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Abstract. The growth rate of atmospheric carbon dioxide (CO) reflects the net effect of emissions and uptake
resulting from anthropogenic and natural carbon sources and sinks. Annual mean CO; growth rates have been
determined globally and for selected latitude bands from satellite retrievals of column-average dry-air mole
fractions of COy, i.e., XCOq, for the years 2003 to 2016. The global XCO, growth rates agree with National
Oceanic and Atmospheric Administration (NOAA) growth rates from CO; surface observations within the
uncertainty of the satellite-derived growth rates (mean difference + standard deviation: 0.0£0.3 ppm/year; R:
0.82). This new and independent data set confirms record large growth rates around 3 ppm/year in 2015 and
2016, which are attributed to the 2015/2016 El Nifio. Based on a comparison of the satellite-derived growth rates
with human CO; emissions from fossil fuel combustion and with El Nifio Southern Oscillation (ENSO) indices,
we estimate by how much the impact of ENSO dominates the impact of fossil fuel burning related emissions in

explaining the variance of the atmospheric CO, growth rate.
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1 Introduction

Atmospheric carbon dioxide (CO,) is an important greenhouse gas that causes global warming (IPCC 2013).
Sources that emit CO; into the atmosphere include anthropogenic and natural sources at the surface, and the
oxidation of carbon monoxide and hydrocarbons in the atmosphere. The sinks that remove CO; primarily at the
surface include biological (photosynthesis) and physical (solubility) processes. Anthropogenic emissions of COs,
primarily from fossil fuel combustion, have increased the atmospheric CO, mixing ratios at the surface by more
than 40% since pre-industrial times, from less than 280 parts per million (ppm) to 402.8+0.1 ppm in 2016
(Dlugokencky and Tans, 2017a). A global increase of atmospheric CO, by 1 ppm in a one-year time period
corresponds to an annual increase of 2.12 GtC/year (Ballantyne et al., 2012). However, this increase in mass does
not directly correspond to the emissions. The reason is that only a fraction of the emitted CO; remains in the
atmosphere as CO- is partitioned between the atmosphere and ocean and land carbon sinks. On average,
somewhat less than half of the emitted CO, remains in the atmosphere but this “airborne fraction” varies
substantially from year to year (Le Quéré et al., 2016, 2018). Variations of the airborne fraction are not well
understood primarily because of an inadequate understanding of the terrestrial carbon sink, which introduces
large uncertainties for climate prediction (e.g., IPCC 2013; Peylin et al., 2013; Wieder et al., 2015; Huntzinger et
al., 2017). Identification of the origin of changes of the growth rate requires additional information for the
attribution to particular sources or sinks (Peters et al., 2017). Atmospheric CO, growth rates inferred from in-situ
CO; surface measurements are regularly determined and published, for example, by the National Oceanic and

Atmospheric Administration (NOAA) (see https://www.esrl.noaa.gov/gmd/ccga/trends/gr.html). In this study, we

present and interpret atmospheric growth rates determined from the remote sensing of CO; vertical columns from

space, which are described in the following section.

2 Global satellite observations of atmospheric CO; columns

Satellites provide retrievals of CO, vertical columns in terms of the CO, column-average dry-air mole fraction,
denoted XCO,. Although a relatively new field, satellite-based XCO, data products have already been used to
improve our knowledge of natural (e.g., Basu et al., 2013; Maksyutov et al., 2013; Chevallier et al., 2014; Reuter
et al., 2014a; Schneising et al., 2014; Houweling et al., 2014; Parker et al., 2016; Heymann et al., 2017; Liu et al.,
2017; Kaminski et al., 2017) and anthropogenic (e.g., Schneising et al., 2013; Reuter et al., 2014b; Kort et al.,
2012; Hakkarainen et al., 2016; Nassar et al., 2017) CO. sources and sinks but only a few studies explicitly
present and discuss CO, growth rates. Buchwitz et al., 2007, analyzed the first three years (2003-2005) of XCO;
retrievals from SCIAMACHY/ENVISAT (Burrows et al., 1995; Bovensmann et al., 1999) generated using the
WFM-DOAS retrieval algorithm (Buchwitz et al., 2006). They computed year-to-year CO; variations and
compared the XCO; increase with the XCO, increase computed from the output of NOAA’s CO- assimilating
system CarbonTracker (Peters et al., 2007) and found agreement within 1 ppm/year. Schneising et al., 2014,
computed growth rates from the 2003-2011 SCIAMACHY XCO. record. They compared the derived annual
growth rates with surface temperature and found that years having higher temperatures during the vegetation

