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Michael Buchwitz on behalf of all co-authors         21-August-2018 

 

Authors response to referee comments on revised version of manuscript 
“Computation and analysis of atmospheric carbon dioxide annual mean 
growth rates from satellite observations during 2003-2016” of Michael 
Buchwitz et al., MS No.: acp-2018-158 
 

 

Dear Editor, 

many thanks for giving us the opportunity to respond to the referees comments and concerns 
and to submit a revised version of our manuscript. 

Unfortunately, we have not been able to convince the referees with our initial answers and our 
initial revised version of our manuscript although we tried as good and carefully as possible to 
address all concerns.  

Both referees still insist on major modifications. Because of this and because the new 
comments provide a better understanding on our side what exactly the concerns are, we now 
provide a significantly improved version of our manuscript addressing the two remaining 
referee comments (please see our detailed “Point-by-point response to the referees comments 
and concerns“ below). 

Implementation of the recommended changes resulted in significant modifications of our 
manuscript as shown below in the “List of all relevant changes” and in the “Marked-up 
manuscript version” attached at the end of this document. 

We hope that this revised version of the manuscript is acceptable for you and for the 
reviewers and that it meets the high standards of ACP. 

Michael Buchwitz  

on behalf of all co-authors   

 

 

The following pages contain the following information: 

• List of all relevant changes 
• Point-by-point response to the referees comments and concerns 
• The marked-up manuscript version 
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List of all relevant changes: 

Both reviewers criticize that we also present growth rates for latitude bands. To address this 
we have implemented the following modifications: 

• We have removed all references to this from the abstract, from the main part and from 
the Conclusions section. 

• Instead we have added a new Annex A where we show our results for the latitude 
bands (for the reason why we have not entirely removed this please see our detailed 
answer to the referees comments). 

• The Annex contains a new figure (Fig. A2) which shows a comparison of our growth 
rate uncertainties with the difference between two NOAA annual mean growth rate 
time series (Mauna Loa – Global) to support that “we expect similar annual mean CO2 
growth rates, i.e., agreement within measurement error, for the different latitude bands 
and globally”. We have added this in response to the referees concern. 

• As a consequence of this the corresponding figure (now Fig. A1) and table (now Tab. 
A1) has been been moved from the main part to the Annex and one figure has been 
removed.  

• The figure now shown as Fig. 3 has been improved by adding error bars to the time 
series shown in Fig. 3a. 

Both reviewers also provide critical comments related to our growth rate variance analysis. To 
address this we are now  

• providing in Sect. 4 an additional introduction paragraph which includes and explicit 
formulation of the question we are answering (in Sect. 4), how we answer it and what 
our main assumptions are. We have added this to address the concern that is was not 
clear “what we are doing and why” and what the “new knowledge” is (note that in our 
point-by-point response to the referees comments we now also provide a list of what 
we consider the most relevant “new knowledge” provided by our paper). In this 
context, we have also added two additional references (Betts et al., 2016, and Kim et 
al., 2016). We hope that all is much clearer now by explicitly formulating a question 
(which we think is an important one) and the corresponding answer obtained using a 
transparent and well-explained method. 

Furthermore, we have implemented minor text changes at various places to further improve 
the manuscript. 
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Reply to Anonymous Referee #1 comments on revised manuscript 
 
In the following, we provide answers to each of the referee’s comments and concerns. 
 
General: 
 
Referee C1: 
My two main criticisms of this paper were their use of: 1) regional atmospheric growth rates and 2) a 
simple statistical model to attribute changes in atmospheric CO2 to human emissions and ENSO. 
Neither comment is addressed well by the authors. 
 
Author’s reply:  
In our reply to your initial comments and concerns, we aimed at providing clear and appropriate 
answers and modified our manuscript accordingly. Too bad that we failed to explain our arguments 
good enough and/or that our arguments do not convince you. We try to do better this time and have 
also implemented major manuscript modifications. Please see below our feedback to your remaining / 
new comments. Based on your comments we have generated another (second) revised version of our 
manuscript. 
 
Results for latitude bands: 
 
Referee C2: 
Their response to my first comment is limited to two additional statements neither of which I fully 
understand: a) "Growth rate time series for several latitude bands are shown in Fig. 4. As can be seen 
from Fig. 4, the growth rates are similar in all latitude bands including the global results (for numerical 
values see Tab. 2). The reason for this is that atmospheric CO2 is long-lived and therefore well-
mixed.” b) “As a result of atmospheric transport and mixing, similar mean annual CO2 growth rates, 
within their measurements error, are expected for all values derived at the different latitude bands. 
This behaviour is shown in Fig. 4 and is interpreted as an indication of the good quality of the satellite 
XCO2 data product and the adequacy of the method used to compute the annual mean CO2 growth 
rates.” Atmospheric CO2 is well mixed but the authors are trying to determine the small, annual 
changes that sit on the growing well-mixed background. Atmospheric CO2 has an interhemispheric 
gradient, which is determined by hemispheric differences in emissions but also by the ~1 year mean 
interhemispheric crossing time. It can take weeks-months for signals to be transported from the tropics 
to midlatitudes so a seasonal change in one latitude band in year one may straddle growth rates in that 
year and year two. I also don't follow their argument about using regional growth rates to comment on 
the quality of the CO2 data. 
 
Author’s reply: 
In our response to your earlier comments on this topic, we tried to explain in detail why we have applied 
our method also to latitude bands (and not only to the global data set). Thanks to your new comment 
(shown above) we now understand your concern better.  
 
In our manuscript, we focus on the gobal results (comparison with NOAA growth rates, time series 
correlation analysis with emissions and ENSO indices) but we think that it is important to also show 
results for latitude bands. As explained, we expect similar growth rates for all latitude bands and we 
show that this is what we find. Our findings therefore agree with our assumptions (our knowledge) and 
we interpret this (as written in our manuscript) as a confirmation of the good quality of the satellite data 
and of the method to derive growth rates from these data as we do not get “strange” growth rates for 
certain latitude bands which would indicate a potential problem.  
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Unfortunately, we neither managed to convince you nor the other referee. Therefore, we now decided 
to remove all results related to latitude bands from the abstract, from the main part and from the 
Conclusions section but to show the results related to latitude bands instead in a new dedicated Annex 
A. We also discussed to entirely remove all results related to latitude bands from the manuscript but for 
the reasons explained (see above and below) we think that these are important results that should be 
shown in the paper and we think that moving this into an Annex is a good compromise. We are now 
also better addressing your concerns as stated in your comment by adding an additional figure, which 
shows an estimate of the expected latitudinal difference (for details see below).  
 
This results in text modifications at various places including the Abstract, main text and Conclusions 
section and it results in (i) moving Fig. 4 and Tab. 2 to the new Annex A, (ii) the removal of Fig. 2 and 
(iii) adding a new Figure A2. 
 
