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Abstract.  

We evaluate four high-resolution model simulations of pollutant emissions, chemical transformation and downwind transport 

for the Athabasca oil sands using the Global Environmental Multiscale – Modelling Air-quality and Chemistry (GEM-

MACH) model using surface monitoring network and aircraft observations of multiple pollutants, for simulations spanning a 15 

time period corresponding to an aircraft measurement campaign in the region in summer 2013.  We have focussed here on 

the impact of different representations of the model’s aerosol size distribution and plume-rise parameterization on model 

results.  The use of a more finely resolved representation of the aerosol size distribution was found to have a significant 

impact on model performance, reducing the magnitude of the original surface PM2.5 negative biases by 32%.   

 20 

We compared model predictions of SO2, NO2, and speciated particulate matter concentrations from simulations employing 

the commonly-used Briggs (1984) plume-rise algorithms to redistribute emissions from large stacks with stack plume 

observations.  As in our companion paper (Gordon et al., 2018), we found these algorithms resulted in under-predictions of 

plume rise, with 39 to 60% of predicted plume heights falling below half of the observed plume heights.  However, we found 

here that a layered buoyancy approach for stable to neutral atmospheres, coupled with the assumption of free rise in 25 

convectively unstable atmospheres, resulted in much better model performance, both for atmospheric constituent 

concentrations and the predicted height of the plumes.  Persistent issues with over-fumigation of plumes in the model were 

linked to positive biases in the predicted temperatures between the surface and 1km elevation.  These in turn may lead to 

overestimates of near-surface diffusivity, resulting in excessive fumigation.   
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1 Introduction 

Forecast ensembles of regional air-quality models tend to have relatively poor performance in their predictions of sulphur 

dioxide (SO2), with normalized mean biases in the range +/-40%, Pearson’s correlation coefficients (R) of less than 0.21, and 

normalized mean errors of more than 75% (Makar et al., 2015b).  These scores may be contrasted with those for atmospheric 

ozone (O3) of +/- 13% for normalized mean bias, R more than 0.6, and normalized mean errors less than 37%.  SO2 is a 5 

primary emitted pollutant (it is not created by chemistry), with the majority of anthropogenic SO2 emissions coming from 

large smokestacks (Zhang et al., 2018). In North America, such “major point sources” are often outfitted with Continuous 

Emissions Monitoring System (CEMS) instrumentation, which provides accurate hourly estimates of the emitted mass of 

SO2, as well as estimates of parameters that govern the buoyancy- or momentum-driven rise of the resulting plumes, such as 

the temperature of the emissions, and their volume flow rate (volume emitted / unit time).  Anthropogenic SO2 emissions are 10 

the main source of most atmospheric sulphur deposition (reacting in the gas-phase with the OH radical to create sulphuric 

acid, and in cloud water and rain via aqueous chemistry to create bisulphate and sulphate ions).  The poor performance of 

SO2 predictions in air-quality models is therefore a matter of concern, and drives the need to better understand its causes.  

Some of the potential reasons for this poor performance include (in-)accuracy of the; (i) emissions information (less likely in 

cases where CEMS data are available), (ii) plume rise parameterization algorithms (which describe the vertical redistribution 15 

of the emitted mass according to the stack parameters and meteorological conditions: e.g., Briggs (1984), (iii) forecast 

meteorological variables used in calculating plume rise, and (iv) SO2 loss processes, such as oxidation (as noted above) and 

the deposition algorithms and meteorological inputs used for calculating the SO2 deposition rate.  Furthermore, a 

combination of these factors may drive the relative difference in model performance between SO2 and O3; we note, for 

example, that tropospheric O3 is a secondary pollutant (driven by chemical formation and loss rather than direct emissions of 20 

ozone), and hence will be more spatially homogeneous than SO2, with the implication that forecast accuracy for very local 

conditions will play more of a role in setting the ambient concentrations of SO2 than O3. 

 

The prevalence of CEMS for SO2 observations in both Canada and the U.S. (https://www.epa.gov/emc/emc-continuous-

emission-monitoring-systems) implies that the CEMS-derived emissions inputs available for model simulations will be well 25 

characterized.  However, reporting requirements vary between the countries. In Canada, emitting facilities are required to 

report estimates of their total annual emissions, as well as typical stack parameters, to the federal National Pollutant Release 

Inventory (NPRI, 2018), although individual Canadian provinces may require more detailed reporting.  In the U.S., CEMS 

SO2 data are reported at the national level to the U.S. EPA (EPA, 2018(a,b)). In both countries, estimates of the typical stack 

volume flow rate (and/or the stack exit flow velocity) and effluent stack exit temperatures are reported and used for 30 

modelling, instead of hourly estimates recorded by CEMS. In the Canadian province of Alberta, regulatory reporting 

requirements include CEMS hourly observations of SO2 and NO2 emissions from selected large stacks, as well as hourly 

information on the stack effluent temperature and volume flow rate. 
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In our companion paper (Gordon et al., 2018) we note that past and current regional air-quality transport models (Im et al., 

2015; Byun and Ching, 1999; Holmes et al., 2006; Emery et al., 2010) and emissions processing models (CMAS, 2017; 

Bieser et al., 2011) describe the buoyancy- and/or momentum-driven vertical redistribution of emitted mass from stacks 

using variations on the work of Briggs (1969, 1975, 1984).  In the latter work, observations of plume rise,  stack parameter 5 

information, and meteorological conditions were used to generate parameterizations, linking these data to the height gained 

by the centerline of atmospheric plumes (the plume height), as well as the vertical extent of the bulk of the emitted mass 

about that centerline.  However, subsequent early evaluations of the accuracy of these parameterizations (cf. VDI, 1985) 

have had mixed results, including parameterization estimates averaging 50% higher than observations (Giebel, 1979); within 

12 and 50% of observations (Ritmann, 1982); 30% higher than observations (England et al., 1976); 50% higher than 10 

observations (Hamilton, 1967).  Recent studies using Reynolds averaged Navier-Stokes and large eddy simulation (RAND-

LES) modelling have shown that the integral model of Briggs overestimates the plume rise and its overestimation error 

increases as the role of atmospheric turbulence increases (Ashrafi et al., 2017), and underestimates of plume rise, inferred 

from excessively high predicted surface concentrations (Webster and Thompson, 2002).  Our companion paper, making use 

of different sources of meteorological observations, CEMS data, and aircraft observations of SO2 plumes from multiple 15 

sources over a 29-day period, found that the Briggs (1984) plume rise parameterization tended to underpredict plume heights 

in the vicinity of the multiple large SO2 emissions sources in the Canadian Athabasca oil sands, with 34 to 52% of the 

parameterized heights falling below half of the observed height, compared to 0 to 11% of predicted plume heights being 

above twice the observed height.     

 20 

These underpredictions of plume rise are a potential source of concern, given that they imply that the underlying algorithms 

will bias SO2 towards lower elevations.  This will lead to more local rather than long-range sulphur deposition.  Sulpher 

deposition is the focus of other work examining acidifying deposition associated with emissions sources in Alberta (Makar et 

al., 2018).    

