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Michael Buchwitz on behalf of all co-authors         15-November-2018 

 

Authors response to referee comments on revised version of manuscript 
“Computation and analysis of atmospheric carbon dioxide annual mean 
growth rates from satellite observations during 2003-2016” of Michael 
Buchwitz et al., MS No.: acp-2018-158 

 

 

Dear Editor, 

many thanks for giving us the opportunity to respond to the comments and concerns of the 
two new referees and to submit a revised version of our manuscript. 

We provide an improved version of our manuscript addressing the comments of the referees 
as good as possible. Please see our detailed “Point-by-point response to the comments and 
concerns of the referees“ below. 

Implementation of the recommended changes resulted in modifications of our manuscript as 
shown below in the “List of all relevant changes” and in the “Marked-up manuscript version” 
attached at the end of this document. 

We hope that this revised version of the manuscript is acceptable for you / ACP and that it 
meets the high standards of ACP. 

Michael Buchwitz  

on behalf of all co-authors   

 

 

The following pages contain the following information: 

• List of all relevant changes 
• Point-by-point response to the comments and concerns of the referees 
• The marked-up manuscript version 
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List of all relevant changes: 

To consider the comments from Referee #4 we have implemented the following 
modifications: 

Abstract:  

We added two sentences (from the conclusions section) to provide more detailed conclusions 
in the abstract as requested by the referee: “Our analysis shows that the ENSO impact on CO2 
growth rate variations dominates over that of human emissions throughout the period 2003-
2016 but in particular during the period 2010-2016 due to strong La Niña and El Niño events. 
Using the derived growth rates and their uncertainty, we estimate the probability that the 
impact of ENSO on the variability is larger than the impact of human emissions to be 63% for 
the time period 2003-2016. If the time period is restricted to 2010-2016 this probability 
increases to 94%.”. 

Section 3: 

We provide more details concerning the differences and similarities of our method and the 
NOAA method: We removed the sentence “We adopt this definition” in the 1st paragraph and 
modified the corresponding paragraph near the end of Sect. 3. Modified text: “Perfect 
agreement is not to be expected as these two growth rate time series have been obtained from 
CO2 observations, which represent very different vertical sampling of the atmosphere (surface 
(NOAA) versus entire vertical column (satellite)) (see Fig. A3b in Annex A for a comparison 
of XCO2 and surface CO2 growth rates obtained using a global re-analysis CO2 data product). 
Perfect agreement is also not to be expected because we use different time periods for the 
computation of the annual growth rates compared to NOAA (see Fig. A3c in Annex A for a 
comparison of two different methods to compute annual XCO2 growth rates).”.  

We also added 2 sentences to consider the referee’s comment on our uncertainty estimates. 
Text added: “We aimed at providing realistic error estimates but we acknowledge that our 
uncertainty estimates are not based on full error propagation, which would be difficult 
especially due to unknown or not well enough known systematic errors and error correlations. 
The reported uncertainty estimates should therefore be interpreted as error indications rather 
than fully rigorous error estimates.”. 

To compare growth rates computed from XCO2 and surface CO2 we have downloaded and 
analysed a (large) multi-year CO2 data set and used it to generate a new figure incl. 
discussion. The reference to this new figure is given in Sect. 3 and the new figure has been 
added in the Annex as Fig. A3. This required to also add a new reference (Chevallier, 2018). 

Section 4: 

We have added these sentences at the beginning of the 3rd paragraph: “Figure 3 shows that 
the anthropogenic emission variability is mostly linked to a trend whereas the El Niño signal 
is variable on much shorter time scales. Thus, the relative impact of the anthropogenic and 
natural contributions depends on the length of the time series. The shorter the time series, the 
smaller the anthropogenic variability is. It is therefore expected that the natural contribution to 
the variability of the growth rate gets larger for a shorter time series.”. 
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Acknowledgements: 

We have added this at the end: “The CAMS CO2 re-analysis data set has been obtained 
http://apps.ecmwf.int/datasets/data/cams-ghg-inversions/  (access: 13-Nov-2018). Finally, we 
would like to thank four anonymous referees for helpful comments.”. 

To consider the specific comment of Referee #3 we have implemented the following 
modification: 

Section 3, 1st paragraph: 

We have added “(e.g., a latitude band, see Annex A, Fig. A1)” as an additional explanation to 
item (i). 
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Reply to Anonymous Referee #4 (Report #2) comments on revised 
manuscript 
 
In the following, we provide answers to each of the referee’s comments and concerns. Based on these 
comments we have generated another (third) revised version of our manuscript. 
 
General: 
 
Referee C1: 
This paper presents satellite observation data of the atmospheric Carbon Dioxide, derives an ad-hoc 
method to estimate a growth rate, and analyses the variability of the annual growth rate with respect to 
the anthropogenic (human emissions) and natural (ENSO) contributions. This paper already went 
through two rounds of exchanges between the authors and two reviewers. I understand that the two 
reviewers have given-up and I have been asked to provide a “final” review on the revised version of the 
paper. The two reviewers had rather consistent comments. One comment focused on the analysis of the 
growth rate per latitude band and its interpretation. This analysis has now been removed from the main 
part of the paper and moved into an Annex. One can therefore state that this concern is resolved. The 
other comment was on the poor significance of the paper. Although I can agree with the fact that the 
scientific content of the paper is limited, I do see a large fraction of the papers published with similar or 
even lower scientific content. The current trend in the scientific literature is unfortunate, but this 
particular paper should not be a first target in this context. My opinion is then that the version of the 
paper that I have been asked to review can be published in ACP 
 
Author’s reply:  
Many thanks for reviewing our manuscript.   
 
Specific comments: 
 
Referee C2: 
I nevertheless take this opportunity to point a few things that apparently were not mentioned by the two 
original reviewers 
 
Author’s reply:  
Your additional comments are all very good and as shown below we aimed at addressing them as good 
as possible for the revised version of the manuscript.   
 
