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Abstract. The growth rate of atmospheric carbon dioxide (CO2) reflects the net effect of emissions and uptake 

resulting from anthropogenic and natural carbon sources and sinks. Annual mean CO2 growth rates have been 

determined globally and for selected latitude bands from satellite retrievals of column-average dry-air mole 

fractions of CO2, i.e., XCO2, for the years 2003 to 2016. The global XCO2 growth rates agree with National 25 

Oceanic and Atmospheric Administration (NOAA) growth rates from CO2 surface observations within the 

uncertainty of the satellite-derived growth rates (mean difference ± standard deviation: 0.0±0.3 ppm/year; R: 

0.82). This new and independent data set confirms record large growth rates around 3 ppm/year in 2015 and 

2016, which are attributed to the 2015/2016 El Niño. Based on a comparison of the satellite-derived growth rates 

with human CO2 emissions from fossil fuel combustion and with El Niño Southern Oscillation (ENSO) indices, 30 

we estimate by how much the impact of ENSO dominates the impact of fossil fuel burning related emissions in 

explaining the variance of the atmospheric CO2 growth rate.  
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1  Introduction 

Atmospheric carbon dioxide (CO2) is an important greenhouse gas that causes global warming  (IPCC 2013). 

Sources that emit CO2 into the atmosphere include anthropogenic and natural sources at the surface, and the 

oxidation of carbon monoxide and hydrocarbons in the atmosphere. The sinks that remove CO2 primarily at the 5 

surface include biological (photosynthesis) and physical (solubility) processes. Anthropogenic emissions of CO2, 

primarily from fossil fuel combustion, have increased the atmospheric CO2 mixing ratios at the surface by more 

than 40% since pre-industrial times, from less than 280 parts per million (ppm) to 402.8±0.1 ppm in 2016 

(Dlugokencky and Tans, 2017a).  A global increase of atmospheric CO2 by 1 ppm in a one-year time period 

corresponds to an annual increase of 2.12 GtC/year (Ballantyne et al., 2012). However, this increase in mass does 10 

not directly correspond to the emissions. The reason is that only a fraction of the emitted CO2 remains in the 

atmosphere as CO2 is partitioned between the atmosphere and ocean and land carbon sinks. On average, 

somewhat less than half of the emitted CO2 remains in the atmosphere but this “airborne fraction” varies 

substantially from year to year (Le Quéré et al., 2016, 2018). Variations of the airborne fraction are not well 

understood primarily because of an inadequate understanding of the terrestrial carbon sink, which introduces 15 

large uncertainties for climate prediction (e.g., IPCC 2013; Peylin et al., 2013; Wieder et al., 2015; Huntzinger et 

al., 2017). Identification of the origin of changes of the growth rate requires additional information for the 

attribution to particular sources or sinks (Peters et al., 2017). Atmospheric CO2 growth rates inferred from in-situ 

CO2 surface measurements are regularly determined and published, for example, by the National Oceanic and 

Atmospheric Administration (NOAA) (see https://www.esrl.noaa.gov/gmd/ccgg/trends/gr.html). In this study, we 20 

present and interpret atmospheric growth rates determined from the remote sensing of CO2 vertical columns from 

space, which are described in the following section. 

 

2  Global satellite observations of atmospheric CO2 columns 

Satellites provide retrievals of CO2 vertical columns in terms of the CO2 column-average dry-air mole fraction, 25 

denoted XCO2.  Although a relatively new field, satellite-based XCO2 data products have already been used to 

improve our knowledge of natural (e.g., Basu et al., 2013; Maksyutov et al., 2013; Chevallier et al., 2014; Reuter 

et al., 2014a; Schneising et al., 2014; Houweling et al., 2014; Parker et al., 2016; Heymann et al., 2017; Liu et al., 

2017; Kaminski et al., 2017) and anthropogenic (e.g., Schneising et al., 2013; Reuter et al., 2014b; Kort et al., 

2012; Hakkarainen et al., 2016; Nassar et al., 2017) CO2 sources and sinks but only a few studies explicitly 30 

present and discuss CO2 growth rates. Buchwitz et al., 2007, analyzed the first three years (2003-2005) of XCO2 

retrievals from SCIAMACHY/ENVISAT (Burrows et al., 1995; Bovensmann et al., 1999) generated using the 