 25 

The work reported here has four main foci, driven by the need to evaluate and if possible improve the performance of both 

the algorithms governing plume rise and our air-quality model (Global Environmental Multiscale – Modelling Air-quality 

and Chemistry; GEM-MACH) which employs those algorithms.  The main objectives of this study include: (1) an evaluation 

of the impacts of the plume rise algorithms on model performance, with the introduction of a new approach to calculate 

plume rise being compared to the standard Briggs (1984) approach; (2) estimation of the impact of hourly major point stack 30 

information on model results; and (3) an overall evaluation of the model performance using different configurations for the 

representation of plume rise and particle size distributions. 
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2 Model Description 

2.1 Model Overview 

Global Environmental Multiscale – Modelling Air-quality and Chemistry (GEM-MACH) is Environment and Climate 

Change Canada’s comprehensive online air quality and chemical transport modelling system, currently in its second major 

revision. The model consists of an atmospheric chemistry module (Moran et al., 2010), tightly coupled with the dynamical 5 

core and residing within the physics module of the Global Environmental Multiscale (GEM) weather forecast model (Cote et 

al., 1998).  Emissions for the model are provided using an emissions processing system based on Sparse Matrix Operator 

Kernel Emissions (SMOKE, Coats, 1996, https://www.cmascenter.org/smoke). GEM-MACHv2 is a multiscale model,  

designed and exercised in a wide range of scales, from global chemical transport modelling, to regional air quality modelling 

with direct and indirect feedbacks between chemistry and meteorology (Makar et al., 2015a,b), and urban scale air quality 10 

modelling (Stroud, 2016).  The chemical processes represented in the model regional air-quality prediction system includes 

as its main components the ADOM-II mechanism gas-phase chemistry mechanism with 42-species (Lurmann et al., 1986; 

Stroud, 2008); the Canadian Aerosol Module (Gong et al., 2003a,b), - a size-resolved, sectional approach with either 2- or 

12-size bins, multi-component, aerosol microphysics module , including process representation for particle nucleation, 

condensation, and coagulation;as-phase deposition based on the work of Jarvis (1976), Wesely et al. (1989), and  Zhang et 15 

al. (2002, 2003); and particle deposition (Zhang et al., 2001).  Additional aerosol processes include cloud scavenging, and 

in-cloud aqueous phase chemistry (Gong et al., 2006), as well as equilibrium inorganic gas-aerosol partitioning (HETV 

scheme; Makar et al., 2003).  Eight aerosol species are included in GEM-MACH:  particle sulfate, nitrate, ammonium, 

primary organic carbon, secondary organic carbon, elemental (aka “black”) carbon, sea-salt and crustal material. The model 

also features experimental options for feedback between weather and air-quality in 12-bin mode (Makar et al.,2015a,b). 20 

More detailed descriptions of GEM-MACH may be found in Makar et al., 2015(a,b) and Im et al., 2015(a,b).  We discuss 

elsewhere in this special issue the use of GEM-MACH for acid deposition estimates (Makar et al., 2018), bi-directional 

fluxes of ammonia to the boreal forest (Whaley et al., 2018), the impact of updated emissions of volatile organic compounds 

and organic particulate matter (Zhang et al., 2018) on model performance for these species (Stroud et al., 2018).     

 25 

2.2 Model Setup and Configurations 

A 2-bin simulation of GEM-MACH running in a nested configuration from a North American 10km resolution forecast to a 

2.5km Alberta/Saskatchewan domain has been in continuous experimental forecast mode since October 2012, and this 

configuration is also used for operational forecasts by Environment and Climate Change Canada.  While the 2-bin simulation 

reduces computational processing time by 25% in the current version of GEM-MACH, we investigate here the effect of this 30 

configuration on model accuracy relative to observations, employing the GEM-MACHv2 model in the Oil Sands 2.5-km 

nested system using the more detailed 12-bin aerosol size distribution configuration.  We have carried out a set of 

retrospective simulations targeting the JOSM (the Governments of Canada and Alberta Joint Oil Sands Monitoring program) 
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summer 2013 intensive campaign period (JOSM, 2011). The outer 10-km horizontal resolution domain, which covers most 

of continental Canada and United States, was configured with 82 vertical levels and a 5-min physics/15-min chemistry time 

step, with the chemical boundary and initial conditions provided by MOZART-4 climatology (Emmons et al., 2010), and 

meteorological boundary/initial conditions provided by the GEM’s Regional Deterministic Prediction System (RDPS, Caron 

et al., 2014).  The RDPS itself was driven by data-assimilated meteorological analyses.  The RDPS was also used to drive a 5 

2.5-km horizontal resolution regional weather-only simulation, using a modified GEM High Resolution Deterministic 

Prediction System configuration (HRDPS, Charron et al., 2012). Both the modified HRDPS and the 10-km resolution GEM-

MACH produced 36-hour simulations, the last 24 hours of which were used to provide the respective meteorological and 

chemical boundary conditions for a 24-hour GEM-MACH 2.5-km resolution simulation (which was configured with 64 

vertical levels, and 1-min physics/2 min-minute chemistry model time steps).  The use of the HRDPS in this fashion allowed 10 

each GEM-MACH 2.5km simulation to commence from a “spun-up” state for its cloud variables.  For the chemical species, 

the last hour of each 24-hour simulation was used to provide initial conditions for the subsequent GEM-MACH simulation.  

This provided continuity of the chemical fields across subsequent 24-hour simulations.  The GEM-MACH 10-km simulation 

and the HRDPS 2.5-km simulations, updated every 24 hours, provided ongoing boundary conditions and hence continuity 

with the meteorological analysis, thus preventing the high resolution meteorology from drifting chaotically from the 15 

analyses.  The GEM-MACH 10km, HRDPS, and GEM-MACH 2.5km domains are shown in Figure 1.   The retrospective 

simulations were carried out for the period August 1
st
, 2013 to September 10

th
, 2013, with the first 7 days results discarded as 

model spin-up time.  
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Figure 1: Schematic diagram showing the model simulation domains in the nested 2.5km resolution setup. (a) Light blue 

outermost domain:  GEM-MACH 10km resolution North American forecast. (b)  Dark blue domain:  HRDPS 2.5km weather 

forecast. (c) Green innermost domain:  GEM-MACH 2.5km forecast. (d) GoogleEarth-referenced image showing the 

locations of the surface observations used in the study are shown in colored dots.  (e) GoogleEarth-referenced image 5 

showing all 22 flight paths covered during the JOSM 2013 flight campaign. 

  

The emissions used in our simulations were processed from inventory data from different sources, including the Canadian 

National Pollutant Release Inventory (NPRI) and Air Pollutant Emissions Inventory (APEI) data for 2013, within-facility 

specific 2010 data from the Cumulative Environmental Management Association (CEMA), and hourly Continuous 10 

Emissions Monitoring observations for hourly major point emissions of SO2 and NO2 for the province of Alberta (Alberta 

Environment and Parks). The latter sources account for 77% and 43% of total SO2 and NOx emissions, respectively, from all 

NPRI point sources in Alberta, and 99% and 39% respectively for sources of these compounds solely within the Athabasca 

oil sands area (Zhang et al., 2018). The same set of emissions was used for all the simulation scenarios carried out for this 

study. The emissions set is discussed in detail in Zhang et al (2016, 2018). In the emissions processing, aerosols were 15 

chemically speciated for the 12-bin size distribution; the resulting emissions files were summed to the 2-bin distribution for 

the 2-bin simulations discussed below.  

 

For the purpose of this study we have carried out 4 sets of model simulations, in order to evaluate the impact of (operational) 

2-bin versus 12-bin aerosol size distribution, and of different algorithms for plume rise, on model performance.  20 
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2.2.1 2-bin versus 12-bin model scenarios 

Gong et al. (2003) showed that a 12-bin sectional model is sufficient to accurately predict both aerosol number concentration 

and mass size distributions for most prevalent atmospheric conditions. However, because of the high computational cost and 

the requirement for a fast turn-around demanded in operational systems, the operational forecast configuration of GEM-5 

MACH employs a 2-bin aerosol size distribution, with sub-binning used for those aerosol microphysical processes requiring 

more detailed aerosol sizing, such as nucleation (Moran et al., 2010). The 12-bin configuration has been used for research 

purposes such as investigating aerosol–weather feedbacks (Makar et al., 2015a,b).  Here, both aerosol size distributions were 

used for 10-km and 2.5-km resolution nested simulations.  The first two of our simulations are thus referred to as “2-bin” and 

“12-bin”, and both make use of the original plume rise algorithms, employed in GEM-MACH (and described below).  These 10 

simulations were compared to determine the relative impact of the more detailed size distribution on model performance 

relative to observations. 