Referee C3: 
The last sentence of the abstract states what has been done in the paper concerning the variability of the 
growth rate but does not provide the conclusion that can be fairly easily stated. I recommend that the 
conclusion is given in the abstract 
 
Author’s reply:  
We have added these sentences (from the conclusions section) at the end of the abstract: “Our analysis 
shows that the ENSO impact on CO2 growth rate variations dominates over that of human emissions 
throughout the period 2003-2016 but in particular during the period 2010-2016 due to strong La Niña 
and El Niño events. Using the derived growth rates and their uncertainty, we estimate the probability 
that the impact of ENSO on the variability is larger than the impact of human emissions to be 63% for 
the time period 2003-2016. If the time period is restricted to 2010-2016 this probability increases to 
94%.”.   
 
  



 
5 

 

Referee C4: 
Page 4, line 20-28, the authors describe how they compute an uncertainty on the growth rate. The method 
is far from rigorous and there is absolutely no argument why the uncertainty should be estimated as the 
average of three terms. It should be made clear that the value that is derived is only an indicator, but in 
no mean a proper uncertainty estimate. 
 
Author’s reply:  
In our manuscript we explain in detail why we have chosen this approach. To take your comment into 
account we added these sentences at the end of the paragraph, where our method is explained: “We 
aimed at providing realistic error estimates but we acknowledge that our uncertainty estimates are not 
based on full error propagation, which would be difficult especially due to unknown or not well enough 
known systematic errors and error correlations. The reported uncertainty estimates should therefore be 
interpreted as error indications rather than fully rigorous error estimates.”. 
 
Referee C5: 
The annual growth rate that is computed is an annual average of monthly estimates that are themselves 
computed from the differences between the XCO2 averages over a year. Thus, the 2010 growth rate (for 
instance) involves measurements from July 2009 to July 2011. Conversely, the NOAA growth rate 
(based on surface measurements) that is used for an evaluation from they production uses measurements 
of January and December 2010. The time periods are different and this should be made very clear. 
 
Author’s reply:  
Based on your comments we have removed the sentence “We adopt this definition” and modified the 
sentences at the end of the paragraph, where the comparison with NOAA is discussed. The modified 
text is the following: “Perfect agreement is not to be expected as these two growth rate time series have 
been obtained from CO2 observations, which represent very different vertical sampling of the 
atmosphere (surface (NOAA) versus entire vertical column (satellite)) (see Fig. A3b in Annex A for a 
comparison of XCO2 and surface CO2 growth rates obtained using a global re-analysis CO2 data 
product). Perfect agreement is also not to be expected because we use different time periods for the 
computation of the annual growth rates compared to NOAA (see Fig. A3c in Annex A for a comparison 
of two different methods to compute annual XCO2 growth rates).”. 
 
Referee C6: 
When doing the comparison of the growth rate based on surface and satellite data (comment above) 
(page 5 line 9 and Figure 2), the author argues that the difference is linked to the difference vertical 
sampling (line 9). To substantiate that statement, they could use a the results from a global transport 
model and compare the annual growth rate at the surface from that of the full column. I am sure that 
several of the authors have such simulations available so that this simple check would be easy to achieve. 
 
Author’s reply:  
To address this comment we have downloaded a multi-year CO2 re-analysis data set and used it to 
compute and compare annual mean growth rates from XCO2 and surface CO2. The new results are 
presented and discussed in Annexe A, which now includes a new Fig. 3A. Here the corresponding new 
text in Annex A: “Figure A3 shows a comparison of XCO2 and surface CO2 annual growth rates as 
computed from a Copernicus Atmosphere Monitoring Service (CAMS) global re-analysis CO2 data set 
(Chevallier, 2018). This CAMS atmospheric CO2 data set does not (in contrast to satellite data) suffer 
from data gaps and measurement noise. Therefore, the annual growth rate can simply be computed from 
the difference of the (XCO2 or surface CO2) values at the end of a year and the beginning of that year 
(“method M1”). Figure A3b confirms that growth rates computed (using method M1) from XCO2 and 
from surface CO2 are very similar but not exactly identical. Figure A3c shows that the satellite method 
(“M2”) described in this publications provides annual XCO2 growth rates, which are very similar to 
those obtained with the M1 method.”. 
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Corresponding new reference: 
Chevallier, F., Validation report for the inverted CO2 fluxes, v17r1, Technical Report Copernicus 
Atmosphere Monitoring Service (CAMS), version 1.0 (06/07/2018), available from CAMS website 
(https://atmosphere.copernicus.eu/sites/default/files/2018-10/CAMS73_2015SC3_D73.1.4.2-1979-
2017-v1_201807_v1-1.pdf), 2018. 
 
Referee C7: 
Figure 3 very clearly shows that the anthropogenic emission variability is mostly linked to a trend 
whereas the El Nino signal is variable on much shorter time scales. Thus, the relative impacts of the 
anthropogenic and natural contributions will very much depend on the length of the time series. The 
shorter the time series, the smaller the anthropogenic variability is. It is then very much expected that 
the natural contribution to the variability of the growth rate gets larger for a shorter time series. This 
should be made clear in the manuscript and conclusions that are somewhat misleading in this respect 
 
Author’s reply:  
To address this comment we have added this sentence at the beginning of the paragraph where we 
separate and quantify the anthropogenic and ENSO contributions: “Figure 3 shows that the 
anthropogenic emission variability is mostly linked to a trend whereas the El Niño signal is variable on 
much shorter time scales. Thus, the relative impact of the anthropogenic and natural contributions 
depends on the length of the time series. The shorter the time series, the smaller the anthropogenic 
variability is. It is therefore expected that the natural contribution to the variability of the growth rate 
gets larger for a shorter time series.”. 
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Reply to Anonymous Referee #3 (Report #1) comments on revised 
manuscript 
 
In the following, we provide answers to each of the referee’s comments and concerns. 
 
General: 
 
Referee C1: 
Review of “Computation and analysis of atmospheric carbon dioxide annual mean growth rates from 
satellite observations during 2003-2016” by Buchwitz et al. 
 
The authors presented a new Level 3 XCO2 product, based on data from SCIAMACHY and GOSAT, 
and examined the atmospheric growth rate of CO2 captured by these data. They showed that the annual 
mean CO2 growth rate estimated from the XCO2 data is consistent with that estimated from the NOAA 
surface CO2 data. They also did an analysis to determine the relative contributions of ENSO and 
anthropogenic CO2 emissions to variations in the annual mean CO2 growth rate. The new Level 3 data 
will be a useful product for the community since working with Level 2 data can be challenging. The fact 
that the XCO2-based CO2 growth rate is consistent with that estimated from the surface data is 
reassuring. However, I cannot recommend the manuscript for publication in ACP. I do not believe that 
the manuscript contains sufficiently new scientific results to warrant publication in ACP.  
 
