
In our response, reviewer comments are marked in bold, our responses and original text in plain 

text, and altered text in the paper in bold italic. Additionally we highlight altered text in the tracked 

changes pdf as requested. 

Response to reviewer 1 (J. Mülmenstädt) 

We thank the reviewer for their interesting and useful comments on our manuscript. Our responses 

to these comments are given below. 

Major comment (Section 1): Are the synthetic observations used in this analysis representative of 

model tuning? 

The authors argue that producing one tuned configuration of a climate model underestimates the 

size of the parameter space (no disagreement there); that the tuning process is often done one 

parameter at a time, underestimating the non-additive effects of varying multiple parameters at 

once (only mild disagreement there); and that an analysis based on an ensemble of ERF estimates 

from tuned models underestimates the true ERF uncertainty. For this last conclusion to be true, 

the range of ERFs that a single model can plausibly produce (“plausible” meaning consistent with 

the observed present-day climate) must be non-negligible compared to the intermodel ERF 

spread, as sketched in Figure 10. 

In their analysis, the authors subject the different parameter combinations of their emulated 

aerosol–climate model to a consistency check against nine observables of the present-day climate. 

This is the emulator-world equivalent of tuning a single climate model to agree with the present-

day climate; the further conclusions made in the manuscript about the uncertainty on the model’s 

ERF estimate thus hinge crucially on whether this consistency with observations is indeed 

equivalent to model tuning. 

I am concerned that the answer may be “no”, for the following reason. The observational dataset 

used here is the July mean conditions over Europe. Europe is a tiny portion of the globe, and July 

only samples one point in the seasonal cycle of aerosol and cloud properties. Since, as the authors 

point out, the model uncertainty stems from the interaction of aerosol and host model 

parameters, it seems like one would want to use the widest spectrum of weather and aerosol 

conditions available to be able to discard observationally excluded parameter combinations. 

As a GCM tuning strategy, a European seasonal approach would fail because the constraint on the 

global-mean climate would be negligible. I expect that many of the ensemble members that are 

consistent with the European July observations will have outlandish global-mean TOA fluxes, 

cloud fields, etc., that would get them rejected in a constraint that uses global observations. This, I 

expect, would narrow the estimate of the single-model uncertainty compared to what the authors 

find using their constraint strategy. 

The interesting question, in my mind, is how much using global constraints would narrow the 

uncertainty, i.e., whether Figure 10(b) would still look mostly as it does now or start to look more 

like Figure 10(a).  

I realize that Europe was chosen for a reason, namely that global observations do not exist for all 

of the fields used as constraints (CCN; decadal trends of surface shortwave radiation and AOD). 

The most accurate equivalence with GCM tuning would probably be to use global fields where 

they are available and European fields (but for more than a single month) otherwise. 



We don’t tackle the problem of global mean ERF or global tuning; the paper is focused solely on 

Europe. The word tuning doesn’t need to imply global. Aerosol models are frequently tuned or 

adjusted in some way (call it what you will) to agree with observations in a particular region or 

environment, so it’s this process we are drawing comparisons with. We restrict the analysis to 

Europe because there is a distinct set of parameters that are important to aerosol properties and 

ERF uncertainty in each region (see Lee et al, 2016: 10.1073/pnas.1507050113 for a map of clusters 

of uncertain parameters). Because parameter sensitivities vary regionally, to constrain the global 

forcing you would need to constrain the different regions individually – i.e., in the aerosol world it 

doesn’t make much sense to talk about global tuning. So our European study is like a mini version of 

what one would need to do globally. If it doesn’t work for Europe (with a distinct set of parameters) 

then it won’t work globally either. Using global ToA flux would have limited effect because of many 

regional compensating factors. We tested this in Regayre et al, 2018 (10.5194/acp-18-9975-2018; 

section 3.5). 

Another reason to use Europe was to relate to the Cherian et al, 2014 study where European surface 

solar radiation trends were used as an emergent constraint on regional and global forcing. As we 

state in our conclusions, we think the constraint will be weaker than they calculated because of 

unconstrainable uncertainties in the individual models.  

So to answer the question “how much using global constraints would narrow the uncertainty”, the 

answer is that it would narrow the global  ERF more than we would currently achieve. But a global 

constraint won’t have much effect on Europe (again, because of the distinct set of parameter 

uncertainties). We only ever refer to Europe, and we maintain that focus when we compare with the 

Cherian et al Europe SSR constraint on Europe-mean ERF in Fig 10. 

 

Minor suggestion (Section 2): Some of the conclusions of the paper could be phrased as 

recommendations on the future direction of the aerosol forcing community 

This is an interesting suggestion and we are pleased that the reviewer has identified the potential 

impacts that our work and results could have in the aerosol forcing community. We did try to draw 

out the implications. We prefer not to completely change the style of the conclusions because we 

think it’s important that we include a synthesis of findings and integration with current knowledge, 

rather than recommending future studies. We think recommendations are more appropriate for 

perspective articles and reviews. In response to some specific suggestions we have tried to highlight 

the recommendations a bit. 

Apart from the main finding of large single-model uncertainty, there are other interesting findings 

in the paper that I think are underemphasized: 

 The emulator–PPE method is a necessary step toward estimating the model uncertainty 

correctly. But to narrow the uncertainty range, it will also be necessary to assemble the 

most powerful (i.e., discriminating) combination of observables. Therefore, I encourage 

the authors to advocate for both of these necessary steps at once – the more they go 

hand-in-hand, the more efficient we are likely to be at making progress. (For example, the 

emulator–PPE method could point to which missing observable would provide the 

greatest additional constraint if it were added to the existing set of observables; see my 

comment on Figure 9 in the next section.) This sentiment is kind of there in the last 

sentence of the abstract and in the text (p. 17, l. 20; p. 23, l. 16), but it would be a missed 

opportunity not to phrase it more forcefully and more positively in the abstract. 



We have added a sentence on this to the end of abstract to highlight this point. The end of the 

abstract now reads: 

“…However, the uncertainty in the aerosol ERF after observational constraint is large compared to 

the typical spread of a multi-model ensemble. Our results therefore raise questions about whether 

the underlying multi-model uncertainty would be larger if similar approaches as adopted here were 

applied more widely. The approach presented in this study could be used to identify the most 

effective observations for model constraint. It is hoped that aerosol ERF uncertainty can be further 

reduced by introducing process-related constraints, however, any such results will be robust only if 

the enormous number of potential model variants is explored.” 

 The aerosol forcing change over the coming decades is a much easier target than the 

forcing relative to preindustrial conditions, assuming the emissions changes are known. 

Perhaps it is time to move away from ERF as the holy grail of the field and instead focus on 

future aerosol emissions scenarios. 

We agree, and have made this point in at least a couple of previous papers. There is a paragraph (5th 

of the conclusions in the original manuscript; 6th paragraph in the revised manuscript) dealing with 

this point, but we agree it could be focused. We now write:  

 “Observational constraint using nine observations has the potential to reduce the uncertainty in 

aerosol ERF slightly more over a multi-decadal period than over the full industrial period:”  

The rest of the paragraph then explains why this is important. Then we add at the end of the 

paragraph: 

“A shift of emphasis of the research community towards trying to constrain decadal forcing 

uncertainty, instead of industrial era forcing, is likely to accelerate progress.” 

 AOD is a terrible variable if your aim is to understand aerosol–cloud interactions. We 

should figure out something better. Ed Gryspeerdt’s work seems to show that aerosol 

index is a much better proxy for CCN. If the authors’ model diagnoses AI, it would be easy 

for them to refute or corroborate this result. 

Unfortunately, we cannot compute AI from the model runs of this PPE and so we cannot evaluate 

this here. However, we disagree that AOD is unambiguously a “terrible variable” for constraining 

forcing. This point of view is maybe based on the fact that AOD and CCN are not closely related but 

AI and CCN are more related. However, our study shows that neither CCN nor AOD alone provides a 

strong constraint on ERF (Fig 7). In that sense you might argue that CCN is also a terrible variable. 

The key for model constraint and uncertainty reduction is to find combinations of observables that 

are sensitive to the same set of process or emission uncertainties as ERF. So all observed variables 

are helpful in their own way. It is possible that AI will be useful for direct extrapolation back to the 

pre-industrial period, but it will not necessarily be useful for model constraint. We intend to include 

AI in the output diagnostics of a future PPE that is in the planning stage, with which we will be able 

to investigate the potential of AI for model constraint. 

We have added a new paragraph in the conclusions (after the 4th paragraph in the original 

manuscript): 

“It is often argued that AOD is a poor variable to use for understanding aerosol-cloud interactions. 

However, our results show that even the most strongly related measurement (CCN) also does not 



provide a strong individual constraint on ERFACI (Figure 7). It is doubtful that other derived 

variables like aerosol index will be any better. The key to model constraint is to find combinations 

of observations that help to constrain ERF: Individual constraints are unlikely to be effective, 

although they may appear to be effective if the model uncertainty is not fully sampled.” 

These results have a direct bearing on where the aerosol forcing community would best invest its 

efforts in order to reduce the forcing uncertainty. I understand that the authors want to keep the 

focus on the main result (the large single-model uncertainty), but they might think about ways to 

give these other findings a prominent place as well. For example, in our recent review article on 

radiative forcing by aerosol–cloud interactions (https://doi.org/10.1007/s40641-018-0089-y), we 

eschewed the traditional re-listing of conclusions at the end of the paper in favor of making 

recommendations to the forcing community. Mentioning these recommendations in the abstract 

may be appropriate as well. 

We understand how useful a set of recommendations to the aerosol forcing community would be, 

but we have decided not to fully re-work our conclusions in this paper to a set of recommendations. 

The presented study, based only on synthetic observations, corresponds to a specific stage in our 

overall work to understand and constrain the aerosol forcing uncertainty in this aerosol-climate 

model. Our current and future work is now expanding this work to use real observations in the 

constraint methodology, and we are learning even more as we move forward with this approach. 

We feel that recommendations to the community must take into account findings from the 

complete constraint process in which real observations are used. We therefore elect to defer 

producing such a set of recommendations at this earlier stage to a future time when we also have a 

comprehensive evaluation of model constraint with real observations. 

 

Minor Comment 1: Table 1: A bit more detail on parameters 8 and 9 would be nice. (Threshold in 

what variable? Rate of change with respect to what?) 

Full descriptions of the parameters perturbed in this PPE are given in Yoshioka et al, 2018 and 

Regayre et al, 2018. We therefore do not repeat this full detail in this publication.  We have made it 

clearer to the reader where more detailed descriptions of the parameters can be found by moving 

the reference for this from the end of paragraph 3 (page 8 line 25 in the original manuscript) to 

paragraph 2 in Section 2.3. Paragraph 2 of Section 2.3 now reads: 

“The 27 perturbed parameters are listed in Table 1. They are categorized as either aerosol (aer) or 

atmospheric (atm) according to their role in the model. To define the set of parameters we used 

expert elicitation and carried out one-at-a-time parameter perturbation screening experiments to 

quantify the effect of individual parameter perturbations away from the default setting. The 

selected parameters are described in more detail in related papers (Regayre et al., 2018; Yoshioka 

et al., 2018)” 

For the specific parameters mentioned here, we have adapted the text in Table 1 to provide further 

clarity. 

For parameter 8: Dec_Thres_Cld, we have changed the description to: “Threshold for the ratio of 

buoyancy consumption to production before decoupling occurs” 



For parameter 9: Fac_Qsat, we have updated the description to: “Rate of change in convective 

parcel maximum condensate with altitude” 

 

Minor Comment 2: p. 10, l. 8: Do we know that the validation carries over to this new emulator? 

What is the rationale for not simply using the emulator that is definitely validated? 

We are confident that the validation does carry over to the new emulator built using all simulations. 

The rationale for doing this is to incorporate all of the information that we have from our PPE into 

the emulator model we use.  

We do investigate the validity of the final emulator using a process called ‘leave-one-out’ validation 

on the merged set of simulations. In this procedure we remove a simulation from the set, build a 

new emulator and then use that emulator to predict the removed simulation, repeating this for all 

simulations in the set in turn. This procedure has returned good validation prediction results in all 

cases, and Figure A below shows an example of this validation for our present-day AOD emulator. 

The plot shows that the real model output and corresponding Leave-one-out emulator predictions 

(with 95% credible intervals) strongly correlate along a line of equality. Hence, this alternate 

validation indicates that the addition of the extra simulations in the construction of the emulator 

does not deteriorate the emulator quality and we have confidence in this approach.  

 
Figure A:  Example output of a ‘Leave-one-out’ validation test of the final emulator. 

We have added the following sentence to page 10, line 9 of the original manuscript (also page 10, 

line 9 of the revised manuscript) to detail that we use a leave-one-out validation procedure to verify 

the quality of the final emulator: 

“A ‘leave-one-out’ validation procedure (where each simulation in turn is removed from the 

merged set, and a new emulator is constructed and used to predict that removed simulation) is 

applied to additionally verify the quality of our final emulator.” 

Further explanation on our rationale for this is given below for the reviewer’s interest. 

Given a good validation of an initial emulator based only on the original training runs, we could 

certainly use this emulator for our analysis and have confidence in the results. However, the 

validation simulations are purposely placed into gaps between the locations of the training 

simulations and so including this extra information enables us to better guide/tweak the predicted 



emulator response in these gaps to be even more in-line with the underlying ‘true’ model output. 

We believe that if a good emulator is achieved based on only the training runs, then a further 

emulator based on both the training and validation runs must be of similar quality, if not better, 

given the inclusion of the extra information that these extra runs provide.  

 

Minor Comment 3: p. 10, l. 14: Do the two approaches (elicited vs uniform PDF) give very different 

results? 

In general, we have found that the overall constraint achieved on regional average model outputs 

(aerosol properties and forcings) is of a very similar nature under both approaches (using the elicited 

v’s using the uniform pdfs). However, there are differences in how the generated large sample of 

model variants (size 4 million) covers the multi-dimensional parameter uncertainty and hence the 

proportion of that sample that is retained on application of the constraint methodology.  

Using elicited pdfs rather than uniform pdfs when sampling over the multi-dimensional parameter 

uncertainty space essentially applies a further constraint to that parameter space, sampling much 

less in areas that the experts believe to be highly unlikely. This means that the sample of model 

variants tested against the observations in the constraint procedure is more concentrated towards 

the most likely (as evaluated by our experts) parameter values in the parameter ranges. The areas 

sampled less tend to be around the edges of the multi-dimensional space.  

On constraint we have found that using the elicited pdfs means we retain more of the 4 million 

model variants and leads us to a slightly stronger constraint on the parameter space itself (e.g. on 

the marginal parameter space in Figure 9). We reject more variants using uniform pdfs as the 

corresponding sample under this assumption covers more densely the parts of the parameter space 

that were deemed unlikely to be plausible by the experts in the elicited pdfs. This result shows some 

consistency between the model behaviour and the expert judgements, which gives us confidence in 

using the elicited pdfs. Hence, in the results presented we choose to use the elicited pdfs and so 

include all available information in the sampling in order to determine the full potential of possible 

constraint on ERF that is achievable with our approach. 

