A. J. Turner's manuscript prepared with version 4.2 of the LATEX class copernicus.cls. Date: 15 May 2018

Assessing the capability of different satellite observing configurations to resolve the distribution of methane emissions at kilometer scales

Alexander J. Turner^{1,2}, Daniel J. Jacob², Joshua Benmergui², Jeremy Brandman³, Laurent White³, and Cynthia A. Randles³

¹College of Chemistry/Department of Earth and Planetary Sciences, University of California, Berkeley, CA, USA.
²School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA.
³ExxonMobil Research and Engineering Company, Annandale, NJ, USA.

Correspondence to: Alexander J. Turner (alexjturner@berkeley.edu)

- 1 Abstract. Anthropogenic methane emissions originate from a large number of fine-scale and of-
- 2 ten transient point sources. Satellite observations of atmospheric methane columns are an attrac-
- 3 tive approach for monitoring these emissions but have limitations from instrument precision, pixel
- 4 resolution, and measurement frequency. Dense observations will soon be available in both low5 Earth and geostationary orbits, but the extent to which they can provide fine-scale information on
- 6 methane sources has yet to be explored. Here we present an observation system simulation exper-
- 7 iment (OSSE) to assess the capabilities of different satellite observing system configurations. We
- 8 conduct a 1-week WRF-STILT simulation to generate methane column footprints at 1.3×1.3 km²
- 9 spatial resolution and hourly temporal resolution over a 290×235 km² domain in the Barnett Shale,
- 10 a major oil/gas field in Texas with a large number of point sources. We sub-sample these footprints
- 11 to match the observing characteristics of the recently launched TROPOMI instrument ($7 \times 7 \text{ km}^2$
- 12 pixels, 11 ppb precision, daily frequency), the planned GeoCARB instrument $(2.7 \times 3.0 \text{ km}^2 \text{ pixels})$
- 13 4 ppb precision, nominal twice-daily frequency), and other proposed observing configurations. The
- 14 information content of the various observing systems is evaluated using the Fisher information ma-
- 15 trix and its eigenvalues. We find that a week of TROPOMI observations should provide information
- 16 on temporally invariant emissions at \sim 30 km spatial resolution. GeoCARB should provide informa-
- 17 tion available on temporally invariant emissions \sim 2-7 km spatial resolution depending on sampling
- 18 frequency (hourly to daily). Improvements to the instrument precision yield greater increases in
- 19 information content than improved sampling frequency. A precision better than 6 ppb is critical for
- 20 GeoCARB to achieve fine resolution of emissions. Transient emissions would be missed with either

21 TROPOMI or GeoCARB. An aspirational high-resolution geostationary instrument with 1.3×1.3

22 km² pixel resolution, hourly return time, and 1 ppb precision would effectively constrain the tem-

23 porally invariant emissions in the Barnett Shale at the kilometer scale and provide some information

24 on hourly variability of sources.

25 1 Introduction

Methane is a greenhouse gas emitted by a range of natural and anthropogenic sources (Kirschke 26 et al., 2013; Saunois et al., 2016; Turner et al., 2017). Anthropogenic methane emissions are difficult 27 28 to quantify because they tend to originate from a large number of potentially transient point sources 29 such as livestock operations, oil/gas leaks, landfills, and coal mine ventilation. Atmospheric methane observations from surface and aircraft have been used to quantify emissions (e.g., Miller et al., 2013; 30 Caulton et al., 2014; Karion et al., 2013, 2015; Lavoie et al., 2015; Conley et al., 2016; Peischl et al., 31 32 2015, 2016; Houweling et al., 2016) but are limited in spatial and temporal coverage. Satellite 33 measurements have dense and continuous coverage but limitations from observational errors and 34 pixel resolution need to be understood. Here we perform an observing system simulation experiment 35 (OSSE) to investigate the information content of different configurations of satellite instruments for observing fine-scale and transient methane sources, taking as a test case the oil/gas production sector. 36 37 Low-Earth orbit satellite observations of methane by solar backscatter in the shortwave infrared (SWIR) have been available since 2003 from the SCIAMACHY instrument (2003–2012; Franken-38 berg et al., 2005) and from the GOSAT instrument (2009-present; Kuze et al., 2009, 2016). SWIR 39 40 instruments measure the atmospheric column of methane with near-unit sensitivity throughout the troposphere. SCIAMACHY and GOSAT demonstrated the capability for high-precision (<1%) 41 measurements of methane from space (Buchwitz et al., 2015), but SCIAMACHY had coarse pix-42 els (30×60 km² in nadir) and GOSAT has sparse coverage (10-km diameter pixels separated by 43 44 250 km). Inverse analyses have used observations from these satellite-based instruments to estimate methane emissions at ~100-1000 km spatial resolution (e.g., Bergamaschi et al., 2009, 2013; Fraser 45 et al., 2013; Monteil et al., 2013; Wecht et al., 2014a; Cressot et al., 2014; Kort et al., 2014; Turner 46 et al., 2015, 2016a; Alexe et al., 2015; Tan et al., 2016; Buchwitz et al., 2017; Sheng et al., 2018b,a). 47 But such coarse resolution makes it difficult to resolve individual source types because of spatial 48 49 overlap (Maasakkers et al., 2016).

50 Improved observations of methane from space are expected in the near future (Jacob et al., 2016).

51 The TROPOMI instrument (Veefkind et al., 2012; Butz et al., 2012; Hu et al., 2016, 2018), launched

52 in October 2017, will provide global mapping at 7×7 km² nadir resolution once per day. The

53 GeoCARB geostationary instrument (Polonsky et al., 2014; O'Brien et al., 2016) will be launched

in the early 2020s with current design values of 3×3 km² pixel resolution and twice-daily return

55 time. Additional instruments are presently in the proposal stage with improved combinations of

pixel resolution, return time, and instrument precision (Fishman et al., 2012; Butz et al., 2015; Xi
et al., 2015).

An OSSE simulates the atmosphere as it would be observed by an instrument with a given ob-58 serving configuration and error specification. Several OSSEs have been conducted to evaluate the 59 potential of satellite observations to quantify methane sources, but they have either been conducted 60 at coarse (\sim 50 × 50 km²) spatial resolution (Wecht et al., 2014b; Bousserez et al., 2016) or assumed 61 idealized flow conditions (Bovensmann et al., 2010; Rayner et al., 2014). Here we use a 1-week 62 simulation of atmospheric methane with 1.3×1.3 km² resolution over a 290×235 km² domain to 63 simulate continuous and transient emissions in the Barnett Shale region of Texas, and from there we 64 65 quantify the capability of different satellite instrument configurations to resolve and quantify these sources at the kilometer and hourly scales. Our choice of scales is guided by the resolution of the 66 planned satellite observations, and our choice of the Barnett Shale is guided by the availability of 67 68 a high-resolution emission inventory for the region (Lyon et al., 2015). The pattern and density of methane emissions in the Barnett Shale is typical of other source regions in the US (Maasakkers 69 70 et al., 2016).

71 2 High-resolution OSSE environment

Fig. 1. High-resolution OSSE domain. Left panel shows the successive nested WRF domains at 36, 12, 4, and 1.3 km spatial resolutions, with the coarser domains providing initial and boundary conditions for the finer domains. Black shaded region is the Barnett Shale region in Texas. Right panel shows the domain for the OSSE. Green box is the innermost 1.3 km WRF domain, dashed orange box is the observation domain, solid orange box is the domain over which the footprints are computed. Light blue lines indicate the counties in the Barnett Shale.

72 We simulate atmospheric methane concentrations over the Barnett Shale in Texas at 1.3×1.3 km²

73 horizontal resolution for the period of October 19-25, 2013 using a framework similar to that of

74 Turner et al. (2016b). The simulation uses version 3.5 of the Weather Research and Forecasting

75 (WRF) model (Skamarock et al., 2008) over a succession of nested domains (left panel in Figure 1)

76 with 1.3×1.3 km² spatial resolution in the innermost domain covering 290×235 km². There are 50

vertical layers up to 100 hPa. Boundary-layer physics are represented with the Mellor-Yamada-Janic

represented with the 5-layer slab model (Skamarock et al., 2008). The

- 79 simulation is initialized with assimilated meteorological observations from the North American Re-
- 80 gional Reanalysis (https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/north-american-regional-reanalysis-narr).
- 81 Overlapping 30-hour forecasts were initialized every 24 hours at 00 UTC and the first 6 hours of each

82 forecast were discarded to allow for model spinup. Grid nudging was used in the outer-most domain.