Here the text we plan to show in the new Annex A: 
 
“Growth rate time series have also been computed for several latitude bands as shown in Fig. A1. As 
can be seen, the growth rates agree within their 1-sigma uncertainty range in all latitude bands including 
the global results (for numerical values see Tab. A1).  
The reason for this is that atmospheric CO2 is long-lived and therefore well-mixed. Because of this we 
expect similar annual mean CO2 growth rates, i.e., agreement within measurement error, for the different 
latitude bands and globally. Identical growth rates are not expected due to differences in the sources and 
sinks and the time needed for transport and mixing. The expectation of similar growth rates is 
corroborated by Fig. A2, which shows a comparison of the uncertainty of the satellite-derived growth 
rates (red bars) with the difference of two annual mean CO2 growth rate time series from NOAA, namely 
the time series from Mauna Loa, Hawaii, and the global time series obtained from globally averaged 
marine surface data (both obtained from https://www.esrl.noaa.gov/gmd/ccgg/trends/gr.html). As 
shown in Fig. A2, the uncertainty of the satellite data is similar (mean value: 0.34 ppm/year) as the 
difference between the two NOAA time series (standard deviation: 0.21 ppm/year). We acknowledge 
that the maximum difference between any two latitude bands may be somewhat larger than the 
difference between the two NOAA time series shown in Fig. A2, but it is assumed that the difference 
shown in Fig. A2 is at least a reasonable approximation. 
The agreement shown in Fig. A1 is interpreted as an indication of the good quality of the satellite XCO2 
data product and of the adequacy of the method used to compute the annual mean CO2 growth rates 
because we do not find “strange values” in certain latitude bands or certain years, which would be an 
indication for a potential problem.” 
 
Time series variance analysis: 
 
Referee C3: 
Their response to my second comment is a bit odd in my opinion. I agree that attempting to attribute 
observed changes in atmospheric CO2 to human emissions and ENSO is of great importance. 
However, my original comment said that the method they used to attribute human emissions and 
ENSO was a fool's errand. I made this comment for a number of reasons: 
* the spatial and temporal distributions of human emissions and the manifold responses of the land 
biosphere to regional weather patterns are not necessarily distinct. 
* is there a disprovable result reported by this correlation analysis? The approach/results are so 
amorphous and ill defined that I find it hard to understand what new knowledge I have gained from 
this analysis. 
* if, as the authors claim, their analysis are not in conflict with Liu et al then they should show it. 
 
  

https://www.esrl.noaa.gov/gmd/ccgg/trends/gr.html
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Author’s reply:  
 
Concerning “spatial and temporal distributions of human emissions and land biosphere responses”: 
They may not be perfectly distinct but we assume that they are to a large degree distinct.  After all 
most human emissions from fossil fuel burning do not take place where, for example, most of the land 
biosphere is located. The spatial distribution should not be a major issue for our analysis as we focus 
on global averages (and for latitude bands please see above). Concerning temporal distributions and 
land biosphere responses we address this (at least to some extent) by our time lag analysis and our 
time lag analysis results agree well with previous research as shown in our manuscript. Furthermore, 
we also take the temporal correlation between human emissions and the (time shifted) ENSO indices 
into account. 
 
Concerning “Is there a disprovable result reported by this correlation analysis?”:  
We have formulated all our conclusions carefully in order not to claim something that is not supported 
by our analysis. Our main conclusion is (see Conclusions section): “This analysis shows that the 
ENSO impact on CO2 growth rate variations dominates over that of human emissions throughout the 
period 2003-2016 but in particular in the second half of this period, i.e., during 2010-2016”. This is a 
disprovable result as, in principle, someone may show that this is wrong. In our analysis, we assume 
that the growth rate variation in the investigated time period is dominated by human emissions and 
ENSO. We furthermore assume that ENSO is well described by the used ENSO indices. If these 
assumptions are not valid, then our conclusions may be wrong. However, we also consider the 
uncertainties we are reporting. Therefore, in more quantitative terms, we conclude: “We estimate the 
probability that the impact of ENSO on the variability is larger than the impact of human emissions to 
be 63% for the time period 2003-2016. If the time period is restricted to 2010-2016 this probability 
increases to 94%”. These statements are based on Monte Carlo simulations taking into account the 
uncertainties of the growth rates. The percentages show that we are quite sure that our findings are 
robust for the period 2010-2016 but that we are less sure for the period 2003-2016.  
In the new revised version we will explain more explicitly what our main assumption are by adding 
this new paragraph at the beginning of Sect. 4: ‘It is well known that changes of the growth rate of 
atmospheric CO2 have anthropogenic and natural causes (e.g., Jones et al., 2001; Betts et al., 2016; 
Kim et al., 2016; Liu et al., 2017; Chylek et al., 2018). In this section we are aiming at answering the 
following question: “Assuming that the variability of the CO2 growth rate is dominated by ENSO and 
by human emissions, which of the two considered causes dominates the growth rate variability given 
the satellite-derived growth rates and their uncertainty?”. To answer this question we are using a 
simple linear statistical model and time series of human emissions and two ENSO indices assuming 
that these indices are appropriate proxies for ENSO related effects in the context of providing a 
reliable answer.’. Concerning “new knowledge” please see the list we provide at the end of our 
response. 

This paragraph contains two additional references, which we added to our manuscript: 

Betts et al., 2016: Betts, R. A., Jones, C. D., Knight, J. R., Keeling, R. F., and Kennedy, J. J., El Niño 
and a record CO2 rise, Nature Climate Change, vol. 6, 806–810, 
https://www.nature.com/articles/nclimate3063.pdf , 2016. 

Kim et al., 2016: Kim, J.-S., Kug, J.-S., Yoon, J.-H., Jeong, S.-J., Increased Atmospheric CO2 Growth 
Rate during El Niño Driven by Reduced Terrestrial Productivity in the CMIP5 ESMs, Journal of 
Climate, 8783-8805, 29. 10.1175/JCLI-D-14-00672.1, 2016. 

 

 
  

https://www.nature.com/articles/nclimate3063.pdf


 
6 

 

Concerning “amorphous and ill defined”:  
We disagree that our approach is “amorphous and ill defined”. The opposite is true: We use a very 
simple and well-defined method based on well established other data sets (published and publicly 
available annual CO2 emissions and time series of ENSO indices) and we explain everything clearly so 
that it can be easily reproduced by others. We agree, however, that the problem is a complex one. Here 
we aim at answering only one specific question (as already explained above, this question is now 
given explicitly in our manuscript at the beginning of Sect. 4): “Assuming that the variability of the 
CO2 growth rate is dominated by ENSO and by human emissions, which of the two considered causes 
is the dominating one given the satellite-derived growth rates and their uncertainty?” We clearly 
explained this method and its results (i.e., the answer to the question) and this is new knowledge 
presented in our manuscript (for the complete list of “new knowledge” please see below). So we 
answered one question (which we think is an interesting one) but we were not aiming at answering all 
questions related the impact of ENSO and anthropogenic emissions on CO2 growth rates. 
 