 

2.2.2 Plume rise algorithms: two altermative approaches 

As noted earlier, the set of empirical formulations and algorithms developed by Briggs (1984) for evaluating the plume rise 15 

height of major point source emissions has been the basis of plume rise calculations in several chemistry transport models 

such as GEM-MACH (Moran et al., 2010) and CMAQ/CMAx (Byun and Schere, 2006), as well as in regulatory air 

dispersion models such as AEROPOL (Kaasik and Kimmel, 2003) and CALPUFF (Levy et al., 2002).  However, the details 

of how Brigg’s algorithms were implemented may vary – we therefore provide the details of the GEM-MACH 

implementation, below.  We follow with a revised plume-rise calculation procedure which in our subsequent evaluation is 20 

demonstrated to provide a more accurate estimation of final plume height.  Our “12-bin” simulation noted above makes use 

of the original algorithm, while we refer to the revised algorithm as “Plume Rise” in our subsequent discussion. 

 

The original implementation of the plume rise algorithm in GEM-MACH is based on the set of equations in Briggs (1984) 

which calculate the plume rise height above the top of the emitting stack, Δh, based on the atmospheric turbulence 25 

characteristics at the stack location. The formulae rely on a local estimation of the state of the atmosphere in the vertical at 

that location; the atmospheric stability, temperature gradients, and resulting formulae for plume height are predicated on the 

assumption that these stack-height conditions will continue throughout the atmospheric column until the maximum plume 

height is reached.  However, in cases of more complex atmospheric conditions, where these conditions change significantly 

with height, the formulae may become inaccurate.   30 

The equations depend on atmospheric stability parameters calculated in the meteorological module of the air-quality model, 

and include the boundary layer height (H), the Monin-Obhukov length (L), the surface wind friction velocity (𝑢∗), the 

atmospheric temperature (Ta) and its gradient (dTa/dz), and the wind speed (U) at the stack height. An important parameter in 
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the plume rise formulations is the emitted plume’s initial buoyancy flux (Fb), which is dependent on the stack height (hs), the 

stack exit temperature (Ts), and the stack’s exit volume flow rate (V), and is given by; 

𝐹𝑏 =
𝑔

𝜋
𝑉
(𝑇𝑠 − 𝑇𝑎)

𝑇𝑠                       
                                                                                    (1) 

Where g is the acceleration due to gravity. The emitted plume is buoyant and rises if Ts > Ta; Fb is set to zero if Ts < Ta. If the 

stack height is within the predicted boundary layer depth (hs < h), the plume rise is calculated based on the stability regimes 

at the stack height model level by the following equations: 5 

For unstable conditions (-0.25 hs < L < 0), 

Δℎ = min [3 (
𝐹𝑏
𝑈
)

3
5
𝐻∗
−
2
5  ,   30 (

𝐹𝑏
𝑈
)

3
5
].                                                  (2) 

For stable conditions (0 < L < 2 hs)  

Δℎ = 2.6 (
𝐹𝑏
𝑈𝑠
)

1
3
.                                                                                       (3) 

And for neutral conditions (L > 2 hs and L < -0.25 hs), 

Δℎ = min [39
𝐹𝑏
 3/5

𝑈
  ,   1.2 (

𝐹𝑏
𝑢∗
2𝑈
)
3/5

(ℎ𝑠 + 1.3
𝐹𝑏
𝑢∗𝑈

)
2/5

].             (4) 

Where 𝐻∗ = −2.5𝑢∗
3/𝐿 is the convective scale velocity, and s is the stability parameter approximated by: 

𝑠 =
𝑔

𝑇𝑎
(
𝑑𝑇𝑎
𝑑𝑧

+
𝑔

𝑐𝑝
).                                                                               (5) 

Where dTa/dz is the vertical temperature gradient between the atmospheric temperature at the top of the stack and the 10 

temperature at the top of the model layer.  We note here that some air-quality model implementations make use of one or the 

other formula of equations (2) and (4), as opposed to the minimum chosen here.  In our companion paper (Gordon et al. , 

2018) we show that these differences have little impact on the calculated plume height. 

The model also incorporates the potential for the buoyant plume to penetrate the top of the boundary layer (Hanna and Paine, 

1988), which is accounted for by calculating the penetration parameter P and using it to further adjust the plume rise Δh 15 

calculated through the above formulae as: 

 

𝑃 =

{
 
 

 
 1,

𝐻 − ℎ𝑠
∆ℎ

≤ 0.5

1.5 −
𝐻 − ℎ𝑠
∆ℎ

, 0.5 < 𝐻 ≤ 1.5

0,
𝐻 − ℎ𝑠
∆ℎ

≥ 1.5

                       (6) 

 Where H is the height of the boundary layer.  The plume rise calculated earlier is then reset via; 

∆ℎ = 𝑚𝑖𝑛[(0.62 + 0.38𝑃)(𝐻 − ℎ𝑠), ∆ℎ]                                    (7) 
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Once the final value of the plume rise Δh is calculated, the vertical spread of the plume and the emitted mass is then 

evaluated by using a common method from Briggs (1975) to specify the height of the top and bottom of the plume as; 

ℎ𝑡𝑜𝑝 = ℎ𝑠 + 1.5∆ℎ

ℎ𝑏𝑜𝑡𝑡𝑜𝑚 = ℎ𝑠 − 0.5∆ℎ
                                                            (8) 

In GEM-MACH, the plume top is further limited to the height of the boundary layer (H), if the penetration P > 0. During 

unstable conditions, the plume bottom is set to zero (the surface); that is, the plume is assumed to mix uniformly between the 5 

top of the atmosphere and the surface.  We also note that the mass emitted into the plume is assumed to mix uniformly 

between htop and hbottom; this is in contrast to the approach of Turner (1991), wherein a “top-hat” distribution centered on the 

value of hs was assumed, or the Gaussian distribution based on unpublished observations described in Byun and Ching 

(1999).   

  10 

As described above, the original plume rise algorithm implemented in GEM-MACH does not account for potential changes 

in plume rise associated with the vertical variation in the atmospheric temperature and stability, which could be important for 

plume buoyancy especially during unstable conditions where the boundary layer depth could be much higher than the stack 

height. Similarly, changes in stability with height will affect plume rise.  As reported in Gordon et al. (2018), when 

meteorological observations collected at oil sands sites are used to drive equations (1) through (5), the estimated plume 15 

heights were  often underestimated, with between 37 to 52 percent of calculated values being less than ½ the observed 

height.   

 

However, other approaches, which take into account the variation in height associated with atmospheric conditions in the 

vertical profile above the emitting stack, are available.  Briggs proposed equations which would make use of changes in 20 

stability between layers and calculate the residual buoyancy flux between layers in the atmosphere – these are particularly 

amenable to the layered structure of atmospheric models (Briggs, 1985, equations 8.84 and 8.85). This new algorithm is 

similar to other layer-by-layer approaches available in CMAQ (Byun and Ching, 1999), based on the hesitant-plume 

algorithm described in Turner (1991) and in dispersion modelling work by Erbrink (1994). In the new algorithm (hereafter 

referred to as the revised Briggs Plume rise or simply “plume rise”) we utilized the model’s calculated vertical profile of 25 

atmospheric temperature and wind speed to estimate the plume height as the height at which the emitted plume buoyancy 

flux dissipates totally. The initial plume buoyancy flux (Fb) at the top of the stack is calculated using equation (1) above, by 

using linear interpolation to evaluate the air temperature (Ta) and wind speed (U) at the stack height from the model’s 

vertical profile. Under (locally) neutral and stable conditions, the buoyant plume is assumed to rise freely, and the residual 

buoyancy flux (Fr), remaining after it as it crosses the next atmospheric layer is given by: 30 
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𝐹𝑗+1 = {
𝐹𝑗 − 0.015𝑠𝑗𝐹𝑗−1