83 WRF meteorology is used to drive the Stochastic Time-Inverted Lagrangian Transport (STILT)

84 model (Lin et al., 2003). STILT is a Lagrangian particle dispersion model. It advects an ensemble

85 of particles backward in time from selected receptor locations, using the archived hourly WRF wind

86 fields and boundary-layer heights. STILT calculates the footprint for the receptors; a spatio-temporal

87 map of the sensitivity of observations to emissions contributing to the concentration at each selected

88 receptor location and time. We use STILT to calculate 10-day footprints for hourly column concen-

89 trations at 1.3×1.3 km² resolution over a 70×70 km² domain in the innermost WRF nest, tracking

90 the resulting footprints over a 290×235 km² domain (right panel in Figure 1). With this system we

examine the constraints on emissions over the 290×235 km² domain provided by dense SWIR satellite observations (over the 70×70 km² domain) that have up to 1.3 km pixel resolution and hourly

93 daytime frequency. Footprints for each column are obtained by releasing 100 STILT particles from

94 vertical levels centered at 28 m above the surface, 97 m, 190 m, 300 m, and 8 additional levels up

95 to 14 km altitude spaced evenly on a pressure grid. The column footprints are then constructed by

96 summing the pressure-weighted contributions from individual levels, using a typical SWIR averag-

97 ing kernel taken from Worden et al. (2015) with near-uniformity in the troposphere, and correcting

98 for water vapor (see Appendix A in O'Dell et al., 2012).

The footprint for the *i*th receptor location and time can be expressed as a vector $\mathbf{h}_i = (\partial y_i / \partial \mathbf{x})^T$ describing the sensitivity of the column concentration *y* at that receptor location and time to the emission fluxes **x** over the 290×235 km² domain and previous times extending up to 10 days. Here **x** is arranged as a vector of length *n* assembling all the emission grid cells and hours, allowing the emissions to vary on an hourly basis. The column concentration is expressed as the dry air columnaverage mixing ratio (ppb) following common practice (Jacob et al., 2016). The emissions **x** have units of nmol m⁻² s⁻¹, so that the footprint has units of ppb nmol⁻¹ m² s. The column concentration

106 for the i^{th} observation (y_i) can be reconstructed from its footprint as:

$$y_i = \mathbf{h}_i \mathbf{x} + b_i \tag{1}$$

107 where b_i is the background column concentration upwind of the 290×235 km² domain. We can 108 then write the full set of observations as a vector **y** of length *m*, and reshape the set of *m* footprint 109 vectors **h** into an $m \times n$ sparse matrix $\mathbf{H} = \partial \mathbf{y} / \partial \mathbf{x}$ (where *m* is the number of observations and *n* is 110 the number of state vector elements):

$$\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{b} \tag{2}$$

- 111 where b is the background vector with elements b_i and H is the Jacobian matrix that maps emissions
- 112 to concentration enhancements due to emissions within our domain.

Fig. 2. Summed methane column footprints for all 1.3×1.3 km² grid cells in the 70×70 km² observation domain defined by the dashed orange box. The footprints are calculated from 8 to 17 local time over the 290×235 km² domain defined by the solid orange box. Bottom right panel shows the summed footprint for the full week.

113 Figure 2 shows the sum of all column footprints produced on individual days for the 70×70 km² observation domain. Computing these high-resolution footprints was a non-trivial computational 114 task and ultimately yielded more than 4 Tb of footprints for the week of pseudo-satellite observations 115 in the Barnett Shale. The footprints show large variability from day to day over the course of the 116 week, reflecting meteorological variability. For example, winds are from the north on October 19th 117 and from the south on October 20th. The winds are weak on October 24th, resulting in a strong 118 local contribution to the footprint. Summing the footprints over the course of the week (bottom right 119 panel of Fig. 2), we find that the observations are mainly sensitive to the core 70×70 km² domain 120 where they are made, with a diffuse sensitivity over the outer 290×235 km² domain. Additional 121 122 observations within the outer domain would need to be considered to constrain emissions in that domain. On the other hand, information on emissions in the $70 \times 70 \text{ km}^2$ core domain is mainly 123 contributed by observations within the domain. Thus our focus will be to determine the capability of 124 the observations in the 70×70 km² domain to constrain emissions within that same domain, but we 125 include the outer 290×235 km² domain in our footprint analysis for completeness in accounting of 126

- 127 information. Previous work from (Turner et al., 2016b, Supplemental Section 6.1) investigated the
- 128 impact of domain size on error reduction for WRF-STILT inversions in California's Bay Area and
- 129 found that it had a negligible impact

Fig. 3. Gridded Environmental Defense Fund (EDF) methane emission inventory for the Barnett Shale in Texas in October 2013 (Lyon et al., 2015). Spatial resolution is 4×4 km². White areas are outside the inventory domain.

130 The footprint information can be combined with an emission inventory for the 290×235 km² domain to generate a field of column concentrations over the 70×70 km² domain as would be ob-131 132 served from satellite. We use for this purpose the Environmental Defense Fund (EDF) inventory for the Barnett Shale in October 2013 at 4×4 km² resolution compiled by Lyon et al. (2015). We down-133 scale the EDF inventory by uniform attribution from 4×4 km² to 1.3×1.3 km² spatial resolution. 134 135 The inventory is shown in Fig. 3 and includes contributions from oil/gas production, livestock op-136 erations, landfills, and urban emissions from the Dallas-Fort Worth area. It provides mean monthly values with no temporal resolution, but presumes that some sources will behave as sporadic large 137 138 transients (Zavala-Araiza et al., 2015). Figure 4 shows an example of the methane column enhance-139 ments above background (Hx) computed at 9 local time on October 23. We find enhancements in the range of 0-10 ppb due to emissions within the 290×235 km² OSSE footprint domain. In 140 what follows we will examine the potential of different satellite observing systems to detect these 141 enhancements relative to the background and interpret them in terms of local sources. 142

Fig. 4. Simulated methane concentration enhancements relative to background ($\Delta X CH_4 = Hx$) in the 70×70 km² observation domain of the Barnett Shale (dashed orange box), as derived from the downscaled EDF methane inventory (x) and the WRF-STILT footprints (H) within the 290×235 km² OSSE domain (solid orange box). Values are for October 23 at 9 local time. Zeros are due to missing data because of unfinished computations.

Instrument	Observation Frequency ^a	Pixel resolution	Precision
		(km^2)	(ppb)
hi-res ^b	hourly	1.3 × 1.3	1.0
GeoCARB (hourly)	hourly	2.7×3.0	4.0
GeoCARB	twice daily	2.7×3.0	4.0
GeoCARB (daily)	daily	2.7×3.0	4.0
TROPOMI	daily	7.0 imes 7.0	10.8

 Table 1. Satellite observing systems considered in this work.

^aHourly observations are 10 times per day at 8-17 local time, twice daily observations are at 10 and 14 local time, and daily observations are at 13 local time.

^bAspirational instrument with the highest observation frequency and pixel resolution that can be simulated within our OSSE framework.

143 3 Information content of different satellite observing systems

144 We aim to determine the information content from different satellite-based observing systems regard-145 ing the spatial and temporal distribution of emissions in the Barnett Shale. We consider both steady 146 and potentially transient emissions with 5 different satellite observing configurations (Table 1). TROPOMI (global daily mapping, 7×7 km² nadir pixel resolution, 11 ppb precision; Veefkind et al., 147 2012) was launched in October 2017 and is expected to provide an operational data stream by the end 148 of 2018. GeoCARB (geostationary, $2.7 \times 3.0 \text{ km}^2$ pixel resolution, 4 ppb precision; O'Brien et al., 149 150 2016) is planned for launch in the early 2020s and its observation schedule is still under discussion 151 with a tentative design for observations twice daily; here we examine different return frequencies of 152 hourly, twice daily, and daily. Finally, the hypothetical "hi-res" configuration assumes geostationary hourly observations at the 1.3×1.3 km² pixel resolution of our WRF simulation and with 1 ppb 153 154 precision; it represents an aspirational system that combines the frequent return time, fine pixel resolution, and high precision of instruments presently at the proposal stage (Bovensmann et al., 2010; 155 156 Fishman et al., 2012; Xi et al., 2015). All configurations are filtered for cloudy scenes. 157 The various satellite observing configurations of Table 1 differ in their return frequency, pixel 158 resolution, and instrument precision. The benefit of improving any of these attributes may be lim-

159 ited by error in the forward model used in the inverse analysis (i.e., the Jacobian matrix H) and by 160 spatial or temporal correlation of the errors. These limitations are described by the model-data mis-161 match error covariance matrix (\mathbf{R}) including summed contributions from the instrument, forward 162 model, and representation errors (Turner and Jacob, 2015; Brasseur and Jacob, 2017). Represen-163 tation errors are negligible here because the instrument pixels are commensurate or coarser than 164 the model grid resolution. Instrument error (i.e., precision) is listed in Table 1. Forward model 165 error is estimated by computing STILT footprints for a subset of the meteorological period using the Global Data Assimilation System (GDAS; https://www.ncdc.noaa.gov/data-access/model-data/ 166 167 model-datasets/global-data-assimilation-system-gdas), applying the two sets of footprints to either 168 the EDF methane inventory (Fig. 3; Lyon et al., 2015) or the gridded EPA inventory (Maasakkers 169 et al., 2016), and computing semivariograms of differences in column concentrations. From this we obtain a forward model error standard deviation of 4 ppb with an error correlation length scale of 40 170 171 km. We assume a temporal model error correlation length of 2 hours. Sheng et al. (2018b) previ-172 ously derived a temporal model error correlation length of 5 hours in simulation of TCCON methane 173 column observations at 25 km resolution, and we expect our correlation length to be shorter because 174 of the finer resolution.