Concerning Liu et al:  
In our paper we cite the Liu et al., 2017, Science paper only in the context of the discussion of the 
large 2015/2016 growth rates: “As can also be seen from Fig. 2c, the largest growth rates are 
approximately 3 ppm/year during 2015 and 2016. These record large growth rates (Peters et al., 2017) 
are attributed to the consequences of the strong 2015/2016 El Niño event, which produced large CO2 
emissions from fires and enhanced net biospheric respiration in the tropics relative to normal 
conditions (Heymann et al., 2017; Liu et al., 2017)”. In our paper, we do not claim anything that goes 
beyond this. We only refer to the Liu et al. and Heymann et al. papers as they provide relevant 
information in the context of the discussion of the growth rates. In particular we have not identified 
anything that points to a (potential) conflict. 
 
However, in our response to your initial comments we wrote: “The interesting work of Liu et al 2017 
(Science) uses a complex earth model, constrained by a limited number of satellite observations in the 
tropics and other a priori knowledge, to identify different responses in the different tropical continents 
to the surface flux of CO2 and thus carbon. Our approach to quantify the different roles of ENSO and 
anthropogenic fossil fuel emissions uses the reported time series of mean annual CO2 growth rates and 
well-established time series of ENSO indices and the known estimates of anthropogenic emissions 
from fossil fuel combustion and industry. This approach is our attempt to address what we and others 
consider an important issue viz: the attribution of growth rate variations to known anthropogenic 
emissions from fossil fuel combustion and industry and to that from the impact of ENSO. The latter 
has many potential impacts on the earth system amongst which are in the tropics the creation of 
regions of flooding and drought, increasing fire and biomass burning and changing sea surface 
temperature. These effects all impact on the growth rate of CO2 in different ways. However, in this 
study we have not tried to separate the different impacts of ENSO. Rather in this study, we attribute 
the importance of ENSO and the known anthropogenic fossil fuel combustion and industry sources to 
the observed annual growth rates. Our results are not in conflict with the scientific finding of Liu et al 
2017 (Science). The use of our longer term time series of XCO2 provides an opportunity when coupled 
with models to investigate the regional impacts of ENSO both in the tropics and the extra tropics in a 
separate study. Overall, we consider that our approach is relevant, reasonable and plausible. We 
describe our assumptions and the derivation of the attribution clearly so that readers can reproduce the 
results, criticise our assumptions and make improved analyses.”. This answer contains the sentence 
“Our results are not in conflict with the scientific finding of Liu et al 2017 (Science).” We have written 
this because of the explanation as given above. But perhaps this sentence is too strong / misleading. 
What we mean is that we have not identified any aspect where we are in conflict with the findings of 
Liu et al. (and nothing in this direction is mentioned in our manuscript). We should have explained 
this better in our response to your initial comments and we apologize for not having formulated this 
clear enough.   
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Concerning “new knowledge”: 
In our manuscript, we present the following new knowledge: 

• We present a new global total column CO2 (“XCO2”) data set (based on satellite data) 
covering 14 years 

• We present a new method to compute annual mean XCO2 growth rates from this data set 
• We present a new annual mean CO2 growth rate time series (covering the entire atmosphere, 

not only near-surface CO2) including a comparison with growth rates from NOAA based on 
surface CO2 observations; we find agreement within the reported uncertainty ranges and 
therefore consider our growth rates to be validated  

• We present an answer to the question “Assuming that the variability of the CO2 growth rate is 
dominated by ENSO and by human emissions, which of the two considered causes dominates 
the growth rate variability given the satellite-derived growth rates and their uncertainty?” To 
answer this question we used a statistical analysis method, which we clearly explain. Our 
answer is given in the Conclusions section: “Our analysis also shows that the ENSO impact on 
CO2 growth rate variations dominates over that of human emissions throughout the period 
2003-2016 (14 years) but in particular during the period 2010-2016 (second half of the 
investigated time period) due to strong La Niña and El Niño events. We estimate the 
probability that the impact of ENSO on the variability is larger than the impact of human 
emissions to be 63% for the time period 2003-2016. If the time period is restricted to 2010-
2016 this probability increases to 94%.” 
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Reply to Anonymous Referee #2 comments on revised manuscript 
 
In the following, we provide answers to each of the referee’s comments and concerns. Based on these 
comments we have generated another (second) revised version of our manuscript. 
 
Referee C1: 
The authors have responded to most of my technical comments carefully.  
 
Author’s reply:  
This is good to know. In fact, we tried to address all comments as good and carefully as possible.  
 
Referee C2: 
However, I do not see that they changed much scientifically. E.g., both referees pointed out that a 
zonal partitioning of the growth rate has little meaning for CO2, yet it's still there, this time with a 
small disclaimer.  
 
Author’s reply:  
Unfortunately, you are not referring to our detailed justification as provided in our response to your 
initial review and why our explanations do not convince you.  
 
In our manuscript, we focus on the gobal results (comparison with NOAA growth rates, time series 
correlation analysis with emissions and ENSO indices) but we think that it is important to also show 
results for latitude bands. As explained, we expect similar growth rates for all latitude bands and we 
show that this is what we find. Our findings therefore agree with our assumptions (our knowledge) and 
we interpret this (as written in our manuscript) as a confirmation of the good quality of the satellite data 
and of the method to derive growth rates from these data as we do not get “strange” growth rates for 
certain latitude bands which would indicate a potential problem.  
 
Unfortunately, we neither managed to convince you nor the other referee. Therefore, we now decided 
to remove all results related to latitude bands from the abstract, from the main part and from the 
Conclusions section but to show the results related to latitude bands instead in a new dedicated Annex 
A. We also discussed to entirely remove all results related to latitude bands from the manuscript but for 
the reasons explained (see above and below) we think that these are important results that should be 
shown in the paper and we decide that moving this into an Annex would be a good compromise. We are 
now also better addressing your concerns as stated in your comment by adding an additional figure, 
which shows an estimate of the expected latitudinal difference (for details see below).  
 
This results in text modifications at various places including the Abstract, main text and Conclusions 
section and it results in (i) moving Fig. 4 and Tab. 2 to the new Annex A, (ii) the removal of Fig. 2 and 
(iii) adding a new Figure A2. 
 
Here the text we plan to show in the new Annex A: 
 
“Growth rate time series have also been computed for several latitude bands as shown in Fig. A1. As 
can be seen, the growth rates agree within their 1-sigma uncertainty range in all latitude bands including 
the global results (for numerical values see Tab. A1).  
The reason for this is that atmospheric CO2 is long-lived and therefore well-mixed. Because of this we 
expect similar annual mean CO2 growth rates, i.e., agreement within measurement error, for the different 
latitude bands and globally. Identical growth rates are not expected due to differences in the sources and 
sinks and the time needed for transport and mixing. The expectation of similar growth rates is 
corroborated by Fig. A2, which shows a comparison of the uncertainty of the satellite-derived growth 
rates (red bars) with the difference of two annual mean CO2 growth rate time series from NOAA, namely 
the time series from Mauna Loa, Hawaii, and the global time series obtained from globally averaged 
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marine surface data (both obtained from https://www.esrl.noaa.gov/gmd/ccgg/trends/gr.html). As 
shown in Fig. A2, the uncertainty of the satellite data is similar (mean value: 0.34 ppm/year) as the 
difference between the two NOAA time series (standard deviation: 0.21 ppm/year). We acknowledge 
that the maximum difference between any two latitude bands may be somewhat larger than the 
difference between the two NOAA time series shown in Fig. A2, but it is assumed that the difference 
shown in Fig. A2 is at least a reasonable approximation. 
The agreement shown in Fig. A1 is interpreted as an indication of the good quality of the satellite XCO2 
data product and of the adequacy of the method used to compute the annual mean CO2 growth rates 
because we do not find “strange values” in certain latitude bands or certain years, which would be an 
indication for a potential problem.” 
 