1
3 (𝑧𝑗+1

8
3 − 𝑧

𝑗

8
3), 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑝𝑙𝑢𝑚𝑒𝑠

𝐹𝑗 − 0.053𝑠𝑗𝑈𝑗(𝑧𝑗+1
3 − 𝑧𝑗

3), 𝑏𝑒𝑛𝑡 𝑝𝑙𝑢𝑚𝑒𝑠
            (9) 

Here, sj is the local stability parameter for a given layer, calculated using (5) and layer-specific temperature values, and zj is 

the plume rise height when the plume reaches the bottom of the model’s  j’th layer.  Briggs (1984) recommended the use of 

both formulae of (9), with the formula with greatest decrease in flux being used as the final value.  Briggs also noted that the 

transition to bent plumes happens at a relatively low height above the stack, implying that that the residual buoyancy 

between layers is lost faster under windy conditions.  At the stack height, Fj=0 = Fb, and = ℎ𝑠 . When the residual buoyancy 5 

flux becomes negative in (9), indicating that the plume height has been surpassed, the calculation is repeated to find the 

value of z for which F=0; the sum of this and the layer thicknesses transitioned to this height becomes the predicted plume 

rise.  In our companion paper (Gordon et al., 2018), this approach was found to provide similar results to the original Briggs’ 

algorithms when driven by observations.  Our work here indicates that this algorithm has the potential to provide a more 

accurate estimate of plume rise, subject to caveats described below. 10 

We note that the numerical coefficients in (9); 0.015 and 0.053, stem from two parameters; the entrainment constant for 

vertical rise conditions (, the entrainment coefficient for vertical plumes, nominally set to 0.08 by Briggs based on 

observations published in 1975 - the parameter in the first equation of (9) is a non-linear function of this  term; and ’, the 

entrainment coefficient internal radius for bent-over plumes, set to Briggs as 0.4, though ranges from 0.45 to 0.52 were 

quoted elsewhere in Briggs, 1984). The choice of these parameters are based on data which are now over 40 years old, and 15 

may present an opportunity for future improvement of this revised plume rise approach. 

The above formula (9) was recommended by Briggs for conditions which are stable to neutral at the stack height.  We have 

defined stability in this case by comparing the dry adiabatic lapse rate to the local temperature lapse rate predicted by the 

model at the stack height and above.  Briggs (1984) provided no equivalent formula for unstable conditions at the stack 

height, followed by stable profiles at higher elevations.  The approach taken here has been to assume under convectively 20 

unstable conditions, the plume rises without loss of energy (that is, an assumption of zero entrainment) until the predicted 

temperature profile once again falls below the dry adiabatic lapse rate.  Our first order approximation is thus to assume that 

under unstable conditions, there is minimal mixing entrainment of the rising plume with the surrounding atmosphere.  This 

approach differs from that of Turner (1991), and the layered approach described in Byun and Ching (1999) where the 

residual buoyancy flux between layers is determined using different formulae based on the model-determined local 25 

atmospheric stability.   

As in the original algorithm, the plume top and plume bottom are evaluated using equation (8) after the final plume rise has 

been evaluated.  We do not apply the penetration equations (6 and 7) since these corrections should be unnecessary in an 

approach making use of local changes in residual buoyancy.  In our companion paper, this algorithm is referred to as the 

“layered approach”.   30 
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2.2.3 Hourly Emission Stack Temperature and Volume Flow Rate  

We turn next to the available emissions data for driving the plume rise algorithms.  Under Canadian federal reporting 

requirements to the National Pollutant Release Inventory (NPRI), annual total emissions of SO2 and NOx from facilities are 

reported, along with a single set of stack parameters (stack height, stack diameters, average exit temperature, and average 

exit velocity) to represent emissions throughout the year.  In addition, hourly Continuous Emissions Monitoring data from 5 

large stacks are reported to the government of Alberta.  These data include the hourly mass of emissions of SO2 and NO2, as 

well as hourly estimates of the time-varying stack parameters (volume flow rates and temperatures).  Our first two 

simulations use the “standard” annual NPRI reported stack parameters and the original plume rise algorithm for the 2-bin 

and 12-bin aerosol size distributions, while our second two simulations use the modified plume rise algorithm, first with the 

NPRI stack parameters, and second with CEMS derived hourly stack parameters.   The four scenarios examined are thus: 10 

(1) A “2-bin” simulation:  NPRI stack parameters, 2-bin aerosol size distribution, and the original plume rise  

(2) A “12-bin” simulation:  As in (1), but employing the 12-bin aerosol size distribution.  Differences between (1) and 

(2) thus show the impact of the aerosol size distribution on performance. 

(3) A “Plume rise” simulation:  employing the layered plume rise algorithm, with emissions as in (2)   Differences 

between (2) and (3) thus show the impact of the revised plume rise algorithm alone. 15 

(4) An “Hourly” simulation:  employing the layered plume rise algorithm, with volume flow rates and temperatures 

taken from the hourly CEMS data.    Differences between (3) and (4) thus show the impact of the initial buoyancy 

flux on the resulting plume rise, using the revised algorithm. 

All of these simulations make use of the CEMS-derived mass of emitted SO2 and NOx.   

3 Observations 20 

The comparative statistics presented through this study were computed using the ‘modstat’ function from the openair R 

package (Carslaw and Ropkins, 2012), for complete pairs of valid model and observation data.  Both surface monitoring 

network and aircraft observations have been used for model evaluation.  

 

3.1 WBEA Surface Monitoring Networks 25 

For the purpose of model evaluation, we have used hourly measurements of surface concentrations of PM2.5, SO2, NO2, and 

O3 from a network of 10 air quality monitoring stations in the province of Alberta managed by the Wood Buffalo 

Environmental Association (WBEA) (see Figure 1(d)). The observation data have been filtered to remove extreme single-

hour measurements that are greater than 150ppbv for SO2, NO2, and O3, and 150 µg m
-3

 for PM2.5. Observations from August 

10
th

, 2013 to September 10
th

, 2013 were selected for comparison to the model results, to align to with the period covered by 30 

the JOSM 2013 intensive aircraft measurement campaign.   
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3.2 JOSM Summer 2013 Intensive Campaign 

From August 10
th

 to September 10
th

, 2013, the National Research Council of Canada Convair aircraft was used as a mobile 

measurement platform to sample atmospheric constituents in the region of the Athabasca oil sands, with twenty-two flights 

taking place during the given time period (Figure 1e).  These flights included flight paths designed for emission estimation, 

for the study of downwind transport and chemical transformation, and for satellite validation. Emission estimation flights 5 

took place around individual facilities at multiple altitudes, with the concentration and meteorological information gathered 

subsequently used to estimate fluxes entering and leaving the facility, and hence estimate emissions directly from aircraft 

observations (Gordon et al., 2015; Li et al., 2017)  Transformation flights were designed to follow plumes downwind, with 

observations taken in cross-sections at set distances downwind perpendicular to the plume direction, in order to study 

chemical transformations between point of emission and downwind receptors (Liggio et  al., 2016).  Satellite validation 10 

flights incorporated aircraft vertical spirals at satellite overpass times, in order to improve satellite data retrieval algorithms 

(Whaley et al., 2018; Sheppard et al., 2015).  Here, we compare model predictions for our different simulations for SO2, NO2 

and for PM1 sulfate, ammonium, and total organics to observations taken on-board the Convair using TS43, TS42 and 

Aerodyne Aerosol Mass Spectrometers (AMS) instruments, respectively. In order to allow for comparisons to the results 

from GEM-MACHv2 2.5km oilsands model domain simulations, 10-second averages of the aircraft’s positional data 15 

(latitude, longitude, elevation, and time) were created for all 22 flights. These data were in turn used to extract the 

corresponding time and spatial linearly interpolated model values at the model’s chemistry time resolution of 2 minutes, for 

each of the instruments aboard the aircraft that were used for the model comparison.  