Bayesian inference is commonly used when estimating methane emissions with atmospheric ob-servations, allowing for errors in the observations and in the prior estimates:

$$P(\mathbf{x}|\mathbf{y}) \propto P(\mathbf{y}|\mathbf{x})P(\mathbf{x}) \tag{3}$$

where $P(\mathbf{x}|\mathbf{y})$ is the posterior probability density function (pdf) of the state vector (**x**) given the observations (**y**), $P(\mathbf{y}|\mathbf{x})$ is the conditional pdf of **y** given **x**, and $P(\mathbf{x})$ is the prior pdf of **x**. A common assumption is that $P(\mathbf{y}|\mathbf{x})$ and $P(\mathbf{x})$ are normally distributed which allows us to write the

180 posterior pdf as

$$P(\mathbf{x}|\mathbf{y}) \propto \exp\left\{-\frac{1}{2}(\mathbf{y} - \mathbf{H}\mathbf{x})^T \mathbf{R}^{-1}(\mathbf{y} - \mathbf{H}\mathbf{x}) - \frac{1}{2}(\mathbf{x} - \mathbf{x}_a)^T \mathbf{B}^{-1}(\mathbf{x} - \mathbf{x}_a)\right\}$$
(4)

181 where **B** is the $n \times n$ prior error covariance matrix and \mathbf{x}_a is the $n \times 1$ vector of prior fluxes. The 182 most probable solution is obtained by minimizing the cost function:

$$\mathcal{J}(\mathbf{x}) = \frac{1}{2} (\mathbf{y} - \mathbf{H}\mathbf{x})^T \mathbf{R}^{-1} (\mathbf{y} - \mathbf{H}\mathbf{x}) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_a)^T \mathbf{B}^{-1} (\mathbf{x} - \mathbf{x}_a)$$
(5)

183 yielding the posterior estimate $(\hat{\mathbf{x}})$:

$$\hat{\mathbf{x}} = \mathbf{x}_a + \underbrace{\left(\mathbf{H}^T \mathbf{R}^{-1} \mathbf{H} + \mathbf{B}^{-1}\right)^{-1}}_{\text{posterior covariance matrix}} \mathbf{H}^T \mathbf{R}^{-1} (\mathbf{y} - \mathbf{H} \mathbf{x})$$
(6)

184 with an $n \times n$ posterior error covariance matrix:

$$\mathbf{Q} = (\underbrace{\mathbf{H}^T \mathbf{R}^{-1} \mathbf{H}}_{\text{observations}} + \underbrace{\mathbf{B}^{-1}}_{\text{prior}})^{-1}$$
(7)

that characterizes the uncertainty in the solution. The first term in the posterior covariance matrix is known as the Fisher information matrix: $\mathcal{F} = \mathbf{H}^T \mathbf{R}^{-1} \mathbf{H}$ (see, for example, Rodgers, 2000; Tarantola, 2004).

Comparison between \mathcal{F} and \mathbf{B}^{-1} identifies the extent to which the observations reduce the uncertainty in the fluxes. Specifically, the number of pieces of information on emissions acquired to better than measurement error is the number of eigenvalues of $\mathbf{B}^{1/2}\mathcal{F}\mathbf{B}^{1/2}$ that are greater than unity (Rodgers, 2000). As such, the Fisher information matrix and prior error covariance matrix can quantify the effective rank of the observing system.

193 A drawback with this formulation of the information content is that it relies on the assumption of a Gaussian prior pdf. A number of papers have suggested that the pdf of methane emissions from a 194 given source may be skewed, with a "fat tail" of transient high emissions (e.g., Brandt et al., 2014; 195 196 Zavala-Araiza et al., 2015; Frankenberg et al., 2016). Alternate formulations for the cost function 197 to be minimized may include no prior information (least-squares regression), a prior constraint that 198 promotes a sparse solution (e.g., Candes and Wakin, 2008), a prior constraint based on frequentist regularization approaches (such as LASSO regression or Tikhonov regularization), or a prior 199 200 constraint based on the spatial patterns of emissions rather than their magnitudes (geostatistical inversion). Table 2 lists the corresponding formulations. From Table 2 we see that the observation term 201 202 is the same in all cases. Thus the Fisher information matrix provides a general measure of the in-

	1
Method	Cost function
Least-squares regression	$(\mathbf{y} - \mathbf{H}\mathbf{x})^T \mathbf{R}^{-1} (\mathbf{y} - \mathbf{H}\mathbf{x})$
LASSO regression	$\left(\mathbf{y} - \mathbf{H}\mathbf{x}\right)^T \mathbf{R}^{-1} \left(\mathbf{y} - \mathbf{H}\mathbf{x}\right) + \gamma \sum_i x_i $
Tikhonov regularization	$\left(\mathbf{y} - \mathbf{H}\mathbf{x}\right)^T \mathbf{R}^{-1} \left(\mathbf{y} - \mathbf{H}\mathbf{x}\right) + \gamma \mathbf{x}^T \mathbf{x}$
Bayesian inference, Gaussian	$\left(\mathbf{y} - \mathbf{H}\mathbf{x} ight)^T \mathbf{R}^{-1} \left(\mathbf{y} - \mathbf{H}\mathbf{x} ight) + \left(\mathbf{x} - \mathbf{x}_a ight)^T \mathbf{B}^{-1} \left(\mathbf{x} - \mathbf{x}_a ight)$
Geostatistical inverse model	$(\mathbf{y} - \mathbf{H}\mathbf{x})^T \mathbf{R}^{-1} (\mathbf{y} - \mathbf{H}\mathbf{x}) + (\mathbf{x} - \mathbf{G}\boldsymbol{\beta})^T \mathbf{B}^{-1} (\mathbf{x} - \mathbf{G}\boldsymbol{\beta})$

Table 2. Cost functions for different formulations of the inverse problem^a.

^a γ is the regularization parameter for LASSO regression and Tikhonov regularization. **G** is a matrix with columns corresponding to different spatial datasets and β is a vector of drift coefficients for the spatial datasets. Other variables defined in the text.

203 formation content provided by an observing system, independent of the form of the prior constraint,

and we use it in what follows as a measure of the information content.

205 The Fisher information matrix is an $n \times n$ matrix. Each of its n eigenvectors represent an inde-206 pendent normalized emission flux pattern and the corresponding eigenvalues are the inverses of the 207 error variances associated with that pattern. A more useful way of stating this is that the inverse 208 square root of the i^{th} eigenvalue of \mathcal{F} represents the flux threshold f_i needed for the observations to be able to constrain the emission flux pattern represented by the i^{th} eigenvector. Whether that 209 210 flux threshold is useful depends on the magnitude of the emissions, and this can be assessed for the 211 problem at hand. Thus the eigenanalysis of the Fisher information matrix gives us a general estimate 212 of the capability of an observing system to quantify emissions, which can then be applied to any 213 actual $n \times n$ emission field.

For a given emission field, we may expect that some of the *n* emission flux patterns will be usefully constrained by the observing system while others are not. The number of patterns that are usefully constrained represents the number $\mathcal{I} \leq n$ pieces of information on emissions provided by the observing system. We will equivalently refer to it as the rank of the Fisher information matrix. This is determined by comparing the eigenvalues of an emission inventory (e_i) to the flux thresholds. The number of e_i larger than the corresponding f_i provides a cut-off to estimate \mathcal{I} :

$$\mathcal{I} = \sum_{i} \begin{cases} 1, & e_i > f_i \\ 0, & e_i \le f_i \end{cases}$$
(8)

In the case of Bayesian inference, this is roughly equivalent to the degrees of freedom for signal with a diagonal prior error covariance matrix and a relative uncertainty of 100%. But the eigenanalysis of the Fisher information matrix provides a more general approach of the capability of an observing system that can be confronted to any prior constraint and allows intercomparison of different observing system configurations.

There is an inconsistency in this formulation of \mathcal{I} : \mathcal{F} and \mathbf{B}^{-1} have different eigenspaces. In this work we have chosen to treat these matrices separately because, in practice, it is computationally

- 227 infeasible to directly compute the eigenvalues of the matrix product if n is large, as in the case here
- 228 of constraining hourly emissions of the spatially distributed inventory. This inconsistency results in
- 229 our estimate of \mathcal{I} likely being an upper bound on the information content (see Appendix for details).