Referee C3: 
Moreover, I remain unconvinced that the work is significant enough to qualify for a standalone ACP 
publication. Typically the analysis presented in this paper would be a small part of a larger paper, say 
a paper on a source-sink inversion of SCIAMACHY XCO2 or the validation of the XCO2 retrieval 
algorithm. However, a quantification of the global growth rate (zonal bands, as I said, mean very little) 
and a comparison to NOAA's MBL growth rate, in my opinion, does not qualify as a solid standalone 
publication. On this point, I am afraid, the authors and I may never agree. 
 
Author’s reply:  
As already explained on our detailed response to your initial comments, we do not agree with this. As 
explained, we think that our manuscript is appropriate for ACP because of the topic and because of the 
new results, we are presenting.  
 
In our manuscript, we present the following new knowledge: 
In our manuscript, we present the following new knowledge: 

• We present a new global total column CO2 (“XCO2”) data set (based on satellite data) 
covering 14 years 

• We present a new method to compute annual mean XCO2 growth rates from this data set 
• We present a new annual mean CO2 growth rate time series (covering the entire atmosphere, 

not only near-surface CO2) including a comparison with growth rates from NOAA based on 
surface CO2 observations; we find agreement within the reported uncertainty ranges and 
therefore consider our growth rates to be validated  

• We present an answer to the question “Assuming that the variability of the CO2 growth rate is 
dominated by ENSO and by human emissions, which of the two considered causes dominates 
the growth rate variability given the satellite-derived growth rates and their uncertainty?” To 
answer this question we used a statistical analysis method, which we clearly explain. Our 
answer is given in the Conclusions section: “Our analysis also shows that the ENSO impact on 
CO2 growth rate variations dominates over that of human emissions throughout the period 
2003-2016 (14 years) but in particular during the period 2010-2016 (second half of the 
investigated time period) due to strong La Niña and El Niño events. We estimate the 
probability that the impact of ENSO on the variability is larger than the impact of human 
emissions to be 63% for the time period 2003-2016. If the time period is restricted to 2010-
2016 this probability increases to 94%.” 

 
 
 

 

 

https://www.esrl.noaa.gov/gmd/ccgg/trends/gr.html
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Abstract. The growth rate of atmospheric carbon dioxide (CO2) reflects the net effect of emissions and uptake 

resulting from anthropogenic and natural carbon sources and sinks. Annual mean CO2 growth rates have been 

determined globally and for selected latitude bands from satellite retrievals of column-average dry-air mole 

fractions of CO2, i.e., XCO2, for the years 2003 to 2016. The global XCO2 growth rates agree with National 25 

Oceanic and Atmospheric Administration (NOAA) growth rates from CO2 surface observations within the 

uncertainty of the satellite-derived growth rates (mean difference ± standard deviation: 0.0±0.3 ppm/year; R: 

0.82). This new and independent data set confirms record large growth rates around 3 ppm/year in 2015 and 

2016, which are attributed to the 2015/2016 El Niño. Based on a comparison of the satellite-derived growth rates 

with human CO2 emissions from fossil fuel combustion and with El Niño Southern Oscillation (ENSO) indices, 30 

we estimate by how much the impact of ENSO dominates the impact of fossil fuel burning related emissions in 

explaining the variance of the atmospheric CO2 growth rate.  
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1  Introduction 

Atmospheric carbon dioxide (CO2) is an important greenhouse gas that causes global warming  (IPCC 2013). 

Sources that emit CO2 into the atmosphere include anthropogenic and natural sources at the surface, and the 

oxidation of carbon monoxide and hydrocarbons in the atmosphere. The sinks that remove CO2 primarily at the 5 

surface include biological (photosynthesis) and physical (solubility) processes. Anthropogenic emissions of CO2, 

primarily from fossil fuel combustion, have increased the atmospheric CO2 mixing ratios at the surface by more 

than 40% since pre-industrial times, from less than 280 parts per million (ppm) to 402.8±0.1 ppm in 2016 

(Dlugokencky and Tans, 2017a).  A global increase of atmospheric CO2 by 1 ppm in a one-year time period 

corresponds to an annual increase of 2.12 GtC/year (Ballantyne et al., 2012). However, this increase in mass does 10 

not directly correspond to the emissions. The reason is that only a fraction of the emitted CO2 remains in the 

atmosphere as CO2 is partitioned between the atmosphere and ocean and land carbon sinks. On average, somewhat 

less than half of the emitted CO2 remains in the atmosphere but this “airborne fraction” varies substantially from 

year to year (Le Quéré et al., 2016, 2018). Variations of the airborne fraction are not well understood primarily 

because of an inadequate understanding of the terrestrial carbon sink, which introduces large uncertainties for 15 

climate prediction (e.g., IPCC 2013; Peylin et al., 2013; Wieder et al., 2015; Huntzinger et al., 2017). Identification 

of the origin of changes of the growth rate requires additional information for the attribution to particular sources 

or sinks (Peters et al., 2017). Atmospheric CO2 growth rates inferred from in-situ CO2 surface measurements are 

regularly determined and published, for example, by the National Oceanic and Atmospheric Administration 

(NOAA) (see https://www.esrl.noaa.gov/gmd/ccgg/trends/gr.html). In this study, we present and interpret 20 

atmospheric growth rates determined from the remote sensing of CO2 vertical columns from space, which are 

described in the following section. 

 

2  Global satellite observations of atmospheric CO2 columns 

Satellites provide retrievals of CO2 vertical columns in terms of the CO2 column-average dry-air mole fraction, 25 

denoted XCO2.  Although a relatively new field, satellite-based XCO2 data products have already been used to 

improve our knowledge of natural (e.g., Basu et al., 2013; Maksyutov et al., 2013; Chevallier et al., 2014; Reuter 

et al., 2014a; Schneising et al., 2014; Houweling et al., 2014; Parker et al., 2016; Heymann et al., 2017; Liu et al., 

2017; Kaminski et al., 2017) and anthropogenic (e.g., Schneising et al., 2013; Reuter et al., 2014b; Kort et al., 2012; 

Hakkarainen et al., 2016; Nassar et al., 2017) CO2 sources and sinks but only a few studies explicitly present and 30 

discuss CO2 growth rates. Buchwitz et al., 2007, analyzed the first three years (2003-2005) of XCO2 retrievals from 

SCIAMACHY/ENVISAT (Burrows et al., 1995; Bovensmann et al., 1999) generated using the WFM-DOAS 

retrieval algorithm (Buchwitz et al., 2006). They computed year-to-year CO2 variations and compared the XCO2 

increase with the XCO2 increase computed from the output of NOAA’s CO2 assimilating system CarbonTracker 

(Peters et al., 2007) and found agreement within 1 ppm/year. Schneising et al., 2014, computed growth rates from 35 

the 2003-2011 SCIAMACHY XCO2 record. They compared the derived annual growth rates with surface 

temperature and found that years having higher temperatures during the vegetation growing season are associated 

https://www.esrl.noaa.gov/gmd/ccgg/trends/gr.html
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with larger growth rates in atmospheric CO2 at northern mid-latitudes. Growth rates from GOSAT (Kuze et al., 

2016) are published by the National Institute for Environmental Studies (NIES), Tsukuba, Japan (NIES 2017). 