 

4 Results and Discussion 20 

 

We begin our evaluation by comparing the 2-bin and 12-bin particle size distribution simulations using identical emissions 

against Wood Buffalo Environmental Association’s surface monitoring network PM2.5 measurements.  The statistical 

comparison between these observations and all the 4 model scenarios is shown in Table 1, and the corresponding  histograms 

of observations (blue), 2-bin model simulated values (red) and 12-bin model simulation values (purple) is shown in Figure 2.   25 

The statistics of Table 1 show that the 12-bin simulation provides an overall improvement over the 2-bin model results 

across all metrics.  For example, the magnitude of the negative bias has decreased by 34%, indicating that a sizeable fraction 

of particulate under-predictions in 2-bin simulations may be due to poor representation of particle microphysics through the 

use of the 2-bin distribution, despite sub-binning being used in some microphysics processes.  The largest improvement in 

correlation coefficient and fraction of predictions within a factor of two also takes place going from the 2 to the 12 bin 30 

distribution. Figure 2 shows that the model simulations are biased high for particles less than 5m diameter, and biased low 

for the larger particle sizes.  However, the use of the 12-bin size distribution (purple histogram bars, Figure 2) improves the 

fit to the observations (blue histogram bars), in comparison to the 2-bin distribution results (red histogram bars).  

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-155
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 20 February 2018
c© Author(s) 2018. CC BY 4.0 License.



 

13 

 

The simulation with the largest number of highest scores (bold-face numbers in Table 1) is the “Plume rise” algorithm , 

which made use of the revised plume rise formulation, though the differences in performance between the “12-bin”, “Plume 

rise” and “Hourly” simulations are relatively small.   The latter small increment is expected, given that the observations are 

relatively close to the sources of primary particulate emissions, largely from surface sources of fugitive dust (see Zhang et 

al., 2018).    However, an increment of PM2.5 will be from secondary sources; about 99% of the anthropogenic SO2 and NH3 5 

emissions, and about 40% of the NOx emissions in the Athabasca oil sands region originate in “major point source” stacks.  

The concentrations of these precursor species will therefore be influenced by the plume rise algorithm employed in model 

simulations, and hence secondary particulate species originating from these primary emissions may also be affected by 

plume rise. The small improvements in PM2.5 associated with the revised plume rise algorithm may thus represent the impact 

of secondary formation of particulate sulphate, ammonium and nitrate from SO2, NH3, and NOx, the latter having been 10 

influenced by the plume rise treatment.  We examine this possibility using observations of PM1 particle sulphate, and 

ammonium taken with an aerosol mass spectrometer (AMS) aboard the NRCan Convair aircraft. 

The aircraft’s AMS instrument measures speciated atmospheric particle concentrations for particles less than 1µm size, and 

therefore cannot be compared with the 2-bin model results (the two size bins are from 0 to 2.56 m and 2.56 to 10.24 m, 

hence the smaller size bin will be biased high relative to the 1 m size cut of the AMS).   While the modelled PM1 organic 15 

aerosols (OA) compared similarly to the AMS measurements for all the 3 model scenarios, the PM1 sulphate and ammonium 

simulations with revised plume rise algorithm (“Plumerise” and “Hourly” simulations) produced better scores for most 

statistics than the “12-bin” simulation compared to the original plume rise algorithm.  Particulate sulphate largely originates 

in atmospheric oxidation of SO2 by the OH radical in these flights – relatively little sulphate is emitted directly, and aqueous 

oxidation is largely absent due to the flights being cloud-free.  Particle ammonium levels are closely linked to the sulfate 20 

through inorganic chemistry as well as being emitted by stacks in this region, and hence the ammonia results are consistent 

with the sulphate.  The organic aerosols are at this distance downwind largely due to formation from area emissions sources 

of primary organic aerosol and of precursor volatile organic compounds to secondary organic aerosol formation, rather than 

large stack emissions, and hence are less affected by the plume rise treatment.  A larger influence of plume rise on model 

results is expected for SO2 and NO2, due to the large fraction of their emissions originating in the large stacks of the 25 

Athabasca oil sands facilities. 
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Table 1: Statistical comparison of GEM-MACH model simulation of surface PM2.5 with measurements from the WBEA 

observations between August 10
th

 and September 10
th

, 2013. Bold face:  best score.  Italics:  second best score. 

Statistic PM2.5(µg/m
3
)  

2-bin 12-bin Plumerise Hourly 

Number of complete data pair, n 6815 6815 6815 6815 

Fraction of predictions within a factor of two, 

FAC2 

0.386 0.454 0.456 0.455 

Mean bias, MB -2.623 -1.725 -1.813 -1.807 

Mean Gross Error, MGE 4.852 4.742 4.690 4.696 

Normalised mean bias, NMB -0.39 -0.257 -0.270 -0.269 

Normalised mean gross error, NMGE 0.722 0.705 0.698 0.699 

Root mean squared error, RMSE 8.447 8.442 8.359 8.363 

Correlation coefficient, r 0.122 0.151 0.154 0.155 

Coefficient of Efficiency, 𝐶𝑂𝐸 -0.213 -0.185 -0.172 -0.174 

Index of Agreement, IOA 0.394 0.407 0.414 0.413 

 

 

 5 

Figure 2. Histogram of surface PM2.5 using Wood Buffalo Environmental Association surface monitoring data (blue), and 

the 2-bin (red) and 12-bin (purple) configurations of GEM-MACH.  Both simulations make use of the original Briggs (1984) 

plume rise formulation. 
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Table 2: Statistical comparison of PM1 sulphate, OA and ammonium atmospheric concentration from the aircraft AMS with 

the 2.5km resolution GEM-MACH simulations between August 13
th

 and September 9
th

, 2013. Bold face:  best score.  Italics:  

second best score. 

Statistic 

SO4(µg/m
3
) OA(µg/m

3
) NH4(µg/m

3
) 

12-bin Plumerise Hourly 12-bin Plumerise Hourly 12-bin Plumerise Hourly 

n 24523 24523 24523 24522 24522 24522 24523 24523 24523 

FAC2 0.475 0.467 0.466 0.138 0.137 0.137 0.527 0.527 0.525 

MB -0.445 -0.489 -0.435 -2.67 -2.669 -2.669 -0.014 -0.034 -0.023 

 MGE 0.964 0.925 0.959 2.725 2.727 2.727 0.272 0.252 0.261 

 NMB -0.397 -0.436 -0.388 -0.714 -0.713 -0.713 -0.051 -0.121 -0.081 

NMG

E 

0.861 0.826 0.856 0.728 0.729 0.729 0.976 0.904 0.937 

RMS

E 

4.629 4.592 4.608 3.773 3.773 3.773 1.176 1.124 1.141 

r 0.148 0.171 0.175 0.552 0.548 0.549 0.149 0.175 0.178 

𝐶𝑂𝐸 0.203 0.235 0.207 -0.111 -0.111 -0.111 0.061 0.13 0.099 

IOA 0.601 0.618 0.603 0.445 0.444 0.444 0.53 0.565 0.549 

 

 5 

The performance of the three model simulations using different plume rise algorithms, for surface mixing ratios of SO2 

observed at WBEA stations, is shown in Figure 3. The model simulations are biased low for zero concentration levels (first 

bin, Figure 3(a)), are biased high from 0.0 to 0.3 ppbv, biased low from 0.3 to 1.0 ppbv (Figure 3(a)), and biased high for all 

concentrations above 1 ppbv (Figure 3(b,c)).  These last two ranges (Figure 3(b,c)) result from surface fumigation of high 

concentration plumes in the region studied.  While all model simulations are biased high for these fumigating plumes, the 10 

“Plumerise” and “Hourly” simulations have a reduced bias compared to the original plume rise algorithm “12-bin”.  The use 

of the hourly stack parameters derived from Continuous Emissions Monitoring (“Hourly”) has somewhat worse performance 

than the same plume rise algorithm driven by annual reported stack parameters (“Plumerise”).   