230 4 Comparing different satellite configurations

231 The eigenanalysis of Section 3 allows us to intercompare the value of different satellite configura-232 tions for resolving the fine-scale patterns of methane emissions within a given domain. Here we apply it to the Barnett Shale domain of Section 2. We consider two limiting cases: Case #1 assumes 233 234 the emissions to be temporally invariant and Case #2 assumes the emissions to vary hourly with no 235 temporal correlation. In Case #1 the problem is typically overdetermined (m > n), depending on the satellite configuration, and the maximum rank of \mathcal{F} is *n* (the number of emission grid cells). In 236 237 Case #2 the problem is underdetermined (m < n) and the maximum rank of \mathcal{F} is m (the number of 238 observations).

In both Case #1 and #2, the observations only provide useful information (as defined by Eq. 8) if the signal is larger than the noise, as diagnosed by the $e_i > f_i$ criterion of Eq. 8. Here the emissions are the downscaled EDF inventory, which includes 40,140 grid cells in the 290×235 km² inversion domain (n = 40,140 in Case #1 with temporally invariant emissions) but only 2,601 of those grid cells are within the 70×70 km² observation domain (dashed orange box in Fig. 1) where we might expect the observations to provide the strongest constraints. In Case #2 with temporally variable emissions we have $n = 40,140 \times 24 = 963,360$ grid cells for a single day.

246 Figure 5 shows the ensemble of flux thresholds for the five satellite configurations, assuming 247 temporally invariant emissions. The ranked flux patterns are on the abscissa; leading flux patterns 248 correspond to larger patterns of variability (e.g., regional-scale emissions), and the trailing flux patterns correspond to fine-scale variability. The corresponding flux thresholds are on the ordinate. 249 250 The flux threshold is lowest for the leading flux patterns and largest for the trailing flux patterns. 251 This means that the regional-scale emissions are easiest to quantify and the finer-scale emissions are 252 increasingly difficult to quantify. The information content (\mathcal{I}) is obtained from the intersection of 253 the flux thresholds (colored lines) with the eigenvalues from the emission inventory (black line). A 254 higher information content means that finer scales of emission variability can be detected.

- From Fig. 5, we see that a week of TROPOMI observations provides 5 pieces of information on
- emissions for the 70×70 km² core domain out of a possible 2601 pieces of information describing
- 257 the emissions on the 1.3×1.3 km² grid. The actual pieces of information are the eigenvectors of the
- 258 Fisher information matrix, and the ranked eigenvectors describe gradually finer patterns of variability
- 259 from 70×70 to 1.3×1.3 km². The k^{th} ranked eigenvector may be assumed to describe an emission
- 260 pattern of dimension $70/\sqrt{k}$, implying that TROPOMI can resolve emissions on a 30 km scale.
- 261 The three GeoCARB configurations provide 98–961 pieces of information dependent on whether

Fig. 5. Capability of different configurations for satellite observations of atmospheric methane (Table 1) to resolve the fine-scale $(1.3 \times 1.3 \text{ km}^2)$ patterns of variability of temporally invariant emissions in a 290×235 km² domain and for a 1-week observation period. The colored lines show the flux thresholds for the different emission patterns of variability in the domain, as given by the ordered inverse square roots of the eigenvalues of the Fisher information matrix. Solid black line is the eigenvalues of the emissions from the EDF Barnett Shale methane inventory (Lyon et al., 2015) and the solid gray line is the gridded EPA inventory. The region above the black line is where the noise is larger than the signal. Filled circles indicate the information content of the observing system (\mathcal{I}) for a given satellite configuration at $1.3 \times 1.3 \text{ km}^2$ spatial resolution. Inset table lists the information contents for the five configurations.

- 262 the observations are daily, twice daily, or hourly. Following the above assumption, this corresponds
- 263 to resolving emissions on a \sim 2-7 km scale. Hourly observations provide 10 times more information
- 264 (as defined by Eq. 8) on emission patterns than daily observations, and 3 times more than twice-daily
- 265 observations (the default configuration of GeoCARB). Remarkably, more is gained by going from
- 266 daily to twice-daily (factor of 3.4) than going from twice-daily to hourly (factor of 2.9), because of
- 267 the temporal error correlation in the transport model. The aspirational hi-res satellite configuration
- 268 provides 2,221 pieces of information on temporally invariant sources, corresponding to 85% of the
- 269 flux patterns in the 70×70 km² observation region, which means that much of the spatial variability
- 270 in the 1.3×1.3 km² emissions in the Barnett Shale is resolved.
- Figure 6 further quantifies the importance of instrument precision and return frequency for the
- 272 GeoCARB pixel resolution of 2.7×3.0 km². It shows the flux thresholds for a set of configurations
- 273 where the instrument precision is varied from 0 to 14 ppb and the return frequency is varied from 1
- 274 to 10 returns per day. We find that instrument precision is more important than return frequency for

Fig. 6. Capability of GeoCARB-like satellite configurations to resolve the fine-scale $(1.3 \times 1.3 \text{ km}^2)$ patterns of variability of temporally invariant emissions in a 290×235 km² domain and for a 1-week observation period. Left panel shows the results for a configuration with 10 returns per day (hourly observations) where the instrument precision is varied from 0 to 14 ppb. Right panel shows the results for a configuration with 4 ppb instrument precision and the return frequency per day is varied from 1 to 10. Solid black line shows eigenvalues of the EDF Barnett Shale methane emission inventory (Lyon et al., 2015). The region above the black line is where the noise is larger than the signal. The change in flux threshold as the sampling frequency increases in the right panel is not necessarily monotonic, this is because some of the cases use different subsets of observation (e.g., daily observations are at 13 local time while twice daily are at 10 and 14).

275 increasing the information content from the observations.

Fig. 7. Same as Fig. 5 but for temporally variable sources on October 21, 2013.

Fig. 8. Same as Fig. 6 but for temporally variable sources on October 21, 2013.

276 In Case #2 we assume that the methane sources in individual pixels vary in time on an hourly 277 basis with no correlation from one hour to the next, making the problem generally underdetermined 278 (m < n) for all satellite configurations. Here we aim to determine the ability of the satellite obser-279 vations to quantify the hourly emissions over the spatial patterns defined by the eigenvectors of ${\cal F}$ 280 and making no assumption as to the persistence of those emissions. We treat each day independently 281 and compute the eigenvalues of the Fisher information matrix for each day. Figure 7 shows the 282 flux thresholds for the five satellite configurations on a representative day. From Fig. 7, we see that 283 TROPOMI is unable to provide any information on hourly emissions in the Barnett Shale. The three 284 GeoCARB configurations provide 2-54 pieces of information. Fig. 8 evaluates the impact of sam-285 pling frequency and instrument precision for the GeoCARB configurations. As with the temporally 286 invariant case, we find that instrument precision is more important for increasing the information 287 content. The aspirational "hi-res" configuration (shown in Fig. 7) is the only configuration that is 288 able to provide substantial information (458 pieces of information) on temporally variable emissions. Figure 9 summarizes the findings from Figs. 6 and 8. It compares the information content \mathcal{I} 289 290 from configurations with $2.7 \times 3.0 \text{ km}^2$ spatial resolution (GeoCARB) as the instrument precision 291 and return frequency are varied from 0 to 14 ppb and 1 to 10 returns per day, respectively, for both 292 temporally variable and constant sources. Uncertainty on \mathcal{I} is estimated by randomly sampling e_i 293 from the ensemble of emission inventory eigenvalues and comparing to f_i in Eq. 8. For the tempo-294 rally invariant sources (Case #1), we find considerable increases in information content for instru-295 ment precisions better than 6 ppb (top left panel in Fig. 9) and an approximately linear relationship 296 between information content and return frequency (top right panel in Fig. 9). The satellite configu-297 rations provide considerably less information for the temporally variable sources (Case #2). We find 298 that satellite configurations with instrument precision worse than 6 ppb provide no information on 299 temporally variable sources (bottom left panel in Fig. 9). As with the temporally invariant case, we 300 find an approximately linear relationship between information content and return frequency (bottom

Fig. 9. Information content \mathcal{I} as a function of the instrument precision (left column) and the sampling frequency per day (right column) for a satellite with a pixel resolution of $2.7 \times 3.0 \text{ km}^2$. Top row is for Case #1 where the sources are assumed to be temporally invariant and bottom row is for Case #2 where the sources are temporally variable. Solid black line is the median information content. A 4 ppb model error is included, see Section 3. Uncertainty is from randomly sampling e_i from the eigenvalues of the EDF inventory.

right panel in Fig. 9). From this, we conclude that a GeoCARB-like instrument would greatly benefitfrom having an instrument precision better than 6 ppb.