In responding to the previous reviews, the authors described what new knowledge is contained in the 
manuscript. They stated that:  
• "We present a new global total column CO2 (“XCO2”) data set (based on satellite data) covering 14 
years  
• We present a new method to compute annual mean XCO2 growth rates from this data set  
• We present a new annual mean CO2 growth rate time series (covering the entire atmosphere, not only 
near-surface CO2) including a comparison with growth rates from NOAA based on surface CO2 
observations; we find agreement within the reported uncertainty ranges and therefore consider our 
growth rates to be validated  
• We present an answer to the question “Assuming that the variability of the CO2 growth rate is 
dominated by ENSO and by human emissions, which of the two considered causes dominates the growth 
rate variability given the satellite-derived growth rates and their uncertainty?” To answer this question 
we used a statistical analysis method, which we clearly explain. Our answer is given in the Conclusions 
section: “Our analysis also shows that the ENSO impact on CO2 growth rate variations dominates over 
that of human emissions throughout the period 2003-2016 (14 years) but in particular during the period 
2010-2016 (second half of the investigated time period) due to strong La Niña and El Niño events. We 
estimate the probability that the impact of ENSO on the variability is larger than the impact of human 
emissions to be 63% for the time period 2003-2016. If the time period is restricted to 2010-2016 this 
probability increases to 94%.” 
 
However, only the fourth bullet contains any new science results, and this is minimal. It is generally 
accepted that natural variability in the tropics is the main driver of the atmospheric growth rate, and 
ENSO is the dominant source of tropical variability. As noted in the IPCC AR5, “the causes of the year-
to-year variability observed in the annual atmospheric CO2 accumulation … are estimated with a 
medium to high confidence to be mainly driven by terrestrial processes occurring in tropical latitudes as 
inferred from atmospheric CO2 inversions and supported by ocean data and models.” Of course, there 
is a need for attribution studies to better understand the processes driving interannual variability, but the 
simple analysis presented in this manuscript does not represent substantial new knowledge. It was 
suggested by Referee #2 that the authors consider publishing in Atmospheric Measurement Techniques 
(AMT), and I would agree with that suggestion. Indeed, the first three bullets describing the new 
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knowledge in the manuscript suggest that the manuscript would be better suited for AMT. In its current 
form, I believe that the manuscript would be a good, short AMT paper. If the authors insist on publishing 
in ACP, they need to significantly expand the scope of the growth rate analysis, and perhaps include a 
model to help with the attribution analysis.  
 
Author’s reply:  
To submit the paper to AMT instead of ACP has been carefully considered before submission to ACP 
and we have already provided the reason why we think ACP is appropriate in response to earlier 
comments from the other referees. We agree that it would be very interesting to better address the 
attribution aspect, but we consider this out of the scope of this paper, as this would require very 
detailed modelling.  Too bad that you do not think that this paper is suitable for ACP, i.e., that you 
recommend rejection and submission to AMT. Nevertheless, many thanks for taking the time to read 
our manuscript and for providing a review. 
 
Technical comment 
 
Referee C2: 
Page 4, line 23: This line mentions the “(ii) the spatial variability of the XCO2 within the selected 
region.” What region? Is this referring to the analysis of the different latitude bands that was removed? 
 
Author’s reply:  
Results for latitude bands are now shown in Annex A. Therefore, we kept this. However, for the revised 
version of the paper we now added this explanation directly after “… within the selected region”: “(e.g., 
a latitude band, see Annex A, Fig. A1)”. 
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Computation and analysis of atmospheric carbon dioxide annual mean growth 

rates from satellite observations during 2003-2016 
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Abstract. The growth rate of atmospheric carbon dioxide (CO2) reflects the net effect of emissions and uptake 

resulting from anthropogenic and natural carbon sources and sinks. Annual mean CO2 growth rates have been 

determined from satellite retrievals of column-average dry-air mole fractions of CO2, i.e., XCO2, for the years 25 

2003 to 2016. The XCO2 growth rates agree with National Oceanic and Atmospheric Administration (NOAA) 

growth rates from CO2 surface observations within the uncertainty of the satellite-derived growth rates (mean 

difference ± standard deviation: 0.0±0.3 ppm/year; R: 0.82). This new and independent data set confirms record 

large growth rates around 3 ppm/year in 2015 and 2016, which are attributed to the 2015/2016 El Niño. Based on 

a comparison of the satellite-derived growth rates with human CO2 emissions from fossil fuel combustion and 30 

with El Niño Southern Oscillation (ENSO) indices, we estimate by how much the impact of ENSO dominates the 

impact of fossil fuel burning related emissions in explaining the variance of the atmospheric CO2 growth rate. 

Our analysis shows that the ENSO impact on CO2 growth rate variations dominates over that of human emissions 

throughout the period 2003-2016 but in particular during the period 2010-2016 due to strong La Niña and El 
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Niño events. Using the derived growth rates and their uncertainty, we estimate the probability that the impact of 

ENSO on the variability is larger than the impact of human emissions to be 63% for the time period 2003-2016. 

If the time period is restricted to 2010-2016 this probability increases to 94%. 

 

1  Introduction 5 

Atmospheric carbon dioxide (CO2) is an important greenhouse gas that causes global warming  (IPCC 2013). 