 

Minor Comment 4: p. 11, l. 10: This does not make intuitive sense to me; if the “truth” is chosen to 

lie at one the edge of parameter space, shouldn’t ensemble members from the opposite direction 

of that edge be penalized much more strongly than they would be if the “truth” were chosen to lie 

in the center? 

Yes, it is correct that choosing the “truth” to lie in a different part of the parameter space can affect 

the corresponding ‘observed’ output values and so change the model variants (and hence parts of 

parameter space) that are retained on constraint. However, the effect of this change on model 

output quantities like aerosol forcing is dependent on the way in which the response surfaces of 

these outputs vary over the multi-dimensional parameter space, and so it is difficult to predict. The 

compensating effects of the different parameters in the multi-dimensional space can mean that 

different areas of parameter space lead to similar output values. 

For the model run we investigated as a marginal set of synthetic observations (our validation run 27, 

which had several parameter values towards the edges of their uncertainty range), we found that 

the achieved overall constraint on each of the forcing variables (using all observations together) was 

slightly greater and we also retained fewer model variants in the constrained sample. For ERF we 



saw a further reduction in the standard deviation of around 12%, however this reduction was much 

lower for ERFARI at only 1%. Even so, the relative individual constraint effect of each observational 

type (Figure 7) was of the same nature/order for all four forcing variables (ToA flux is the most 

effective for ERF and ERFACI, the sulphate concentration is most effective for ERFARI and ERFARIclr, and 

in general the achieved constraint from the individual observable aerosol properties is weak). Hence, 

the overall conclusions of the study did not change on using a different observation set. The 

resulting constrained set of model variants still corresponds to a large multi-dimensional area of 

parameter space with a lot of equifinality.  

Given these results, and so as not to over-complicate the presented study, we made the decision to 

focus on just one observation case and the centralised set (with parameters set to their elicited 

median values) seemed most appropriate for a general example of our approach. 

 

Minor Comment 5: p. 14, l. 2: Much as I hate linear correlation coefficients, perhaps it would be 

useful to tabulate them to make it easier to follow this discussion. I am having trouble reading 

them off Figure 2. 

We have added the following table of linear correlation coefficients into Section 3.1 of the 

manuscript: 

ToA 

Flux 
0.20 0.00 0.23 -0.30 0.16 0.10 0.04 -0.03 -0.59 -0.65 0.25 -0.05 

 ΔSSR -0.04 0.22 -0.72 0.12 0.49 -0.04 0.11 -0.32 -0.22 -0.52 -0.61 

  CCN 0.46 -0.20 0.21 0.03 0.37 0.09 -0.14 -0.14 -0.01 -0.09 

   AOD -0.50 0.88 0.59 0.66 0.59 -0.33 -0.27 -0.33 -0.55 

    ΔAOD -0.32 -0.71 -0.17 -0.20 0.48 0.38 0.55 0.76 

     PM2.5 0.54 0.69 0.54 -0.21 -0.15 -0.33 -0.44 

      Sulphate 0.47 0.64 -0.41 -0.28 -0.67 -0.77 

       OC 0.62 -0.34 -0.31 -0.20 -0.30 

        BC -0.27 -0.22 -0.28 -0.46 

         ERF 0.98 0.16 0.48 

          ERFACI -0.04 0.33 

           ERFARI 0.83 

            ERFARIclr 

Table 3: Pearson linear correlations (r) between the PPE member regional mean model outputs for Europe in 

July, for the aerosol properties used as constraints, corresponding to the pairwise scatter plots in Figure 2. 

We have edited the first paragraph of Section 3.1 to say: 

“Figure 2 shows pairwise scatter plots of the PPE member output (Europe July-mean), which 

provides an overview of the spread of the model outputs as well as the relationships between the 

variables. We further quantify any linear relationships between the variables using the Pearson 

correlation coefficient (r) in Table 3.” 



We have adjusted the numbering of all following results tables in the manuscript to incorporate this 

table into Section 3.1. 

 

Minor Comment 6: Speaking of Figure 2:  

 Nice to run into fellow R users. 

 All the labels are tiny! par(cex) may help. 

It is difficult with so many small plots in the same figure to make the labels any larger.  We have used 

‘par(cex)’ to adjust the size of the axis labels to gain the best possible labelling size whilst avoiding 

axis values overlapping and becoming unreadable. 

 Point clouds are hard to interpret. Perhaps the relationships between variables would be 

easier to interpret as color maps of the 2D densities of the emulator results? 

The purpose of this figure is to look at the direct model output from the 191 individual model runs 

before any interpolation over the parameter uncertainty space (using the emulators) is applied. With 

only 191 points in each case, we do not have enough data to generate robust density contours and 

therefore use scatter plots. 

 Raster graphics are an abomination. R supports PDF output; this is the best option in 

general, and in particular for an information-rich figure like this one, where the reader will 

want to zoom in on interesting features. 

Figure 2 has been re-made using postscript and PDF graphics, and the new version is much improved 

for zooming in on interesting features. The new Figure 2 is below (at the end of this comment 

response) 

These comments apply to Figure 3 as well, where additionally I see funny boxes around some of 

the panels at certain magnifications. 

We have looked in detail at Figure 3 and cannot find any issues with the figure on magnification. We 

therefore have not changed this figure. We will check the proofs. 

 



 

Figure 1. Pairwise scatter plots of the PPE member regional mean model output for Europe in July, for the aerosol properties 

used as constraints: ToA flux (W m-2), change in SSR (ΔSSR, W m-2) between 1978 and 2008, CCN conc. (cm-3), AOD, 

surface mass concentrations of PM2.5, Sulphate, OC, and BC (μg m-3), the changes in AOD (ΔAOD, W m-2) between 1978 

and 2008, and the 1850-2008 forcing variables: aerosol ERF, ERFACI, ERFARI and ERFARIclr (W m-2). 

 

Minor Comment 7: Figure 4: In this model, ERF variability is dominated by ERFaci variability (see 

Figure 2). Yet the model does not care one bit about aerosol–precipitation interactions, at least 

not wet scavenging. I believe this is quite different from other GCMs. Any idea why? (Not 

necessarily something that needs to go into the paper.) 

The cloud state is sensitive to precipitation scavenging, but the ERFACI is not. The ERF is obviously a 

change from pre-industrial to present-day, so it is not obvious that if you change the aerosol/cloud 

state in both periods that the ERF will remain sensitive to scavenging. 

 

Minor Comment 8: p. 25, l. 15: In GCM tuning, this would routinely be done; see my main point of 

criticism. 

OK. 

 

Minor Comment 9: Figure 9: Does the converse also hold (that observations of decoupling would 

be a useful constraint on the model)? 

We do not know what the reviewer means by “observations of decoupling”, and so we are not sure 

on what is being referred to here.  We are therefore unable to comment. 



 

Minor Comment 10: p. 27, l. 5: But Cherian et al. do this using models tuned to reproduce the 

global climate; see my main point of criticism. 

Yes, we agree that Cherian et al, 2014 achieve their constraint using a set of models that have each 

been ‘tuned’ in some way to re-produce the global climate. We compare with our ‘tuned’ model for 

Europe (which includes the frequently-tuned quantity, the ToA flux). However, in the selection of 

each individual tuned model, the influence of parametric uncertainty has not be rigorously explored. 

This means that there will be many other equally plausible tuned versions of each given model that 

agree with the observations and could have been selected, as we have shown in this study for the 

single tuned model HadGEM3-UKCA. We have shown that the predicted forcing from the set of the 

equally plausible model variants (obtained through comparison to a diverse set of aerosol 

observations) is wide-ranging. This implies that tuning does not necessarily directly reduce the 

model spread and implies that emergent constraints such as the one obtained by Cherian et al, 2014 

likely underestimate the true spread of forcing. 

 

Minor Comment 11: p. 28, l. 10: AOD multidecadal change appears to be double-counted. 

This has been corrected in the manuscript. This sentence in the first paragraph of the conclusions 

(page 30 lines 10-14 of the revised manuscript) now reads: 

“The primary objective of our study was to determine how much uncertainty could remain in an 

aerosol-climate model when it is constrained to match combinations of observations that define the 

base state of the model: top-of-atmosphere upward shortwave flux, aerosol optical depth, PM2.5, 

cloud condensation nuclei, concentrations of sulphate, black carbon and organic material as well as 

multi-decadal change in surface shortwave radiation and aerosol optical depth.” 

 

Minor Comment 12: p. 29, l.1: Would AI or fine-mode fraction work better? I think the authors 

have the opportunity to make a significant statement here about whether there is a way forward 

from AOD, which is known to be a poor CCN proxy, via other proxies. See my point in the 

recommendations section above. 

Please see our response to the Minor suggestion (Section 2) above (at the end of page 3). We are 

not able to evaluate the effects of AI with this PPE, but we doubt that AI would provide any better 

constraint on the aerosol ERF than AOD. AI might be a better extrapolation variable, but this has not 

yet been directly demonstrated. 

 

Minor Comment 13: p. 31, l. 6: I don’t understand the point about cancellation of correlated 

errors, but I would like to. Perhaps the authors could elaborate. 

We mean that a model might have a large bias in AOD and in CCN (so neither can be simulated well) 

but if both of these model variables are biased for the same reason (e.g., incorrect aerosol 

deposition rates), then the ratio of CCN/AOD might be accurately simulated by the model. 

 

 



Minor Comment 14: Craig 1997 has a bunch of cryptic initials instead of editor names. 

This reference has been corrected in the manuscript.  

 

Minor Comment 15: Gryspeerdt 2017 a and b are the same publication. 

This has been corrected in the manuscript.  

 

Minor Comment 16: Stier ACPD 2015 has been superseded by Stier 2016 ACP 

(https://www.atmos-chem-phys.net/16/6595/2016/acp-16-6595-2016.html). 

This reference has been corrected in the manuscript.  

 

Minor Comment 17: Penner 2011: the DOI looks strange. 

This reference has been corrected in the manuscript.  

 

Minor Comment 18: Pujol 2008: check that this is still up to date with citation("sensitivity"). 

This reference has been checked in R and corrected in the manuscript.  

 

Minor Comment 19: Zhang 2016: Toshi Takemura’s name is misspelled. 

This reference has been corrected in the manuscript.  
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In our response, reviewer comments are marked in bold, our responses and original text in plain 

text, and altered text in the paper in bold italic. Additionally we highlight altered text in the tracked 

changes pdf as requested. 

Response to reviewer 2 (Anonymous reviewer) 

We thank the reviewer for their interesting and useful comments on our manuscript. Our responses 

to these comments are given below. 

Minor Comment 1: p1 l29 “improvements in the physical realism”... I don’t think Mann et al 2014 

is the right citation at exactly this point. 

We have changed this to “Although extensive improvements in the physical realism of aerosol-

climate models have been made in recent years (Ghan and Schwartz, 2007), resulting in a set of 

quite sophisticated models (Mann et al., 2014).”  Mann et al, 2014 is really the only reference for 

where a large set of microphysics models was assembled.  

 

Minor Comment 2: p2 l2: “although the set of models is different to those used to assess aerosol 

microphysical properties in Mann et al. (2014),” not really an argument for the stubbornness of 

the ERF uncertainty, can be omitted here. 

We have deleted that sentence. It wasn’t really an argument, but really just a reminder that we 

should not compare these two inter-comparisons (Mann et al, 2014 microphysics models and 

Boucher et al, 2013 climate models) – they are completely different models. 

 

Minor Comment 3: P2 l17 I think this paragraph and equation is misleading in pretending “that the 

forcing depends on the interlinked sensitivities of aerosols, clouds and their radiative properties to 

changes in aerosol emissions”. Direct radiative effects, fast adjustments are not readily folded in 

into this equation. Please rephrase. 

We are referring only to the aerosol-cloud forcing here. This equation is not pretending anything; it 

is the community’s main approach to understanding how aerosol emission changes affect cloud 

properties. We have re-written the start of this paragraph (3rd paragraph in the introduction) on 

page 2 line 14 to clarify this applies only to aerosol-cloud forcing: 

“There are three ways in which observations help to constrain the uncertainty in aerosol ERF. The 
first, which applies to the aerosol-cloud-related forcing, is based on...”  

 

Minor Comment 4: P3 l23: “there is no equivalent to Equation 1 defining how a bias in simulated 

aerosol properties affects the forcing “ => I think this is overly critical to bias inspections. An 

underestimate in fine mode AOD or bias in absorption can be translated in forcing bias. 

Measurements of fine mode AOD estimates can constrain anthropogenic AOD to some extent. 

And there might be other clever interpretations of bias. Please rephrase. 

We disagree. In fact this is one of the main results of our paper: we show that aerosol-radiation 

interaction forcing (direct effect) is not strongly constrained by state variable measurements (AOD, 

etc.). There are many ways in which a model can be configured to get a particular AOD, but these 



model variants (as we call them) predict very different forcings. To make this clear, and to signpost 

the result, we add at this point: 

“(i.e., there is no equivalent to Equation 1 defining how a bias in simulated aerosol properties affects 

the forcing). One aim of our study is to make that link, and we show in section 3.5.1 that 

observational constraint of many state variables only weakly constrains the direct and indirect 

radiative forcings.” 

 

Minor Comment 5: P3 l31 “Model variants that produce implausible results are rejected and, 

likewise, the forcings that they calculate are also rejected. “ => would be nice to explain this at this 

point a bit more. Do you look at all observations at the same time? What is the criterion for 

rejecting? 

The sentence referred to here is in the introduction section where we very briefly summarise / 

introduce the approach we take in this study. We therefore don’t want to go into too much detail, as 

full details of the methodology and constraint approach are given in the following methodology 

section. Hence, we have only added very brief extra explanations of these points in this introductory 

paragraph/section of the manuscript. 

In the paragraph on page 3, line 31 of the original manuscript (page 3, line 32 of the revised 

manuscript), we have added:  

“... Model variants that produce implausible results (i.e., output outside of an observation’s 

estimated uncertainty range) are rejected and, likewise, the forcings that they calculate are also 

rejected. A similar constraint methodology has been applied to...” 

And we have added the following sentence to the end of this paragraph on page 4 line 3 of the 

original manuscript (page 4, line 4 of the revised manuscript): 

“We constrain using each aerosol/cloud observation individually and combinations of all 

observations.” 

We have then added more detail on our criteria for retaining/rejecting model variants in the 

constraint process in Section 2.7 (Identification of plausible model variants) of the methodology 

section, to make this process clearer. The start of Section 2.7 now reads as: 

“Observationally plausible model variants are defined to be those that simulate aerosol and 

radiation properties within the uncertainty ranges of the observations, defined in Table 2. As we use 

statistical emulators to generate the simulated output values for each model variant, rather than 

using the climate model directly, an emulator prediction error φ (valued at one standard deviation 

on the emulator prediction from the Gaussian process uncertainty) is also taken into account. 