The SO2 statistics of Table 3 show sometimes substantial improvements in model performance with the use of the revised 

plume rise algorithms, with the mean bias being reduced by 61%, the mean gross error by 27%, the correlation coefficient 15 

increasing by 26% and the index of agreement increasing by a factor of 2.26 between the 12-bin and “Plumerise” algorithms, 

and the “second best” score (italics) out of the three simulations being the “Hourly” simulation employing the revised 

volume flow rates and stack temperatures.  For NO2, the  “Hourly” values (employing the hourly volume flow rates and 

temperatures) tend to have the best scores, though the differences between “Hourly” and “Plumerise” simulations, where the 

only difference in the plume treatment is in the source of data for the initial buoyancy flux, is relatively small.  Both of the 20 
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primary pollutants have shown a noticeable improvement in performance with the new plume rise treatment, with the 

pollutant for which most emissions are from stacks (SO2) having the most noticeable changes.   

Ozone, in contrast, is created or destroyed through secondary chemistry over relatively longer time-spans than the transport 

time from the sources in this comparison (spatial scales on the order of 10’s of km).  Accordingly, the impact of the plume 

rise of NOx on ozone formation is relatively minor, usually in the third decimal place (though first decimal place 5 

improvements occur for the mean bias with the use of the new plume rise algorithm). 

 

 

 

Figure 3: Histograms of hourly surface SO2 mixing ratios, in logarithmic mixing ratio bins, observations (blue), original 10 

plume rise algorithm (red), revised plume rise algorithm (dark purple), revised plume rise algorithm driven by hourly CEMS 

stack data (light purple).  (a) All values.  (b) 0.8 to 300 ppbv.  (c) 30 to 300 ppbv. 
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Table 3: Statistical comparison of SO2, NO2, and O3 surface concentration measurements from the WBEA surface 

observation network with the 2.5km resolution GEM-MACH simulations between August 10
th

 and September 10
th

, 2013.  

Statistic SO2(ppb) NO2(ppb) O3(ppb) 

12-bin Plumerise Hourly 12-bin Plumerise Hourly 12-bin Plumerise Hourly 

n 9457 9457 9457 6516 6516 6516 4384 4384 4384 

FAC2 0.226 0.239 0.238 0.324 0.328 0.329 0.778 0.777 0.777 

MB 1.215 0.476 0.631 1.006 0.919 0.910 -0.977 -0.907 -0.898 

 MGE 2.41 1.756 1.906 4.456 4.388 4.384 7.239 7.269 7.271 

 NMB 1.133 0.444 0.588 0.262 0.239 0.237 -0.051 -0.047 -0.047 

 NMGE 2.247 1.637 1.777 1.159 1.141 1.140 0.375 0.376 0.377 

RMSE 8.99 6.291 7.018 7.742 7.656 7.651 9.690 9.750 9.771 

r 0.179 0.227 0.218 0.287 0.287 0.286 0.617 0.613 0.612 

𝐶𝑂𝐸 -0.648 -0.201 -0.304 -0.264 -0.244 -0.243 0.220 0.217 0.217 

IOA 0.176 0.399 0.348 0.368 0.378 0.378 0.610 0.609 0.608 

 

Overall, these results suggest that (a) the revised plume rise algorithm improves the model surface performance for primary 

pollutants largely emitted from stack sources (SO2) or for which a large proportion of the emitted mass is via stack sources 5 

(NO2).   Also, the impact of the hourly volume flow rates and temperatures versus typical annual values is relatively small, 

though it results in a degradation of performance.   

 

Statistical comparisons of model results computed against aircraft observations for SO2, NO2 and O3, for all the flights in the 

aircraft campaign are shown in the Table 4.  Histograms of model performance for SO2 aloft are shown in Figure 4. With the 10 

exception of more negative biases, the two sets of atmospheric SO2 concentrations calculated by the new plume rise 

algorithm driven using annual reported stack parameters again give the best results when compared to the aircraft 

measurements, for all statistical measures aside from the biases (the “Plume rise” and “Hourly” simulations are biased lower 

than the 12-bin simulation). The variation in the statistical performance between different plume rise algorithms aloft are 

larger than those noted above for the surface observation comparisons, for the model scenario with “Plume rise” and 15 

“Hourly” scenarios, with the former having the best overall performance.  A more substantial improvement for NO2 with the 

revised plume rise algorithm may be seen in comparison to the surface observation evaluation, with larger decreases in the 

mean bias, mean gross error, root mean square error, and increases in the scores for correlation coefficient, coefficient of 

error and index of agreement, between the “12-bin” and “Plumerise” simulations.  The results for the two simulations using 

the new plume rise algorithm however remain similar for NO2. It should be noted as well that the model generally performs 20 
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better against the aircraft measurements than the comparisons to the surface observations across all the statistical measures 

for NO2, reflecting the aircraft sampling a greater proportion of NO2 mass originating from elevated plumes as opposed to 

surface sources. Similar to the surface observation comparisons, the atmospheric O3 concentration calculated by the various 

model scenarios shows very minimal variation in the comparative statistics with the aircraft observation, with the exception 

of a marginally better correlation coefficient (𝑟 = 0.477) for original plume rise scenario compared to the result (𝑟 =5 

0.6947) for the new plume rise scenarios. 

Figure 4 shows the histograms comparing aircraft observations with the results of the three variations of plume rise 

algorithms for SO2 (Figure 4(a,b)) and NO2 (Figure 4(c,d)).  In contrast to Figure 3, all model simulations for SO2 aloft are 

biased low between mixing ratios of 0.3 and 50 ppbv, and remain biased low above 50 ppbv for the Plume rise and Hourly 

simulations.  Thus, model estimates of surface SO2 mixing ratios (Figure 3) are biased high, while aloft (Figure 4(a,b)), SO2 10 

mixing are biased low.  A similar, though less pronounced, pattern may be seen for NO2 (Figure 4(c,d)), with model mixing 

ratios aloft biased low, for histogram bins between 0.1 and 10 ppbv.  All versions of the model thus have a tendency to 

underpredict the height of the plumes, overestimating surface fumigation events, and underestimating occurrences when the 

plume remains aloft.   

 15 

 

Table 4: Comparison of statistical measures of SO2, NO2, and O3 measurements from the aircraft campaign against the 

2.5km resolution GEM-MACH simulations between August 13
th

 and September 10
th

, 2013.  

Statisti

c 

TS43 - SO2(ppb) TS42 - NO2(ppb) TS49 - O3(ppb) 

12-bin Plumeris

e 

Hourl

y 

12-bin Plumeris

e 

Hourly 12-bin Plumeris

e 

Hourly  

n 29313 29313 29313 28114 28114 28114 29263 29263 29263 

FAC2 0.233 0.249 0.243 0.300 0.306 0.306 0.953 0.950 0.949 

MB -0.186 -0.795 -0.444 0.097 -0.007 -0.007 -1.729 -1.539 -1.536 

 MGE 4.031 3.438 3.705 1.482 1.362 1.366 8.842 8.915 8.919 

 NMB -0.057 -0.244 -0.136 0.065 -0.005 -0.005 -0.056 -0.050 -0.050 

 NMGE 1.237 1.055 1.137 0.988 0.908 0.911 0.287 0.290 0.290 

RMSE 14.332 11.153 12.345 3.521 2.951 2.957 11.757 11.961 11.982 

r 0.234 0.34 0.317 0.416 0.493 0.491 0.477 0.469 0.468 

𝐶𝑂𝐸 0.142 0.268 0.211 0.177 0.244 0.241 -0.171 -0.180 -0.181 

IOA 0.571 0.634 0.606 0.589 0.622 0.621 0.415 0.410 0.410 

 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-155
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 20 February 2018
c© Author(s) 2018. CC BY 4.0 License.