Sources that emit CO2 into the atmosphere include anthropogenic and natural sources at the surface, and the 

oxidation of carbon monoxide and hydrocarbons in the atmosphere. The sinks that remove CO2 primarily at the 

surface include biological (photosynthesis) and physical (solubility) processes. Anthropogenic emissions of CO2, 

primarily from fossil fuel combustion, have increased the atmospheric CO2 mixing ratios at the surface by more 10 

than 40% since pre-industrial times, from less than 280 parts per million (ppm) to 402.8±0.1 ppm in 2016 

(Dlugokencky and Tans, 2017a).  A global increase of atmospheric CO2 by 1 ppm in a one-year time period 

corresponds to an annual increase of 2.12 GtC/year (Ballantyne et al., 2012). However, this increase in mass does 

not directly correspond to the emissions. The reason is that only a fraction of the emitted CO2 remains in the 

atmosphere as CO2 is partitioned between the atmosphere and ocean and land carbon sinks. On average, 15 

somewhat less than half of the emitted CO2 remains in the atmosphere but this “airborne fraction” varies 

substantially from year to year (Le Quéré et al., 2016, 2018). Variations of the airborne fraction are not well 

understood primarily because of an inadequate understanding of the terrestrial carbon sink, which introduces 

large uncertainties for climate prediction (e.g., IPCC 2013; Peylin et al., 2013; Wieder et al., 2015; Huntzinger et 

al., 2017). Identification of the origin of changes of the growth rate requires additional information for the 20 

attribution to particular sources or sinks (Peters et al., 2017). Atmospheric CO2 growth rates inferred from in-situ 

CO2 surface measurements are regularly determined and published, for example, by the National Oceanic and 

Atmospheric Administration (NOAA) (see https://www.esrl.noaa.gov/gmd/ccgg/trends/gr.html). In this study, we 

present and interpret atmospheric growth rates determined from the remote sensing of CO2 vertical columns from 

space, which are described in the following section. 25 

 

2  Global satellite observations of atmospheric CO2 columns 

Satellites provide retrievals of CO2 vertical columns in terms of the CO2 column-average dry-air mole fraction, 

denoted XCO2.  Although a relatively new field, satellite-based XCO2 data products have already been used to 

improve our knowledge of natural (e.g., Basu et al., 2013; Maksyutov et al., 2013; Chevallier et al., 2014; Reuter 30 

et al., 2014a; Schneising et al., 2014; Houweling et al., 2014; Parker et al., 2016; Heymann et al., 2017; Liu et al., 

2017; Kaminski et al., 2017) and anthropogenic (e.g., Schneising et al., 2013; Reuter et al., 2014b; Kort et al., 

2012; Hakkarainen et al., 2016; Nassar et al., 2017) CO2 sources and sinks but only a few studies explicitly 

present and discuss CO2 growth rates. Buchwitz et al., 2007, analyzed the first three years (2003-2005) of XCO2 

retrievals from SCIAMACHY/ENVISAT (Burrows et al., 1995; Bovensmann et al., 1999) generated using the 35 

WFM-DOAS retrieval algorithm (Buchwitz et al., 2006). They computed year-to-year CO2 variations and 

compared the XCO2 increase with the XCO2 increase computed from the output of NOAA’s CO2 assimilating 

https://www.esrl.noaa.gov/gmd/ccgg/trends/gr.html
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system CarbonTracker (Peters et al., 2007) and found agreement within 1 ppm/year. Schneising et al., 2014, 

computed growth rates from the 2003-2011 SCIAMACHY XCO2 record. They compared the derived annual 

growth rates with surface temperature and found that years having higher temperatures during the vegetation 

growing season are associated with larger growth rates in atmospheric CO2 at northern mid-latitudes. Growth 

rates from GOSAT (Kuze et al., 2016) are published by the National Institute for Environmental Studies (NIES), 5 

Tsukuba, Japan (NIES 2017). 

In this study, we analyze a new satellite XCO2 data set covering 14 years (2003-2016) generated from 

SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT. We use the XCO2 data product Obs4MIPs (Observations 

for Model Intercomparisons Project) version 3 (O4Mv3), which is a gridded (Level 3) monthly data product at 5o 

latitude by 5o longitude spatial resolution in Obs4MIPs format (Buchwitz et al., 2017a). Obs4MIPs 10 

(https://www.earthsystemcog.org/projects/obs4mips/) is an activity to make observational products more 

accessible for climate model intercomparisons (e.g., Lauer et al., 2017). The O4Mv3 XCO2 data product was 

generated by gridding (averaging) the XCO2 Level 2 (i.e., individual soundings) product generated with the 

Ensemble Median Algorithm (EMMA, Reuter et al., 2013). EMMA uses as input an ensemble of XCO2 Level 2 

data products (Buchwitz et al., 2015, 2017a, 2017b; Reuter et al., 2013) from SCIAMACHY/ENVISAT and 15 

TANSO-FTS/GOSAT. To generate the O4Mv3 product, the EMMA version 3.0 (EMMAv3, Reuter et al., 2017e) 

product was used. The list of satellite products used for the generation of the EMMAv3 Level 2 product - and 

therefore also for the O4Mv3 Level 3 data product used in this study - is provided in Tab. 1. The quality of this 

product relative to Total Carbon Column Observing Network (TCCON) ground-based observations (Wunch et 

al., 2011, 2015) can be summarized as follows (Buchwitz et al., 2017c): +0.23 ppm overall (global) bias, relative 20 

accuracy 0.3 ppm (1-sigma), and very good stability in terms of linear bias trend (-0.02±0.04 ppm/year). 

Figure 1 presents an overview of the O4Mv3 product in terms of time series and global XCO2 maps. The maps 

show the typical coverage of XCO2 from SCIAMACHY (until April 2012) and GOSAT (since mid 2009). As can 

be seen, the time series for the three latitude bands shown in Fig. 1 have very similar slopes. They mainly differ 

in the amplitude of the seasonal cycle, which reflects the latitudinal dependence of uptake and release of 25 

atmospheric CO2 by the terrestrial biosphere (Schneising et al., 2014). These time series have been used to 

compute annual mean CO2 growth rates as will be explained in the following section. 

 

3  Atmospheric CO2 growth rates from satellite observations 

National Oceanic and Atmospheric Administration (NOAA) defines the annual mean CO2 growth rate for a given 30 

year as the CO2 concentration difference at the end of that year minus the CO2 concentration at the beginning of 

that year (Thoning et al., 1989; see also additional explanations as given on the NOAA/ESRL website 

(https://www.esrl.noaa.gov/gmd/ccgg/about/global_means.html)). We adopt this definition. As described below, 

our method involves the following three steps: (i) Computation of an XCO2 time series (at monthly resolution 

and sampling) by averaging the XCO2 in the region of interest (e.g., a latitude band, see Annex A, Fig. A1).   (ii) 35 

Computation of monthly sampled XCO2 annual growth rates by computing the difference of the XCO2 value of 

month i minus the XCO2 value of month i-12 and computation of the corresponding uncertainty estimate. (iii) 

https://www.earthsystemcog.org/projects/obs4mips/
https://www.esrl.noaa.gov/gmd/ccgg/about/global_means.html)
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Computation of annual mean growth rates and their corresponding uncertainties from the monthly sampled 

annual growth rates.   