WFM-DOAS retrieval algorithm (Buchwitz et al., 2006). They computed year-to-year CO2 variations and 

compared the XCO2 increase with the XCO2 increase computed from the output of NOAA’s CO2 assimilating 

system CarbonTracker (Peters et al., 2007) and found agreement within 1 ppm/year. Schneising et al., 2014, 35 

computed growth rates from the 2003-2011 SCIAMACHY XCO2 record. They compared the derived annual 

growth rates with surface temperature and found that years having higher temperatures during the vegetation 

growing season are associated with larger growth rates in atmospheric CO2 at northern mid-latitudes. Growth 

https://www.esrl.noaa.gov/gmd/ccgg/trends/gr.html
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rates from GOSAT (Kuze et al., 2016) are published by the National Institute for Environmental Studies (NIES), 

Tsukuba, Japan (NIES 2017). 

In this study, we analyze a new satellite XCO2 data set covering 14 years (2003-2016) generated from 

SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT. We use the XCO2 data product Obs4MIPs (Observations 

for Model Intercomparisons Project) version 3 (O4Mv3), which is a gridded (Level 3) monthly data product at 5o 5 

latitude by 5o longitude spatial resolution in Obs4MIPs format (Buchwitz et al., 2017a). Obs4MIPs 

(https://www.earthsystemcog.org/projects/obs4mips/) is an activity to make observational products more 

accessible for climate model intercomparisons (e.g., Lauer et al., 2017). The O4Mv3 XCO2 data product was 

generated by gridding (averaging) the XCO2 Level 2 (i.e., individual soundings) product generated with the 

Ensemble Median Algorithm (EMMA, Reuter et al., 2013). EMMA uses as input an ensemble of XCO2 Level 2 10 

data products (Buchwitz et al., 2015, 2017a, 2017b; Reuter et al., 2013) from SCIAMACHY/ENVISAT and 

TANSO-FTS/GOSAT. To generate the O4Mv3 product, the EMMA version 3.0 (EMMAv3, Reuter et al., 2017e) 

product was used. The list of satellite products used for the generation of the EMMAv3 Level 2 product - and 

therefore also for the O4Mv3 Level 3 data product used in this study - is provided in Tab. 1. The quality of this 

product relative to Total Carbon Column Observing Network (TCCON) ground-based observations (Wunch et 15 

al., 2011, 2015) can be summarized as follows (Buchwitz et al., 2017c): +0.23 ppm overall (global) bias, relative 

accuracy 0.3 ppm (1-sigma), and very good stability in terms of linear bias trend (-0.02±0.04 ppm/year). 

Figure 1 presents an overview of the O4Mv3 product in terms of time series and global XCO2 maps. The maps 

show the typical coverage of XCO2 from SCIAMACHY (until April 2012) and GOSAT (since mid 2009). As can 

be seen, the time series for the three latitude bands shown in Fig. 1 have very similar slopes. They mainly differ 20 

in the amplitude of the seasonal cycle, which reflects the latitudinal dependence of uptake and release of 

atmospheric CO2 by the terrestrial biosphere (Schneising et al., 2014). These time series have been used to 

compute annual mean CO2 growth rates as will be explained in the following section. 

 

3  Atmospheric CO2 growth rates from satellite observations 25 

National Oceanic and Atmospheric Administration (NOAA) defines the annual mean CO2 growth rate for a given 

year as the CO2 concentration difference at the end of that year minus the CO2 concentration at the beginning of 

that year (Thoning et al., 1989; see also additional explanations as given on the NOAA/ESRL website 

(https://www.esrl.noaa.gov/gmd/ccgg/about/global_means.html)). We adopt this definition. As described below, 

our method involves the following three steps: (i) Computation of an XCO2 time series (at monthly resolution 30 

and sampling) by averaging the XCO2 in the region of interest.   (ii) Computation of monthly sampled XCO2 

annual growth rates by computing the difference of the XCO2 value of month i minus the XCO2 value of month i-

12 and computation of the corresponding uncertainty estimate. (iii) Computation of annual mean growth rates and 

their corresponding uncertainties from the monthly sampled annual growth rates.   