303 5 Conclusions

We conducted an observing system simulation experiment (OSSE) to evaluate the potential of dif-304 305 ferent satellite observation systems for atmospheric methane to quantify methane emissions at kilometer scale. This involved a 1-week WRF-STILT simulation of atmospheric methane columns with 306 307 1.3×1.3 km² spatial resolution over the 290×235 km² Barnett Shale domain to quantify the in-308 formation content of different satellite instrument configurations for resolving the kilometer-scale 309 distribution of methane emissions within that domain. We evaluated the information content of the 310 different satellite observing systems through an eigenanalysis of the Fisher information matrix \mathcal{F} , 311 which characterizes the capability of an observing system independently of the form of the prior 312 information. The eigenvalues of \mathcal{F} define the emission flux thresholds for detection of emission 313 patterns down to 1.3 km in scale as defined by the eigenvectors. Here we put these flux thresholds in 314 context of the high-resolution EDF emission inventory for the Barnett Shale to quantify the informa-315 tion content from different satellite observing configurations. The same approach could be readily used for different observation domains and different prior inventories. 316

317 We find from this analysis that the recently launched TROPOMI satellite instrument (low Earth orbit, 7×7 km² pixels, daily return time, 11 ppb precision) should be able to constrain the mean 318 emissions in the Barnett Shale and provide some coarse-resolution information on the distribution of 319 320 temporally invariant emissions at \sim 30 km scales. The planned GeoCARB instrument (geostationary orbit, 2.7×3.0 km² pixels, twice-daily return time, 4 ppb precision), will provide 50 times more 321 322 information than TROPOMI. The observing frequency of GeoCARB is still under discussion; we 323 find that twice-daily observations triple the information content relative to daily observations, while 324 hourly observations allow another tripling. The 4 ppb precision of GeoCARB is well adapted to 325 the magnitude of methane sources; we find that a precision larger than 6 ppb would considerably 326 decrease the information content. An aspirational "hi-res" instrument using attributes of currently proposed instruments (geostationary orbit, 1.3×1.3 km² pixels, hourly return time, 1 ppb precision) 327 328 can resolve much of the kilometer-scale spatial distribution in the EDF inventory. This assumes 329 that the emissions are constant in time or that their temporal variability is known. Resolving hourly 330 variable emissions at the kilometer-scale will be very limited even with the aspirational "hi-res" 331 instrument.

332 Appendix Computing the information content

We treat \mathcal{F} and \mathbf{B}^{-1} separately because it is computationally infeasible to compute the eigenvalues of the matrix product when we attempt to resolve hourly emissions as $n > 10^6$ and both \mathcal{F} and \mathbf{B}^{-1} are $n \times n$ matrices. This separation of \mathcal{F} and \mathbf{B}^{-1} results in our estimate of \mathcal{I} likely being an upper bound on the information content. This follows from Bhatia (1997) who prove that $\lambda(\mathbf{CD}) \prec_w \lambda^{\downarrow}(\mathbf{C}) \cdot \lambda^{\downarrow}(\mathbf{D})$, where \mathbf{C} and \mathbf{D} are Hermitian positive definite matrices, $\lambda^{\downarrow}(\mathbf{X})$ denotes the vector of eigenvalues of \mathbf{X} in decreasing order, \prec_w is the weak majorization preorder, and $\mathbf{p} \cdot \mathbf{q} = (p_1 q_1, \dots, p_n, q_n)$. Therefore, directly computing the eigenvalues of $\mathbf{B}^{1/2} \mathcal{F} \mathbf{B}^{1/2}$, as Rodgers (2000) suggests for the Bayesian inference case with Gaussian errors, would likely yield fewer eigenvalues larger than unity than our estimate.

- 342 In the case of temporally variable emissions, the system is generally underdetermined (m < n) and 343 we can use a singular value decomposition to efficiently compute the eigenvalues of \mathcal{F} . For an $m \times n$ real matrix A, the non-zero singular values of $\mathbf{A}^T \mathbf{A}$ and $\mathbf{A} \mathbf{A}^T$ are identical even though the singular 344 345 vectors are different (see, for example, Rodgers, 2000) but the dimensions of these two matrices are $n \times n$ and $m \times m$, respectively, and the eigenvalues can be computed from the square root of the 346 non-zero singular values. We can write $\mathcal{F} = \hat{\mathbf{H}}^T \hat{\mathbf{H}}$ where $\hat{\mathbf{H}} = \mathbf{L}^{-1} \mathbf{H}$ is the pre-whitened Jacobian 347 and L is a lower triangular matrix from a Cholesky decomposition of R (such that $\mathbf{R} = \mathbf{L}\mathbf{L}^{T}$). Thus, 348 the eigenvalues of \mathcal{F} can be obtained by analysis of either $\hat{\mathbf{H}}^T \hat{\mathbf{H}}$ (an $n \times n$ matrix) or $\hat{\mathbf{H}} \hat{\mathbf{H}}^T$ (an 349 350 $m \times m$ matrix).
- 351 Acknowledgements. This work was supported by the ExxonMobil Research and Engineering Company and 352 the US Department of Energy (DOE) Advanced Research Projects Agency - Energy (ARPA-E). A. J. Turner 353 is supported as a Miller Fellow with the Miller Institute for Basic Research in Science at UC Berkeley. This 354 research used the Savio computational cluster resource provided by the Berkeley Research Computing program 355 at the University of California, Berkeley (supported by the UC Berkeley Chancellor, Vice Chancellor for Re-356 search, and Chief Information Officer). This research also used resources from the National Energy Research 357 Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy 358 under Contract No. DE-AC02-05CH11231. We also acknowledge high-performance computing support from 359 Cheyenne (doi:10.5065/D6RX99HX) provided by NCAR's Computational and Information Systems Labora-360 tory, sponsored by the National Science Foundation.

361 References

- 362 Alexe, M., Bergamaschi, P., Segers, A., Detmers, R., Butz, A., Hasekamp, O., Guerlet, S., Parker, R., Boesch,
- 363 H., Frankenberg, C., Scheepmaker, R. A., Dlugokencky, E., Sweeney, C., Wofsy, S. C., and Kort, E. A.:
- 364 Inverse modelling of CH₄ emissions for 2010–2011 using different satellite retrieval products from GOSAT
- and SCIAMACHY, Atmospheric Chemistry and Physics, 15, 113–133, doi:10.5194/acp-15-113-2015, 2015.
- 366 Bergamaschi, P., Frankenberg, C., Meirink, J. F., Krol, M., Villani, M. G., Houweling, S., Dentener, F., Dlu-
- 367 gokencky, E. J., Miller, J. B., Gatti, L. V., Engel, A., and Levin, I.: Inverse modeling of global and re-
- 368 gional CH₄ emissions using SCIAMACHY satellite retrievals, Journal of Geophysical Research, 114, doi:
 369 10.1029/2009jd012287, 2009.
- 370 Bergamaschi, P., Houweling, S., Segers, A., Krol, M., Frankenberg, C., Scheepmaker, R. A., Dlugokencky, E.,
- Wofsy, S. C., Kort, E. A., Sweeney, C., Schuck, T., Brenninkmeijer, C., Chen, H., Beck, V., and Gerbig, C.:
 Atmospheric CH₄ in the first decade of the 21st century: Inverse modeling analysis using SCIAMACHY
- 373 satellite retrievals and NOAA surface measurements, Journal of Geophysical Research: Atmospheres, 118,
- 374 7350–7369, doi:10.1002/jgrd.50480, 2013.
- **375** Bhatia, R.: Matrix Analysis, Graduate Texts in Mathematics, Springer, New York, 1997.
- Bousserez, N., Henze, D. K., Rooney, B., Perkins, A., Wecht, K. J., Turner, A. J., Natraj, V., and Worden,
 J. R.: Constraints on methane emissions in North America from future geostationary remote-sensing mea-
- 378 surements, Atmospheric Chemistry and Physics, 16, 6175–6190, doi:10.5194/acp-16-6175-2016, 2016.
- 379 Bovensmann, H., Buchwitz, M., Burrows, J. P., Reuter, M., Krings, T., Gerilowski, K., Schneising, O., Hey-
- 380 mann, J., Tretner, A., and Erzinger, J.: A remote sensing technique for global monitoring of power plant
- 381 CO_2 emissions from space and related applications, Atmospheric Measurement Techniques, 3, 781–811,
- **382** doi:10.5194/amt-3-781-2010, 2010.
- 383 Brandt, A. R., Heath, G. A., Kort, E. A., O'Sullivan, F., Petron, G., Jordaan, S. M., Tans, P., Wilcox, J.,
- 384 Gopstein, A. M., Arent, D., Wofsy, S., Brown, N. J., Bradley, R., Stucky, G. D., Eardley, D., and Harriss,
- R.: Energy and environment. Methane leaks from North American natural gas systems, Science, 343, 733–5,
- doi:10.1126/science.1247045, 2014.
- Brasseur, G. P. and Jacob, D. J.: Modeling of Atmospheric Chemistry, Princeton University Press, Princeton,
 NJ, 2017.
- Buchwitz, M., Reuter, M., Schneising, O., Boesch, H., Guerlet, S., Dils, B., Aben, I., Armante, R., Bergamaschi,
 P., Blumenstock, T., Bovensmann, H., Brunner, D., Buchmann, B., Burrows, J. P., Butz, A., Chdin, A.,
- 391 Chevallier, F., Crevoisier, C. D., Deutscher, N. M., Frankenberg, C., Hase, F., Hasekamp, O. P., Heymann,
- 392 J., Kaminski, T., Laeng, A., Lichtenberg, G., De Mazire, M., Nol, S., Notholt, J., Orphal, J., Popp, C.,
- 393 Parker, R., Scholze, M., Sussmann, R., Stiller, G. P., Warneke, T., Zehner, C., Bril, A., Crisp, D., Griffith,
- 394 D. W. T., Kuze, A., O'Dell, C., Oshchepkov, S., Sherlock, V., Suto, H., Wennberg, P., Wunch, D., Yokota,
- 395 T., and Yoshida, Y.: The Greenhouse Gas Climate Change Initiative (GHG-CCI): Comparison and quality
- assessment of near-surface-sensitive satellite-derived CO₂ and CH₄ global data sets, Remote Sensing of
- 397 Environment, 162, 344–362, doi:10.1016/j.rse.2013.04.024, 2015.
- 398 Buchwitz, M., Schneising, O., Reuter, M., Heymann, J., Krautwurst, S., Bovensmann, H., Burrows, J. P.,
- Boesch, H., Parker, R. J., Somkuti, P., Detmers, R. G., Hasekamp, O. P., Aben, I., Butz, A., Frankenberg,
- 400 C., and Turner, A. J.: Satellite-derived methane hotspot emission estimates using a fast data-driven method,