 In the following, this method is described in detail using Fig. 2 for illustration. In Figure 2a monthly satellite 

XCO2 (O4Mv3), as obtained by globally averaging all the individual (5ox5o) XCO2 values, is plotted. To compute 

the spatially averaged XCO2 time series (shown in Fig. 2a), we first longitudinally average the XCO2 followed by 5 

the computation of the area-weighted latitudinal average of XCO2 by using the cosine of latitude as weight. We 

consider surface area because surface fluxes are linked to mass of CO2 (or number of CO2 molecules) rather than 

molecular mixing ratios or mole fractions. As can be seen, the computed time series does not start at the 

beginning of 2003 but in April 2003. As explained in Buchwitz et al., 2017d (see discussion of their Fig. 6.1.1.1) 

the underlying SCIAMACHY BESD v02.01.02 XCO2 data product (see Tab. 1) apparently suffers from an 10 

approximately 1 ppm high bias in the first few months of 2003. The exact magnitude of this bias has not been 

quantified due to lack of TCCON validation data in this early time period. As this bias in early 2003 is critical for 

the year 2003 growth rate, we have omitted the first three months of 2003 for the computation of the growth rates 

shown in this publication.   

Figure 2b shows monthly sampled annual growth rates as computed from the monthly XCO2 values shown in 15 

Fig. 2a. Each value is the difference of two monthly XCO2 values corresponding to the same month (e.g., 

January) but different years (e.g., 2004 and 2005). For example, the first data point (first diamond symbol) shown 

in Fig. 2b is the difference of the April 2004 XCO2 value minus the April 2003 XCO2 value. The second data 

point corresponds to May 2004 minus May 2003, etc.  The time difference between the monthly XCO2 pairs is 

always one year and the time assigned to each XCO2 difference is the time in the middle of that year. Therefore, 20 

the time series shown in Fig. 2b starts six months later and ends six months earlier as compared to the time series 

shown in Fig. 2a. Each XCO2 difference shown in Fig. 2b therefore corresponds to an estimate of the XCO2 

annual growth rate and the position on the time-axis corresponds to the middle of the corresponding one-year 

time period.  

A 1-sigma uncertainty estimate has been computed for each of the monthly sampled annual growth rates shown 25 

in Fig. 2b (see grey vertical bars). They have been computed such that they reflect the following aspects: (i) the 

standard error of the O4Mv3 XCO2 values as given in the O4Mv3 data product file for each of the 5ox5o grid 

cells, (ii) the spatial variability of the XCO2 within the selected region, (iii) the temporal variability of the annual 

growth rates in the one year time interval, which corresponds to the annual growth rate, and (iv) the number of 

months (N) with data located in that one year time interval. The uncertainties have been computed as the mean 30 

value of three terms divided by the square root of N. The first term is the mean value of the standard error, the 

second term is the standard deviation of the XCO2 values in the selected region and the third term is the standard 

deviation of the monthly sampled annual growth rates in the corresponding one-year time interval. We aimed at 

providing realistic error estimates but we acknowledge that our uncertainty estimates are not based on full error 

propagation, which would be difficult especially due to unknown or not well enough known systematic errors and 35 

error correlations. The reported uncertainty estimates should therefore be interpreted as error indications rather 

than fully rigorous error estimates.    
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Figure 2c shows the final result, i.e., the annual mean XCO2 growth rates and their estimated (1-sigma) 

uncertainties. The annual mean growth rates have been computed by averaging all the monthly sampled annual 

growth rates (shown in Fig. 2b), which are located in the year of interest (e.g., 2003). For most years, 12 annual 

growth rate values are available for averaging but there are some exceptions. For example, for the year 2003 only 

3 values are present as can be seen from Fig. 2b and for the years 2014 and 2015 there are only 11 values as no 5 

data are available for January 2015 due to issues with the GOSAT satellite. The uncertainty of the annual mean 

growth rate has been computed by averaging the uncertainties assigned to each of the monthly sampled annual 

growth rates (shown as grey vertical bars in Fig. 2b) scaled with a factor, which depends on the number of 

months (N) available for averaging. This factor is the square root of 12/N. It ensures that the uncertainty is larger, 

the less data points are available for averaging.  Overall, our uncertainty estimate is quite conservative, as we do 10 

not assume that errors improve upon averaging. As a result of this procedure, the error bar of the year 2003 

growth rate is quite large (0.76 ppm/year, see Tab. A1 in Annex A, where all numerical values are listed). This is 

because the monthly sampled annual growth rate varies significantly in 2003 (see Fig. 2b) and because only N=3 

data points are available for averaging in 2003. In contrast, the year 2005 growth rate uncertainty is much smaller 

(0.28 ppm/year) because the growth rates vary less during 2005 and because N=12 data points are available for 15 

averaging. 

In Fig. 2c also the NOAA global growth rates (Dlugokencky and Tans, 2017b) are shown. As can be seen, the 

satellite-derived growth rates agree well with the NOAA growth rates obtained from CO2 surface observations. 

For the time period 2003-2016 the linear correlation coefficient R is 0.82 and the difference is -0.02±0.28 

ppm/year (mean difference ± standard deviation). Perfect agreement is not to be expected as these two growth 20 

rate time series have been obtained from CO2 observations, which represent very different vertical sampling of 

the atmosphere (surface (NOAA) versus entire vertical column (satellite)) (see Fig. A3b in Annex A for a 

comparison of XCO2 and surface CO2 growth rates obtained using a global re-analysis CO2 data product). Perfect 

agreement is also not to be expected because we use different time periods for the computation of the annual 

growth rates compared to NOAA (see Fig. A3c in Annex A for a comparison of two different methods to 25 

compute annual XCO2 growth rates). 

As can also be seen from Fig. 2c, the largest growth rates are approximately 3 ppm/year during 2015 and 2016. 