Hence, for a given observed variable, a model variant is rejected as implausible if the range 

defined by its emulator prediction +/- φ lies outside the corresponding observation’s uncertainty 

range in Table 2. Furthermore, for a joint observational constraint we retain only the model 

variants that are classed as plausible for all individual observation types that make up the joint 

constraint.” 

 



Minor Comment 6: P5 l9 “The analysis is restricted to Europe for the month of July. We do this 

primarily because regional observations can provide a better constraint on model uncertainty than 

global mean observations... but with the disadvantage of being less straightforward to 

understand. . . . We choose Europe because there are many long-term measurements”  => I don’t 

buy these arguments. With synthetic observations this should not be a big problem to do globally. 

There are no long term measurements used. I assume this is done to save computer time. I think 

its ok to use just Europe and just July. But the discussion should be more honest and open here. 

Paragraph please rewrite. 

There was no intension on our part to not be honest and open in terms of our arguments for only 

using observations over the Europe region in July for this study.   

Our full reasoning to base the presented study on only Europe in July is as follows: 

 Previous work (Regayre et al, 2018, for example) has shown that using global mean 

quantities for constraint can mask many compensating regional parameter effects, leading 

to a very weak ‘watered down’ constraint on both the parameter space and model outputs 

like forcing that can be difficult to interpret. 

 To constrain forcing globally we need to constrain the parameters that affect the forcing 

across the globe. Regayre et al, 2018 show that different parameter sources control the 

uncertainty in aerosols and forcing in different regions. Therefore, the global problem 

essentially breaks down to be the sum of constraining the forcing in a set of key regions, of 

which Europe is one. The Europe region in July provides a single region/month for which a 

distinct set of parameter uncertainties affect ERF. If we cannot constrain the forcing 

regionally in Europe, then we are unlikely to obtain a constraint on a global/multi-region 

scale. Hence, Europe in July provides us with the full insight we aim for here on the potential 

of our approach. 

 It is true that our analysis is highly computational and generates a significant amount of 

data. We have investigated other regions in this work, including China and the North Pacific 

(not shown), but including more regions in the presented study would only significantly 

expand the results in terms of quantity and complexity, with no real gain as to our actual aim 

of establishing the overall potential for constraint with our methodology.   

 Real observations of multiple aerosol observable quantities are sparse in many regions 

around the globe, and temporally (Reddington et al., 2017), but Europe is a region for which 

a diverse set of aerosol observations are available. These observations provide realistic 

estimates of observational uncertainty for the synthetic study.  

 The presented study was a specific stage in our model evaluation work, at which we aimed 

to test our methodology for constraint using synthetic observations before moving forward 

to our now current work where we are looking at using real observations. Using Europe in 

July for our synthetic study supplies a good test for evaluating the potential constraint we 

may achieve from using the real observations in the future – a test that we are now working 

towards verifying. 

We have edited the penultimate paragraph in the introduction section at page 5 line 9 of the original 

manuscript (page 5 line 11 of the revised manuscript) to better reflect these reasons (The start of 

this paragraph also contains revisions with respect to our response to Reviewer 3’s minor comment 

2): 



“The analysis is restricted to the region of Europe (defined in this study by the longitude range: 12°W 

to 41°E, and latitude range: 37.5°N to 71.5°N) for the month of July. We take a regional approach 

primarily because regional observations provide a better constraint on model uncertainty than 

global mean observations (Regayre et al., 2018). The sources of uncertainty in aerosols and forcing 

vary regionally (Lee et al., 2016; Reddington et al., 2017; Regayre et al., 2015). Therefore, a global 

analysis would essentially be a scaled-up version of what we present here – i.e., a set of regional 

evaluations. We choose Europe in July as this is a region and month for which a distinct set of 

parameter uncertainties affect the aerosol properties and the ERF, providing a good test case for 

our methodology. Europe is also a region for which a diverse set of long-term measurements of 

different aerosol and radiative properties are available, that we can use to inform our assessments 

of the observational uncertainty.” 

 

Minor Comment 7: Chapter 2.1 and 2.2. and 2.3: I think they can be reversed. Some simple 

questions are not clear to me: Are the simulations global? Is it a one year simulation with a 4 

month spinup (eg Sep-Dec of the preceding year) and is then just July analysed? Is the emulator 

producing global fields, from which data are sampled at European stations? 

We have considered the reviewers suggestion to change the order of the sub-sections in our 

methodology section (Section2) of the manuscript. However, we think that the current order is most 

suitable, as we prefer to keep the overall summary of our approach at the start (section 2.1), with 

the different aspects further explained in the order they are mentioned in that summary. 

We have clarified the model set up in the final paragraph of section 2.3 (page 9 lines 11-12 of the 

original manuscript; page 9 lines 15-17 in the revised manuscript):  

 “... In total 217 perturbed parameter simulations of the global model were run for a full year for 

each anthropogenic emission period (1850, 1978 and 2008 emissions). Each simulation had a spin-

up period of seven months from a consistent starting simulation, where the parameters were set 

to their median values for the first four months and the perturbations then applied in the final 

three months.” 

The emulators do not produce global fields. We have clarified this at the beginning of Section 2.4 

(page 10, line 6 of the original manuscript; page 10 line 5 of the revised manuscript): 

“For each model output (such as the regional mean ToA flux, CCN conc., etc. for Europe in July) we 

construct a statistical emulator model over the 27-dimensional parameter uncertainty...” 

 

Minor Comment 8: Page 5 counts 191 simulations, while page 9 counts “in total 217 perturbed 

parameter simulations”. Better to harmonize numbers. 

The reasoning for this difference is explained in the next sentence on page 9 (lines 12-13). We only 

use ensemble members that completed the full year of simulation in all periods, which reduces the 

number of runs used for analysis to 191 from the total of 217 that were originally run. We feel it is 

important that we are transparent about this and so we continue to state both numbers.  We have 

amended the sentence at page 9 line 12 of the original manuscript (page 9 line 18 of the revised 

manuscript) to improve the clarity on this point:  



“Twenty-five simulations did not complete the full annual cycle so were not used in our analysis. 

Consequently, the ensemble of simulations used for analysis for each period was made up of the 

remaining 191 simulations, all of which were used to build the final emulators.” 

 

Conclusions: I wonder how general the findings are if the ERF is in essence tested only over Europe 

and July with synthetic observations, but that might be shown in future publications. 

The aim of this paper is to demonstrate the potential for model constraint using multiple 

observations. As we argue in the paper (and in our replies to the reviewer comments) a global 

analysis would essentially be a scaled up version of what we are doing here – i.e., constraint of 

global ERF will be dependent on the extent to which we can constrain the model in all the key 

regions. Global forcing is the sum of regional forcings, and each region has its own unique 

combination of uncertainties. 
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In our response, reviewer comments are marked in bold, our responses and original text in plain 

text, and altered text in the paper in bold italic. Additionally we highlight altered text in the tracked 

changes pdf as requested. 

Response to reviewer 3 (Anonymous reviewer) 

We thank the reviewer for their interesting and useful comments on our manuscript. Our responses 

to these comments are given below. 

Main comment: One comment I have, is that it should be made more clear in abstract and 

conclusion, and also some figures and tables, that they use synthetic observations and not real 

observations. And define synthetic observations the first time it is mentioned. 

We have adapted the text in the abstract and conclusions, and in the captions of Table 2 and Figures 

3 and 7 to make this clearer throughout the manuscript. 

‒ In the abstract, we have revised the following sentence on page 1 line 18:  

“The model uncertainty is calculated by using a perturbed parameter ensemble that samples 

twenty-seven uncertainties in both the aerosol model and the physical climate model, and 

we use synthetic observations generated from the model itself to determine the potential 

of each observational type to constrain this uncertainty.” 

‒ The caption of Table 2 has been adjusted to: 

“Table 2. Observed quantities and corresponding uncertainty ranges used for the constraints 

applied over Europe. Values are a European July mean, synthetically generated from the 

model output of a selected PPE member.” 

‒ The caption of Figure 3 has been adjusted to: 

“Figure 3. Calculated uncertainty in the aerosol quantities and aerosol ERF terms from the 4 

million member sample. Results are for July-mean over Europe. The red bar shows the 

assumed range of each synthetic observation used to constrain the uncertain parameter 

space and the aerosol forcing uncertainty from Table 2.” 

‒ The caption of Figure 7 has been adjusted to: 

“Figure 2. The relative constraint achieved for aerosol ERF, ERFACI, ERFARI and ERFARIclr over 

Europe given the individual synthetic constraints applied (colours) and the simultaneous 

constraint (ALL). The relative constraint is evaluated as the ratio of the standard deviation of 

the forcing in the constrained sample (σconstrained) to the standard deviation of the forcing in 

the original, unconstrained sample (σfull).” 

‒ In the conclusions section we have added the following sentence to page 28 line 17 of the 

original manuscript (page 30, line 21 in the revised manuscript).  

“Using synthetic observations (taken from the output of one of our simulations) we 

determine the extent of the potential constraint that these nine aerosol and cloud-related 

properties can generate.” 

Finally, we have defined the term “synthetic observations” at the point it is first mentioned in the 

body of the manuscript, in the introduction section on page 5 line 6 of the original manuscript (page 

5 line 8 in the revised manuscript). The revised text is as follows: 



“Although large observational datasets of aerosol in-situ microphysical and chemical properties are 

available (Reddington et al., 2017), we use synthetic observations here – i.e., observations that are 

generated from a model simulation – to postpone addressing some of the challenges faced when 

comparing model output and in-situ observations (Schutgens et al., 2016a, 2016b).” 

 

Minor Comment 1: Page 7 line 10. Specify that it is biomass burning emissions. 

Page 7, line 10 of the original manuscript is an empty line break between paragraphs. However, we 

think this is referring to page 7 lines 19-20 (page 7 line 23 of the revised manuscript), and have 

updated the text here as follows:  

“Carbonaceous biomass burning aerosol emissions for recent decades were prescribed using a ten 

year average of 2002 to 2011 monthly mean data” 

 

Minor Comment 2: Table 2: Indicate that this is not real observations. Useful to define Europe 

also. In addition to the synthetic observations, real observations are used for ToA flux, am I right? 

We have adjusted the caption for Table 2 to be clear that the observations are not real observations. 

(See bullet point 3 in our reply to the Main Comment above.) 

We have updated the text at the end of the introduction section (page 5, line 9 of the original 

manuscript; page 5 line 11 of the revised manuscript) to more clearly define the Europe region that 

we have used. Revised text: 

“The analysis is restricted to the region of Europe (defined in this study by the longitude range: 

12°W to 41°E, and latitude range: 37.5°N to 71.5°N) for the month of July.” 

All observations used in this study, including the ToA Flux observation, are synthetic and come from 

a model run with all parameters set to their median value from the parameter’s distribution that 

was obtained through our expert elicitation exercise. However, information from real observations 

(where available) was used to determine appropriate uncertainty ranges on the synthetic 

observations. For ToA flux, the uncertainty range was estimated to be in line with information from 

the Clouds and the Earth's Radiant Energy System (CERES) and IPCC uncertainty estimates 

(Hartmann et al., 2013). The information on the origin of the ToA flux observation used in this study 

in paragraph 2 of Section 2.6 was incorrect in our original manuscript, and we have amended 

paragraphs 2 and 3 of Section 2.6 to address this. The revised paragraphs are as follows: 

“We use synthetic observations (Table 2) of European July-mean cloud condensation nuclei (CCN) 

concentration at 0.2% supersaturation at approximate cloud-base height, surface concentrations of 

PM2.5, mass concentrations of sulphate, OC and BC at the surface, the outgoing shortwave 

radiative flux at the top of the atmosphere (ToA flux), AOD at a wavelength of 550 nm, and the 

change in AOD (ΔAOD) and surface solar radiation (ΔSSR) between 1978 and 2008. The period 1978 

to 2008 was originally chosen because it is an interesting period for global and regional forcing 

changes. Although AOD measurements are not available back to 1978, this is not vital to the present 

study which aims to assess potential constraint over a period with substantial aerosol changes.  

The observation uncertainties are based on our judgement about the combined effect of instrument 

uncertainties and the uncertainty associated with measurement representativeness (colocation of 



high-frequency point measurements within low-spatial-resolution, monthly-mean model output 

subject to meteorological variability (Reddington et al., 2017; Schutgens et al., 2016a, 2016b). Where 

available, we have used sets of real observations to inform these judgements and estimates. For 

example, we selected our uncertainty range on the ToA Flux such that it is in line with information 

from the Clouds and the Earth's Radiant Energy System (CERES) and IPCC uncertainty estimates 

(Hartmann et al., 2013). In the constraint process we also account for the emulator error (i.e., the 

estimated uncertainty in each of the 4 million points associated with using the emulator instead of 

the model itself).” 

 

Minor Comment 3: Figure 9: Does the color shading mean anything? Include a colorbar or remove 

the shading. 

The colour represents the marginal normalised sampling density (normalised across parameters) of 

each input parameter over its range. The parts of the marginal parameter space that are effectively 

ruled out by the constraint are shown in white (normalised sampling density <0.02). 

The plot has been updated and a colour bar has been added. We have also updated the caption of 

the figure to clearly state the meaning of the colour-scale. The new figure is below. 

 

Figure 3. One-dimensional projection of the remaining parameter space after simultaneous constraint of all 

atmospheric quantities and decadal trends. The colour-scale shows the marginal normalised sampling density 

(normalised across parameters) of each input parameter over its range. Parts of the marginal parameter space 

that are effectively ruled out are shown in white (normalised sampling density <0.02). 

We have also updated a sentence on page 24 line 28 of the original manuscript (page 26 line 28 of 

the revised manuscript) for clarity. This sentence now reads: 

“Figure 9 identifies parts of the marginal parameter space that are effectively ruled out in white.” 

  



In our response, reviewer comments are marked in bold, our responses and original text in plain 

text, and altered text in the paper in bold italic. Additionally we highlight altered text in the tracked 

changes pdf as requested. 

Final technical corrections from the Co-Editor: Patrick Chuang 

Comments to the Author: 

It may seem like a small quibble to you, but as someone who's spent time studying CCN, it makes 

me very uncomfortable when you refer to the variable “CCN concentration”. Without a stated 

supersaturation, it's not a properly defined quantity. I know that you do eventually specify that 

the observations are at 0.2%, and you imply (though never clearly state, I believe) that the 

modeled values are at the same supersaturation. In some cases you are referring to “CCN 

concentration” in a generic sense, and I'm OK with such usage. But when you are referring to the 

model variable or observed quantity, I'd ask that you use a well-defined variable. I'll suggest 

CCN_0.2 (so “0.2” as a subscript), similar to PM_2.5 but you can choose whatever format you like.  

This has been addressed throughout the manuscript in both text and figures using the notation 

‘CCN0.2 Concentration’ as suggested.  