 In the following, this method is described in detail using Fig. 2 for illustration. Figure 2 shows how the growth 35 

rates are computed for the latitude band 30oN-60oN, i.e., for northern mid-latitudes. In Figure 2a monthly satellite 

XCO2 (O4Mv3), as obtained by averaging all the individual (5ox5o) XCO2 values in the selected latitude band, is 

https://www.earthsystemcog.org/projects/obs4mips/
https://www.esrl.noaa.gov/gmd/ccgg/about/global_means.html)
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plotted. To compute the spatially averaged XCO2 time series (shown in Fig. 2a), we first longitudinally average 

the XCO2 followed by the computation of the area-weighted latitudinal average of XCO2 by using the cosine of 

latitude as weight. We consider surface area because surface fluxes are linked to mass of CO2 (or number of CO2 

molecules) rather than molecular mixing ratios or mole fractions. As can be seen, the computed time series does 

not start at the beginning of 2003 but in April 2003. As explained in Buchwitz et al., 2017d (see discussion of 5 

their Fig. 6.1.1.1) the underlying SCIAMACHY BESD v02.01.02 XCO2 data product (see Tab. 1) apparently 

suffers from an approximately 1 ppm high bias in the first few months of 2003. The exact magnitude of this bias 

has not been quantified due to lack of TCCON validation data in this early time period. As this bias in early 2003 

is critical for the year 2003 growth rate, we have omitted the first three months of 2003 for the computation of the 

growth rates shown in this publication.   10 

Figure 2b shows monthly sampled annual growth rates as computed from the monthly XCO2 values shown in 

Fig. 2a. Each value is the difference of two monthly XCO2 values corresponding to the same month (e.g., 

January) but different years (e.g., 2004 and 2005). For example, the first data point (first diamond symbol) shown 

in Fig. 2b is the difference of the April 2004 XCO2 value minus the April 2003 XCO2 value. The second data 

point corresponds to May 2004 minus May 2003, etc.  The time difference between the monthly XCO2 pairs is 15 

always one year and the time assigned to each XCO2 difference is the time in the middle of that year. Therefore, 

the time series shown in Fig. 2b starts six months later and ends six months earlier as compared to the time series 

shown in Fig. 2a. Each XCO2 difference shown in Fig. 2b therefore corresponds to an estimate of the XCO2 

annual growth rate and the position on the time-axis corresponds to the middle of the corresponding one-year 

time period.  20 

A 1-sigma uncertainty estimate has been computed for each of the monthly sampled annual growth rates shown 

in Fig. 2b (see grey vertical bars). They have been computed such that they reflect the following aspects: (i) the 

standard error of the O4Mv3 XCO2 values as given in the O4Mv3 data product file for each of the 5ox5o grid 

cells, (ii) the spatial variability of the XCO2 within the selected region, (iii) the temporal variability of the annual 

growth rates in the one year time interval, which corresponds to the annual growth rate, and (iv) the number of 25 

months (N) with data located in that one year time interval. The uncertainties have been computed as the mean 

value of three terms divided by the square root of N. The first term is the mean value of the standard error, the 

second term is the standard deviation of the XCO2 values in the selected region and the third term is the standard 

deviation of the monthly sampled annual growth rates in the corresponding one-year time interval. 

Figure 2c shows the final result, i.e., the annual mean XCO2 growth rates and their estimated (1-sigma) 30 

uncertainties. The annual mean growth rates have been computed by averaging all the monthly sampled annual 

growth rates (shown in Fig. 2b), which are located in the year of interest (e.g., 2003). For most years, 12 annual 

growth rate values are available for averaging but there are some exceptions. For example, for the year 2003 only 

3 values are present as can be seen from Fig. 2b and for the years 2014 and 2015 there are only 11 values as no 

data are available for January 2015 due to issues with the GOSAT satellite. The uncertainty of the annual mean 35 

growth rate has been computed by averaging the uncertainties assigned to each of the monthly sampled annual 

growth rates (shown as grey vertical bars in Fig. 2b) scaled with a factor, which depends on the number of 

months (N) available for averaging. This factor is the square root of 12/N. It ensures that the uncertainty is larger, 
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the less data points are available for averaging.  Overall, our uncertainty estimate is quite conservative, as we do 

not assume that errors improve upon averaging. As a result of this procedure, the error bar of the year 2003 

growth rate is quite large (0.72 ppm/year, see Tab. 2, where all numerical values are listed). This is because the 

monthly sampled annual growth rate varies significantly in 2003 (see Fig. 2b) and because only N=3 data points 

are available for averaging in 2003. In contrast, the year 2005 growth rate uncertainty is much smaller (0.26 5 

ppm/year) because the growth rates vary only little during 2005 and because N=12 data points are available for 

averaging. 