These record large growth rates (Peters et al., 2017) are attributed to the consequences of the strong 2015/2016 El 

Niño event, which produced large CO2 emissions from fires and enhanced net biospheric respiration in the tropics 

relative to normal conditions (Heymann et al., 2017; Liu et al., 2017). Many of these fires are initiated by 30 

humans, for example, to clear tropical forests. In this study, human emissions of CO2 are defined as emissions 

from fossil fuel combustion and industry (Le Quéré et al., 2016, 2018) but do not include, for example, CO2 

emissions originating from slash and burn agriculture. 

 

4  Correlation of CO2 growth rates with fossil CO2 emissions and ENSO indices 35 

It is well known that changes of the growth rate of atmospheric CO2 have anthropogenic and natural causes (e.g., 

Jones et al., 2001; Betts et al., 2016; Kim et al., 2016; Liu et al., 2017; Chylek et al., 2018). In this section we are 

aiming at answering the following question: “Assuming that the variability of the CO2 growth rate is dominated 
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by ENSO and by human emissions, which of the two considered causes dominates the growth rate variability 

given the satellite-derived growth rates and their uncertainty?”. To answer this question we are using a simple 

linear statistical model and time series of human emissions and two ENSO indices assuming that these indices are 

appropriate proxies for ENSO related effects in the context of providing a reliable answer.  

Figure 3 shows a comparison of the CO2 annual mean growth rates (Fig. 3a) with annual global CO2 emissions 5 

from fossil fuel combustion and industry (Fig. 3b) (Le Quéré et al., 2018; GCP 2017) (correlation of growth rate 

and human emissions: R2 = 31%). As can be seen, the growth rates vary significantly in recent years despite 

nearly constant human emissions. Figure 3d shows two ENSO indices: the Southern Oscillation Index (SOI, blue 

lines) (NOAA 2017a; Ropelewski and Jones, 1987) and the Oceanic Niño Index (ONI, green lines) (NOAA 

2017b). Whereas SOI is defined as the normalized pressure difference between Tahiti and Darwin (values less 10 

than -1 indicate the presence of a strong El Niño), ONI is based on Sea Surface Temperature (SST) differences 

(positive values correspond to El Niño). The dotted lines correspond to the original (i.e., unshifted) annual mean 

indices and the solid lines correspond to time shifted ENSO indices. Time shifts have been investigated to 

consider the delay in atmospheric response to ENSO-induced changes. As shown in Fig. 3c, the growth rate 

response as quantified by R2 is largest after 4 months for ONI (R2 = 35%) and after 7 months for SOI (R2 = 30%). 15 

These maxima have been adopted for the solid (shifted) lines in Fig 3d. This finding is consistent with results 

from other studies, where lags in the range 3-9 months have been reported (Jones et al., 2001; Kim et al., 2016; 

Chylek et al., 2018). 

Figure 3 shows that the anthropogenic emission variability is mostly linked to a trend whereas the El Niño signal 

is variable on much shorter time scales. Thus, the relative impact of the anthropogenic and natural contributions 20 

depends on the length of the time series. The shorter the time series, the smaller the anthropogenic variability is. 

It is therefore expected that the natural contribution to the variability of the growth rate gets larger for a shorter 

time series. In order to separate and quantify the contributions of the human CO2 emissions and of ENSO, as 

described by the two indices SOI and ONI, to the growth rate variations, we employ the method of “variation 

partitioning” (Peres-Neto  et al., 2006). To achieve this, we have fitted three basis functions to the 2003-2016 25 

growth rate time series via linear least-squares minimization (we explain the method in this paragraph using SOI 

but the method does not depend on which ENSO index is used): (i) a constant offset (variance zero), (ii) the 

human CO2 emissions (Fig. 3b) and (iii) SOI shifted by 7 months (blue solid line in Fig. 3d). The variance of the 

scaled emission, i.e., of the human emission scaled with the corresponding fit parameter, is 0.0758 ppm2/year2 

(note that in this section we report numerical values with four digital places but this shall not imply that all 30 

decimal places are significant). The variance of the scaled SOI is 0.1070 ppm2/year2 and the variance of the fit 

residual is 0.0728 ppm2/year2. The sum of the three individual variances is 0.2557 ppm2/year2 whereas the 

variance of the annual mean growth rate is 0.2307 ppm2/year2. This shows that the sum of the variances is 10.8% 

larger than the variance of the growth rate, i.e., the sum of the variances is not exactly equal to the variance of the 

sum. The reason for this is that the CO2 emission and the SOI time series are not uncorrelated (R = 0.14). To 35 

account for correlations, we subtract the variance of the residual from the variance of the growth rate. The result 

is the part of the variance to be explained by the emissions and by the SOI. The ratio of this to be explained 

variance (0.1579 ppm2/year2) and the sum of the variances of the emissions and SOI ((0.0758 + 0.1070) 

ppm2/year2 = 0.1828 ppm2/year2) is 0.8638. The latter is then used as a scaling factor applied to the variances of 
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the emissions and of the SOI. The scaled variances are 0.0655 ppm2/year2 for the emissions and 0.0924 

ppm2/year2 for SOI (note that the sum of these scaled variances and the variance of the residual is equal to the 

variance of the growth rate). From this we conclude that the human emissions explain 28% (= 0.0655/0.2307) of 

the variance of the growth rate and that ENSO as quantified by the SOI explains 40% (= 0.0924/0.2307). We 

computed (1-sigma) uncertainties of these estimates by numerically perturbing the satellite-derived annual mean 5 

growth rates taking into account their uncertainty (see Figs. 2c and 3) and by subsequently repeating the 

computations as explained above 10,000 times. The perturbations correspond to random perturbations of the 

annual mean growth rates assuming normal distributions for each year and no correlation between the different 

years. This analysis yields that 40±13% of the growth rate variation results from the impact of ENSO and that 

28±14% is due to the human emissions of CO2. Using these simulations, we also computed the fraction of cases 10 

where the ENSO impact dominates over the human emissions. This fraction is 63% in this case, i.e., when using 

SOI and when the analysis is applied to the entire time period 2003-2016.  This fraction is interpreted as the 

probability that ENSO-induced impacts on the variation of the growth rate dominates that of human emissions.  