 

 A tiny edit: p. 4, line 2: there's a missing space after “2013)”. 

This has been corrected in the manuscript. 
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Abstract. Observational constraint of simulated aerosol and cloud properties is an essential part of building trustworthy climate 10 

models for calculating aerosol radiative forcing. Models are usually tuned to achieve good agreement with observations, but 

tuning produces just one of many potential variants of a model, so the model uncertainty cannot be determined. Here we 

estimate the uncertainty in aerosol effective radiative forcing (ERF) in a tuned climate model by constraining 4 million variants 

of the HadGEM3-UKCA aerosol-climate model to match nine common observations (top-of-atmosphere shortwave flux, 

aerosol optical depth, PM2.5, cloud condensation nuclei at 0.2% supersaturation (CCN0.2), concentrations of sulphate, black 15 

carbon and organic carbon, as well as decadal trends in aerosol optical depth and surface shortwave radiation.) The model 

uncertainty is calculated by using a perturbed parameter ensemble that samples twenty-seven uncertainties in both the aerosol 

model and the physical climate model, and we use synthetic observations generated from the model itself to determine the 

potential of each observational type to constrain this uncertainty. Focusing over Europe, we show that the aerosol ERF 

uncertainty can be reduced by about 30% by constraining it to the nine observations, demonstrating that producing climate 20 

models with an observationally plausible “base state” can contribute to narrowing the uncertainty in aerosol ERF. However, 

the uncertainty in the aerosol ERF after observational constraint is large compared to the typical spread of a multi-model 

ensemble. Our results therefore raise questions about whether the underlying multi-model uncertainty would be larger if similar 

approaches as adopted here were applied more widely. The approach presented in this study could be used to identify the most 

effective observations for model constraint.  It is hoped that aerosol ERF uncertainty can be further reduced by introducing 25 

process-related constraints, however, any such results will be robust only if the enormous number of potential model variants 

is explored. 

1 Introduction 

It has proven extremely challenging to reduce the large uncertainty in aerosol model simulations and the calculated aerosol 

radiative forcing since pre-industrial times. Although extensive improvements in the physical realism of aerosol-climate 30 

models have been made in recent years (Ghan and Schwartz, 2007), resulting in a set of quite sophisticated models (Mann et 
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al., 2014), aerosol model simulations are still surprisingly uncertain – up to a factor ten or more spread in key aerosol properties 

among models (Mann et al., 2014). Calculated aerosol radiative forcing also remains stubbornly uncertain among multiple 

models (Boucher et al., 2013; Myhre et al., 2013), making it difficult to establish the causes of forcing uncertainty. Until the 

uncertainty is reduced, climate models will not be robust in their predictions of decadal-scale climate change and its global 

and regional impacts (Andreae et al., 2005; Myhre et al., 2013; Seinfeld et al., 2016). 5 

 

The uncertainty in aerosol radiative forcing has persisted through multiple generations of climate models because it results 

from the combined effects of dozens of complex and uncertain climate model processes related to aerosols, clouds, radiation 

and dynamics. Changes in aerosols cause the entire aerosol-cloud-radiation-dynamics system to respond, resulting in an 

Effective Radiative Forcing, or ERF (Boucher et al., 2013). The complexity of the processes causing the aerosol ERF (and the 10 

fact that it cannot be measured directly) means that it may essentially be treated as a tuneable model quantity (Hourdin et al., 

2016; Mauritsen et al., 2012) rather than being properly constrained by extensive measurements that define the state and 

behaviour of aerosols and clouds. This is not a firm basis for climate projections. 

 

There are three ways in which observations help to constrain the uncertainty in aerosol ERF. The first, which applies to the 15 

aerosol-cloud-related forcing, is based on the recognition that the forcing depends on the interlinked sensitivities of aerosols, 

clouds and their radiative properties to changes in aerosol emissions. For example, the magnitude of the aerosol-cloud 

interaction component of radiative forcing (R) can be broken down into a product of sensitivities relating the forcing to aerosol 

emissions (E), cloud condensation nuclei concentrations (NCCN) and droplet concentrations (Nd) (Ghan et al., 2016):  

 20 

𝑑 ln 𝑅

𝑑 ln 𝐸
=

𝑑 ln 𝑁𝐶𝐶𝑁

𝑑 ln 𝐸
×

𝑑 ln 𝑁𝑑

𝑑 ln 𝑁𝐶𝐶𝑁

×
𝑑 ln 𝑅

𝑑 ln 𝑁𝑑

 (1) 

 

Relationships between various aerosol, cloud and radiation variables are widely used or proposed as a way of constraining the 

uncertainty in aerosol-cloud forcing in climate models (Ban-weiss et al., 2014; Grandey et al., 2013; Gryspeerdt et al., 2016, 

2017; Gryspeerdt and Stier, 2012; Lebo and Feingold, 2014; McCoy et al., 2016; Quaas et al., 2009, 2010; Terai et al., 2015; 25 

Yi et al., 2012; Zhang et al., 2016).  

 

The second aspect of model constraint is to test the model’s ability to reproduce observed trends in aerosols, clouds and 

radiation (Allen et al., 2013; Cherian et al., 2014; Leibensperger et al., 2012; Li et al., 2013; Liepert and Tegen, 2002; Shindell 

et al., 2013; Turnock et al., 2015; Zhang et al., 2017). For example, Cherian et al. (2014) showed that among several climate 30 

models there is a relationship between the simulated trend in European surface solar radiation (SSR) over recent decades and 

the pre-industrial to present-day aerosol ERF (models with large SSR trends tend to simulate larger ERFs).  Cherian et al. 
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(2014) used this relationship to define the observationally constrained ERF based on the models that simulate SSR trends 

closest to observations (a so-called emergent constraint).  

 

The third aspect of model constraint is to observationally constrain the model “base state” – i.e., properties like aerosol optical 

depth (AOD) or aerosol concentrations in a particular period. Considerable effort is put into constraining the model base state 5 

because observations are readily available and models that cannot simulate aerosol and cloud properties close to observations 

would not be trusted to predict changes in these properties over time (which determines the forcing). Models can also be 

constrained under a range of cloud regimes as well as under pristine and polluted conditions, which will have a bearing on a 

model’s ability to simulate the change from the pre-industrial period to the present-day (Carslaw et al., 2013, 2017). Model 

skill in simulating AOD was used in the Atmospheric Chemistry-Climate Model Intercomparison Project to screen the models 10 

(Shindell et al., 2013) and global AOD reanalysis products have been used to help constrain the aerosol forcing (Bellouin et 

al., 2013). It is also argued that the wealth of available measurements will help to constrain direct radiative forcing (Kahn, 

2012) 

 

There are limitations with all three methods outlined above in terms of constraining the uncertainty in aerosol forcing over 15 

periods outside the observational record. The main limitation with the first method (aerosol-cloud-radiation relations) is that 

there is no guarantee that present-day (or “instantaneous”) relationships can be extrapolated to pristine pre-industrial conditions 

(Penner et al., 2011). Even the most sophisticated approaches still rely on model estimates of how aerosols changed over the 

industrial period (Gryspeerdt et al., 2017). The same main limitation applies to the second method (aerosol and radiation 

trends): most data records are quite short so typically do not include pristine pre-industrial-like conditions (Carslaw et al., 20 

2017; Hamilton et al., 2014). With the third method (constraining the state of aerosols, clouds and their radiative properties) it 

is not obvious how the model accuracy can be related to the uncertainty in simulated radiative forcing (i.e., there is no 

equivalent to Equation 1 defining how a bias in simulated aerosol properties affects the forcing). One aim of our study is to 

make that link, and we show in section 3.5.1 that observational constraint of many state variables only weakly constrains the 

direct and indirect radiative forcings. 25 

 

In this paper we focus on observationally constraining uncertainty in the base state of an aerosol-climate model as well as 

trends in radiative properties. Our approach is shown schematically in Figure 1. We begin with a large set of model variants 

produced by adjusting multiple uncertain model input parameters (a tiny fraction of which would be explored in model tuning). 

These model variants (parameter combinations) define the prior model uncertainty (which can be defined by a pdf), which we 30 

then constrain by identifying variants that produce plausible outputs compared to aerosol and cloud observations. Model 

variants that produce implausible results (i.e., output outside of an observation’s estimated uncertainty range) are rejected and, 

likewise, the forcings that they calculate are also rejected.  A similar constraint methodology has been applied to environmental 

models (Salter and Williamson, 2016), hydrological models (Liu and Gupta, 2007), galaxy formation (Rodrigues et al., 2017), 
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disease transmission (Andrianakis et al., 2017), climate models  (Murphy et al., 2004; Regayre et al., 2018; Sexton et al., 2011; 

Williamson et al., 2013) and aerosol models (Lee et al., 2011, 2013; Reddington et al., 2017; Regayre et al., 2018, 2014, 2015). 

In this paper the observations comprise aerosol and cloud state variables and trends, but the approach could readily be extended 

to include any observations, such as of aerosol-cloud-radiation relationships. We constrain using each aerosol/cloud 

observation individually and combinations of all observations. 5 

 

 

Figure 1. Schematic of the methodology for observational constraint of parametric model uncertainty. 

 

We define observational constraint as finding the full set of model variants that can be considered plausible against 10 

observations, and from which we can estimate the prior (unconstrained) and remaining (observationally constrained) 

uncertainty. This approach is different to traditional model tuning, which produces only one result on the right side of Figure 

1 with no information about uncertainty. We note, however, that such model adjustments towards observations are often 

misleadingly called constraint. 

 15 

The vast majority of observational constraint efforts are severely limited by the very small number of models used, which 

makes it impossible to reach robust statistical conclusions about model uncertainty. In a multi-model ensemble the number of 

models is often about ten or so, and in model tuning perhaps only a few dozen parts of parameter space are explored. To get 

around this problem we build emulators that enable model outputs to be generated for millions of model parameter 
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combinations (Lee et al., 2011, 2013), which enables us to relate the uncertainty on the left side of Figure 1 (in the form of a 

pdf) to the observationally constrained uncertainty on the right side.   

 

The main aims of this paper are first to determine how much uncertainty could potentially remain in an aerosol-chemistry-

climate model that is tuned to match various sets of observations, and second, how this uncertainty might affect conclusions 5 

drawn from multi-model ensemble studies which do not explicitly account for this source of uncertainty. Although large 

observational datasets of aerosol in-situ microphysical and chemical properties are available (Reddington et al., 2017), we use 

synthetic observations here – i.e., observations that are generated from a model simulation – to postpone addressing some of 

the challenges faced when comparing model output and in-situ observations (Schutgens et al., 2016a, 2016b).  

 10 

The analysis is restricted to the region of Europe (defined in this study by the longitude range: 12°W to 41°E, and latitude 

range: 37.5°N to 71.5°N) for the month of July. We take a regional approach primarily because regional observations provide 

a better constraint on model uncertainty than global mean observations (Regayre et al., 2018). The sources of uncertainty in 

aerosols and forcing vary regionally (Lee et al., 2016; Reddington et al., 2017; Regayre et al., 2015). Therefore, a global 

analysis would essentially be a scaled-up version of what we present here – i.e., a set of regional evaluations. We choose 15 

Europe in July as this is a region and month for which a distinct set of parameter uncertainties affect the aerosol properties and 

the ERF, providing a good test case for our methodology. Europe is also a region for which a diverse set of long-term 

measurements of different aerosol and radiative properties are available, that we can use to inform our assessments of 

observational uncertainty.  

 20 

The following section describes the aerosol-climate model, the set-up of the simulations and the statistical methodology we 

use to sample the model uncertainty. Section 3 describes our results, starting with an analysis of the magnitude and causes of 

model uncertainty. We then examine the effects of observational constraint on the simulated aerosol properties, the multi-

century (1850-2008) and multi-decade (1978-2008) aerosol ERF uncertainty and the plausible parameter ranges. In section 4 

we estimate the potential implications of our results for multi-model emergent constraint studies and other studies that use 25 

observations to screen out models.  

2 Methods 

2.1 Summary of the constraint methodology 

The steps involved are (Figure 1): 

 30 

1. A perturbed parameter ensemble (PPE) of the HadGEM3-UKCA aerosol-chemistry-climate model (section 2.2) is created 

to efficiently sample combinations of 27 uncertainties related to the aerosol model and physical processes in the host climate 
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model (mostly related to clouds). The PPE (section 2.3) consists of three sets of 191 single-year simulations which differ only 

in the anthropogenic aerosol emissions prescribed (1850, 1978 and 2008). The use of HadGEM enables us to diagnose the 

aerosol ERF rather than just the cloud albedo forcing as in our previous studies (Carslaw et al., 2013; Regayre et al., 2014, 

2015). 

 5 

2. Emulators are built based on the PPE training data (step 1) which define (within quantifiable uncertainty) how aerosol 

properties and aerosol radiative forcing vary over the 27-dimensional parameter space (section 2.4). We validate each 

emulator’s ability to reproduce model output, then use them to sample the 4 million Monte Carlo points from the parameter 

space to produce the set of model variants on the left side of Figure 1. This step is essential because, with 27 dimensions of 

model uncertainty, the 191 PPE simulations are sparsely distributed. A denser sample of the multi-dimensional parameter 10 

space from the emulator enables us to conduct robust statistical analyses. 

 

3. The causes of uncertainty in the aerosol and forcing variables are determined using variance-based sensitivity analysis 

(section 2.5). This step is not essential for constraining the model, but is useful for understanding which processes in the model 

account for the uncertainties in the outputs (Carslaw et al., 2013; Lee et al., 2013; Regayre et al., 2018, 2014, 2015). 15 

 

4. A set of ‘synthetic’ observations (section 2.6) is created with realistic uncertainty ranges. We use one PPE member to define 

these synthetic observations.  

 

5. We identify which of the 4 million model variants are consistent with the observations within their individual uncertainty 20 

ranges (section 2.7). This reduced set of variants defines the ways in which parameter values can be combined to reproduce 

multiple observations and is equivalent to identifying several thousand equally plausible tuned HadGEM3-UKCA models. 

This procedure is often called ‘history matching’ or ‘pre-calibration’ (Craig et al., 1997; Edwards et al., 2011; Williamson et 

al., 2013; Lee et al., 2016; Andrianakis et al., 2017). 

 25 

6. The reduction in aerosol ERF uncertainty is quantified using the observationally constrained parameter space (section 2.8). 