growing season are associated with larger growth rates in atmospheric CO, at northern mid-latitudes. Growth
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rates from GOSAT (Kuze et al., 2016) are published by the National Institute for Environmental Studies (NIES),
Tsukuba, Japan (NIES 2017).

In this study, we analyze a new satellite XCO, data set covering 14 years (2003-2016) generated from
SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT. We use the XCO, data product Obs4MIPs (Observations
for Model Intercomparisons Project) version 3 (O4Mv3), which is a gridded (Level 3) monthly data product at 5°
latitude by 5° longitude spatial resolution in Obs4MIPs format (Buchwitz et al.,, 2017a). Obs4MIPs

(https://www.earthsystemcog.org/projects/obs4dmips/) is an activity to make observational products more

accessible for climate model intercomparisons (e.g., Lauer et al., 2017). The O4Mv3 XCO, data product was
generated by gridding (averaging) the XCO, Level 2 (i.e., individual soundings) product generated with the
Ensemble Median Algorithm (EMMA, Reuter et al., 2013). EMMA uses as input an ensemble of XCO- Level 2
data products (Buchwitz et al., 2015, 2017a, 2017b; Reuter et al., 2013) from SCIAMACHY/ENVISAT and
TANSO-FTS/GOSAT. To generate the O4Mv3 product, the EMMA version 3.0 (EMMAV3, Reuter et al., 2017¢)
product was used. The list of satellite products used for the generation of the EMMAV3 Level 2 product - and
therefore also for the O4Mv3 Level 3 data product used in this study - is provided in Tab. 1. The quality of this
product relative to Total Carbon Column Observing Network (TCCON) ground-based observations (Wunch et
al., 2011, 2015) can be summarized as follows (Buchwitz et al., 2017c): +0.23 ppm overall (global) bias, relative

accuracy 0.3 ppm (1-sigma), and very good stability in terms of linear bias trend (-0.02+0.04 ppm/year).

Figure 1 presents an overview of the O4Mv3 product in terms of time series and global XCO, maps. The maps
show the typical coverage of XCO, from SCIAMACHY (until April 2012) and GOSAT (since mid 2009). As can
be seen, the time series for the three latitude bands shown in Fig. 1 have very similar slopes. They mainly differ
in the amplitude of the seasonal cycle, which reflects the latitudinal dependence of uptake and release of
atmospheric CO; by the terrestrial biosphere (Schneising et al., 2014). These time series have been used to

compute annual mean CO; growth rates as will be explained in the following section.

3 Atmospheric CO; growth rates from satellite observations

National Oceanic and Atmospheric Administration (NOAA) defines the annual mean CO; growth rate for a given
year as the CO- concentration difference at the end of that year minus the CO, concentration at the beginning of
that year (Thoning et al., 1989; see also additional explanations as given on the NOAA/ESRL website

(https://www.esrl.noaa.gov/gmd/ccgg/about/global_means.html)). We adopt this definition. As described below,

our method involves the following three steps: (i) Computation of an XCO; time series (at monthly resolution
and sampling) by averaging the XCO- in the region of interest. (ii) Computation of monthly sampled XCO,
annual growth rates by computing the difference of the XCO; value of month i minus the XCO; value of month i-
12 and computation of the corresponding uncertainty estimate. (iii) Computation of annual mean growth rates and

their corresponding uncertainties from the monthly sampled annual growth rates.