Figure 3 shows the corresponding results for the global data set. As can be seen, all time series are similar to the 

ones shown in Fig. 2 for northern mid-latitudes. However, there are also difference, e.g., the seasonal cycles as 

shown in Fig. 2a and Fig. 3a. For northern mid-latitudes (Fig. 2a) the shape of these cycles is very similar for all 10 

years in contrast to the global data shown in Fig. 3a. This is due to spatial sampling differences as the first few 

years (until 2008) are “land only” data as the SCIAMACHY XCO2 is limited to observations over land whereas 

GOSAT XCO2 (from 2009 onwards) is not restricted to land (see global maps shown in Fig. 1). For the northern 

mid-latitude region the land coverage dominates (see global map in Fig. 2a). Therefore, for northern mid-latitudes 

SCIAMACHY and GOSAT sample similar regions, in contrast to the global region (Fig. 3), where the spatial 15 

sampling differences are larger. In Fig. 3c also the NOAA global growth rates (Dlugokencky and Tans, 2017b) 

are shown. As can be seen, the satellite-derived growth rates agree well with the NOAA growth rates obtained 

from CO2 surface observations. For the time period 2003-2016 the linear correlation coefficient R is 0.82 and the 

difference is -0.02±0.28 ppm/year (mean difference ± standard deviation). Perfect agreement is not to be 

expected as these two growth rate time series have been obtained from CO2 observations, which represent very 20 

different vertical sampling of the atmosphere (surface (NOAA) versus entire vertical column (satellite)). 

Growth rate time series for several latitude bands are shown in Fig. 4. As can be seen from Fig. 4, the growth 

rates are similar in all latitude bands including the global results (for numerical values see Tab. 2). The reason for 

this is that atmospheric CO2 is long-lived and therefore well-mixed. As a result of atmospheric transport and mixing, 

similar mean annual CO2 growth rates, within their measurements error, are expected for all values derived at the different 25 

latitude bands. This behaviour is shown in Fig. 4 and is interpreted as an indication of the good quality of the satellite XCO2 

data product and the adequacy of the method used to compute the annual mean CO2 growth rates. As can also be seen 

from Fig. 4, the largest growth rates are approximately 3 ppm/year during 2015 and 2016. These record large 

growth rates (Peters et al., 2017) are attributed to the consequences of the strong 2015/2016 El Niño event, which 

produced large CO2 emissions from fires and enhanced net biospheric respiration in the tropics relative to normal 30 

conditions (Heymann et al., 2017; Liu et al., 2017). Many of these fires are initiated by humans, for example, to 

clear tropical forests. In this study, human emissions of CO2 are defined as emissions from fossil fuel combustion 

and industry (Le Quéré et al., 2016, 2018) but do not include, for example, CO2 emissions originating from slash 

and burn agriculture. 

 35 

4  Correlation of CO2 growth rates with fossil CO2 emissions and ENSO indices 

Figure 5 shows a comparison of the CO2 annual mean growth rates (Fig. 5a) with annual global CO2 emissions 

from fossil fuel combustion and industry (Fig. 5b) (Le Quéré et al., 2018; GCP 2017) (correlation of growth rate 
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and human emissions: R2 = 31%). As can be seen, the growth rates vary significantly in recent years despite 

nearly constant human emissions. Figure 5d shows two ENSO indices: the Southern Oscillation Index (SOI, blue 

lines) (NOAA 2017a; Ropelewski and Jones, 1987) and the Oceanic Niño Index (ONI, green lines) (NOAA 

2017b). Whereas SOI is defined as the normalized pressure difference between Tahiti and Darwin (values less 

than -1 indicate the presence of a strong El Niño), ONI is based on Sea Surface Temperature (SST) differences 5 

(positive values correspond to El Niño). The dotted lines correspond to the original (i.e., unshifted) annual mean 

indices and the solid lines correspond to time shifted ENSO indices. Time shifts have been investigated to 

consider the delay in atmospheric response to ENSO-induced changes. As shown in Fig. 5c, the growth rate 

response as quantified by R2 is largest after 4 months for ONI (R2 = 35%) and after 7 months for SOI (R2 = 30%). 