 

The observational constraint approach we apply here is quite different to aerosol data assimilation (Bellouin et al., 2013), 

which cannot directly estimate aerosol ERFs nor the uncertainty. In principle, both approaches should generate similar 

distributions of AOD (the usual assimilated observation variable) if similar observations are used. However, we can directly 30 

determine aerosol ERF and its uncertainty by running the plausible model variants in both the present-day (where the model 

uncertainty was constrained) and the pre-industrial. In contrast, estimation of the ERF using the assimilation approach relies 

on assumptions about how present-day natural AOD represents pre-industrial aerosols because the approach generates only a 

present-day aerosol state and not a model that can be used to simulate pre-industrial conditions. 
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2.2 The HadGEM3-UKCA climate model 

We use the UK Hadley Centre Unified Model HadGEM3 (HadGEM3, 2017) incorporating version 8.4 of the UK Chemistry 

and Aerosol (UKCA) model. UKCA simulates trace gas chemistry and the evolution of the aerosol particle size distribution 

and chemical composition using the GLObal Model of Aerosol Processes (GLOMAP-mode; (Mann et al., 2010)) and a whole-5 

atmosphere chemistry scheme (O’Connor et al., 2014). The model has a horizontal resolution of 1.25x1.875 degrees and 85 

vertical hybrid pressure levels.  

 

The aerosol size distribution is defined by seven log-normal modes: one soluble nucleation mode as well as soluble and 

insoluble Aitken, accumulation and coarse modes. The aerosol chemical components are sulphate, sea salt, black carbon (BC), 10 

organic carbon (OC) and dust. Secondary organic aerosol (SOA) material is produced from the first stage oxidation products 

of biogenic monoterpenes under the assumption of zero vapour pressure. SOA is combined with primary particulate organic 

matter after kinetic condensation.  

 

GLOMAP simulates new particle formation, coagulation, gas-to-particle transfer, cloud processing and deposition of gases 15 

and aerosols. The activation of aerosols into cloud droplets is calculated using globally prescribed distributions of sub-grid 

vertical velocities (West et al., 2014) and the removal of cloud droplets by autoconversion to rain is calculated by the host 

model. Aerosols are also removed by impaction scavenging of falling raindrops according to the parametrisation of clouds and 

precipitation collocation (Boutle et al., 2014; Lebsock et al., 2013). Aerosol water uptake efficiency is determined by kappa-

Kohler theory (Petters and Kreidenweis, 2007) using composition-dependent hygroscopicity factors.  20 

 

Anthropogenic emission scenarios prepared for the Atmospheric Chemistry and Climate Model Inter-comparison Project 

(ACCMIP) and prescribed in some of the CMIP Phase 5 experiments are used here. Carbonaceous biomass burning aerosol 

emissions for recent decades were prescribed using a ten year average of 2002 to 2011 monthly mean data from the Global 

Fire and Emissions Database (GFED3; (van der Werf et al., 2010)) and according to Lamarque et al. (2010) for 1850. The 25 

prescribed volcanic SO2 emissions combine emissions from the Andres and Kasgnoc (1998) dataset for continuously erupting 

and sporadically erupting volcanoes and the Halmer et al. (2002) dataset for explosive volcanoes. 

  

Horizontal winds in the simulations are nudged towards European Centre for Medium-Range Weather Forecasts (ECMWF) 

ERA-Interim reanalyses for 2006 between approximately 2.15 and 80 km using a 6-hour relaxation timescale. Nudging means 30 

that pairs of simulations have near-identical synoptic-scale features, which enables the effects of perturbations to aerosol and 

chemical processes within the boundary layer to be quantified using single-year simulations. Without nudging, the model fields 

would need to be averaged over several decades in order to produce signals stronger than the noise caused by internal variability 
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(Kooperman et al., 2012). By nudging horizontal winds but not temperature, liquid water path and atmospheric humidity can 

respond to aerosol-induced changes in temperature, allowing more of the rapid responses of clouds and radiation to aerosol 

perturbations to be captured.  

 

Each simulation was subject to a four month spin-up period with parameters set to their median values. Parameter perturbations 5 

were then applied distinctly to individual ensemble members and spun-up for a further 9 months. We analyse the data from 

July for each simulation following the spin-up period. The calculation of the aerosol ERF and its components is described in 

section 2.8. 

 

2.3 Perturbed parameter ensemble 10 

A perturbed parameter ensemble (PPE) is a set of simulations with excellent space-filling properties that provides information 

about model output across the multi-dimensional space of uncertain model input parameters. The PPE, described in detail in 

Yoshioka et al. (2018), was specifically designed to sample aerosol as well as host physical climate model parameters of 

importance to the aerosol ERF. Regayre et al. (2018) show that host model parameters cause most of the uncertainty in the 

radiative state of the atmosphere but aerosol parameters contribute more to the uncertainty in the change-of-state uncertainty 15 

(aerosol ERF) . 

 

The 27 perturbed parameters are listed in Table 1. They are categorized as either aerosol (aer) or atmospheric (atm) according 

to their role in the model. To define the set of parameters we used expert elicitation and carried out one-at-a-time parameter 

perturbation screening experiments to quantify the effect of individual parameter perturbations away from the default setting. 20 

The selected parameters are described in more detail in related papers  (Regayre et al., 2018; Yoshioka et al., 2018). 

 

Eighteen parameters related to aerosol and precursor gas emissions, deposition and aerosol processes were perturbed based on 

their importance as causes of uncertainty in aerosols and aerosol-cloud forcing (Lee et al., 2013, Carslaw et al., 2013, Regayre 

et al., 2014, 2015). Several parameters available in the HadGEM3-UKCA model but not in the chemistry transport model were 25 

included after analysing the one-at-a-time perturbation screening experiments. These are the updraft velocity in shallow clouds, 

the fraction of large-scale cloud in which rain-scavenging of aerosols can occur, and the refractive indices of BC and OC. In 

some cases we perturbed similar parameters as in Regayre et al. (2014) but these parameters are handled differently within the 

HadGEM model. These are the dry deposition velocity of SO2, dust emissions, and the fraction of ice in mixed-phase clouds 

above which aerosol scavenging is suppressed.  30 

 

Nine physical model parameters were perturbed. These were selected from a much larger set tested by the UK Met Office in 

developing their ensemble prediction system (Sexton et al., 2017) based on their potential to contribute to uncertainty in a 
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broad range of aerosol, cloud and radiation properties; in particular particle number concentrations, cloud condensation nuclei, 

PM2.5, aerosol optical depth, sulphate and SOA concentrations, cloud reflectivity, liquid water path, precipitation and aerosol 

ERF. These 9 atmospheric model parameters are considered the most likely causes of uncertainty in low-altitude clouds and 

aerosol-cloud interactions because they influence boundary layer clouds by altering cloud radiative properties, cloud drop 

concentrations and microphysical processes, atmospheric humidity, convection processes and boundary layer stability.  5 

 

A probability density function was defined for each parameter to represent shared expert beliefs about parameter uncertainty. 

These distributions have no effect on the model simulations (although the ranges define the span of the parameter space), but 

are used at the stage of generating probability distribution functions (pdfs) of model output based on Monte Carlo sampling 

from the emulators. We used mainly trapezoidal distributions that avoid overly-centralised Monte-Carlo sampling of the multi-10 

dimensional parameter space (Yoshioka et al., 2018). 

 

Maximin Latin Hypercube sampling was used to create an initial set of 162 simulations that sample model output across the 

27-dimensional parameter space. A further set of 54 simulations was used to validate the emulators. In total 217 perturbed 

parameter simulations of the global model were run for a full year for each anthropogenic emission period (1850, 1978 and 15 

2008 emissions). Each simulation had a spin-up period of seven months from a consistent starting simulation, where the 

parameters were set to their median values for the first four months and the perturbations then applied in the final three months. 

Twenty-five simulations did not complete the full annual cycle so were not used in our analysis. Consequently, the ensemble 

of simulations used for analysis for each period was made up of the remaining 191 simulations, all of which were used to build 

the final emulators. Radiative forcings were calculated as the difference in top-of-atmosphere (ToA) radiative flux for pairs of 20 

simulations with identical parameter settings but different anthropogenic emissions (1850, 1978 and 2008). 

 

 

Index Name Type Description 

1 Rad_Mcica_Sigma Atm Fractional standard deviation of sub-grid condensate seen by radiation (controls 

the overlap of sub-grid clouds) 

2 C_R_Correl Atm Cloud and rain sub-grid horizontal spatial correlation (determines the accretion 

rate of cloud drops and aerosols by rain drops) 

3 Niter_Bs Atm Number of microphysics iteration sub-steps 

4 Ent_Fac_Dp Atm Entrainment amplitude scale factor (controls the convective mass flux and 

sensitivity of convection to relative humidity) 

5 Amdet_Fac Atm Mixing detrainment rate scale factor (controls the rate of humidification of the 

atmosphere and the shape of the convective heating profile) 

6 Dbsdtbs_Turb_0 Atm Cloud erosion rate per second (The rate at which unresolved sub-grid motions 

mix clear and cloudy air) 

7 Mparwtr Atm Maximum value of the function controlling convective parcel maximum 

condensate 
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8 Dec_Thres_Cld Atm Threshold for the ratio of buoyancy consumption to production before 

decoupling occurs 

9 Fac_Qsat Atm Rate of change in convective parcel maximum condensate with altitude 

10 Ageing Aer Ageing of hydrophobic aerosols (no of monolayers of soluble material) 

11 Cloud_pH Aer pH of cloud droplets (used to calculate the conversion of SO2 into sulphate) 

12 Carb_BB_Ems Aer Carbonaceous biomass burning emissions scale factor 

13 Carb_BB_Diam Aer Carbonaceous biomass burning emission diameter (nm) 

14 Sea_Spray Aer Sea spray aerosol scale factor 

15 Anth_SO2 Aer Anthropogenic SO2 emission scale factor 

16 Volc_SO2 Aer Volcanic SO2 emission scale factor 

17 BVOC_SOA Aer Biogenic secondary aerosol formation from volatile organic compounds scale 

factor 

18 DMS Aer Dimethyl sulphide surface ocean concentration scale factor 

19 Dry_Dep_Acc Aer Accumulation mode dry deposition velocity scale factor 

20 Dry_Dep_SO2 Aer SO2 dry deposition velocity scale factor 

21 Kappa_OC Aer Kappa-Kohler coefficient of organic carbon 

22 Sig_W Aer Updraft vertical velocity standard deviation (used to calculate the activation of 

aerosols into cloud drops) 

23 Dust Aer Dust emission scale factor 

24 Rain_Frac Aer Fraction of cloud-covered area in large-scale clouds where aerosol scavenging 

by rain drops occurs 

25 Cloud-Ice_Thresh Aer Threshold of cloud ice fraction above which nucleation scavenging is 

suppressed (restricting further activation of aerosols into cloud drops) 

26 BC_RI Aer Imaginary part of black carbon refractive index  

27 OC_RI Aer Imaginary part of organic carbon refractive index 

Table 1: The 27 host model and aerosol parameters included in the PPE. Further details are provided in a separate publication 

(Regayre et al., 2018). 

 

2.4 Model emulation and Monte Carlo sampling 

For each model output (such as the regional mean ToA flux, CCN0.2 concentration, etc. for Europe in July) we construct a 5 

statistical emulator model over the 27-dimensional parameter uncertainty using the 137 training simulations and validate it 

using the 54 validation simulations (as described in Lee et al., 2011). Once validated, a further new emulator is then created 

using both the training and the validation simulations of the PPE, to obtain a final emulator based on all of the information that 

our simulations contain. A ‘leave-one-out’ validation procedure (where each simulation in turn is removed from the merged 

set, and a new emulator is constructed and used to predict that removed simulation) is applied to additionally verify the quality 10 

of our final emulator. We then use this emulator to predict the model output for a large sample (here 4 million) of parameter 

input combinations that span the 27-dimensional parameter space of the PPE. From this sample we obtain a pdf of the 

uncertainty in this output variable caused by the defined uncertainty in the model parameters (left hand side of Figure 1). In 

each case, the output pdf can be sampled according to the elicited parameter probability distributions (Yoshioka et al., 2018), 

in which case the pdf accounts for prior beliefs about the likelihood of different parameter values. Alternatively uniform 15 
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sampling can be applied, in which case the output pdf assumes that all parameters have equal likelihood of lying between their 

elicited upper and lower limits. Our approach is to use the prior probability distributions, informed by expert knowledge, to 

sample the parameter combinations of the 4 million model variants over the 27-dimensional parameter uncertainty space. 

 

2.5 Sensitivity Analysis 5 

Sensitivity analysis (Lee et al., 2011; Saltelli et al., 1999) is used to decompose the uncertainty in European regional mean 

aerosol properties, trends and forcing variables for July into contributions from each individual model parameter. Here, we use 

the extended-FAST method (Saltelli et al., 1999) in the R package ‘sensitivity’ (Pujol et al., 2008) to sample from the emulators 

(as described in section 2.4) and decompose the variance into its individual sources. We then calculate the percentage by which 

the total variance (for a specific model output) would be reduced if the value of the parameter in question was known precisely. 10 

These percentage reductions are used in the analysis of the main causes of model uncertainty in section 3.3. 

 

2.6 Synthetic observations 

The ‘observations’ are taken from the output of the PPE member with each model parameter set to the median value from its 

corresponding elicited prior distribution. This PPE member was chosen as it lies reasonably centrally within the 27-15 

dimensional parameter uncertainty space. We also tested a marginal set of observations (from a PPE member that had many 

parameter values located towards the edges of their uncertainty range) but the conclusions of our study did not change, so we 

focus on the results from the more centralised choice of observations. 

 

We use synthetic observations (Table 2) of European July-mean cloud condensation nuclei concentration at 0.2% 20 

supersaturation (CCN0.2) at approximate cloud-base height, surface concentrations of PM2.5, mass concentrations of sulphate, 

OC and BC at the surface, the outgoing shortwave radiative flux at the top of the atmosphere (ToA flux), AOD at a wavelength 

of 550 nm, and the change in AOD (ΔAOD) and surface solar radiation (ΔSSR) between 1978 and 2008. The period 1978 to 

2008 was originally chosen because it is an interesting period for global and regional forcing changes. Although AOD 

measurements are not available back to 1978, this is not vital to the present study which aims to assess potential constraint 25 

over a period with substantial aerosol changes.  

 

The observation uncertainties are based on our judgement about the combined effect of instrument uncertainties and the 

uncertainty associated with measurement representativeness (colocation of high-frequency point measurements within low-

spatial-resolution, monthly-mean model output subject to meteorological variability (Reddington et al., 2017; Schutgens et al., 30 

2016a, 2016b). Where available, we have used sets of real observations to inform these judgements and estimates. For example, 

we selected our uncertainty range on the ToA Flux such that it is in line with information from the Clouds and the Earth's 
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Radiant Energy System (CERES) and IPCC uncertainty estimates (Hartmann et al., 2013). In the constraint process we also 

account for the emulator error (i.e., the estimated uncertainty in each of the 4 million points associated with using the emulator 

instead of the model itself).  

 

There are other constraints that could be applied to the model such as the aerosol spatial distribution (Myhre et al., 2009), 5 

aerosol vertical profile, absorption AOD and single-scatter albedo. It would also be possible to screen the model variants 

according to skill in capturing high temporal resolution variability (Myhre et al., 2009) or skill in different regions dominated 

by different aerosols (Shindell et al., 2013). Here, in this idealized constraint exercise, we restrict the analysis to monthly mean 

aerosol properties over Europe. 