- 401 Atmospheric Chemistry and Physics, 17, 5751–5774, doi:10.5194/acp-17-5751-2017, 2017.
- 402 Butz, A., Galli, A., Hasekamp, O., Landgraf, J., Tol, P., and Aben, I.: TROPOMI aboard Sentinel-5 Precursor:
- 403 Prospective performance of CH₄ retrievals for aerosol and cirrus loaded atmospheres, Remote Sensing of
 404 Environment, 120, 267–276, doi:10.1016/j.rse.2011.05.030, 2012.
- 405 Butz, A., Orphal, J., Checa-Garcia, R., Friedl-Vallon, F., von Clarmann, T., Bovensmann, H., Hasekamp, O.,
- 406 Landgraf, J., Knigge, T., Weise, D., Sqalli-Houssini, O., and Kemper, D.: Geostationary Emission Explorer
- 407 for Europe (G3E): mission concept and initial performance assessment, Atmospheric Measurement Tech-
- 408 niques, 8, 4719–4734, doi:10.5194/amt-8-4719-2015, 2015.
- Candes, E. J. and Wakin, M. B.: An introduction to compressive sampling, IEEE Signal Processing Magazine,
 25, 21–30, doi:10.1109/Msp.2007.914731, 2008.
- 411 Caulton, D. R., Shepson, P. B., Santoro, R. L., Sparks, J. P., Howarth, R. W., Ingraffea, A. R., Cambaliza,
- 412 M. O., Sweeney, C., Karion, A., Davis, K. J., Stirm, B. H., Montzka, S. A., and Miller, B. R.: Toward a
- 413 better understanding and quantification of methane emissions from shale gas development, Proc Natl Acad
- 414 Sci U S A, doi:10.1073/pnas.1316546111, 2014.
- 415 Conley, S., Franco, G., Faloona, I., Blake, D. R., Peischl, J., and Ryerson, T. B.: Methane emissions from
- the 2015 Aliso Canyon blowout in Los Angeles, CA, Science, 351, 1317–20, doi:10.1126/science.aaf2348,
 2016.
- Cressot, C., Chevallier, F., Bousquet, P., Crevoisier, C., Dlugokencky, E. J., Fortems-Cheiney, A., Frankenberg,
 C., Parker, R., Pison, I., Scheepmaker, R. A., Montzka, S. A., Krummel, P. B., Steele, L. P., and Langenfelds,
- 420 R. L.: On the consistency between global and regional methane emissions inferred from SCIAMACHY,
- 421 TANSO-FTS, IASI and surface measurements, Atmospheric Chemistry and Physics, 14, 577–592, doi:10.
- 422 5194/acp-14-577-2014, 2014.
- 423 Fishman, J., Iraci, L. T., Al-Saadi, J., Chance, K., Chavez, F., Chin, M., Coble, P., Davis, C., DiGiacomo, P. M.,
- 424 Edwards, D., Eldering, A., Goes, J., Herman, J., Hu, C., Jacob, D. J., Jordan, C., Kawa, S. R., Key, R., Liu,
- 425 X., Lohrenz, S., Mannino, A., Natraj, V., Neil, D., Neu, J., Newchurch, M., Pickering, K., Salisbury, J.,
- 426 Sosik, H., Subramaniam, A., Tzortziou, M., Wang, J., and Wang, M.: The United States' Next Generation of
- 427 Atmospheric Composition and Coastal Ecosystem Measurements: NASA's Geostationary Coastal and Air
- 428 Pollution Events (GEO-CAPE) Mission, Bulletin of the American Meteorological Society, 93, 1547–1566,
- doi:10.1175/bams-d-11-00201.1, 2012.
- Frankenberg, C., Meirink, J. F., van Weele, M., Platt, U., and Wagner, T.: Assessing methane emissions from
 global space-borne observations, Science, 308, 1010–4, doi:10.1126/science.1106644, 2005.
- 432 Frankenberg, C., Thorpe, A. K., Thompson, D. R., Hulley, G., Kort, E. A., Vance, N., Borchardt, J., Krings, T.,
- 433 Gerilowski, K., Sweeney, C., Conley, S., Bue, B. D., Aubrey, A. D., Hook, S., and Green, R. O.: Airborne
- 434 methane remote measurements reveal heavy-tail flux distribution in Four Corners region, Proc Natl Acad Sci
- 435 U S A, 113, 9734–9, doi:10.1073/pnas.1605617113, 2016.
- 436 Fraser, A., Palmer, P. I., Feng, L., Boesch, H., Cogan, A., Parker, R., Dlugokencky, E. J., Fraser, P. J., Krummel,
- 437 P. B., Langenfelds, R. L., O'Doherty, S., Prinn, R. G., Steele, L. P., van der Schoot, M., and Weiss, R. F.:
- 438 Estimating regional methane surface fluxes: the relative importance of surface and GOSAT mole fraction
- 439 measurements, Atmospheric Chemistry and Physics, 13, 5697–5713, doi:10.5194/acp-13-5697-2013, 2013.
- 440 Houweling, S., Bergamaschi, P., Chevallier, F., Heimann, M., Kaminski, T., Krol, M., Michalak, A. M., and Pa-

