerosol only -0.02 0.07 (-0.16, 0.11) 0.27

ERFACI Atmosphere and aerosol -1.42 0.41 (-2.20, -0.61) 1.59

Atmosphere only -1.51 0.29 (-2.04, -0.96) 1.08

Aerosol only -1.43 0.30 (-1.99, -0.85) 1.14
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Table A3. Latitude and longitude boundaries for regions R1-R11. Some regional averages are filtered to include only marine or non-marine

data.

Region Description Filter Latitudes Longitudes

R1 North Pacific Marine 32.5 to 54 144 to -125

R2 East Pacific Stratocumulus Deck Marine 16 to 41 -146 to -104

R3 Canada All 45 to 73 -115 to -61

R4 South-east Pacific Stratocumulus deck Marine -26 to 1 -98 to -70

R5 North Atlantic Marine 27 to 59 -53 to -12

R6 South-east North Atlantic Marine 8.5 to 26 -44 to -17

R7 Arctic Marine 61 to 89 -33 to 57

R8 Europe All 37.5 to 71.5 -12 to 41

R9 South-east Atlantic Stratocumulus deck Marine -18 to 3 -16 to 13

R10 North Indian Ocean Marine 5.5 to 23 63 to 94

R11 China Land 21 to 40 98 to 123
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Table A4. Present-day ToA RSR constraints and the resulting 95% credible intervals of 1850 RSR and 1850-2008 aerosol ERF (Wm−2) for

the unconstrained and constrained samples.

Constraint Sample size 2008 RSR 1850 RSR 1850-2008 ERF 1850-2008 ERF

credible range

Unconstrained 1000000 (88.9, 120.1) (87.5, 118.0) (-2.65, -0.68) 1.97

CERES (98.3 ±0.25 Wm−2) 20127 (98.05, 98.55) (94.2, 99.3) (-2.37, -0.59) 1.78

CERES North Pacific 108493 (89.6, 106.8) (88.0, 105.1) (-2.25, -0.53) 1.72

(162.8 ±3.3 Wm−2)

Combined constraint 4699 (98.1, 98.5) (95.7, 97.8) (-2.30, -0.56) 1.74
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Figure A1. Probability density functions of 1850-2008 (a) aerosol ERF, (b) ERFARI and (c) ERFACI . Each sample contains 270000

emulator-derived model variants informed by the expert-elicited prior probability distributions of parameter values. Samples with aerosol

and atmospheric parameter uncertainties neglected (Table A1) were obtained by setting each neglected parameter to its median value in the

corresponding pdf. 90% credible intervals from (Myhre et al., 2013) are presented as red horizontal lines with best estimates marked using

crosses. Our 95% credible intervals are presented in black and the sample median is presented using a cross.

Figure A2. (a) Mean and (b) standard deviation for 1850-2008 ERFACI forcing. Values were calculated using output from 270000 emulator-

derived model variants at the individual pixel level once degraded to N48 model resolution. These samples of model variants are informed

by the expert-elicited parameter pdfs.

Figure A3. (a) Mean and (b) standard deviation of 1850-2008 ERFARI forcing. Values were calculated using output from 270000 emulator-

derived model variants at the individual pixel level. These samples of model variants are informed by the expert-elicited parameter pdfs.

Figure A9. The relative contributions from atmospheric and aerosol parameters to variance in ToA radiative fluxes and aerosol effective

radiative forcing over the 1978-2008 and 1850-2008 periods.

Figure A10. Maps of contributions to variance in (a) 1850-2008 aerosol ERF and (b) present-day (2008) ToA RSR from atmospheric and

aerosol parameters. Each pixel contains a box that is shaded in proportion to the amount of variance caused by each source of uncertainty.

Figure A11. Sources of variance ((a), (b) and (c)) and grouped atmospheric and aerosol contributions to variance ((d), (e) and (f)) for 1850-

2008 annual mean (a),(d) aerosol ERF, (b),(e) ERFARI and (c),(f) ERFACI for the 11 regions defined in table A3 and highlighted in Fig.

A10.

Figure A12. (a) Observationally constrained present-day ToA RSR and the values of 1978 and 1850 ToA RSR and (b) 1978-2008 and

(c) 1850-2008 aerosol ERF values from matching model variants. For each output variable the black lines show 95% credible intervals of

the unconstrained one million member sample of model variants. The black box contains all model variants within ±0.25Wm−2 of the

CERES-observed global annual mean present-day ToA RSR value. Purple boxes represent the 95% credible intervals of values obtained

using model variants (parameter combinations) in the observationally constrained sample. The middle and right-hand axes are for 1978-2008

and 1850-2008 aerosol ERF respectively. Output from the simulation with all parameters set to their median values are shown as dots. The

median 1850-2008 aerosol ERF from the observationally constrained sample is displayed as a diamond.
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Figure A4. Percentage contributions to variance in global, monthly and annual mean 1850-2008 (a) ERFACI , (b) ERFARI and (c) aerosol

ERF. Each bar contains only those parameters that cause at least 3% of the variance and interactions between parameters are neglected.

Therefore, the percentage of variance accounted for is less than 100%. The monthly and annual median values and 95% credible intervals

(from the 270000 model variants) are displayed in the top panel. The monthly median values are connected in bold and the credible intervals

are shaded gray.

Figure A5. (a) Mean and (b) standard deviation of 1978-2008 aerosol ERF. Values were calculated using output from 270000 emulator-

derived model variants at the individual pixel level. These samples of model variants are informed by the expert-elicited parameter pdfs.

Figure A13. Probability density distributions of aerosol ERF and the parameters Rad_Mcica_Sigma, Sea_Spray, DMS, Sig_W in the un-

constrained sample (first column; (a)-(d)) and in the sample constrained to match the observed global annual mean RSR (second column;

(e)-(h)). Probability density distributions of parameter values are shown for the constrained sample ((i)-(n)). Colour bars labelled (a)-(n)

correspond with the sub-figures and show the percentage of each sample within each pixel. Some colour bars apply to multiple panels.
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Figure A6. Percentage contributions to variance in 1978-2008 global, monthly and annual mean (a) ERFACI , (b) ERFARI and (c) aerosol

ERF. Figure features are identical to Fig. A4.

Figure A7. Percentage contributions to variance in present-day (2008) global, monthly and annual mean ToA (a) cloudy-sky RSR, (b)

clear-sky RSR and (c) RSR. Figure features are identical to Fig. A4.

Figure A8. Percentage contributions to variance in present-day (2008) global, monthly and annual mean low altitude cloud amount. Figure

features are identical to Fig. A4.
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