These maxima have been adopted for the solid (shifted) lines in Fig 5d. This finding is consistent with results 10 

from other studies, where lags in the range 3-9 months have been reported (Jones et al., 2001; Chylek et al., 

2018). 

In order to quantify the impact of the human CO2 emissions and of ENSO, as described by the two indices SOI 

and ONI, on growth rate variations, we employ the method of “variation partitioning” (Peres-Neto  et al., 2006). 

We have fitted three basis functions to the 2003-2016 growth rate time series via linear least-squares 15 

minimization (we explain the method in this paragraph using SOI but the method does not depend on which 

ENSO index is used): (i) a constant offset (variance zero), (ii) the human CO2 emissions (Fig. 5b) and (iii) SOI 

shifted by 7 months (blue solid line in Fig. 5d). The variance of the scaled emission, i.e., of the human emission 

scaled with the corresponding fit parameter, is 0.0758 ppm2/year2 (note that in this section we report numerical 

values with four digital places but this shall not imply that all decimal places are significant). The variance of the 20 

scaled SOI is 0.1070 ppm2/year2 and the variance of the fit residual is 0.0728 ppm2/year2. The sum of the three 

individual variances is 0.2557 ppm2/year2 whereas the variance of the annual mean growth rate is 0.2307 

ppm2/year2. This shows that the sum of the variances is 10.8% larger than the variance of the growth rate, i.e., the 

sum of the variances is not exactly equal to the variance of the sum. The reason for this is that the CO2 emission 

and the SOI time series are not uncorrelated (R = 0.14). To account for correlations, we subtract the variance of 25 

the residual from the variance of the growth rate. The result is the part of the variance to be explained by the 

emissions and by the SOI. The ratio of this to be explained variance (0.1579 ppm2/year2) and the sum of the 

variances of the emissions and SOI ((0.0758 + 0.1070) ppm2/year2 = 0.1828 ppm2/year2) is 0.8638. The latter is 

then used as a scaling factor applied to the variances of the emissions and of the SOI. The scaled variances are 

0.0655 ppm2/year2 for the emissions and 0.0924 ppm2/year2 for SOI (note that the sum of these scaled variances 30 

and the variance of the residual is equal to the variance of the growth rate). From this we conclude that the human 

emissions explain 28% (= 0.0655/0.2307) of the variance of the growth rate and that ENSO as quantified by the 

SOI explains 40% (= 0.0924/0.2307). We computed (1-sigma) uncertainties of these estimates by numerically 

perturbing the satellite-derived annual mean growth rates taking into account their uncertainty (see Fig. 4) and by 

subsequently repeating the computations as explained above 10,000 times. The perturbations correspond to 35 

random perturbations of the annual mean growth rates assuming normal distributions for each year and no 

correlation between the different years. This analysis yields that 40±13% of the growth rate variation results from 

the impact of ENSO and that 28±14% is due to the human emissions of CO2. Using these simulations, we also 

computed the fraction of cases where the ENSO impact dominates over the human emissions. This fraction is 
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63% in this case, i.e., when using SOI and when the analysis is applied to the entire time period 2003-2016.  This 

fraction is interpreted as the probability that ENSO-induced impacts on the variation of the growth rate dominates 

that of human emissions.  

When using ONI instead of SOI, ENSO explains 37±14% of the growth rate variance during 2003-2016, human 

emissions explain 24±14% and the fraction where ENSO dominates is again 63%. When restricting the time 5 

period to 2010-2016, which is dominated by strong 2010/2012 La Niña events (Boening et al., 2012; Rodrigues et 

al., 2014) and by the strong 2015/2016 El Niño, the results are the following: Using the SOI analysis, we find that 

ENSO explains 58±19% of the variance, human emissions explain 2±9% and the probability that ENSO 

dominates is 94%. For the ONI analysis, we find that ENSO explains 59±20% of the variance, human emissions 

explain 3±9% and the probability that ENSO dominates is 94%. This analysis shows that the ENSO impact on 10 

CO2 growth rate variations dominates over that of human emissions throughout the period 2003-2016 but in 

particular in the second half of this period, i.e., during 2010-2016. 