In the following, this method is described in detail using Fig. 2 for illustration. Figure 2 shows how the growth
rates are computed for the latitude band 30°N-60°N, i.e., for northern mid-latitudes. In Figure 2a monthly satellite
XCO; (04Mv3), as obtained by averaging all the individual (5°x5°) XCO; values in the selected latitude band, is
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plotted. To compute the spatially averaged XCO, time series (shown in Fig. 2a), we first longitudinally average
the XCO, followed by the computation of the area-weighted latitudinal average of XCO; by using the cosine of
latitude as weight. We consider surface area because surface fluxes are linked to mass of CO; (or number of CO,
molecules) rather than molecular mixing ratios or mole fractions. As can be seen, the computed time series does
not start at the beginning of 2003 but in April 2003. As explained in Buchwitz et al., 2017d (see discussion of
their Fig. 6.1.1.1) the underlying SCIAMACHY BESD v02.01.02 XCO; data product (see Tab. 1) apparently
suffers from an approximately 1 ppm high bias in the first few months of 2003. The exact magnitude of this bias
has not been quantified due to lack of TCCON validation data in this early time period. As this bias in early 2003
is critical for the year 2003 growth rate, we have omitted the first three months of 2003 for the computation of the

growth rates shown in this publication.

Figure 2b shows monthly sampled annual growth rates as computed from the monthly XCO, values shown in
Fig. 2a. Each value is the difference of two monthly XCO, values corresponding to the same month (e.g.,
January) but different years (e.g., 2004 and 2005). For example, the first data point (first diamond symbol) shown
in Fig. 2b is the difference of the April 2004 XCO; value minus the April 2003 XCO; value. The second data
point corresponds to May 2004 minus May 2003, etc. The time difference between the monthly XCO; pairs is
always one year and the time assigned to each XCO; difference is the time in the middle of that year. Therefore,
the time series shown in Fig. 2b starts six months later and ends six months earlier as compared to the time series
shown in Fig. 2a. Each XCO, difference shown in Fig. 2b therefore corresponds to an estimate of the XCO,
annual growth rate and the position on the time-axis corresponds to the middle of the corresponding one-year

time period.

A 1-sigma uncertainty estimate has been computed for each of the monthly sampled annual growth rates shown
in Fig. 2b (see grey vertical bars). They have been computed such that they reflect the following aspects: (i) the
standard error of the O4Mv3 XCO; values as given in the O4Mv3 data product file for each of the 5°x5° grid
cells, (ii) the spatial variability of the XCO, within the selected region, (iii) the temporal variability of the annual
growth rates in the one year time interval, which corresponds to the annual growth rate, and (iv) the number of
months (N) with data located in that one year time interval. The uncertainties have been computed as the mean
value of three terms divided by the square root of N. The first term is the mean value of the standard error, the
second term is the standard deviation of the XCO, values in the selected region and the third term is the standard

deviation of the monthly sampled annual growth rates in the corresponding one-year time interval.

Figure 2c shows the final result, i.e., the annual mean XCO, growth rates and their estimated (1-sigma)
uncertainties. The annual mean growth rates have been computed by averaging all the monthly sampled annual
growth rates (shown in Fig. 2b), which are located in the year of interest (e.g., 2003). For most years, 12 annual
growth rate values are available for averaging but there are some exceptions. For example, for the year 2003 only
3 values are present as can be seen from Fig. 2b and for the years 2014 and 2015 there are only 11 values as no
data are available for January 2015 due to issues with the GOSAT satellite. The uncertainty of the annual mean
growth rate has been computed by averaging the uncertainties assigned to each of the monthly sampled annual
growth rates (shown as grey vertical bars in Fig. 2b) scaled with a factor, which depends on the number of

months (N) available for averaging. This factor is the square root of 12/N. It ensures that the uncertainty is larger,
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the less data points are available for averaging. Overall, our uncertainty estimate is quite conservative, as we do
not assume that errors improve upon averaging. As a result of this procedure, the error bar of the year 2003
growth rate is quite large (0.72 ppm/year, see Tab. 2, where all numerical values are listed). This is because the
monthly sampled annual growth rate varies significantly in 2003 (see Fig. 2b) and because only N=3 data points
are available for averaging in 2003. In contrast, the year 2005 growth rate uncertainty is much smaller (0.26
ppm/year) because the growth rates vary only little during 2005 and because N=12 data points are available for

averaging.