In this study, we analyze a new satellite XCO2 data set covering 14 years (2003-2016) generated from 

SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT. We use the XCO2 data product Obs4MIPs (Observations 

for Model Intercomparisons Project) version 3 (O4Mv3), which is a gridded (Level 3) monthly data product at 5o 5 

latitude by 5o longitude spatial resolution in Obs4MIPs format (Buchwitz et al., 2017a). Obs4MIPs 

(https://www.earthsystemcog.org/projects/obs4mips/) is an activity to make observational products more 

accessible for climate model intercomparisons (e.g., Lauer et al., 2017). The O4Mv3 XCO2 data product was 

generated by gridding (averaging) the XCO2 Level 2 (i.e., individual soundings) product generated with the 

Ensemble Median Algorithm (EMMA, Reuter et al., 2013). EMMA uses as input an ensemble of XCO2 Level 2 10 

data products (Buchwitz et al., 2015, 2017a, 2017b; Reuter et al., 2013) from SCIAMACHY/ENVISAT and 

TANSO-FTS/GOSAT. To generate the O4Mv3 product, the EMMA version 3.0 (EMMAv3, Reuter et al., 2017e) 

product was used. The list of satellite products used for the generation of the EMMAv3 Level 2 product - and 

therefore also for the O4Mv3 Level 3 data product used in this study - is provided in Tab. 1. The quality of this 

product relative to Total Carbon Column Observing Network (TCCON) ground-based observations (Wunch et al., 15 

2011, 2015) can be summarized as follows (Buchwitz et al., 2017c): +0.23 ppm overall (global) bias, relative 

accuracy 0.3 ppm (1-sigma), and very good stability in terms of linear bias trend (-0.02±0.04 ppm/year). 

Figure 1 presents an overview of the O4Mv3 product in terms of time series and global XCO2 maps. The maps 

show the typical coverage of XCO2 from SCIAMACHY (until April 2012) and GOSAT (since mid 2009). As can 

be seen, the time series for the three latitude bands shown in Fig. 1 have very similar slopes. They mainly differ in 20 

the amplitude of the seasonal cycle, which reflects the latitudinal dependence of uptake and release of atmospheric 

CO2 by the terrestrial biosphere (Schneising et al., 2014). These time series have been used to compute annual 

mean CO2 growth rates as will be explained in the following section. 

 

3  Atmospheric CO2 growth rates from satellite observations 25 

National Oceanic and Atmospheric Administration (NOAA) defines the annual mean CO2 growth rate for a given 

year as the CO2 concentration difference at the end of that year minus the CO2 concentration at the beginning of 

that year (Thoning et al., 1989; see also additional explanations as given on the NOAA/ESRL website 

(https://www.esrl.noaa.gov/gmd/ccgg/about/global_means.html)). We adopt this definition. As described below, 

our method involves the following three steps: (i) Computation of an XCO2 time series (at monthly resolution and 30 

sampling) by averaging the XCO2 in the region of interest.   (ii) Computation of monthly sampled XCO2 annual 

growth rates by computing the difference of the XCO2 value of month i minus the XCO2 value of month i-12 and 

computation of the corresponding uncertainty estimate. (iii) Computation of annual mean growth rates and their 

corresponding uncertainties from the monthly sampled annual growth rates.   

 In the following, this method is described in detail using Fig. 2 for illustration. Figure 2 shows how the growth 35 

rates are computed for the latitude band 30oN-60oN, i.e., for northern mid-latitudes. In Figure 2a monthly satellite 

XCO2 (O4Mv3), as obtained by globally averaging all the individual (5ox5o) XCO2 values in the selected latitude 

https://www.earthsystemcog.org/projects/obs4mips/
https://www.esrl.noaa.gov/gmd/ccgg/about/global_means.html)
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band, is plotted. To compute the spatially averaged XCO2 time series (shown in Fig. 2a), we first longitudinally 

average the XCO2 followed by the computation of the area-weighted latitudinal average of XCO2 by using the 

cosine of latitude as weight. We consider surface area because surface fluxes are linked to mass of CO2 (or number 

of CO2 molecules) rather than molecular mixing ratios or mole fractions. As can be seen, the computed time series 

does not start at the beginning of 2003 but in April 2003. As explained in Buchwitz et al., 2017d (see discussion of 5 

their Fig. 6.1.1.1) the underlying SCIAMACHY BESD v02.01.02 XCO2 data product (see Tab. 1) apparently 

suffers from an approximately 1 ppm high bias in the first few months of 2003. The exact magnitude of this bias 

has not been quantified due to lack of TCCON validation data in this early time period. As this bias in early 2003 

is critical for the year 2003 growth rate, we have omitted the first three months of 2003 for the computation of the 

growth rates shown in this publication.   10 

Figure 2b shows monthly sampled annual growth rates as computed from the monthly XCO2 values shown in Fig. 

2a. Each value is the difference of two monthly XCO2 values corresponding to the same month (e.g., January) but 

different years (e.g., 2004 and 2005). For example, the first data point (first diamond symbol) shown in Fig. 2b is 

the difference of the April 2004 XCO2 value minus the April 2003 XCO2 value. The second data point corresponds 

to May 2004 minus May 2003, etc.  The time difference between the monthly XCO2 pairs is always one year and 15 

the time assigned to each XCO2 difference is the time in the middle of that year. Therefore, the time series shown 

in Fig. 2b starts six months later and ends six months earlier as compared to the time series shown in Fig. 2a. Each 

XCO2 difference shown in Fig. 2b therefore corresponds to an estimate of the XCO2 annual growth rate and the 

position on the time-axis corresponds to the middle of the corresponding one-year time period.  

A 1-sigma uncertainty estimate has been computed for each of the monthly sampled annual growth rates shown in 20 

Fig. 2b (see grey vertical bars). They have been computed such that they reflect the following aspects: (i) the 

standard error of the O4Mv3 XCO2 values as given in the O4Mv3 data product file for each of the 5ox5o grid cells, 

(ii) the spatial variability of the XCO2 within the selected region, (iii) the temporal variability of the annual growth 

rates in the one year time interval, which corresponds to the annual growth rate, and (iv) the number of months (N) 

with data located in that one year time interval. The uncertainties have been computed as the mean value of three 25 

terms divided by the square root of N. The first term is the mean value of the standard error, the second term is the 

standard deviation of the XCO2 values in the selected region and the third term is the standard deviation of the 

monthly sampled annual growth rates in the corresponding one-year time interval. 