 

19 

 

 

 

 

 

Figure 4: Histograms comparing SO2 and NO2 simulations mixing ratios (ppbv) with aircraft observations. (a) All SO2 5 

values.  (b) Higher SO2 mixing ratios.  (c) All NO2 values. (d) Higher NO2 mixing ratios. 

 

The results across the different simulations suggest that the overall model performance may be hampered by a tendency to 

place too much emitted mass close to the surface, and insufficient mass aloft.  In order to determine possible causes for this 

behaviour, we carried out several additional analyses. 10 

 

First, we examined the 12
th

 flight of the observation study, which took place between 16:30 and 20:30 on Aug 24
th

, as a case 

study to show the differences between the three simulations examining the impacts of the choice of plume rise algorithm and 

its input parameters.  Flight 12 was an “emissions” flight, with the aircraft flying around the boundary of a single facility 

(Syncrude), with elevations gradually increasing in two successive sets of passes around the boundary.  Data collected 15 

during flights of this nature were used to estimate emissions from the facility via calculation of the fluxes into and out of the 

facility from the collected data (Gordon et al., 2015).  During flight 12, the aircraft carried out two successive sequences 

circling the facility boundaries in gradual upward spirals (between 17:00 to 18:15, and 18:45 to 19:45), starting at the lowest 

aircraft altitude above the surface, and gradually increasing in elevation on each pass around the facility.  The SO2 plume 

was thus intersected at multiple times and multiple heights during each of these periods. Figure 5(a,b,c) depicts the model-20 

derived SO2 mixing ratio profiles at 10 second intervals interpolated from the aircraft positions as a function of time, as 

mixing ratio contours, for the “12-bin”, “Plume rise” and “Hourly” scenarios, respectively.  The aircraft locations are shown 

as coloured dots over-plotted on the background model mixing ratio contours.  Each high mixing ratio “spike” in the panels 
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of Figure 5 thus represents a successive pass through the model SO2 plume – the change in these plumes as a function of 

time may be seen by following the changes in the plume cross-sections in each panel along the x-axis timeline, from left to 

right.  Between 17:00 and 18:15, the simulated plumes are mostly aloft.  The 12-bin simulation employing the original 

Briggs algorithm (Figure 5(a)) begins to  fumigate significantly by 17:30, with higher concentrations reaching the surface, 

while for the Plume rise simulation (Figure 5(b)) the plume both reaches higher elevations, and experiences significantly less 5 

fumigation.  The Hourly simulation (Figure 5(c)) is intermediate between the other two simulations.  In the second period 

(18:45 to 19:45), the fumigation behaviour becomes more pronounced for all three simulations, and once again is strongest 

for the 12-bin simulation (Figure 5(a), weakest for the Plume rise simulation (Figure 5(b)), and intermediate for the Hourly 

simulation (Figure 5(c)).     

  10 
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Figure 5: Model SO2 profile along the aircraft path for Flight 12 (a) “12-bin” simulation (original plume-rise algorithm), (b) 

“Plume rise” simulation (revised plume rise algorithm), and (c) ”Hourly” simulation (revised plume rise algorithm combined 

with hourly data for volume flow rates and stack temperatures). Panels (a-c) show model predictions in the column of the 5 

aircraft trajectory as concentration contours – aircraft observed values at the aircraft locations at the given time are shown as 

coloured dots overplotting the background contours.  
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While the aircraft values are difficult to discern in Figure 5, the collected aircraft SO2 observation data at successive plume 

intersections during each of the two intervals were extracted from the data record, arranged so that “first plume intersection” 

values were vertically aligned, and the vertical intervals between these successive aircraft passes were linearly interpolated in 

the vertical to yield observation-based cross-sections of SO2 mixing ratios, for each of the two time intervals.  These are 

compared to the model plumes between 17:42 and 17:54, and 19:08 and 19:25, in Figure 6(a,b), respectively. In the first 5 

interval (Figure 6(a)), the observed plume (far right profile) can be seen to be completely detached from the surface, with 

concentrations < 3 ppbv located below a > 100 ppbv region between 460 and 520m elevation.  All three model plumes show 

more fumigation than the observations, with the “Plume rise” simulation showing the least fumigation of the three 

simulations, and the 12-bin simulation showing the most fumigation.   In the second interval (Figure 6(b)), the observed 

plume is located significantly higher than the model plumes (the “Plume rise” simulation plume is the closest of the three in 10 

terms of elevation, but all three model plumes underestimate the plume height by several hundred metres).  While the 

observed plume during this second interval shows some signs of fumigation at the lowest elevation, the observed 

concentrations at lowest aircraft elevation are less than 30 ppbv, while the lowest model mixing ratios in the fumigation 

region are approximately 70 ppbv for the “Plume rise” simulation, and above 100 ppbv for the other two simulations.  The 

case study thus echoes the statistical analysis of Figures 3 and 4:  all model simulations tend to under-predict the plume top, 15 

and overpredict the extent of fumigation, for Flight 12.   
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Figure 6.  Zoomed-view of Figure 5.  (a) 17:42-17:54, observations interpolated from successive flight passes between 17:00 

and 18:19.  (b) 19:08-19:20, observations interpolated from successive flight passes between 18:42 and 19:45 

 5 

While the comparison is encouraging in that both of the simulations employing the new plume rise algorithm (Figure 6(b,c)) 

out-perform the original (Figure 6(a)) for most metrics (Figure 5(f)), the use of the CEMS-observed volume flow rates and 

temperatures with the new algorithm result in a degradation of performance, relative to the simulation making use of annual 

averages for these parameters.  That is, the believed-to-be-more-realistic stack parameters result in slightly worse 

performance: a cause for concern.  The average of the hourly observed volume flow rates and temperatures for this facility’s 10 

stack during flight 12 are 581.5 m
3
s

-1
 and 472.69K, respectively, while the corresponding annual reported values are 1174.5 
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m
3
s

-1
 and 513.2K.  With respect to equation (1), the relative ratio of the buoyancy flux with these two sets of parameters will 

be: 

𝑅 =
𝑉𝑟𝑇𝑠,𝑜(𝑇𝑠,𝑟−𝑇𝑎)

𝑉𝑜𝑇𝑠,𝑟(𝑇𝑠,𝑜−𝑇𝑎)
                     (10) 

Where the subscripts r and o indicate the annual reported and hourly observed values of each quantity.    Assuming an 

ambient temperature at stack height of 291K, the value of R is 2.28; that is, the initial buoyancy flux of the Plume rise 5 

simulation is over double that of the Hourly simulation.  The hourly values are known to be more realistic during the period 

simulated – the revised algorithm, while providing better results than the original, thus still has a tendency to under-predict 

the plume heights.  In our companion paper, we found that the revised algorithm (therein referred to as the “layered 

approach”) had no significant advantages over the original Briggs algorithms – here we have found this revised approach has 

considerable benefit, while showing the same overall tendency to under-predict plume heights as in our companion paper.   10 

In order to demonstrate the extent to which the plume rise values themselves differ between flights, we have compared the 

calculated plume heights from each of the three algorithms examined here for 8 stacks (located at the Syncrude, Suncor, and 

CNRL facilities) against observations during the course of the study (Figure 7).  The observed plume rise values here were 

derived from estimates of the SO2 plume centres from the aircraft campaign’s emission box flights as estimated in our 

companion paper (Gordon et al. (2018)). Despite the differences visible in Figures 5 and 6, for flight 12, Figure 7 shows that 15 

the revised algorithm has a significant impact on calculated plume heights, greatly increasing the number falling within a 

factor of two of the observations (>70%), while the original algorithm has the majority of calculated plume heights falling 

below the 1:1 line, in accord with Gordon et al. (2018)).  However, the impact of the differences in volume flow rates and 

temperatures (Figure 7(b) versus Figure 7(c))  are usually relatively minor, with the exception of a few additional points 

falling below the 1:2 line for the Hourly (Figure 7(c)) simulation.  The large deviation between the annual reported and 20 

measured stack parameters for flight 12 may thus be an anomaly relative to the entire record across all 8 stacks examined 

here.  Nevertheless, Figures 3 to 6 suggest that all of model simulations have a tendency to overestimate fumigation, so we 

continued our examination using Flight 12 as a case study.   