 

5  Conclusions 

 15 

We presented a method for the computation of atmospheric CO2 column annual mean growth rates from satellite 

XCO2 retrievals. The satellite XCO2 data product used is the Obs4MIPs version 3 (O4Mv3) XCO2 data product 

based on SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT satellite data. This product covers the time period 

2003-2016 and has monthly time and 5ox5o spatial resolution.   

The presented method has been applied to the global satellite data and to selected latitude bands. The estimated 20 

uncertainty of the satellite-derived annual mean growth rates is typically in the range 0.3-0.5 ppm/year (1-sigma). 

The global growth rates agree with NOAA within the uncertainty of the satellite-derived growth rates (mean 

difference ± standard deviation: 0.0±0.3 ppm/year; R: 0.82). In agreement with NOAA, we find that the growth 

rates are largest in the years 2015 and 2016. These growth rates are around 3 ppm/year and are attributed to the 

2015/2016 El Niño resulting in large CO2 emissions from fires and enhanced net biospheric respiration in the 25 

tropics relative to normal conditions (Heymann et al., 2017; Liu et al., 2017). Our analysis also shows that the 

ENSO impact on CO2 growth rate variations dominates over that of human emissions throughout the period 

2003-2016 (14 years) but in particular during the period 2010-2016 (second half of the investigated time period) 

due to strong La Niña and El Niño events. We estimate the probability that the impact of ENSO on the variability 

is larger than the impact of human emissions to be 63% for the time period 2003-2016. If the time period is 30 

restricted to 2010-2016 this probability increases to 94%. 

In the future, we plan to regularly update the satellite-derived XCO2 growth rates to monitor this important 

quantity. This will also include satellite XCO2 retrievals from other satellite instruments such as XCO2 from 

NASA’s OCO-2 mission (e.g., Eldering et al., 2017; Reuter et al., 2017c, 2017d). 

  35 
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Figure 1. Time series and global maps of satellite-derived column-average dry-air mole fractions of carbon 

dioxide, i.e., XCO2. Shown is data product Obs4MIPs version 3 (O4Mv3) based on an ensemble of 5 

SCIAMACHY/ENVISAT (until April 2012) and TANSO-FTS/GOSAT (since mid 2009) individual sensor / 

individual soundings (Level 2) data products. The three time series correspond to three latitude bands: 30oN-60oN 

(red), 30oS-30oN (green) and 60oS-30oS (blue). The maps in the top left show monthly XCO2 for April and 

September 2003 (SCIAMACHY, land only) and the maps on the bottom right show monthly XCO2 for April and 

September 2016 (TANSO-FTS, land and ocean glint).  10 
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Figure 2. Atmospheric CO2 and corresponding growth rates for northern mid-latitudes. (a) Monthly mean XCO2 5 

(red line) for northern mid-latitudes obtained from averaging XCO2 data product O4Mv3 in the latitude band 

30oN-60oN (see red rectangle in global map).  (b) Monthly sampled annual CO2 growth rates as computed from 

the red curve shown in (a) including 1-sigma uncertainty (grey vertical bars). (c) Annual mean growth rates 

computed from averaging the values shown in (b) including 1-sigma error estimates (vertical bars) (the numerical 

values are listed in Tab. 2). 10 
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Figure 3. As Fig. 2 but for the entire globe. The NOAA annual mean global growth rate is also shown in c for 5 

comparison (in blue). Also listed in (c) is the linear correlation coefficient (R), the mean difference and the 

standard deviation of the difference of the satellite and the NOAA growth rates for 2003-2016 and for 2004-2016.  
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Figure 4. Satellite-derived annual mean XCO2 growth rates: Global (black), Northern Hemisphere (NH) mid 5 

latitudes (“NHmidlat” (30oN - 60oN), red), Tropics (30oS - 30oN, green), and Southern Hemisphere mid latitudes 