Figure 2c shows the final result, i.e., the annual mean XCO2 growth rates and their estimated (1-sigma) 

uncertainties. The annual mean growth rates have been computed by averaging all the monthly sampled annual 30 

growth rates (shown in Fig. 2b), which are located in the year of interest (e.g., 2003). For most years, 12 annual 

growth rate values are available for averaging but there are some exceptions. For example, for the year 2003 only 

3 values are present as can be seen from Fig. 2b and for the years 2014 and 2015 there are only 11 values as no 

data are available for January 2015 due to issues with the GOSAT satellite. The uncertainty of the annual mean 

growth rate has been computed by averaging the uncertainties assigned to each of the monthly sampled annual 35 

growth rates (shown as grey vertical bars in Fig. 2b) scaled with a factor, which depends on the number of months 

(N) available for averaging. This factor is the square root of 12/N. It ensures that the uncertainty is larger, the less 

data points are available for averaging.  Overall, our uncertainty estimate is quite conservative, as we do not assume 
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that errors improve upon averaging. As a result of this procedure, the error bar of the year 2003 growth rate is quite 

large (0.7276 ppm/year, see Tab. 2A1 in Annex A, where all numerical values are listed). This is because the 

monthly sampled annual growth rate varies significantly in 2003 (see Fig. 2b) and because only N=3 data points 

are available for averaging in 2003. In contrast, the year 2005 growth rate uncertainty is much smaller (0.2628 

ppm/year) because the growth rates vary only littleless during 2005 and because N=12 data points are available for 5 

averaging. 

Figure 3 shows the corresponding results for the global data set. As can be seen, all time series are similar to the 

ones shown in Fig. 2 for northern mid-latitudes. However, there are also difference, e.g., the seasonal cycles as 

shown in Fig. 2a and Fig. 3a. For northern mid-latitudes (Fig. 2a) the shape of these cycles is very similar for all 

years in contrast to the global data shown in Fig. 3a. This is due to spatial sampling differences as the first few 10 

years (until 2008) are “land only” data as the SCIAMACHY XCO2 is limited to observations over land whereas 

GOSAT XCO2 (from 2009 onwards) is not restricted to land (see global maps shown in Fig. 1). For the northern 

mid-latitude region the land coverage dominates (see global map in Fig. 2a). Therefore, for northern mid-latitudes 

SCIAMACHY and GOSAT sample similar regions, in contrast to the global region (Fig. 3), where the spatial 

sampling differences are larger. In Fig. 3cIn Fig. 2c also the NOAA global growth rates (Dlugokencky and Tans, 15 

2017b) are shown. As can be seen, the satellite-derived growth rates agree well with the NOAA growth rates 

obtained from CO2 surface observations. For the time period 2003-2016 the linear correlation coefficient R is 0.82 

and the difference is -0.02±0.28 ppm/year (mean difference ± standard deviation). Perfect agreement is not to be 

expected as these two growth rate time series have been obtained from CO2 observations, which represent very 

different vertical sampling of the atmosphere (surface (NOAA) versus entire vertical column (satellite)). 20 

Growth rate time series for several latitude bands are shown in Fig. 4. As can be seen from Fig. 4, the growth rates 

are similar in all latitude bands including the global results (for numerical values see Tab. 2). As can also be seen 

from Fig. 2cThe reason for this is that atmospheric CO2 is long-lived and therefore well-mixed. As a result of 

atmospheric transport and mixing, similar mean annual CO2 growth rates, within their measurements error, are expected for 

all values derived at the different latitude bands. This behaviour is shown in Fig. 4 and is interpreted as an indication of the 25 

good quality of the satellite XCO2 data product and the adequacy of the method used to compute the annual mean CO2 growth 

rates. As can also be seen from Fig. 4, the largest growth rates are approximately 3 ppm/year during 2015 and 2016. 

These record large growth rates (Peters et al., 2017) are attributed to the consequences of the strong 2015/2016 El 

Niño event, which produced large CO2 emissions from fires and enhanced net biospheric respiration in the tropics 

relative to normal conditions (Heymann et al., 2017; Liu et al., 2017). Many of these fires are initiated by humans, 30 

for example, to clear tropical forests. In this study, human emissions of CO2 are defined as emissions from fossil 

fuel combustion and industry (Le Quéré et al., 2016, 2018) but do not include, for example, CO2 emissions 

originating from slash and burn agriculture. 

 

4  Correlation of CO2 growth rates with fossil CO2 emissions and ENSO indices 35 

It is well known that changes of the growth rate of atmospheric CO2 have anthropogenic and natural causes (e.g., 

Jones et al., 2001; Betts et al., 2016; Kim et al., 2016; Liu et al., 2017; Chylek et al., 2018). In this section we are 

aiming at answering the following question: “Assuming that the variability of the CO2 growth rate is dominated by 
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ENSO and by human emissions, which of the two considered causes dominates the growth rate variability given 

the satellite-derived growth rates and their uncertainty?”. To answer this question we are using a simple linear 

statistical model and time series of human emissions and two ENSO indices assuming that these indices are 

appropriate proxies for ENSO related effects in the context of providing a reliable answer.  

Figure 53 shows a comparison of the CO2 annual mean growth rates (Fig. 5a3a) with annual global CO2 emissions 5 

from fossil fuel combustion and industry (Fig. 5b3b) (Le Quéré et al., 2018; GCP 2017) (correlation of growth rate 

and human emissions: R2 = 31%). As can be seen, the growth rates vary significantly in recent years despite nearly 

constant human emissions. Figure 5d3d shows two ENSO indices: the Southern Oscillation Index (SOI, blue lines) 

(NOAA 2017a; Ropelewski and Jones, 1987) and the Oceanic Niño Index (ONI, green lines) (NOAA 2017b). 

Whereas SOI is defined as the normalized pressure difference between Tahiti and Darwin (values less than -1 10 

indicate the presence of a strong El Niño), ONI is based on Sea Surface Temperature (SST) differences (positive 

values correspond to El Niño). The dotted lines correspond to the original (i.e., unshifted) annual mean indices and 

the solid lines correspond to time shifted ENSO indices. Time shifts have been investigated to consider the delay 

in atmospheric response to ENSO-induced changes. As shown in Fig. 5c3c, the growth rate response as quantified 

by R2 is largest after 4 months for ONI (R2 = 35%) and after 7 months for SOI (R2 = 30%). These maxima have 15 

been adopted for the solid (shifted) lines in Fig 5d3d. This finding is consistent with results from other studies, 

where lags in the range 3-9 months have been reported (Jones et al., 2001; Kim et al., 2016; Chylek et al., 2018). 