 10 

 

Observable Quantity Value Uncertainty Range 

Top of atmosphere upward SW flux (W m-2) 129 122 – 135 

Change in surface downward solar radiation from 1978 to 2008, ΔSSR 3.8 3.2 – 4.4 

Cloud condensation nucleus (CCN) conc. at 0.2% supersaturation (cm-3) 536 483 – 590 

Aerosol optical depth (AOD) 0.17 0.14 – 0.19 

Change in AOD from 1978 to 2008, ΔAOD -0.05 -0.06 – -0.04 

PM2.5 mass conc. (μg m-3) 8.0 7.2 – 8.8 

Particle sulphate conc. (μg m-3) 1.7 1.2 – 2.2 

Particle OC conc. (μg m-3) 4.4 3.9 – 4.8 

Particle BC conc. (μg m-3) 0.23 0.21 – 0.26 

Table 2:  Observed quantities and corresponding uncertainty ranges used for the constraints applied over Europe. Values are 

a European July mean, synthetically generated from the model output of a selected PPE member. 

 

2.7 Identification of plausible model variants 15 

Observationally plausible model variants are defined to be those that simulate aerosol and radiation properties within the 

uncertainty ranges of the observations, defined in Table 2. As we use statistical emulators to generate the simulated output 

values for each model variant, rather than using the climate model directly, an emulator prediction error φ (valued at one 

standard deviation on the emulator prediction from the Gaussian process uncertainty) is also taken into account. Hence for a 

given observed variable, a model variant is rejected as implausible if the range defined by its emulator prediction +/- φ lies 20 
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outside the corresponding observation’s uncertainty range in Table 2. Furthermore, for a joint observational constraint we 

retain only the model variants that are classed as plausible for all individual observation types that make up the joint constraint. 

Such a criterion is possible with synthetic observations because we know that the idealized truth is within the model uncertainty 

space, but the methodology would be more complex if we were using real observations. It is likely that some of the real 

observations will deviate from the model significantly because of model structural errors and issues related to the 5 

representativeness of the observations. Therefore, the use of real observations would necessitate the definition of a measure of 

plausibility that accounts for known structural and representativeness errors (McNeall et al., 2016; Williamson et al., 2013).  

 

2.8 Aerosol effective radiative forcing (ERF)  

We test the effect of observational constraint on the pre-industrial (PI, here 1850) to present-day (PD, 2008) July-mean 10 

European aerosol ERF and its components ERFACI (Aerosol-Cloud Interaction) and ERFARI (Aerosol-Radiation Interaction) as 

well as on the clear-sky component of the ERFARI (ERFARIclr). The ERFs (except the ERFARIclr term) account for above-cloud 

aerosol scattering and absorption (Ghan, 2013) and are calculated using a fixed sea-surface temperature from 2008. 

3 Results 

3.1 Relationships among the observed quantities and forcing variables 15 

Figure 2 shows pairwise scatter plots of the PPE member output (Europe July-mean), which provides an overview of the spread 

of the model outputs as well as the relationships between the variables. We further quantify any linear relationships between 

the variables using the Pearson correlation coefficient (r) in Table 3. 

 

The aerosol variables show clear inter-relationships. In particular, AOD and PM2.5 concentration show the strongest 20 

relationship (Pearson correlation, r = 0.88), which is expected given that satellite AOD measurements are frequently used as a 

proxy for ground-level PM2.5 (Chu et al., 2016). This suggests that AOD and PM2.5 observations will constrain the model 

uncertainty to a similar extent and therefore only one of these observable quantities is required. AOD and PM2.5 are also clearly 

correlated with sulphate, OC and BC, which are major components of PM2.5 in polluted regions. CCN0.2 has a relatively weak 

positive relationship to both AOD (r = 0.46) and PM2.5 (r = 0.21). A positive correlation is expected because, in general, greater 25 

aerosol loading will produce greater CCN0.2 concentrations, but the correlations are weak because the model aerosol size 

distribution (which determines CCN0.2) can be configured in many different ways to produce the same AOD. The weak AOD-

CCN0.2 relation has implications for model constraint: for example, AOD values in the range 0.15-0.2 encompass CCN0.2 

concentrations of around 400 to around 1000 cm-3. These results are similar to those of (Stier, 2015) who showed similarly 

weak CCN-AOD correlations.  30 
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There are clear relationships between industrial-period forcing variables and some of the observable aerosol properties. For 

ERFARI and ERFARIclr the strongest relationships are with the sulphate concentration (r = -0.77 for ERFARIclr and -0.67 for 

ERFARI) and multi-decadal ΔAOD (r = 0.76 for ERFARIclr and 0.55 for ERFARI). As expected, a present-day higher sulphate 

concentration corresponds to a stronger (more negative) ERFARI. ΔAOD is negative over Europe due to the reductions in 

anthropogenic aerosol emissions. Parameter settings that produce a strong multi-decadal ΔAOD also tend to produce a strong 5 

pre-industrial to present-day ERFARIclr and therefore a stronger ERFARI. Based on these relationships, uncertainty in ERFARIclr 

would be easier to constrain than uncertainty in ERFARI and the most useful aerosol observation for this purpose would be 

European-mean atmospheric sulphate concentration.  

 

For the ERFACI there is a relationship with the reflected shortwave ToA flux (r = -0.65), with a larger flux corresponding to a 10 

stronger (more negative) forcing. This relationship means that the parameter settings that produce more reflective aerosols and 

clouds in the present-day atmosphere also enhance ERFACI forcing. There is also a relationship between the aerosol ERF 

(preindustrial to present-day) and the 1978-2008 change in surface shortwave radiation (SSR; r = -0.32). However, there is a 

lot of scatter in the relationship because the model parameters that cause uncertainty in decadal radiative changes are similar 

but not identical to those that cause uncertainty in forcing over the full industrial period (Regayre et al., 2018, 2014). The 15 

relationship between SSR and aerosol ERF among eight models was used by Cherian et al. (2014) as an emergent constraint 

on aerosol ERF over Europe. In section 4 we explore the implications of our uncertainty analysis for such emergent constraint 

studies. 

 

In summary, the identified relationships in Figure 2 suggest that for Europe, constraints on sulphate concentration and ΔAOD 20 

could lead to some constraint on uncertainty in ERFARI and ERFARIclr. Constraint on ToA flux could lead to some constraint 

on uncertainty in aerosol ERF and ERFACI over Europe and observed multi-decadal changes in SSR could provide additional 

constraint. Observational constraints of ERFs are explored in section 3.5. 
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Figure 2. Pairwise scatter plots of the PPE member regional mean model output for Europe in July, for the aerosol properties used as 

constraints: ToA flux (W m-2), change in SSR (ΔSSR, W m-2) between 1978 and 2008, CCN0.2 concentration. (cm-3), AOD, surface mass 

concentrations of PM2.5, Sulphate, OC, and BC (μg m-3), the changes in AOD (ΔAOD, W m-2) between 1978 and 2008, and the 1850-2008 

forcing variables: aerosol ERF, ERFACI, ERFARI and ERFARIclr (W m-2). 5 
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ToA 

Flux 
0.20 0.00 0.23 -0.30 0.16 0.10 0.04 -0.03 -0.59 -0.65 0.25 -0.05 

 ΔSSR -0.04 0.22 -0.72 0.12 0.49 -0.04 0.11 -0.32 -0.22 -0.52 -0.61 

  CCN0.2 0.46 -0.20 0.21 0.03 0.37 0.09 -0.14 -0.14 -0.01 -0.09 

   AOD -0.50 0.88 0.59 0.66 0.59 -0.33 -0.27 -0.33 -0.55 

    ΔAOD -0.32 -0.71 -0.17 -0.20 0.48 0.38 0.55 0.76 

     PM2.5 0.54 0.69 0.54 -0.21 -0.15 -0.33 -0.44 

      Sulphate 0.47 0.64 -0.41 -0.28 -0.67 -0.77 

       OC 0.62 -0.34 -0.31 -0.20 -0.30 

        BC -0.27 -0.22 -0.28 -0.46 

         ERF 0.98 0.16 0.48 

          ERFACI -0.04 0.33 

           ERFARI 0.83 

            ERFARIclr 

Table 3: Pearson linear correlations (r) between the PPE member regional mean model outputs for Europe in July, for the 

aerosol properties used as constraints, corresponding to the pairwise scatter plots in Figure 2. 

 

 5 

3.2 Uncertainty in aerosols and radiative forcings 

Figure 3 shows probability density functions of the observable aerosol quantities and the ERFs from the Monte Carlo sample 

of 4 million model variants (section 2.4). These pdfs sample the complete multi-dimensional parameter space of the model, 

weighted according the prior probability distributions on the input parameters (Yoshioka et al., 2018). The ranges are similar 

to those in Figure 2, but the PPE members themselves do not sample the parameter space densely enough to enable a 10 

statistically robust pdf to be generated. 

 

The most uncertain observable aerosol properties, with the largest relative standard deviation (ratio of standard deviation to 

mean value) in our sample are the sulphate and OC concentrations and the multi-decadal ΔAOD (Table 4). This suggests that 

constraining these properties will substantially reduce the sample size and constrain the parameter space. Some of the pdfs 15 

have long tails (e.g. OC concentration and ΔAOD) which suggests that a subset of parameters may be combining in a specific 
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manner to obtain these extreme values. The tails of the forcing pdfs contain the values most likely to be considered implausible 

against observations (Regayre et al., 2018). 

 

 

 5 

Figure 3. Calculated uncertainty in the aerosol quantities and aerosol ERF terms from the 4 million member sample. Results 

are for July-mean over Europe. The red bar shows the assumed range of each synthetic observation used to constrain the 

uncertain parameter space and the aerosol forcing uncertainty from Table 2. 
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 mean sd |sd/mean| 

Top of atmosphere upward SW flux (W m-2) 128.66 10.83 0.08 

Change in surface solar radiation from 1978 to 

2008 (W m-2) 
3.29 0.52 0.16 

Cloud condensation nucleus (CCN) conc. at 0.2% 

supersaturation (cm-3) 
542.95 78.1 0.14 

Aerosol optical depth (AOD) 0.17 0.04 0.23 

Change in AOD from 1978 to 2008, ΔAOD -0.05 0.01 0.31 

PM2.5 mass conc. (μg m-3) 8.27 2.28 0.28 

Particle sulphate conc. (μg m-3) 1.63 0.54 0.33 

OC particle  conc. (μg m-3) 4.25 1.48 0.35 

BC particle  conc. (μg m-3) 0.23 0.03 0.12 

 

1850 to 2008 ERF (W m-2) -4.14 1.07 0.26 

1850 to 2008 ERFACI (W m-2) -3.52 1.04 0.3 

1850 to 2008 ERFARI (W m-2) -0.68 0.2 0.3 

1850 to 2008 ERFARIclr (W m-2) -1.02 0.28 0.27 

Table 4:  Mean, standard deviation (sd) and absolute relative standard deviation (|sd/mean|) of the calculated uncertainty in 

the aerosol quantities and aerosol ERF terms from the 4 million member sample. Results are for July-mean over Europe. 

 5 

3.3 Sensitivity Analysis 

We can decompose the overall variance in a model output into percentage contributions from the individual input parameters 

(Lee et al., 2011; Saltelli et al., 1999). The results of this analysis are shown in Figure 4. 

For many of the output variables there is little correspondence with the forcing variables in terms of the main parameters that 

cause uncertainty. In particular, only about 10% of the CCN0.2 concentration uncertainty comes from the main causes of 10 

uncertainty in any of the corresponding forcing variables, which is consistent with the weak correlations in Figure 2 and the 

conclusions of Lee et al. (2016).  
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Figure 4. Variance-based sensitivity analysis results, showing the percentage parameter contributions to model output 

uncertainty in the observable aerosol quantities and the forcing variables for Europe. Only those parameters which cause at 

least 1% of the variance are shown in colour. 

 5 

There is reasonable correspondence between the sources of uncertainty in sulphate concentration, ΔAOD, ERFARI and 

ERFARIclr, which is again consistent with Figure 2. Around 60-70% of the output variance in these variables is accounted for 

by anthropogenic SO2 emissions (Anth_SO2) and the accumulation mode dry deposition velocity (Dry_Dep_Acc). This degree 

of similarity in the parametric uncertainty sources implies that an individual observational constraint on ΔAOD should lead to 

some constraint of the ERFARI and ERFARIclr forcing uncertainty. Dry_Dep_Acc is also a significant cause of uncertainty in 10 

AOD, PM2.5 and concentrations of sulphate, OC and BC (between ~25% and ~70% for each). Hence, it is possible that 

constraint of these observable aerosol quantities may lead to some constraint on ERFARI and ERFARIclr uncertainty. We also 

see that the uncertainty in the ToA flux is dominated by the cloud radiation parameter Rad_Mcica_Sigma parameter (which 

affects the spatial homogeneity of the clouds), which also accounts for about 35% of the variance in ERF and ERFACI. This 

parameter also causes most of the uncertainty in global mean ERF and ToA flux (Regayre et al., 2018). However, over Europe 15 

there are multiple other parameters causing a small amount of the aerosol ERF uncertainty which suggests an effective 

constraint will require using multiple complementary observations. 

3.4 Constraint of aerosol properties 

We first explore how constraining an individual aerosol property helps to constrain the range of other observable properties 

and multi-decadal trends. AOD is the aerosol property most frequently observed and used to evaluate and constrain models 20 

(e.g., Shindell et al. (2013)) and is used as the control variable in data assimilation used to evaluate the aerosol forcing (Bellouin 
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et al., 2013). Figure 5 shows the reduction in uncertainty of the modelled atmospheric properties and trends by constraining 

the model to match observed AOD. Credible intervals (95%) corresponding to the individual constraints are provided in Table 

5.  

Constraint of European monthly-mean AOD to lie in the range 0.14-0.19 (23% of the full ensemble range) leads to a fairly 

strong constraint of PM2.5 uncertainty: the standard deviation of PM2.5 (PM2.5) is reduced by 34% when the range of AOD is 5 

reduced by about 77%. The standard deviation of the PM components and the multi-decadal trend ΔAOD are also reduced, 

but by a smaller amount: around 20% for OC and only around 10% for BC, sulphate and ΔAOD. Constraint of individual 

chemical components is weaker because there are many combinations of sulphate, BC and OC that can account for high or 

low AOD. Uncertainty in the other observable quantities (CCN0.2 and ToA flux and the multi-decadal trend SSR) are 

essentially unaffected by the constraint of AOD. The reason for the weak constraint is that there are many model variants 10 

within the observed range of AOD (or PM2.5) that produce very different CCN0.2, ToA flux and SSR.  