Figure 3 shows the corresponding results for the global data set. As can be seen, all time series are similar to the
ones shown in Fig. 2 for northern mid-latitudes. However, there are also difference, e.g., the seasonal cycles as
shown in Fig. 2a and Fig. 3a. For northern mid-latitudes (Fig. 2a) the shape of these cycles is very similar for all
years in contrast to the global data shown in Fig. 3a. This is due to spatial sampling differences as the first few
years (until 2008) are “land only” data as the SCIAMACHY XCO:; is limited to observations over land whereas
GOSAT XCO- (from 2009 onwards) is not restricted to land (see global maps shown in Fig. 1). For the northern
mid-latitude region the land coverage dominates (see global map in Fig. 2a). Therefore, for northern mid-latitudes
SCIAMACHY and GOSAT sample similar regions, in contrast to the global region (Fig. 3), where the spatial
sampling differences are larger. In Fig. 3c also the NOAA global growth rates (Dlugokencky and Tans, 2017b)
are shown. As can be seen, the satellite-derived growth rates agree well with the NOAA growth rates obtained
from CO; surface observations. For the time period 2003-2016 the linear correlation coefficient R is 0.82 and the
difference is -0.02+0.28 ppm/year (mean difference + standard deviation). Perfect agreement is not to be
expected as these two growth rate time series have been obtained from CO; observations, which represent very

different vertical sampling of the atmosphere (surface (NOAA) versus entire vertical column (satellite)).

Growth rate time series for several latitude bands are shown in Fig. 4. As can be seen from Fig. 4, the growth
rates are similar in all latitude bands including the global results (for numerical values see Tab. 2). The reason for
this is that atmospheric CO is long-lived and therefore well-mixed. As a result of atmospheric transport and mixing,
similar mean annual CO, growth rates, within their measurements error, are expected for all values derived at the different
latitude bands. This behaviour is shown in Fig. 4 and is interpreted as an indication of the good quality of the satellite XCO;
data product and the adequacy of the method used to compute the annual mean CO, growth rates. As can also be seen
from Fig. 4, the largest growth rates are approximately 3 ppm/year during 2015 and 2016. These record large
growth rates (Peters et al., 2017) are attributed to the consequences of the strong 2015/2016 El Nifio event, which
produced large CO; emissions from fires and enhanced net biospheric respiration in the tropics relative to normal
conditions (Heymann et al., 2017; Liu et al., 2017). Many of these fires are initiated by humans, for example, to
clear tropical forests. In this study, human emissions of CO; are defined as emissions from fossil fuel combustion
and industry (Le Quéré et al., 2016, 2018) but do not include, for example, CO emissions originating from slash

and burn agriculture.

4 Correlation of CO; growth rates with fossil CO emissions and ENSO indices

Figure 5 shows a comparison of the CO, annual mean growth rates (Fig. 5a) with annual global CO, emissions

from fossil fuel combustion and industry (Fig. 5b) (Le Quéré et al., 2018; GCP 2017) (correlation of growth rate
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and human emissions: R?= 31%). As can be seen, the growth rates vary significantly in recent years despite
nearly constant human emissions. Figure 5d shows two ENSO indices: the Southern Oscillation Index (SOI, blue
lines) (NOAA 2017a; Ropelewski and Jones, 1987) and the Oceanic Nifio Index (ONI, green lines) (NOAA
2017b). Whereas SOI is defined as the normalized pressure difference between Tahiti and Darwin (values less
than -1 indicate the presence of a strong El Nifio), ONI is based on Sea Surface Temperature (SST) differences
(positive values correspond to El Nifio). The dotted lines correspond to the original (i.e., unshifted) annual mean
indices and the solid lines correspond to time shifted ENSO indices. Time shifts have been investigated to
consider the delay in atmospheric response to ENSO-induced changes. As shown in Fig. 5c, the growth rate
response as quantified by R? is largest after 4 months for ONI (R? = 35%) and after 7 months for SOI (R? = 30%).
These maxima have been adopted for the solid (shifted) lines in Fig 5d. This finding is consistent with results
from other studies, where lags in the range 3-9 months have been reported (Jones et al., 2001; Chylek et al.,
2018).