In order to separate and quantify the impactcontributions of the human CO2 emissions and of ENSO, as described 

by the two indices SOI and ONI, onto the growth rate variations, we employ the method of “variation partitioning” 

(Peres-Neto  et al., 2006). WeTo achieve this, we have fitted three basis functions to the 2003-2016 growth rate 20 

time series via linear least-squares minimization (we explain the method in this paragraph using SOI but the method 

does not depend on which ENSO index is used): (i) a constant offset (variance zero), (ii) the human CO2 emissions 

(Fig. 5b3b) and (iii) SOI shifted by 7 months (blue solid line in Fig. 5d3d). The variance of the scaled emission, 

i.e., of the human emission scaled with the corresponding fit parameter, is 0.0758 ppm2/year2 (note that in this 

section we report numerical values with four digital places but this shall not imply that all decimal places are 25 

significant). The variance of the scaled SOI is 0.1070 ppm2/year2 and the variance of the fit residual is 0.0728 

ppm2/year2. The sum of the three individual variances is 0.2557 ppm2/year2 whereas the variance of the annual 

mean growth rate is 0.2307 ppm2/year2. This shows that the sum of the variances is 10.8% larger than the variance 

of the growth rate, i.e., the sum of the variances is not exactly equal to the variance of the sum. The reason for this 

is that the CO2 emission and the SOI time series are not uncorrelated (R = 0.14). To account for correlations, we 30 

subtract the variance of the residual from the variance of the growth rate. The result is the part of the variance to 

be explained by the emissions and by the SOI. The ratio of this to be explained variance (0.1579 ppm2/year2) and 

the sum of the variances of the emissions and SOI ((0.0758 + 0.1070) ppm2/year2 = 0.1828 ppm2/year2) is 0.8638. 

The latter is then used as a scaling factor applied to the variances of the emissions and of the SOI. The scaled 

variances are 0.0655 ppm2/year2 for the emissions and 0.0924 ppm2/year2 for SOI (note that the sum of these scaled 35 

variances and the variance of the residual is equal to the variance of the growth rate). From this we conclude that 

the human emissions explain 28% (= 0.0655/0.2307) of the variance of the growth rate and that ENSO as quantified 

by the SOI explains 40% (= 0.0924/0.2307). We computed (1-sigma) uncertainties of these estimates by 

numerically perturbing the satellite-derived annual mean growth rates taking into account their uncertainty (see 
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Fig. 4Figs. 2c and 3) and by subsequently repeating the computations as explained above 10,000 times. The 

perturbations correspond to random perturbations of the annual mean growth rates assuming normal distributions 

for each year and no correlation between the different years. This analysis yields that 40±13% of the growth rate 

variation results from the impact of ENSO and that 28±14% is due to the human emissions of CO2. Using these 

simulations, we also computed the fraction of cases where the ENSO impact dominates over the human emissions. 5 

This fraction is 63% in this case, i.e., when using SOI and when the analysis is applied to the entire time period 

2003-2016.  This fraction is interpreted as the probability that ENSO-induced impacts on the variation of the growth 

rate dominates that of human emissions.  

When using ONI instead of SOI, ENSO explains 37±14% of the growth rate variance during 2003-2016, human 

emissions explain 24±14% and the fraction where ENSO dominates is again 63%. When restricting the time period 10 

to 2010-2016, which is dominated by strong 2010/2012 La Niña events (Boening et al., 2012; Rodrigues et al., 

2014) and by the strong 2015/2016 El Niño, the results are the following: Using the SOI analysis, we find that 

ENSO explains 58±19% of the variance, human emissions explain 2±9% and the probability that ENSO dominates 

is 94%. For the ONI analysis, we find that ENSO explains 59±20% of the variance, human emissions explain 3±9% 

and the probability that ENSO dominates is 94%. This analysis shows that the ENSO impact on CO2 growth rate 15 

variations dominates over that of human emissions throughout the period 2003-2016 but in particular in the second 

half of this period, i.e., during 2010-2016. 

 

5  Conclusions 

 20 

We presented a method for the computation of atmospheric CO2 column annual mean growth rates from satellite 

XCO2 retrievals. The satellite XCO2 data product used is the Obs4MIPs version 3 (O4Mv3) XCO2 data product 

based on SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT satellite data. This product covers the time period 

2003-2016 and has monthly time and 5ox5o spatial resolution.   

The presented method has been applied to the global satellite data and to selected latitude bands. The estimated 25 

uncertainty of the satellite-derived annual mean growth rates is typically in the range 0.3-0.5 ppm/year (1-sigma). 

The global) with the exception of the first year 2003, where the uncertainty is 0.76 ppm/year, and of the last year 

2016, where the uncertainty is 0.50 ppm/year. The growth rates agree with NOAA within the uncertainty of the 

satellite-derived growth rates (mean difference ± standard deviation: 0.0±0.3 ppm/year; R: 0.82). In agreement 

with NOAA, we find that the growth rates are largest in the years 2015 and 2016. These growth rates are around 30 

3 ppm/year and are attributed to the 2015/2016 El Niño resulting in large CO2 emissions from fires and enhanced 

net biospheric respiration in the tropics relative to normal conditions (Heymann et al., 2017; Liu et al., 2017). Our 

analysis also shows that the ENSO impact on CO2 growth rate variations dominates over that of human emissions 

throughout the period 2003-2016 (14 years) but in particular during the period 2010-2016 (second half of the 

investigated time period) due to strong La Niña and El Niño events. We estimate the probability that the impact 35 

of ENSO on the variability is larger than the impact of human emissions to be 63% for the time period 2003-

2016. If the time period is restricted to 2010-2016 this probability increases to 94%. 
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In the future, we plan to regularly update the satellite-derived XCO2 growth rates to monitor this important quantity. 

This will also include satellite XCO2 retrievals from other satellite instruments such as XCO2 from NASA’s OCO-

2 mission (e.g., Eldering et al., 2017; Reuter et al., 2017c, 2017d). 
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Figure 1. Time series and global maps of satellite-derived column-average dry-air mole fractions of carbon dioxide, 

i.e., XCO2. Shown is data product Obs4MIPs version 3 (O4Mv3) based on an ensemble of 5 

SCIAMACHY/ENVISAT (until April 2012) and TANSO-FTS/GOSAT (since mid 2009) individual sensor / 

individual soundings (Level 2) data products. The three time series correspond to three latitude bands: 30oN-60oN 

(red), 30oS-30oN (green) and 60oS-30oS (blue). The maps in the top left show monthly XCO2 for April and 

September 2003 (SCIAMACHY, land only) and the maps on the bottom right show monthly XCO2 for April and 

September 2016 (TANSO-FTS, land and ocean glint).  10 
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Previous Fig. 2 removed. 5 
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Figure 2.  Atmospheric CO2 and corresponding growth rates for northern mid-latitudes.. (a) Monthly mean XCO2 

(red line) for northern mid-latitudesas obtained from averaging XCO2 data product O4Mv3 in the latitude band 

30oN-60oN (see red rectangle in global map).globally for each month.  (b) Monthly sampled annual CO2 growth 

rates as computed from the red curve shown in (a) including 1-sigma uncertainty (grey vertical bars). (c) Annual 5 

mean growth rates computed from averaging the values shown in (b) including 1-sigma error estimates (vertical 

bars) (the numerical values are listed in Tab. 2). A1 of Annex A). The NOAA annual mean global growth rate is 

also shown in (c) for comparison (in blue). Also listed in (c) is the linear correlation coefficient (R), the mean 

difference and the standard deviation of the difference of the satellite and the NOAA growth rates for 2003-2016 

and for 2004-2016. 10 

Was previous Fig. 3. Caption is from previous Fig.2.  
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Figure 4. 
Moved to Annex A  
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Figure 3. Carbon dioxide global annual mean growth rates compared with human emissions and ENSO indices. 