These results provide some indication of the possible remaining uncertainty in a model that has been tuned to agree with AOD 

observations. A tuned model that agrees with AOD observations within the observational uncertainty is just one of many 

potential variants of the model that have equally good agreement with the observations. For example, our model suggests that 

the remaining uncertainty (absolute range) in European-mean CCN0.2 concentration could be 755 cm-3 in a model constrained 15 

by AOD observations, which is only slightly less than the unconstrained range of 782 cm-3. Most surprisingly, constraint of 

AOD leaves open a wide range of potential values of the change in AOD over decadal periods. The range of AOD from 

1978-2008 after constraint of 2008 AOD is 0.105 (range -0.109 to -0.004), which is only slightly lower than the unconstrained 

range of 0.115. Screening model variants based on their ability to reproduce a single aerosol-related observation is not a 

sufficient constraint on aerosol-related model uncertainty. Therefore tuning a model to AOD observations is completely 20 

inadequate for producing a robust aerosol model. 
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Figure 5. Effect of observational constraint of AOD on other aerosol properties in the model over Europe. The bars show the 

absolute range of the pdf before (thin line) and after (thick line) constraint. Results are for mean properties over Europe in 

July. 

 5 

 95th CI 

unconstrained 

95th CI constrained 

by AOD 

Top of atmosphere upward SW flux (W m-2) (108.9 , 149.5) (109.0 , 149.0) 

Change in surface solar radiation from 1978-

2008 (W m-2) 
(2.27 , 4.30) (2.29 , 4.30) 

Cloud condensation nucleus (CCN) conc. at 

0.2% supersaturation (cm-3) 
(396 , 704) (408 , 698) 

Aerosol optical depth (AOD) (0.105 , 0.257) (0.130 , 0.201) 

Change in AOD from 2008 – 1978, ΔAOD (-0.076 , -0.022) (-0.072 , -0.024) 

PM2.5 mass conc. (μg m-3) (4.41 , 13.15) (5.31 , 10.98) 

Particle sulphate conc. (μg m-3) (0.71 , 2.72) (0.79 , 2.58) 

OC particle  conc. (μg m-3) (2.10 , 7.61) (2.24 , 6.66) 

BC particle  conc. (μg m-3) (0.179 , 0.284) (0.183 , 0.277) 

Table 5. Effect on the uncertainty in aerosol properties over Europe when the model is constrained by PM2.5 measurements 

(assumed measurement uncertainty range 7.2-8.8 g m-3) or AOD (assumed measurement uncertainty range 0.14-0.19). The 

aerosol uncertainties are given as the 2.5th and 97.5th empirical percentiles of the pdf to form a 95% credible interval. 
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3.5 Constraint of 1850 – 2008 aerosol ERF uncertainty 

3.5.1 Effects of individual aerosol and radiation observational constraints 

Figure 6 (top row) shows the potential constraint achievable on uncertainty in the 1850–2008 aerosol ERF, ERFACI, ERFARI 

and ERFARIclr when we constrain July-mean AOD over Europe.  Each box and whisker plot shows the uncertainty distribution 

from the original sample of 4 million model variants (grey, left) and the sample of constrained models (pink, right). Table 6 5 

shows means and standard deviations for the original and constrained distributions from AOD and all other individual 

observational constraints.  

 

Observational constraint of simulated AOD has essentially no effect on the range of aerosol ERF and the ERFACI component 

of forcing over Europe. There is some reduction in uncertainty in the ERFARIclr component of forcing (standard deviation 10 

reduced by around 12%) but not in ERFARI, despite both sharing common causes of uncertainty with AOD (Section 3.3). 

 

 

Figure 6. The effect of the AOD constraint (top row) and all observational constraints together (bottom row) on the uncertainty 

in the 1850-2008 forcing variables over Europe. Columns left to right show constraint of aerosol ERF, ERFACI, ERFARI and 15 

ERFARIclr (W m-2) respectively. The boxes show the inter-quartile range (with the median value shown by the black line that 

cuts it) and the whiskers show the full range of the distribution. The short horizontal bars on the whiskers correspond to 95% 

credible interval bounds. The grey boxes show the distribution for the variable predicted over the original sample (4 million 

model variants that span the underlying parameter uncertainty) and the pink boxes show the corresponding distribution of the 

remaining samples after the constraint has been applied. The predicted forcing using the input combination of the model run 20 

used as the idealized observation is shown by the blue cross. 
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Applied constraint ERF (W m-2) ERFACI (W m-2) ERFARI (W m-2) ERFARIclr (W m-2) 

No constraint -4.144  (1.075) -3.523  (1.044) -0.683  (0.204) -1.024  (0.281) 
 

All constraints -4.391  (0.759) -3.707  (0.736) -0.710  (0.148) -1.044  (0.184) 

 

ToA Flux -4.137  (0.863) -3.496  (0.790) -0.683  (0.201) -1.024  (0.280) 

ΔSSR (1978-2008) -4.247  (1.045) -3.593  (1.034) -0.710  (0.193) -1.067  (0.260) 

CCN0.2 Conc. -4.181  (1.065) -3.547  (1.036) -0.695  (0.204) -1.039  (0.277) 

AOD -4.123  (1.034) -3.500  (1.017) -0.684  (0.194) -1.014  (0.246) 

ΔAOD (1978-2008) -4.175  (1.003) -3.541  (1.011) -0.693  (0.176) -1.034  (0.214) 

PM2.5 Conc. -4.173  (1.057) -3.541  (1.039) -0.688  (0.197) -1.021  (0.257) 

Sulphate Conc. -4.231  (1.037) -3.589  (1.040) -0.695  (0.167) -1.035  (0.222) 

OC Conc. -4.245  (1.047) -3.622  (1.027) -0.682  (0.207) -1.018  (0.278) 

BC Conc. -4.263  (1.058) -3.607  (1.046) -0.707  (0.195) -1.052  (0.259) 

Table 6:  Mean and standard deviation (in brackets) of the forcing distributions over Europe for the original unconstrained 

sample, the multiple-constraint sample and the individually constrained samples where each observational constraint is applied 

independently. 

 

Figure 7 summarises the effect of the other individual constraints. For ERFACI (and therefore aerosol ERF, which is dominated 5 

by ACI) the only observation that has any meaningful effect on the range is the ToA flux. When the flux is constrained to be 

within the range 122-135 W m-2 (from the prior range of 90-175 W m-2) the standard deviation of ERFACI over Europe falls by 

24% (Table 6). The SSR observation reduces the aerosol ERF and ERFACI standard deviations by less than 3%. The only 

other constraints on uncertainty in aerosol ERF and ERFACI come from constraining AOD or AOD, which reduce the forcing 

uncertainties by around 3% each. The effect of applying all observations in combination is discussed in Section 3.5.2.  10 

 

ERFARI and ERFARIclr are constrained by several individually applied observations. AOD and sulphate concentrations provide 

the strongest constraints. AOD reduces the standard deviation of ERFARI and ERFARIclr by 14% and 24% respectively. 

Constraining sulphate concentrations reduces the uncertainty in ERFARI by 18% and in ERFARIclr by 21%. The strong constraint 

of ERFARI and ERFARIclr uncertainty is consistent with Figure 4, where we saw that around 60-70% of the uncertainty in each 15 

of ΔAOD, ERFARI and ERFARIclr could be attributed to the same two parameters. Again, the relatively weak constraint is caused 

by interacting combinations of parameter effects ((Lee et al., 2016; Regayre et al., 2018); Section 3.7), so there is potential for 
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significant error compensation (or equifinality, Beven and Freer, 2001).  In all other cases the individual observational 

constraints reduce the uncertainty in ERFARI and ERFARIclr by less than 10%. 

 

 

Figure 7. The relative constraint achieved for aerosol ERF, ERFACI, ERFARI and ERFARIclr over Europe given the individual 5 

synthetic constraints applied (colours) and the simultaneous constraint (ALL). The relative constraint is evaluated as the ratio 

of the standard deviation of the forcing in the constrained sample (σconstrained) to the standard deviation of the forcing in the 

original, unconstrained sample (σfull). 

  

3.5.2 Effect of all observational constraints 10 

Figure 6 (bottom row) and the right-most bars in Figure 7 show the reduction in Europe-mean 1850 – 2008 aerosol ERF, 

ERFACI, ERFARI and ERFARIclr uncertainty when we simultaneously apply all nine observational constraints. The standard 

deviations are reduced by 29.4% for the aerosol ERF, 29.5% for ERFACI, 27.8% for ERFARI and 34.3% for ERFARIclr  (Table 

6) and Figure 6 shows a reduction in the interquartile range (box width) and 95% credible interval in each case.  

Our results show that multiple observational constraints are very effective at reducing the plausible parameter space (ruling 15 

out 96.4% of model variants). However, these reductions in parameter space have only a modest impact on aerosol ERF 

uncertainty. This occurs because the 27 parameter values in the constrained space can be combined to produce a wide range 

of ERFs (Lee et al. 2016). These results highlight the value of exploring the wider underlying modelling uncertainties (achieved 

here using a well-designed PPE to inform statistical emulation).  The more comprehensive exploration of the parameter space 

using several million model variants from the emulators enabled us to explore the wider uncertainties that would not have been 20 

captured even by the 191 PPE members. Furthermore, a 96.4% reduction in parameter space would have reduced the number 

of PPE members to one or two, which would not have revealed that a large fraction of the ERF uncertainty (70.6%) remained 

unconstrained. Likewise, a single model variant arrived at through tuning cannot represent model behaviour over the remaining 
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plausible parameter space. Similar concerns about non-robust samples apply also to the small number of members in multi-

model ensembles. 

3.5.3 Effect of combinations of observational constraints 

An important question in model constraint is how quickly the model uncertainty falls as additional observational constraints 

are applied. Figure 8 shows the average reduction in forcing uncertainty versus the number of observational constraints applied. 5 

With nine possible observational constraints there are nine possible single constraints, 36 possible combinations of 2 

constraints, 252 combinations of 3 constraints, etc. We therefore show a mean over all possible combinations of each number 

of constraints.  

 
Figure 8. The dependence of aerosol ERF uncertainty on the number of observational constraints applied. The lines show the 10 

mean effect of different numbers of constraints.   

 

Averaged across the many combinations of constraints, uncertainty in aerosol ERF and its components initially falls 

approximately linearly with the number of constraints applied, but then flattens out. This dependence implies that some 

observations are constraining the same sources of uncertainty as other observations (as shown in section 3.3). So while a large 15 

number of observations are needed to constrain forcing, it is also important to identify observations that provide unique 

constraints on parameter uncertainties. The effectiveness of each observational constraint depends on which other constraints 

are applied with it. For example, two positively correlated observations like PM2.5 and AOD (Figure 2) will reduce the 
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allowable parameter space in broadly the same dimensions because the same parameters cause their uncertainty (Figure 4). 

Therefore the constraint on forcing uncertainty achieved by AOD and PM2.5 is not additive.  

 

3.6 Constraint of 1978 – 2008 forcing uncertainty 

Previous research has shown that the causes of uncertainty in recent decadal forcing are quite different to the causes of 5 

uncertainty in pre-industrial to present-day forcing (Regayre et al., 2018, 2014). Much of the uncertainty in PI to PD aerosol–

cloud interaction forcing is caused by natural aerosols (Carslaw et al., 2013; Carslaw et al., 2017), which are much less 

important over recent decades. We therefore expect recent aerosol and radiation observations to provide a greater constraint 

on recent decadal forcings than on forcing referenced to PI conditions. Our results show that this hypothesis is correct: 

simultaneous application of the nine observational constraints reduces the standard deviation of the 1978-2008 aerosol forcing 10 

distributions by 33.7% for ERF, 32.3% for ERFACI, 35.0% for ERFARI and by 43.9% for ERFARIclr, which are all greater 

reductions than for the 1850 to 2008 forcing (Figure 7, Table 6). The main contributor to the reduction in uncertainty in the 

aerosol ERF from 1978 to 2008 is the change in AOD, followed by present-day AOD. These results suggest that forcing 

uncertainty in recent decades may be more readily constrained by observations than multi-century forcing.  

 15 

3.7 Constraint of plausible parameter ranges 

The overall objective of our approach is to identify all the observationally plausible variants of the model so that they can be 

used to calculate an observationally constrained spread of aerosol ERFs. Each variant is associated with a particular part of 

parameter space. We can then use the emulators to compute the constrained magnitude and range of any other aerosol property 

(or the changes between 1850, 1978 and 2008). Alternatively a sample of these variants (parameter settings) could be used in 20 

the model itself to simulate aerosol effects for any situation (for example, with very different meteorological conditions, or 

anthropogenic aerosol emissions).  

Figure 9 shows a one-dimensional projection of the remaining parameter space after constraining to the nine observations. 

There are some substantial reductions in the plausible marginal range of several individual parameters. It needs to be borne in 

mind that, with 27 parameter dimensions, the parameter relationships which have been constrained by multiple observations 25 

cannot be seen in the one-dimensional projection. That is, the remaining plausible individual parameter values can be combined 

in many ways with the remaining space of the other parameters and still reproduce all of the observations (Lee et al., 2016; 

Regayre et al., 2018). Figure 9 identifies parts of the marginal parameter space that are effectively ruled out in white. For 

example, a very low setting of the BVOC_SOA parameter cannot produce observationally plausible results when combined 

with any of the possible combinations of the other 26 parameters.  30 
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The constraint of the parameter ranges will be different when using real observations, but it is interesting to see how nine 

observations can marginally constrain twenty-seven parameters when there is a high degree of potential compensating effects. 

The strongest marginal constraint is on: the sea spray aerosol emissions (Sea_Spray; the highest 25% and lowest 15% of values 

are implausible), biogenic secondary aerosol formation (BVOC_SOA; the lowest 40% and top 20% of the range are 

implausible), the hygroscopicity of organic carbon (Kappa_OC; the top 40% of values are implausible), and the imaginary part 5 

of organic carbon refractive index (OC_RI; top 30% is implausible). Furthermore, the lowest 10-20% of the range of several 

aerosol emission parameters are also deemed implausible (biomass burning (Carb_BB_Ems), degassing volcanic (Volc_SO2), 

DMS, anthropogenic sulphur dioxide (Anth_SO2)).  

The atmospheric (host model) marginal parameter ranges are much less constrained because the observable variables that we 

used are not strongly dependent on them, except for ToA flux observations which are known to be affected by the 10 

Dec_Thresh_Cld and Rad_Mcica_Sigma parameters (Regayre et al., 2018). Values of the threshold for cloudy boundary layer 

decoupling parameter (Dec_Thresh_Cld) are concentrated towards the lower end of the range (the upper 40% are implausible). 

We also show that the top 20% of values are implausible for the parameter controlling the amount of overlap between sub-grid 

clouds as seen by the model’s radiation code (Rad_Mcica_Sigma). However, the lowest 40% of this parameter range can be 

entirely ruled out by constraining the ToA flux in the North Pacific (Regayre et al., 2018). These results highlight the important 15 

benefits which will come from constraining the model uncertainty using multiple observations in multiple environments. 