When using ONI instead of SOI, ENSO explains 37±14% of the growth rate variance during 2003-2016, human 

emissions explain 24±14% and the fraction where ENSO dominates is again 63%. When restricting the time 15 

period to 2010-2016, which is dominated by strong 2010/2012 La Niña events (Boening et al., 2012; Rodrigues et 

al., 2014) and by the strong 2015/2016 El Niño, the results are the following: Using the SOI analysis, we find that 

ENSO explains 58±19% of the variance, human emissions explain 2±9% and the probability that ENSO 

dominates is 94%. For the ONI analysis, we find that ENSO explains 59±20% of the variance, human emissions 

explain 3±9% and the probability that ENSO dominates is 94%. This analysis shows that the ENSO impact on 20 

CO2 growth rate variations dominates over that of human emissions throughout the period 2003-2016 but in 

particular in the second half of this period, i.e., during 2010-2016. 

 

5  Conclusions 

 25 

We presented a method for the computation of atmospheric CO2 column annual mean growth rates from satellite 

XCO2 retrievals. The satellite XCO2 data product used is the Obs4MIPs version 3 (O4Mv3) XCO2 data product 

based on SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT satellite data. This product covers the time period 

2003-2016 and has monthly time and 5ox5o spatial resolution.   

The estimated uncertainty of the satellite-derived annual mean growth rates is typically 0.3 ppm/year (1-sigma) 30 

with the exception of the first year 2003, where the uncertainty is 0.76 ppm/year, and of the last year 2016, where 

the uncertainty is 0.50 ppm/year. The growth rates agree with NOAA within the uncertainty of the satellite-

derived growth rates (mean difference ± standard deviation: 0.0±0.3 ppm/year; R: 0.82). In agreement with 

NOAA, we find that the growth rates are largest in the years 2015 and 2016. These growth rates are around 3 

ppm/year and are attributed to the 2015/2016 El Niño resulting in large CO2 emissions from fires and enhanced 35 

net biospheric respiration in the tropics relative to normal conditions (Heymann et al., 2017; Liu et al., 2017). Our 

analysis also shows that the ENSO impact on CO2 growth rate variations dominates over that of human emissions 

throughout the period 2003-2016 (14 years) but in particular during the period 2010-2016 (second half of the 
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investigated time period) due to strong La Niña and El Niño events. We estimate the probability that the impact 

of ENSO on the variability is larger than the impact of human emissions to be 63% for the time period 2003-

2016. If the time period is restricted to 2010-2016 this probability increases to 94%. 

In the future, we plan to regularly update the satellite-derived XCO2 growth rates to monitor this important 

quantity. This will also include satellite XCO2 retrievals from other satellite instruments such as XCO2 from 5 

NASA’s OCO-2 mission (e.g., Eldering et al., 2017; Reuter et al., 2017c, 2017d). 
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Figure 1. Time series and global maps of satellite-derived column-average dry-air mole fractions of carbon 

dioxide, i.e., XCO2. Shown is data product Obs4MIPs version 3 (O4Mv3) based on an ensemble of 

SCIAMACHY/ENVISAT (until April 2012) and TANSO-FTS/GOSAT (since mid 2009) individual sensor / 10 

individual soundings (Level 2) data products. The three time series correspond to three latitude bands: 30oN-60oN 

(red), 30oS-30oN (green) and 60oS-30oS (blue). The maps in the top left show monthly XCO2 for April and 

September 2003 (SCIAMACHY, land only) and the maps on the bottom right show monthly XCO2 for April and 

September 2016 (TANSO-FTS, land and ocean glint).  

 15 
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Figure 2.  Atmospheric CO2 and corresponding growth rates. (a) Monthly mean XCO2 (red line) as obtained 

from averaging XCO2 data product O4Mv3 globally for each month.  (b) Monthly sampled annual CO2 growth 

rates as computed from the red curve shown in (a) including 1-sigma uncertainty (grey vertical bars). (c) Annual 5 

mean growth rates computed from averaging the values shown in (b) including 1-sigma error estimates (vertical 

bars) (the numerical values are listed in Tab. A1 of Annex A). The NOAA annual mean global growth rate is also 

shown in (c) for comparison (in blue). Also listed in (c) is the linear correlation coefficient (R), the mean 

difference and the standard deviation of the difference of the satellite and the NOAA growth rates for 2003-2016 

and for 2004-2016.  10 
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Figure 3. Carbon dioxide global annual mean growth rates compared with human emissions and ENSO indices. 

(a) Satellite-derived global annual mean growth rates (with 1-sigma uncertainty range shown as vertical lines). 

(b) CO2 emissions from fossil fuel and industry (the correlation with the growth rate is R2 = 31%). (c)  5 

Correlation in terms of R2 of growth rate and annual SOI (blue curve) and ONI (green curve) as a function of 

time shift in months. (d) Annual SOI for no shift (blue dotted line, R2 = 10%) and for a shift of 7 months (blue 

solid line, R2 = 30%) and annual ONI for no shift (green dotted line, R2 = 13%) and for a shift of 4 months (green 

solid line, R2 = 35%). 

  10 
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Table 1. Satellite XCO2 data products. Individual satellite sensor XCO2 algorithms and corresponding Level 2 

data products used for generating the EMMAv3 Level 2 (i.e., individual soundings) data product, which has been 

gridded to obtain the O4Mv3 Level 3 data product used in this study. GHG-CCI refers to the GHG-CCI project of 

ESA’s Climate Change Initiative (http://www.esa-ghg-cci.org/) and C3S is the Copernicus Climate Change 5 

Service (https://climate.copernicus.eu/). 