(“SHmidlat” (60oS - 30oS), blue). The corresponding numerical values are listed in Tab. 2.  
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Figure 5. Carbon dioxide global annual mean growth rates compared with human emissions and ENSO indices. 5 

(a) Satellite-derived global annual mean growth rates (same as black line in Fig. 4). (b) CO2 emissions from fossil 

fuel and industry (the correlation with the growth rate is R2 = 31%). (c)  Correlation in terms of R2 of growth rate 

and annual SOI (blue curve) and ONI (green curve) as a function of time shift in months. (d) Annual SOI for no 

shift (blue dotted line, R2 = 10%) and for a shift of 7 months (blue solid line, R2 = 30%) and annual ONI for no 

shift (green dotted line, R2 = 13%) and for a shift of 4 months (green solid line, R2 = 35%). 10 
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Table 1. Satellite XCO2 data products. Individual satellite sensor XCO2 algorithms and corresponding Level 2 

data products used for generating the EMMAv3 Level 2 (i.e., individual soundings) data product, which has been 

gridded to obtain the O4Mv3 Level 3 data product used in this study. GHG-CCI refers to the GHG-CCI project of 5 

ESA’s Climate Change Initiative (http://www.esa-ghg-cci.org/) and C3S is the Copernicus Climate Change 

Service (https://climate.copernicus.eu/). 

Algorithm (Version) Sensor Comment Reference 

BESD (v02.01.02) SCIAMACHY / ENVISAT GHG-CCI / C3S product ID: 

CO2_SCI_BESD 

Reuter et al., 2011 

RemoTeC (v2.3.8) TANSO-FTS / GOSAT GHG-CCI / C3S product ID: 

CO2_GOS_SRFP 

Butz et al., 2011 

UoL-FP (v7.1) TANSO-FTS / GOSAT GHG-CCI / C3S product ID: 

CO2_GOS_OCFP 

Cogan et al., 2012 

ACOS (v7.3.10a) TANSO-FTS / GOSAT NASA’s GOSAT 

XCO2 product 

O’Dell et al., 2012 

NIES (v02) TANSO-FTS / GOSAT Operational GOSAT product Yoshida et al., 2013 
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Table 2. Satellite-derived annual mean XCO2 growth rates in ppm/year including 1-sigma uncertainty (in 

brackets). Abbreviations: NH is Northern Hemisphere and SH is Southern Hemisphere. 

 

Year 

Latitude band / region 

Global NH mid-latitudes 

(30oN-60oN) 

Tropics 

(30oS-30oN) 

SH mid-latitudes 

(60oS-30oS)  

2003 1.66 (0.76) 1.99 (0.72) 1.54 (0.74) 1.77 (0.62) 

2004 1.59 (0.30) 1.52 (0.29) 1.71 (0.29) 1.30 (0.23) 

2005 2.16 (0.28) 2.51 (0.26) 1.99 (0.28) 2.17 (0.22) 

2006 2.21 (0.27) 2.13 (0.25) 2.22 (0.27) 2.33 (0.21) 

2007 2.26 (0.27) 2.33 (0.25) 2.20 (0.26) 2.34 (0.21) 

2008 1.67 (0.29) 1.60 (0.27) 1.81 (0.28) 1.41 (0.20) 

2009 1.77 (0.30) 1.75 (0.30) 1.86 (0.28) 1.70 (0.21) 

2010 2.22 (0.29) 2.67 (0.29) 2.08 (0.27) 2.14 (0.20) 

2011 1.86 (0.28) 1.69 (0.27) 1.86 (0.27) 2.19 (0.19) 

2012 2.46 (0.29) 2.64 (0.28) 2.44 (0.27) 2.38 (0.21) 

2013 2.27 (0.30) 2.38 (0.28) 2.27 (0.28) 2.10 (0.22) 

2014 1.74 (0.31) 1.53 (0.30) 1.80 (0.29) 1.84 (0.23) 

2015 2.89 (0.34) 2.89 (0.31) 2.97 (0.32) 2.54 (0.25) 

2016 3.23 (0.50) 3.28 (0.46) 3.23 (0.48) 3.41 (0.36) 
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