- tra, P.: Global inverse modeling of CH_4 sources and sinks: An overview of methods, Atmospheric Chemistry and Physics Discussions, pp. 1–30, doi:10.5194/acp-2016-572, 2016.
- 443 Hu, H., Hasekamp, O., Butz, A., Galli, A., Landgraf, J., Aan de Brugh, J., Borsdorff, T., Scheepmaker, R.,
- and Aben, I.: The operational methane retrieval algorithm for TROPOMI, Atmospheric Measurement Tech niques, 9, 5423–5440, doi:10.5194/amt-9-5423-2016, 2016.
- 446 Hu, H., Landgraf, J., Detmers, R., Borsdorff, T., Aan de Brugh, J., Aben, I., Butz, A., and Hasekamp, O.:
- 447 Toward Global Mapping of Methane With TROPOMI: First Results and Intersatellite Comparison to GOSAT,
 448 Geophysical Research Letters, doi:10.1002/2018g1077259, 2018.
- 449 Jacob, D. J., Turner, A. J., Maasakkers, J. D., Sheng, J., Sun, K., Liu, X., Chance, K., Aben, I., McKeever, J.,
- and Frankenberg, C.: Satellite observations of atmospheric methane and their value for quantifying methane
- 451 emissions, Atmospheric Chemistry and Physics, 16, 14371–14396, doi:10.5194/acp-16-14371-2016, 2016.
- 452 Karion, A., Sweeney, C., Ptron, G., Frost, G., Michael Hardesty, R., Kofler, J., Miller, B. R., Newberger, T.,
- 453 Wolter, S., Banta, R., Brewer, A., Dlugokencky, E., Lang, P., Montzka, S. A., Schnell, R., Tans, P., Trainer,
- 454 M., Zamora, R., and Conley, S.: Methane emissions estimate from airborne measurements over a western
- United States natural gas field, Geophysical Research Letters, 40, 4393–4397, doi:10.1002/grl.50811, 2013.
- 456 Karion, A., Sweeney, C., Kort, E. A., Shepson, P. B., Brewer, A., Cambaliza, M., Conley, S. A., Davis, K.,
- 457 Deng, A., Hardesty, M., Herndon, S. C., Lauvaux, T., Lavoie, T., Lyon, D., Newberger, T., Petron, G., Rella,
- C., Smith, M., Wolter, S., Yacovitch, T. I., and Tans, P.: Aircraft-Based Estimate of Total Methane Emissions
 from the Barnett Shale Region, Environ Sci Technol, 49, 8124–31, doi:10.1021/acs.est.5b00217, 2015.
- 460 Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G., Dlugokencky, E. J., Bergamaschi, P.,
- 461 Bergmann, D., Blake, D. R., Bruhwiler, L., Cameron-Smith, P., Castaldi, S., Chevallier, F., Feng, L., Fraser,
- 462 A., Heimann, M., Hodson, E. L., Houweling, S., Josse, B., Fraser, P. J., Krummel, P. B., Lamarque, J.-F.,
- 463 Langenfelds, R. L., Le Qur, C., Naik, V., O'Doherty, S., Palmer, P. I., Pison, I., Plummer, D., Poulter, B.,
- 464 Prinn, R. G., Rigby, M., Ringeval, B., Santini, M., Schmidt, M., Shindell, D. T., Simpson, I. J., Spahni, R.,
- 465 Steele, L. P., Strode, S. A., Sudo, K., Szopa, S., van der Werf, G. R., Voulgarakis, A., van Weele, M., Weiss,
- 466 R. F., Williams, J. E., and Zeng, G.: Three decades of global methane sources and sinks, Nature Geoscience,
- **467** 6, 813–823, doi:10.1038/ngeo1955, 2013.
- Kort, E. A., Frankenberg, C., Costigan, K. R., Lindenmaier, R., Dubey, M. K., and Wunch, D.: Four
 corners: The largest US methane anomaly viewed from space, Geophysical Research Letters, 41, doi:
 10.1002/2014g1061503, 2014.
- Kuze, A., Suto, H., Nakajima, M., and Hamazaki, T.: Thermal and near infrared sensor for carbon observation
 Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitor-
- 473 ing, Appl Opt, 48, 6716–33, doi:10.1364/AO.48.006716, 2009.
- 474 Kuze, A., Suto, H., Shiomi, K., Kawakami, S., Tanaka, M., Ueda, Y., Deguchi, A., Yoshida, J., Yamamoto,
- 475 Y., Kataoka, F., Taylor, T. E., and Buijs, H. L.: Update on GOSAT TANSO-FTS performance, operations,
- and data products after more than 6 years in space, Atmospheric Measurement Techniques, 9, 2445–2461,
- 477 doi:10.5194/amt-9-2445-2016, 2016.
- 478 Lavoie, T. N., Shepson, P. B., Cambaliza, M. O., Stirm, B. H., Karion, A., Sweeney, C., Yacovitch, T. I.,
- 479 Herndon, S. C., Lan, X., and Lyon, D.: Aircraft-Based Measurements of Point Source Methane Emissions
- 480 in the Barnett Shale Basin, Environ Sci Technol, 49, 7904–13, doi:10.1021/acs.est.5b00410, 2015.

- 481 Lin, J. C., Gerbig, C., Wofsy, S. C., Andrews, A. E., Daube, B. C., Davis, K. J., and Grainger, C. A.: A near-
- 482 field tool for simulating the upstream influence of atmospheric observations: The Stochastic Time-Inverted
- 483 Lagrangian Transport (STILT) model, Journal of Geophysical Research-Atmospheres, 108, ACH 2–1–ACH
- 484 2–17, doi:10.1029/2002jd003161, 2003.
- Lyon, D. R., Zavala-Araiza, D., Alvarez, R. A., Harriss, R., Palacios, V., Lan, X., Talbot, R., Lavoie, T.,
 Shepson, P., Yacovitch, T. I., Herndon, S. C., Marchese, A. J., Zimmerle, D., Robinson, A. L., and Hamburg,
- 487 S. P.: Constructing a Spatially Resolved Methane Emission Inventory for the Barnett Shale Region, Environ
- 488 Sci Technol, 49, 8147–57, doi:10.1021/es506359c, 2015.
- 489 Maasakkers, J. D., Jacob, D. J., Sulprizio, M. P., Turner, A. J., Weitz, M., Wirth, T., Hight, C., DeFigueiredo,
- 490 M., Desai, M., Schmeltz, R., Hockstad, L., Bloom, A. A., Bowman, K. W., Jeong, S., and Fischer, M. L.:
- 491 Gridded National Inventory of U.S. Methane Emissions, Environ Sci Technol, 50, 13123–13133, doi:10.
 492 1021/acs.est.6b02878, 2016.
- 493 Miller, S. M., Wofsy, S. C., Michalak, A. M., Kort, E. A., Andrews, A. E., Biraud, S. C., Dlugokencky,
- 494 E. J., Eluszkiewicz, J., Fischer, M. L., Janssens-Maenhout, G., Miller, B. R., Miller, J. B., Montzka, S. A.,
- 495 Nehrkorn, T., and Sweeney, C.: Anthropogenic emissions of methane in the United States, Proc Natl Acad
- 496 Sci U S A, 110, 20018–22, doi:10.1073/pnas.1314392110, 2013.
- 497 Monteil, G., Houweling, S., Butz, A., Guerlet, S., Schepers, D., Hasekamp, O., Frankenberg, C., Scheep498 maker, R., Aben, I., and Rckmann, T.: Comparison of CH₄ inversions based on 15 months of GOSAT
 499 and SCIAMACHY observations, Journal of Geophysical Research: Atmospheres, 118, 11,807–11,823, doi:
 500 10.1002/2013jd019760, 2013.
- 501 O'Brien, D. M., Polonsky, I. N., Utembe, S. R., and Rayner, P. J.: Potential of a geostationary geoCARB
 502 mission to estimate surface emissions of CO₂, CH₄ and CO in a polluted urban environment: case study
 503 Shanghai, Atmospheric Measurement Techniques, 9, 4633–4654, doi:10.5194/amt-9-4633-2016, 2016.
- 504 O'Dell, C. W., Connor, B., Bsch, H., O'Brien, D., Frankenberg, C., Castano, R., Christi, M., Eldering, D.,
- 505 Fisher, B., Gunson, M., McDuffie, J., Miller, C. E., Natraj, V., Oyafuso, F., Polonsky, I., Smyth, M., Taylor,
- 506 T., Toon, G. C., Wennberg, P. O., and Wunch, D.: The ACOS CO₂ retrieval algorithm Part 1: Description
- and validation against synthetic observations, Atmospheric Measurement Techniques, 5, 99–121, doi:10.
 5194/amt-5-99-2012, 2012.
- 509 Peischl, J., Ryerson, T. B., Aikin, K. C., de Gouw, J. A., Gilman, J. B., Holloway, J. S., Lerner, B. M., Nadkarni,
- R., Neuman, J. A., Nowak, J. B., Trainer, M., Warneke, C., and Parrish, D. D.: Quantifying atmospheric
 methane emissions from the Haynesville, Fayetteville, and northeastern Marcellus shale gas production re-
- 512 gions, Journal of Geophysical Research-Atmospheres, 120, 2119–2139, doi:10.1002/2014JD022697, 2015.
- 513 Peischl, J., Karion, A., Sweeney, C., Kort, E. A., Smith, M. L., Brandt, A. R., Yeskoo, T., Aikin, K. C., Conley,
- 514 S. A., Gvakharia, A., Trainer, M., Wolter, S., and Ryerson, T. B.: Quantifying atmospheric methane emis-
- 515 sions from oil and natural gas production in the Bakken shale region of North Dakota, Journal of Geophysical
- 516 Research: Atmospheres, 121, 6101–6111, doi:10.1002/2015jd024631, 2016.
- 517 Polonsky, I. N., O'Brien, D. M., Kumer, J. B., and O'Dell, C. W.: Performance of a geostationary mission, geo-
- 518 CARB, to measure CO₂, CH₄ and CO column-averaged concentrations, Atmospheric Measurement Tech-
- 519 niques, 7, 959–981, doi:10.5194/amt-7-959-2014, 2014.
- 520 Rayner, P. J., Utembe, S. R., and Crowell, S.: Constraining regional greenhouse gas emissions using geostation-