Algorithm (Version) Sensor Comment Reference 

BESD (v02.01.02) SCIAMACHY / ENVISAT GHG-CCI / C3S product ID: 

CO2_SCI_BESD 

Reuter et al., 2011 

RemoTeC (v2.3.8) TANSO-FTS / GOSAT GHG-CCI / C3S product ID: 

CO2_GOS_SRFP 

Butz et al., 2011 

UoL-FP (v7.1) TANSO-FTS / GOSAT GHG-CCI / C3S product ID: 

CO2_GOS_OCFP 

Cogan et al., 2012 

ACOS (v7.3.10a) TANSO-FTS / GOSAT NASA’s GOSAT 

XCO2 product 

O’Dell et al., 2012 

NIES (v02) TANSO-FTS / GOSAT Operational GOSAT product Yoshida et al., 2013 
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https://climate.copernicus.eu/


20 
 

 

Annex A 

Growth rate time series have also been computed for several latitude bands as shown in Fig. A1. As can be seen, 

the growth rates agree within their 1-sigma uncertainty range in all latitude bands including the global results (for 

numerical values see Tab. A1).  5 

The reason for this is that atmospheric CO2 is long-lived and therefore well-mixed. Because of this we expect 

similar annual mean CO2 growth rates, i.e., agreement within measurement error, for the different latitude bands 

and globally. Identical growth rates are not expected due to differences in the sources and sinks and the time 

needed for transport and mixing. The expectation of similar growth rates is corroborated by Fig. A2, which shows 

a comparison of the uncertainty of the satellite-derived growth rates (red bars) with the difference of two annual 10 

mean CO2 growth rate time series from NOAA, namely the time series from Mauna Loa, Hawaii, and the global 

time series obtained from globally averaged marine surface data (both obtained from 

https://www.esrl.noaa.gov/gmd/ccgg/trends/gr.html). As shown in Fig. A2, the uncertainty of the satellite data is 

similar (mean value: 0.34 ppm/year) as the difference between the two NOAA time series (standard deviation: 

0.21 ppm/year). We acknowledge that the maximum difference between any two latitude bands may be 15 

somewhat larger than the difference between the two NOAA time series shown in Fig. A2, but it is assumed that 

the difference shown in Fig. A2 is at least a reasonable approximation. 

The agreement shown in Fig. A1 is interpreted as an indication of the good quality of the satellite XCO2 data 

product and of the adequacy of the method used to compute the annual mean CO2 growth rates because we do not 

find “strange values” in certain latitude bands or certain years, which would be an indication for a potential 20 

problem.  

Figure A3 shows a comparison of XCO2 and surface CO2 annual growth rates as computed from a Copernicus 

Atmosphere Monitoring Service (CAMS) global re-analysis CO2 data set (Chevallier, 2018). This CAMS 

atmospheric CO2 data set does not (in contrast to satellite data) suffer from data gaps and measurement noise. 

Therefore, the annual growth rate can simply be computed from the difference of the (XCO2 or surface CO2) 25 

values at the end of a year and the beginning of that year (“method M1”). Figure A3b confirms that growth rates 

computed (using method M1) from XCO2 and from surface CO2 are very similar but not exactly identical. Figure 

A3c shows that the satellite method (“M2”) described in this publications provides annual XCO2 growth rates, 

which are very similar to those obtained with the M1 method. 

 30 

 

 

  

https://www.esrl.noaa.gov/gmd/ccgg/trends/gr.html
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Figure A1. Satellite-derived annual mean XCO2 growth rates: Global (black), Northern Hemisphere (NH) mid 

latitudes (“NHmidlat” (30oN - 60oN), red), Tropics (30oS - 30oN, green), and Southern Hemisphere mid latitudes 

(“SHmidlat” (60oS - 30oS), blue). The corresponding numerical values are listed in Tab. A1.  5 

 

  



22 
 

 
 

 
 

Figure A2. Comparison of the 1-sigma uncertainty range of the satellite-derived growth rates (red bars) with the 5 

difference of two annual mean growth rate time series obtained from NOAA, namely the time series from Mauna 

Loa (MLO), Hawaii, and the global time series obtained from globally averaged marine surface data (black line 

and symbols).  

 

  10 
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Figure A3. (a) Monthly mean global time series of XCO2 (red) and surface CO2 (blue) as computed from a 

Copernicus Atmosphere Monitoring Service (CAMS) CO2 re-analysis data product (version v17r1 obtained from 

http://apps.ecmwf.int/datasets/data/cams-ghg-inversions/; Chevallier, 2018). The symbols correspond to the values at 5 

the beginning/end of each year. (b) Annual XCO2 (red) and surface CO2 (blue) growth rates as computed from 

the time series shown in (a) by computing for each year the difference of the values at the end and the beginning 

of that year (method M1). Also listed is the linear correlation coefficient R, the mean difference and the standard 

deviation of the difference. (c) The red symbols (and the red curve) show the same values as the red symbols 

shown in (b), i.e., they show annual XCO2 growth rates computed using method M1. The green symbols also 10 

show XCO2 annual growth rates but computed using the “satellite method” (M2), which is described in this 

publication.  

  

http://apps.ecmwf.int/datasets/data/cams-ghg-inversions/
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Table A1. Satellite-derived annual mean XCO2 growth rates in ppm/year including 1-sigma uncertainty (in 

brackets). Abbreviations: NH is Northern Hemisphere and SH is Southern Hemisphere. 

 

Year 

Latitude band / region 

Global NH mid-latitudes 

(30oN-60oN) 

Tropics 

(30oS-30oN) 

SH mid-latitudes 

(60oS-30oS)  

2003 1.66 (0.76) 1.99 (0.72) 1.54 (0.74) 1.77 (0.62) 

2004 1.59 (0.30) 1.52 (0.29) 1.71 (0.29) 1.30 (0.23) 

2005 2.16 (0.28) 2.51 (0.26) 1.99 (0.28) 2.17 (0.22) 

2006 2.21 (0.27) 2.13 (0.25) 2.22 (0.27) 2.33 (0.21) 

2007 2.26 (0.27) 2.33 (0.25) 2.20 (0.26) 2.34 (0.21) 

2008 1.67 (0.29) 1.60 (0.27) 1.81 (0.28) 1.41 (0.20) 

2009 1.77 (0.30) 1.75 (0.30) 1.86 (0.28) 1.70 (0.21) 

2010 2.22 (0.29) 2.67 (0.29) 2.08 (0.27) 2.14 (0.20) 

2011 1.86 (0.28) 1.69 (0.27) 1.86 (0.27) 2.19 (0.19) 

2012 2.46 (0.29) 2.64 (0.28) 2.44 (0.27) 2.38 (0.21) 

2013 2.27 (0.30) 2.38 (0.28) 2.27 (0.28) 2.10 (0.22) 

2014 1.74 (0.31) 1.53 (0.30) 1.80 (0.29) 1.84 (0.23) 

2015 2.89 (0.34) 2.89 (0.31) 2.97 (0.32) 2.54 (0.25) 

2016 3.23 (0.50) 3.28 (0.46) 3.23 (0.48) 3.41 (0.36) 
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