In order to quantify the impact of the human CO- emissions and of ENSO, as described by the two indices SOI
and ONI, on growth rate variations, we employ the method of “variation partitioning” (Peres-Neto et al., 2006).
We have fitted three basis functions to the 2003-2016 growth rate time series via linear least-squares
minimization (we explain the method in this paragraph using SOI but the method does not depend on which
ENSO index is used): (i) a constant offset (variance zero), (ii) the human CO, emissions (Fig. 5b) and (iii) SOI
shifted by 7 months (blue solid line in Fig. 5d). The variance of the scaled emission, i.e., of the human emission
scaled with the corresponding fit parameter, is 0.0758 ppm?/year? (note that in this section we report numerical
values with four digital places but this shall not imply that all decimal places are significant). The variance of the
scaled SOI is 0.1070 ppm?/year? and the variance of the fit residual is 0.0728 ppm?/year?. The sum of the three
individual variances is 0.2557 ppm?/year? whereas the variance of the annual mean growth rate is 0.2307
ppm?/year?. This shows that the sum of the variances is 10.8% larger than the variance of the growth rate, i.e., the
sum of the variances is not exactly equal to the variance of the sum. The reason for this is that the CO, emission
and the SOI time series are not uncorrelated (R = 0.14). To account for correlations, we subtract the variance of
the residual from the variance of the growth rate. The result is the part of the variance to be explained by the
emissions and by the SOI. The ratio of this to be explained variance (0.1579 ppm?/year?) and the sum of the
variances of the emissions and SOI ((0.0758 + 0.1070) ppm?/year?= 0.1828 ppm?/year?) is 0.8638. The latter is
then used as a scaling factor applied to the variances of the emissions and of the SOI. The scaled variances are
0.0655 ppm?/year?for the emissions and 0.0924 ppm?/year? for SOI (note that the sum of these scaled variances
and the variance of the residual is equal to the variance of the growth rate). From this we conclude that the human
emissions explain 28% (= 0.0655/0.2307) of the variance of the growth rate and that ENSO as quantified by the
SOI explains 40% (= 0.0924/0.2307). We computed (1-sigma) uncertainties of these estimates by numerically
perturbing the satellite-derived annual mean growth rates taking into account their uncertainty (see Fig. 4) and by
subsequently repeating the computations as explained above 10,000 times. The perturbations correspond to
random perturbations of the annual mean growth rates assuming normal distributions for each year and no
correlation between the different years. This analysis yields that 40+£13% of the growth rate variation results from
the impact of ENSO and that 28+14% is due to the human emissions of CO,. Using these simulations, we also

computed the fraction of cases where the ENSO impact dominates over the human emissions. This fraction is
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63% in this case, i.e., when using SOI and when the analysis is applied to the entire time period 2003-2016. This
fraction is interpreted as the probability that ENSO-induced impacts on the variation of the growth rate dominates

that of human emissions.

When using ONI instead of SOI, ENSO explains 37+£14% of the growth rate variance during 2003-2016, human
emissions explain 24+14% and the fraction where ENSO dominates is again 63%. When restricting the time
period to 2010-2016, which is dominated by strong 2010/2012 La Nifia events (Boening et al., 2012; Rodrigues et
al., 2014) and by the strong 2015/2016 EI Nifio, the results are the following: Using the SOI analysis, we find that
ENSO explains 58+19% of the variance, human emissions explain 2+9% and the probability that ENSO
dominates is 94%. For the ONI analysis, we find that ENSO explains 59+20% of the variance, human emissions
explain 3+9% and the probability that ENSO dominates is 94%. This analysis shows that the ENSO impact on
CO, growth rate variations dominates over that of human emissions throughout the period 2003-2016 but in

particular in the second half of this period, i.e., during 2010-2016.