(a) Satellite-derived global annual mean growth rates (same as black line in Fig. 4).with 1-sigma uncertainty range 

shown as vertical lines). (b) CO2 emissions from fossil fuel and industry (the correlation with the growth rate is R2 5 

= 31%). (c)  Correlation in terms of R2 of growth rate and annual SOI (blue curve) and ONI (green curve) as a 

function of time shift in months. (d) Annual SOI for no shift (blue dotted line, R2 = 10%) and for a shift of 7 months 

(blue solid line, R2 = 30%) and annual ONI for no shift (green dotted line, R2 = 13%) and for a shift of 4 months 

(green solid line, R2 = 35%). 

Was previous Fig. 5. Error bars added to (a). 10 
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Figure 5.  5 

Previous Fig. 5 (removed).  
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Table 1. Satellite XCO2 data products. Individual satellite sensor XCO2 algorithms and corresponding Level 2 

data products used for generating the EMMAv3 Level 2 (i.e., individual soundings) data product, which has been 

gridded to obtain the O4Mv3 Level 3 data product used in this study. GHG-CCI refers to the GHG-CCI project of 

ESA’s Climate Change Initiative (http://www.esa-ghg-cci.org/) and C3S is the Copernicus Climate Change 5 

Service (https://climate.copernicus.eu/). 

Algorithm (Version) Sensor Comment Reference 

BESD (v02.01.02) SCIAMACHY / ENVISAT GHG-CCI / C3S product ID: 

CO2_SCI_BESD 

Reuter et al., 2011 

RemoTeC (v2.3.8) TANSO-FTS / GOSAT GHG-CCI / C3S product ID: 

CO2_GOS_SRFP 

Butz et al., 2011 

UoL-FP (v7.1) TANSO-FTS / GOSAT GHG-CCI / C3S product ID: 

CO2_GOS_OCFP 

Cogan et al., 2012 

ACOS (v7.3.10a) TANSO-FTS / GOSAT NASA’s GOSAT 

XCO2 product 

O’Dell et al., 2012 

NIES (v02) TANSO-FTS / GOSAT Operational GOSAT product Yoshida et al., 2013 

 

 
 
 10 
 
Previous Tab. 2 moved to Annex A.  

http://www.esa-ghg-cci.org/
https://climate.copernicus.eu/
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Annex A 

Growth rate time series have also been computed for several latitude bands as shown in Fig. A1. As can be seen, 

the growth rates agree within their 1-sigma uncertainty range in all latitude bands including the global results (for 

numerical values see Tab. A1).  5 

The reason for this is that atmospheric CO2 is long-lived and therefore well-mixed. Because of this we expect 

similar annual mean CO2 growth rates, i.e., agreement within measurement error, for the different latitude bands 

and globally. Identical growth rates are not expected due to differences in the sources and sinks and the time needed 

for transport and mixing. The expectation of similar growth rates is corroborated by Fig. A2, which shows a 

comparison of the uncertainty of the satellite-derived growth rates (red bars) with the difference of two annual 10 

mean CO2 growth rate time series from NOAA, namely the time series from Mauna Loa, Hawaii, and the global 

time series obtained from globally averaged marine surface data (both obtained from 

https://www.esrl.noaa.gov/gmd/ccgg/trends/gr.html). As shown in Fig. A2, the uncertainty of the satellite data is 

similar (mean value: 0.34 ppm/year) as the difference between the two NOAA time series (standard deviation: 0.21 

ppm/year). We acknowledge that the maximum difference between any two latitude bands may be somewhat larger 15 

than the difference between the two NOAA time series shown in Fig. A2, but it is assumed that the difference 

shown in Fig. A2 is at least a reasonable approximation. 

The agreement shown in Fig. A1 is interpreted as an indication of the good quality of the satellite XCO2 data 

product and of the adequacy of the method used to compute the annual mean CO2 growth rates because we do not 

find “strange values” in certain latitude bands or certain years, which would be an indication for a potential problem.  20 

 

 

  

https://www.esrl.noaa.gov/gmd/ccgg/trends/gr.html
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Figure A1. Satellite-derived annual mean XCO2 growth rates: Global (black), Northern Hemisphere (NH) mid 

latitudes (“NHmidlat” (30oN - 60oN), red), Tropics (30oS - 30oN, green), and Southern Hemisphere mid latitudes 

(“SHmidlat” (60oS - 30oS), blue). The corresponding numerical values are listed in Tab. A1.  5 
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Figure A2. Comparison of the 1-sigma uncertainty range of the satellite-derived growth rates (red bars) with the 5 

difference of two annual mean growth rate time series obtained from NOAA, namely the time series from Mauna 

Loa (MLO), Hawaii, and the global time series obtained from globally averaged marine surface data (black line 

and symbols).  
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Table 2A1. Satellite-derived annual mean XCO2 growth rates in ppm/year including 1-sigma uncertainty (in 

brackets). Abbreviations: NH is Northern Hemisphere and SH is Southern Hemisphere. 

 

Year 

Latitude band / region 

Global NH mid-latitudes 

(30oN-60oN) 

Tropics 

(30oS-30oN) 

SH mid-latitudes 

(60oS-30oS)  

2003 1.66 (0.76) 1.99 (0.72) 1.54 (0.74) 1.77 (0.62) 

2004 1.59 (0.30) 1.52 (0.29) 1.71 (0.29) 1.30 (0.23) 

2005 2.16 (0.28) 2.51 (0.26) 1.99 (0.28) 2.17 (0.22) 

2006 2.21 (0.27) 2.13 (0.25) 2.22 (0.27) 2.33 (0.21) 

2007 2.26 (0.27) 2.33 (0.25) 2.20 (0.26) 2.34 (0.21) 

2008 1.67 (0.29) 1.60 (0.27) 1.81 (0.28) 1.41 (0.20) 

2009 1.77 (0.30) 1.75 (0.30) 1.86 (0.28) 1.70 (0.21) 

2010 2.22 (0.29) 2.67 (0.29) 2.08 (0.27) 2.14 (0.20) 

2011 1.86 (0.28) 1.69 (0.27) 1.86 (0.27) 2.19 (0.19) 

2012 2.46 (0.29) 2.64 (0.28) 2.44 (0.27) 2.38 (0.21) 

2013 2.27 (0.30) 2.38 (0.28) 2.27 (0.28) 2.10 (0.22) 

2014 1.74 (0.31) 1.53 (0.30) 1.80 (0.29) 1.84 (0.23) 

2015 2.89 (0.34) 2.89 (0.31) 2.97 (0.32) 2.54 (0.25) 

2016 3.23 (0.50) 3.28 (0.46) 3.23 (0.48) 3.41 (0.36) 
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