This analysis highlights the complexity of the multi-dimensional parameter uncertainty space that remains after observational 

constraint: there are clearly a large number of ways of tuning a model to be observationally plausible. 
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Figure 9. One-dimensional projection of the remaining parameter space after simultaneous constraint of all atmospheric 

quantities and decadal trends. The colour-scale shows the marginal normalised sampling density (normalised across 

parameters) of each input parameter over its range. Parts of the marginal parameter space that are effectively ruled out are 

shown in white (normalised sampling density <0.02). 5 

4 Implications for model screening and emergent constraints 

In multi-model ensembles it is usually the case that each modelling group submits a single well-tuned version (variant) of a 

model. The uncertainty in the ensemble is determined by the structural differences between the models, but the uncertainty in 

the individual models (caused by multiple uncertain parameter settings) is not quantified. Here we use the uncertainty in 

HadGEM3-UKCA to estimate the effect it might have on the results of multi-model emergent constraint studies. Clearly the 10 

uncertainties in each model will differ, so we use our model uncertainty only as a rough estimate of the potential effect. 

In the ACCMIP study (Shindell et al., 2013) model skill at simulating AOD was used to screen nine models. We have described 

in Sections 3.4 and 3.5 why constraint of AOD can only be considered the first step in model screening; AOD does not 

effectively reduce model uncertainty when used in isolation. The standard deviation of the modelled global annual mean 

ERFARI in the ACCMIP study was about 50% of the multi-model mean. In our results, after we have screened out model 15 

variants that are inconsistent with synthetic AOD observations (i.e., effectively tuning to AOD), the standard deviation of the 

HadGEM-UKCA ERFARI over Europe is about 30% of our mean. Therefore the standard deviation in HadGEM3-UKCA 

caused by uncertain input parameters is a significant fraction of the multi-model standard deviation, and would affect the 

constrained range of ERFARI. Shindell et al. (2013) acknowledged that uncertainties in the emissions could alter the relative 
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agreement of the models with observations and thereby affect the spread of plausible model predictions. However, uncertainty 

in emissions is just one of many possible sources of uncertainty that could affect the conclusions (Figure 4). 

In emergent constraint studies a linear relationship between aerosol forcing and an observable variable simulated by multiple 

models is used to define an observationally constrained value of the variable of interest. In the Cherian et al. (2014) study 

Europe-mean aerosol ERF was estimated by regressing modelled ERF against the 1990-2005 modelled trend in SSR over 5 

Europe from seven aerosol-climate models. An observed SSR trend of -4.0 ± 0.6 W m-2 decade-1 enabled the Europe-mean 

aerosol ERF to be constrained to -3.56 ± 1.41 W m-2 (corresponding to the range of -4.97 to -2.15 W m-2). Their analysis 

accounted for the uncertainty in SSR caused by meteorological variability but did not account for the influence of parametric 

uncertainties.  

In our HadGEM3-UKCA simulations the Europe-mean aerosol ERF 95% credible interval is -6.0 to -2.7 W m-2 after 10 

constraining the model using nine observations (i.e., a tight tuning of the model). This range provides some measure of the 

range of alternative ERFs that could be obtained by the individual models had they been tuned differently (but equally well) 

to observations (although we do not know what actual tuning was undertaken). Our single-model uncertainty range is 

comparable to the multi-model ensemble range, but was not accounted for by Cherian et al. (2014) in deriving the emergent 

constraint. The effect of including this previously neglected source of single-model uncertainty is to substantially increase the 15 

uncertainty on the emergent constraint (Figure 10). Furthermore, the likely magnitude of forcing derived from emergent 

constraints is sensitive to the uncertainties accounted for in the process (Samset et al., 2014). 

In many emergent constraint studies, the constrained ERF (or other quantity) is essentially based on the very small number of 

models that lie within the uncertainty range of one observation (Figure 10). With our approach, model variants that are plausible 

against this one observation type are then examined to determine their plausibility against many other observation types – in 20 

this study, nine observations in total. Ultimately, multivariate constraint is essential to reach robust conclusions because of the 

many compensating sources of model uncertainty. 
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Figure 10. An example of an emergent constraint of the aerosol forcing using results from multiple models. (a) a relatively 

tight apparent constraint when the uncertainty in the individual models is neglected; (b) a much weaker constraint when the 

uncertainty in the individual models is accounted for. 

 5 

5 Conclusions 

The use of observations to produce a well-configured model variant is a fundamental aspect of ensuring that models can make 

trustworthy predictions. For example, in a review of progress on reducing uncertainty in direct radiative forcing Kahn (2012) 

argues that models can be “constrained by the aggregate of observational data, to calculate the regional and global radiation 

fields and material fluxes with adequate space–time resolution to produce the best result we can achieve.” The primary 10 

objective of our study was to determine how much uncertainty could remain in an aerosol-climate model when it is constrained 

to match combinations of observations that define the base state of the model: top-of-atmosphere upward shortwave flux, 

aerosol optical depth, PM2.5, cloud condensation nuclei at 0.2% supersaturation, concentrations of sulphate, black carbon and 

organic material as well as multi-decadal change in surface shortwave radiation and aerosol optical depth. Our results refer to 

July-mean conditions over Europe. 15 

 

To estimate the uncertainty that might typically exist in a climate model before and after tuning, we used a perturbed parameter 

ensemble that sampled uncertainties in 27 parameters related to aerosol emissions, aerosol and cloud processes, and parameters 

in the host physical climate model that influence clouds, humidity, convection and radiation in the base state of the model. We 

performed 191 model simulations that spanned the 27-dimensional space of the model uncertainty and then built surrogate 20 

model emulators from which we created a Monte Carlo sample of 4 million ‘model variants’. Using synthetic observations 

(taken from the output of one of our simulations) we determine the extent of the potential constraint that these nine aerosol 

and cloud-related properties can generate. Constraining the model outputs using all nine observations rules out over 96% of 

the model variants and the associated implausible parts of parameter space. The remaining 153,000 model variants have been 
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used to estimate the observationally constrained aerosol ERF and the uncertainty associated with one tuned version of 

HadGEM3-UKCA.  

 

Tuning HadGEM3-UKCA to AOD alone has almost no effect on the reliability of the tuned model to simulate CCN0.2 (and 

hence cloud drop number concentrations) (Figure 5). Constraining European-mean AOD in July to lie within a realistic range 5 

of 0.14 – 0.19 (23% of the full model uncertainty range) results in a reduction of less than 5% in the uncertainty in CCN0.2 

generated by the full set of 4 million variants of the model. The CCN0.2 concentration range is then 268-1022 cm-3 compared 

to 241 – 1022 cm-3. This provides a measure of the parametric uncertainty when AOD measurements are used to infer CCN, 

although the range would potentially be larger had we perturbed more parameters (Yoshioka et al., 2018). Tuning a model to 

AOD alone also has very little effect on the modelled range of the trend in AOD over a multi-decadal period. The complete 10 

set of model variants produces a range of 1978 to 2008 changes in AOD over Europe of 0.115, and this range is only reduced 

to 0.105 (range –0.109 to 0.004) when the model is constrained to match European-mean 2008 AOD within observational 

uncertainty.  

 

Constraint of AOD alone has a negligible effect on the uncertainty in the aerosol ERF over Europe. Although the aerosol ERF 15 

simulated by a model will change as parameters are tuned to achieve agreement with AOD measurements, any resulting ERF 

will have large uncertainty (i.e., there are many other equally well-tuned model variants that produce different ERFs). This 

uncertainty cannot easily be estimated without a full uncertainty analysis of the model as we have done here. The weak 

constraint calls into question the robustness of estimates of aerosol forcing based on AOD reanalyses  (Bellouin et al., 2013). 

It is often argued that AOD is a poor variable to use for understanding aerosol-cloud interactions. However, our results show 20 

that even the most strongly related measurement (CCN0.2) also does not provide a strong individual constraint on ERFACI 

(Figure 7). It is doubtful that other derived variables like aerosol index will be any better. The key to model constraint is to 

find combinations of observations that help to constrain ERF: Individual constraints are unlikely to be effective, although they 

may appear to be effective if the model uncertainty is not fully sampled.      

Observational constraint using nine observations has the potential to reduce the uncertainty in aerosol ERF slightly more over 25 

a multi-decadal period than over the full industrial period: the standard deviation falls by 29.4% for the 1850-2008 aerosol 

ERF, 29.5% for ERFACI, 27.8% for ERFARI and 34.3% for ERFARIclr. The standard deviation of 1978-2008 aerosol ERF could 

be reduced by around 34%, which is greater than for the 1850-2008 ERF because there is greater correspondence between the 

causes of uncertainty in near-term aerosol forcing and the 2008 aerosol-cloud-radiation state than there is between the 1850-

2008 ERF and the 2008 state (Regayre et al., 2018, 2014). Because near-term future changes in aerosols and clouds are likely 30 

to resemble recent changes more than centennial-scale changes, we are optimistic that the uncertainty in near-term aerosol 

ERFs could be constrained and used to provide policy-relevant information on near-term temperature changes (Hawkins et al., 
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2017). A shift of emphasis of the research community towards trying to constrain decadal forcing uncertainty, instead of 

industrial era forcing, is likely to accelerate progress. 

The most effective observational constraint on the uncertainty in aerosol ERF and ERFACI is the top-of-atmosphere upward 

shortwave flux. When the flux is constrained to be within the range 122-135 W m-2 (from the prior range of 90-175 W m-2) the 

standard deviation of ERFACI over Europe falls by 24%. Other observational constraints reduce the ERFACI uncertainty by a 5 

few percent at most, including the change in surface SW radiation. Effectively, this result means that routine tuning of radiative 

fluxes in climate models will have a bearing on the magnitude of the aerosol ERF that the models calculate. The reason for the 

constraint on forcing uncertainty is that model parameters that control cloud and atmosphere brightness also control how that 

brightness responds to changes in aerosols over Europe. However, it is only likely to be an effective constraint where the 

brightness is controlled by tuning the parameters we have identified here. In regions dominated by quite different processes, 10 

like mixed-phase clouds, tuning the flux will have a much weaker effect on the aerosol ERF. 

 

The most effective observational constraints on the uncertainty in ERFARI and ERFARIclr over Europe are the sulphate 

concentration and the change in AOD over a multi-decadal period (we used 1978-2008). When applied individually, sulphate 

concentrations constrain ERFARI standard deviation in our ensemble by 18% over Europe. The 1978-2008 change in AOD 15 

constrains the ERFARI standard deviation by 14% when applied individually. Constraint of AOD itself (in 2008) reduces the 

ERFARI uncertainty by only 5%, and would not provide a realistic way of screening models. The other constraints were much 

less effective. 

 

The plausible ranges of some natural aerosol emissions are reduced after constraining to the nine observations, particularly sea 20 

spray emissions and biogenic volatile organic aerosol formation. We were also able to constrain some aerosol process 

parameters such as the CCN hygroscopicity (kappa), the imaginary refractive indices of BC and OC, and parameters controlling 

boundary layer stability and the radiative properties of overlapping sub-grid clouds which control cloud brightness. 

Observational constraint generates a set of constrained parameter settings that can be taken forward and used to make model 

predictions under any other conditions (e.g. for future projections).  25 

 

The range and combinations of observationally plausible parameter values remain very large even after constraint using nine 

observations, which explains why the aerosol ERF uncertainty remains large after constraint. This result is not a failure of our 

approach, but rather an indication of the multiple ways in which uncertain model parameters can combine to predict a wide 

range of outputs with equal skill when compared to observations. These multiple model variants are neglected when a single 30 

model variant is produced through tuning. 
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Widely used procedures of aerosol-climate model evaluation and observational ‘validation’ lack statistical robustness because 

they do not adequately sample the model uncertainty space. We showed that observational constraint against nine observations 

identified less than 4% of the 4 million sampled points in multi-dimensional parameter space as plausible (i.e., the model value 

is within the observational uncertainty). A 96% reduction in parameter space would have reduced our original set of 191 

ensemble members to one or two, which would not have revealed that a large fraction of the ERF uncertainty (about 71%) 5 

remained unconstrained. This creates a fundamental problem for multi-model ensembles (which have far fewer members) and 

model tuning (which may explore only a few dozen model variants and mostly with single parameter perturbations). From 

such small samples of models it is not possible to determine how observations help to reduce model uncertainty, so estimates 

of radiative forcing should not be considered robust. 

 10 

Our results have implications for studies that seek emergent constraints on a small set of models based on one observational 

metric. An emergent constraint can be informative, but cannot be expected to reduce the uncertainty in a complex model when 

used in isolation.  The example closest to our study is Cherian et al. (2014) in which the relationship between aerosol ERF and 

the trend in surface solar radiation (SSR) over Europe for seven climate models was used to estimate the observationally 

constrained uncertainty in aerosol ERF. Our results for the HadGEM3-UKCA model show that the uncertainty in aerosol ERF 15 

and SSR trend in any one tuned version of the model is likely to be of the same order of magnitude as the multi-model range. 

If the uncertainties in individual models in an ensemble are not accounted for, then we risk being over-confident in the emergent 

constraints. Efforts to quantify and observationally constrain individual models are therefore not an alternative to multi-model 

studies, but individual model uncertainty needs to be quantified and incorporated as an essential component of such efforts to 

understand and then reduce aerosol ERF uncertainty.  20 

 

There is considerable scope to extend our approach to incorporate more observation types and more regions. These should 

include: 1) Aerosol and radiation trends (Allen et al., 2013; Cherian et al., 2014; Leibensperger et al., 2012; Li et al., 2013; 

Liepert and Tegen, 2002; Shindell et al., 2013; Turnock et al., 2015; Zhang et al., 2017). So far we used changes in AOD and 

SSR, but changes in ToA SW flux as well as aerosol components like OC (Ridley et al., 2018) and sulphate could provide 25 

useful constraints. 2) Observations from pristine regions that might provide a constraint on preindustrial-like aerosol and cloud 

properties (Carslaw et al., 2017; Hamilton et al., 2014). 3) Information on the vertical profile of aerosols. 4) Observed 

relationships between changes in aerosol and cloud variables (Ghan et al., 2016; Gryspeerdt et al., 2017; Quaas et al., 2009) 

such as defined in Eq. 1. Such relationships are a favoured way to constrain forcing. Although it is conceivable that 

relationships between change-of-state variables can be predicted more reliably than state variables themselves (because of 30 

cancellation of correlated model errors), the model uncertainty in these relationships has not been determined in studies that 

have applied them. 
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Whichever approach is used to reduce uncertainty in aerosol forcing, it is essential to acknowledge that aerosol-chemistry-

climate models are highly complex with dozens of sources of uncertainty that can be combined in many ways. Such a system 

cannot be constrained by one or two observations at a time, and emergent constraints are no different in this respect. Robust 

constraint of a high-dimensional system requires large numbers of combined constraints so that the multiple compensating 

dimensions of uncertainty can be reduced (Reddington et al., 2017). We are reasonably confident that extension of our approach 5 

to more and varied observations will enable the uncertainty in aerosol radiative forcing to be reduced significantly. 
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