5 Conclusions

We presented a method for the computation of atmospheric CO column annual mean growth rates from satellite
XCO; retrievals. The satellite XCO, data product used is the Obs4MIPs version 3 (O4Mv3) XCO, data product
based on SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT satellite data. This product covers the time period
2003-2016 and has monthly time and 5°x5° spatial resolution.

The presented method has been applied to the global satellite data and to selected latitude bands. The estimated
uncertainty of the satellite-derived annual mean growth rates is typically in the range 0.3-0.5 ppm/year (1-sigma).
The global growth rates agree with NOAA within the uncertainty of the satellite-derived growth rates (mean
difference + standard deviation: 0.0+0.3 ppm/year; R: 0.82). In agreement with NOAA, we find that the growth
rates are largest in the years 2015 and 2016. These growth rates are around 3 ppm/year and are attributed to the
2015/2016 EI Nifio resulting in large CO, emissions from fires and enhanced net biospheric respiration in the
tropics relative to normal conditions (Heymann et al., 2017; Liu et al., 2017). Our analysis also shows that the
ENSO impact on CO, growth rate variations dominates over that of human emissions throughout the period
2003-2016 (14 years) but in particular during the period 2010-2016 (second half of the investigated time period)
due to strong La Nifia and EI Nifio events. We estimate the probability that the impact of ENSO on the variability
is larger than the impact of human emissions to be 63% for the time period 2003-2016. If the time period is
restricted to 2010-2016 this probability increases to 94%.

In the future, we plan to regularly update the satellite-derived XCO, growth rates to monitor this important
quantity. This will also include satellite XCO, retrievals from other satellite instruments such as XCO, from
NASA’s OCO-2 mission (e.g., Eldering et al., 2017; Reuter et al., 2017c, 2017d).
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Figure 1. Time series and global maps of satellite-derived column-average dry-air mole fractions of carbon
dioxide, i.e., XCO,. Shown is data product Obs4MIPs version 3 (O4Mv3) based on an ensemble of
SCIAMACHY/ENVISAT (until April 2012) and TANSO-FTS/GOSAT (since mid 2009) individual sensor /
individual soundings (Level 2) data products. The three time series correspond to three latitude bands: 30°N-60°N
(red), 30°S-30°N (green) and 60°S-30°S (blue). The maps in the top left show monthly XCO, for April and
September 2003 (SCIAMACHY, land only) and the maps on the bottom right show monthly XCO, for April and

10 September 2016 (TANSO-FTS, land and ocean glint).
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5 Figure 2. Atmospheric CO; and corresponding growth rates for northern mid-latitudes. (a) Monthly mean XCO,
(red line) for northern mid-latitudes obtained from averaging XCO- data product O4Mv3 in the latitude band
30°N-60°N (see red rectangle in global map). (b) Monthly sampled annual CO, growth rates as computed from
the red curve shown in (a) including 1-sigma uncertainty (grey vertical bars). (c) Annual mean growth rates
computed from averaging the values shown in (b) including 1-sigma error estimates (vertical bars) (the numerical