- space structure for the structure of the
- 522 doi:10.5194/amt-7-3285-2014, 2014.
- 523 Rodgers, C. D.: Inverse Methods for Atmospheric Sounding, World Scientific, Singapore, 2000.
- 524 Saunois, M., Bousquet, P., Poulter, B., Peregon, A., Ciais, P., Canadell, J. G., Dlugokencky, E. J., Etiope, G.,
- 525 Bastviken, D., Houweling, S., Janssens-Maenhout, G., Tubiello, F. N., Castaldi, S., Jackson, R. B., Alexe,
- 526 M., Arora, V. K., Beerling, D. J., Bergamaschi, P., Blake, D. R., Brailsford, G., Brovkin, V., Bruhwiler, L.,
- 527 Crevoisier, C., Crill, P., Covey, K., Curry, C., Frankenberg, C., Gedney, N., Hglund-Isaksson, L., Ishizawa,
- 528 M., Ito, A., Joos, F., Kim, H.-S., Kleinen, T., Krummel, P., Lamarque, J.-F., Langenfelds, R., Locatelli,
- 529 R., Machida, T., Maksyutov, S., McDonald, K. C., Marshall, J., Melton, J. R., Morino, I., Naik, V., amp,
- 530 apos, Doherty, S., Parmentier, F.-J. W., Patra, P. K., Peng, C., Peng, S., Peters, G. P., Pison, I., Prigent,
- 531 C., Prinn, R., Ramonet, M., Riley, W. J., Saito, M., Santini, M., Schroeder, R., Simpson, I. J., Spahni, R.,
- 532 Steele, P., Takizawa, A., Thornton, B. F., Tian, H., Tohjima, Y., Viovy, N., Voulgarakis, A., van Weele, M.,
- van der Werf, G. R., Weiss, R., Wiedinmyer, C., Wilton, D. J., Wiltshire, A., Worthy, D., Wunch, D., Xu,
- 534 X., Yoshida, Y., Zhang, B., Zhang, Z., and Zhu, Q.: The global methane budget 20002012, Earth System
- 535 Science Data, 8, 697–751, doi:10.5194/essd-8-697-2016, 2016.
- 536 Sheng, J.-X., Jacob, D. J., Turner, A. J., Maasakkers, J. D., Benmergui, J., Bloom, A. A., Arndt, C., Gautam, R.,
- Zavala-Araiza, D., Boesch, H., and Parker, R. J.: 2010–2015 methane trends over Canada, the United States,
 and Mexico observed by the GOSAT satellite: contributions from different source sectors, Atmospheric
 Chemistry and Physics Discussions, pp. 1–18, doi:10.5194/acp-2017-1110, 2018a.
- 540 Sheng, J.-X., Jacob, D. J., Turner, A. J., Maasakkers, J. D., Sulprizio, M. P., Bloom, A. A., Andrews, A. E.,
- and Wunch, D.: High-resolution inversion of methane emissions in the Southeast US using SEAC⁴RS air-
- 542 craft observations of atmospheric methane: anthropogenic and wetland sources, Atmospheric Chemistry and
- 543 Physics Discussions, pp. 1–17, doi:10.5194/acp-2017-1151, 2018b.
- 544 Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., Huang, X.-Y., Wang, W.,
- and Powers, J. G.: A Description of the Advanced Research WRF Version 3, Tech. rep., National Center for
 Atmospheric Research, doi:10.5065/D68S4MVH, 2008.
- 547 Tan, Z., Zhuang, Q., Henze, D. K., Frankenberg, C., Dlugokencky, E., Sweeney, C., Turner, A. J., Sasakawa, M.,
- and Machida, T.: Inverse modeling of pan-Arctic methane emissions at high spatial resolution: what can we
- 549 learn from assimilating satellite retrievals and using different process-based wetland and lake biogeochemical
- 550 models?, Atmospheric Chemistry and Physics, 16, 12649–12666, doi:10.5194/acp-16-12649-2016, 2016.
- Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter Estimation, Society for Industrial
 and Applied Mathematics, Philadelphia, PA, USA, 2004.
- Turner, A. J. and Jacob, D. J.: Balancing aggregation and smoothing errors in inverse models, Atmospheric
 Chemistry and Physics, 15, 7039–7048, doi:10.5194/acp-15-7039-2015, 2015.
- 555 Turner, A. J., Jacob, D. J., Wecht, K. J., Maasakkers, J. D., Lundgren, E., Andrews, A. E., Biraud, S. C.,
- 556 Boesch, H., Bowman, K. W., Deutscher, N. M., Dubey, M. K., Griffith, D. W. T., Hase, F., Kuze, A.,
- 557 Notholt, J., Ohyama, H., Parker, R., Payne, V. H., Sussmann, R., Sweeney, C., Velazco, V. A., Warneke,
- 558 T., Wennberg, P. O., and Wunch, D.: Estimating global and North American methane emissions with high
- spatial resolution using GOSAT satellite data, Atmospheric Chemistry and Physics, 15, 7049–7069, doi:
- 560 10.5194/acp-15-7049-2015, 2015.

- 561 Turner, A. J., Jacob, D. J., Benmergui, J., Wofsy, S. C., Maasakkers, J. D., Butz, A., Hasekamp, O., and Biraud,
- 562 S. C.: A large increase in U.S. methane emissions over the past decade inferred from satellite data and surface
- observations, Geophysical Research Letters, pp. 2218–2224, doi:10.1002/2016gl067987, 2016a.
- Turner, A. J., Shusterman, A. A., McDonald, B. C., Teige, V., Harley, R. A., and Cohen, R. C.: Network
 design for quantifying urban CO₂ emissions: assessing trade-offs between precision and network density,
- 566 Atmospheric Chemistry and Physics, 16, 13 465–13 475, doi:10.5194/acp-16-13465-2016, 2016b.
- 567 Turner, A. J., Frankenberg, C., Wennberg, P. O., and Jacob, D. J.: Ambiguity in the causes for decadal trends
- in atmospheric methane and hydroxyl, Proc Natl Acad Sci U S A, 114, 5367–5372, doi:10.1073/pnas.
 1616020114, 2017.
- 570 Veefkind, J. P., Aben, I., McMullan, K., Frster, H., de Vries, J., Otter, G., Claas, J., Eskes, H. J., de Haan, J. F.,
- 571 Kleipool, Q., van Weele, M., Hasekamp, O., Hoogeveen, R., Landgraf, J., Snel, R., Tol, P., Ingmann, P.,
- 572 Voors, R., Kruizinga, B., Vink, R., Visser, H., and Levelt, P. F.: TROPOMI on the ESA Sentinel-5 Precursor:
- 573 A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone
- layer applications, Remote Sensing of Environment, 120, 70–83, doi:10.1016/j.rse.2011.09.027, 2012.
- 575 Wecht, K. J., Jacob, D. J., Frankenberg, C., Jiang, Z., and Blake, D. R.: Mapping of North American methane
- emissions with high spatial resolution by inversion of SCIAMACHY satellite data, Journal of Geophysical
 Research: Atmospheres, 119, 7741–7756, doi:10.1002/2014jd021551, 2014a.
- 578 Wecht, K. J., Jacob, D. J., Sulprizio, M. P., Santoni, G. W., Wofsy, S. C., Parker, R., Bsch, H., and Worden, J.:
- 579 Spatially resolving methane emissions in California: constraints from the CalNex aircraft campaign and from
- present (GOSAT, TES) and future (TROPOMI, geostationary) satellite observations, Atmospheric Chemistry
 and Physics, 14, 8173–8184, doi:10.5194/acp-14-8173-2014, 2014b.
- 582 Worden, J. R., Turner, A. J., Bloom, A., Kulawik, S. S., Liu, J., Lee, M., Weidner, R., Bowman, K., Frankenberg,
- 583 C., Parker, R., and Payne, V. H.: Quantifying lower tropospheric methane concentrations using GOSAT
- near-IR and TES thermal IR measurements, Atmospheric Measurement Techniques, 8, 3433–3445, doi:
- 585 10.5194/amt-8-3433-2015, 2015.
- Xi, X., Natraj, V., Shia, R. L., Luo, M., Zhang, Q., Newman, S., Sander, S. P., and Yung, Y. L.: Simulated
 retrievals for the remote sensing of CO₂, CH₄, CO, and H₂O from geostationary orbit, Atmospheric Measurement Techniques, 8, 4817–4830, doi:10.5194/amt-8-4817-2015, 2015.
- 589 Zavala-Araiza, D., Lyon, D. R., Alvarez, R. A., Davis, K. J., Harriss, R., Herndon, S. C., Karion, A., Kort,
- 590 E. A., Lamb, B. K., Lan, X., Marchese, A. J., Pacala, S. W., Robinson, A. L., Shepson, P. B., Sweeney,
- 591 C., Talbot, R., Townsend-Small, A., Yacovitch, T. I., Zimmerle, D. J., and Hamburg, S. P.: Reconciling
- 592 divergent estimates of oil and gas methane emissions, Proc Natl Acad Sci U S A, 112, 15 597–602, doi:
- 593 10.1073/pnas.1522126112, 2015.