10 values are listed in Tab. 2).
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comparison (in blue). Also listed in (c) is the linear correlation coefficient (R), the mean difference and the
standard deviation of the difference of the satellite and the NOAA growth rates for 2003-2016 and for 2004-2016.
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Satellite-derived Carbon Dioxide (CO,) annual mean growth rate
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5 Figure 4. Satellite-derived annual mean XCO; growth rates: Global (black), Northern Hemisphere (NH) mid
latitudes (“NHmidlat” (30°N - 60°N), red), Tropics (30°S - 30°N, green), and Southern Hemisphere mid latitudes
(“SHmidlat” (60°S - 30°S), blue). The corresponding numerical values are listed in Tab. 2.
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5 Figure 5. Carbon dioxide global annual mean growth rates compared with human emissions and ENSO indices.
(a) Satellite-derived global annual mean growth rates (same as black line in Fig. 4). (b) CO, emissions from fossil
fuel and industry (the correlation with the growth rate is R? = 31%). (c) Correlation in terms of R? of growth rate
and annual SOI (blue curve) and ONI (green curve) as a function of time shift in months. (d) Annual SOI for no
shift (blue dotted line, R? = 10%) and for a shift of 7 months (blue solid line, R? = 30%) and annual ONI for no

10 shift (green dotted line, R? = 13%) and for a shift of 4 months (green solid line, R? = 35%).
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Table 1. Satellite XCO,, data products. Individual satellite sensor XCO; algorithms and corresponding Level 2
data products used for generating the EMMAWV3 Level 2 (i.e., individual soundings) data product, which has been
gridded to obtain the O4Mv3 Level 3 data product used in this study. GHG-CCI refers to the GHG-CCI project of
ESA’s Climate Change Initiative (http://www.esa-ghg-cci.org/) and C3S is the Copernicus Climate Change

Service (https://climate.copernicus.eu/).

Algorithm (Version) Sensor Comment Reference

BESD (v02.01.02) | SCIAMACHY /ENVISAT | GHG-CCI/C3S product ID: | Reuter etal., 2011
CO2_SCI_BESD

RemoTeC (v2.3.8) TANSO-FTS / GOSAT GHG-CCI / C3S product ID: Butz et al., 2011
CO2_GOS_SRFP

UoL-FP (v7.1) TANSO-FTS / GOSAT GHG-CCI / C3S product ID: Cogan et al., 2012
CO2_GOS_OCFP

ACOS (v7.3.10a) TANSO-FTS / GOSAT NASA’s GOSAT O’Dell et al., 2012
XCO; product
NIES (v02) TANSO-FTS / GOSAT Operational GOSAT product Yoshida et al., 2013
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Table 2. Satellite-derived annual mean XCO; growth rates in ppm/year including 1-sigma uncertainty (in

brackets). Abbreviations: NH is Northern Hemisphere and SH is Southern Hemisphere.

Latitude band / region

Year Global NH mid-latitudes Tropics SH mid-latitudes
(30°N-60°N) (30°S-30°N) (60°S-30°S)
2003 1.66 (0.76) 1.99 (0.72) 1.54 (0.74) 1.77 (0.62)
2004 1.59 (0.30) 1.52 (0.29) 1.71(0.29) 1.30 (0.23)
2005 2.16 (0.28) 2.51 (0.26) 1.99 (0.28) 2.17 (0.22)
2006 2.21(0.27) 2.13(0.25) 2.22 (0.27) 2.33(0.21)
2007 2.26 (0.27) 2.33(0.25) 2.20 (0.26) 2.34 (0.21)
2008 1.67 (0.29) 1.60 (0.27) 1.81(0.28) 1.41 (0.20)
2009 1.77 (0.30) 1.75 (0.30) 1.86 (0.28) 1.70 (0.21)
2010 2.22 (0.29) 2.67 (0.29) 2.08 (0.27) 2.14 (0.20)
2011 1.86 (0.28) 1.69 (0.27) 1.86 (0.27) 2.19 (0.19)
2012 2.46 (0.29) 2.64 (0.28) 2.44 (0.27) 2.38 (0.21)
2013 2.27 (0.30) 2.38 (0.28) 2.27 (0.28) 2.10 (0.22)
2014 1.74 (0.31) 1.53 (0.30) 1.80 (0.29) 1.84 (0.23)
2015 2.89 (0.34) 2.89 (0.31) 2.97 (0.32) 2.54 (0.25)
2016 3.23(0.50) 3.28 (0.46) 3.23 (0.48) 3.41 (0.36)
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