The model concentrations of primary pollutants are also modified by vertical diffusion and advection.  The use of a plume 

rise algorithm simultaneously with vertical diffusion implies the potential for “double-counting” of some proportion of the 25 

vertical mixing, in that the observation-based plume rise algorithms de facto incorporate vertical diffusion in their estimates 

of plume rise, while air-quality models must apply diffusion at all model grid-squares, including those in which plume rise 

algorithms have already distributed emitted mass in the vertical.  If the relative impact of vertical diffusion versus buoyant 

plume rise is strong, this may result in excessive vertical mixing; the model effectively “double-counting” the vertical 

diffusion component of the net rise.   The potential for overestimates of model diffusivity magnitudes resulting in excessive 30 

vertical mixing to the ground was investigated by carrying out a sensitivity run for Flight 12 in which diffusivities in the 

column were halved prior to their use in calculating vertical diffusion.  This sensitivity run showed a minimal impact on 
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model results – the magnitude alone of vertical diffusion did not influence the fumigation noted below.  However, this test 

did not examine the potential changes associated with different magnitude changes in diffusivity as a function of height. 

 

Figure 7: Observed plume rise heights during aircraft emission box flights compared to model calculated plume rise using; 

(a) the original plume rise algorithm; (b) new plume rise algorithm; and (c) new plume rise algorithm and CEMS hourly 5 

stack temperature and volume flow rate.   

 

All of the plume rise algorithms are limited by the accuracy of the on-line model to accurately predict the meteorological 

quantities required in equations (1) through (9).  We note that the original Briggs’ algorithms (equations 1 through 8) are 

more strongly dependant on the model’s ability to accurately predict meteorological conditions close to the surface, at stack 10 

height, as well as bulk parameters such as the Obukhov length, while the revised algorithm (equations 1,5 and 9) are more 

strongly dependent on the model’s ability to accurately predict the temperature profile throughout the column.    

We examined the model’s temperature predictions, and compare to observations aboard the aircraft in Figure 8.  Figure 8(a) 

shows the model-predicted temperatures in the columns around the Syncrude facility as colour contours in height versus 

time, similar to the mixing ratio cross-sections of Figure 5.  The corresponding aircraft temperatures are over-plotted on 15 

Figure 8(a) as coloured dots employing the same temperature scale as the model values.  The aircraft values, particularly in 

the first of the two emissions spiral periods (bracketed by vertical dashed lines in Figure 8) suggest that the model 

temperatures are biased high in the lowest part of the atmosphere.  Figure 8(b) shows the temperature cross-sections 

interpolated from aircraft observations collected during the portion of the aircraft flight track crossing the SO2 plume, to 

represent the average temperature profiles in each of the two regions.  The first of these two cross-sections show an observed 20 

temperature inversion at the lowest aircraft altitudes, absent in the model temperature profile.  In the second profile of Figure 

8(b), the inversion is no longer apparent.  The model-predicted temperatures in the lowest part of the atmosphere are also 
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biased high relative to both observation-based temperature cross-sections (compare Figure 8(b) corresponding to the dashed 

line bordered regions of Figure 8(a)).   Figures 8(c) and 8(d) show the variation between model and observed temperatures in 

two other ways; as a pair of temperature time series during the model flight (Figure 8(c)) and as a scatterplot showing the 

differences in temperature (observed – model) as a function of height (Figure 8(d)).   

 5 

 

Figure 8: Model versus observed temperatures, Flight 12.  (a) Background model-predicted temperature profiles with 

observed temperatures overlaid (dots) with the same colour scale. (b) Observed temperatures along the portion of the transect 

containing the plumes, between 17:00 and 18:18, and 18:32 and 19:45. (c) Model (red) and observed (black) temperatures as 

a function of time; (d) Temperature deviation (observations – model) as a function of height, with the red line showing the 10 

mean deviation at every 100m. 

All of these temperature comparisons suggest that, for Flight 12, the model tended to have positive temperature biases near 

the surface, biases which gradually decreased with height (Figure 8(d)).  The model atmosphere would thus be expected to 

be less stable than the observed atmosphere, with temperature gradients reduced in magnitude relative to observations.  The 

model also reported positive values of the Obukhov length during the period (neutral to stable atmospheres; the Briggs’ 15 

formula employed would be equations (3) or (4)), while the smaller magnitude temperature gradients in the model will drive 

parameter s (equation (5)) to smaller values.  While s features in the stable atmosphere formula (3), it does not feature in the 
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neutral atmosphere formula.  That is, the original Briggs’ formulae are relatively insensitive to errors in the temperature 

profile in near-neutral conditions, with only a weak influence via the Fb term.  However, the revised algorithms (equations 

(9), (1), and (5)) will be influenced by the accuracy of the temperature gradient at every point throughout the temperature 

profile. This analysis suggests that the original Briggs’ algorithms (the “12-bin” simulations) will be less influenced by the 

temperature errors shown in Figure 8(d), while the revised approach (“Plume rise” and “Hourly” will be more influenced by 5 

them, contributing to higher estimates of plume heights. 

This particular case study thus places an important caveat on our results – while the revised plume rise approach provides 

better results, and a better estimate of plume rise relative to the observations, it may be doing so in part in response to a 

model overestimate of surface heating and the corresponding reduction in the magnitude of the temperature gradient, to 

which the latter algorithm is sensitive, and to which the original Briggs’ algorithms are less sensitive.   10 

Our final analysis examines the effects of the different plume rise algorithms on the broader region, through comparisons of 

multi-week average differences of surface and downwind vertical cross-section mixing ratios of SO2 (Figure 9).  The change 

in SO2 (“Plume Rise” – “12-bin”) average surface mixing ratio and a representative cross-section are shown in Figure 9(a,b), 

while the corresponding differences for the two simulations employing the revised algorithm (“Hourly” – “Plume Rise”) are 

shown in Figure 9(c,d).  The first comparison (Figure 9(a)) shows the substantial impact of the revised plume rise algorithm 15 

relative to the original Briggs’ formulation; surface concentrations of SO2 have decreased over most of the domain, often by 

by up to tens of percent.  The corresponding cross-section (Figure 9(b)) shows that most of the SO2 removed from the 

surface is transported aloft, resulting in substantial relative increases in SO2 mixing ratios throughout the lower troposphere.  

The second comparison (Figure 9(c,d)) shows that the use of hourly CEMS stack parameter data results in substantial local 

increases and decreases – changes in plume height associated with the use of the hourly stack parameters are sometimes 20 

responsible for both positive and negative changes in the tens of percent, relative to the simulation driven by annual reported 

stack parameters.  The SO2 mass formerly being carried aloft now fumigates downwind, in the “Hourly” cross-section. 

In similar evaluations for NO2
 
(not shown), percentage differences of up to 10% in NO2 surface mixing ratio and less than 

1% maximum difference is surface ozone mixing ratio for the 30-day average period were found.  The choice of a plume rise 

algorithm thus has a substantial impact on average surface and lower troposphere concentrations of those species 25 

predominantly emitted from large stacks.   
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Figure 9.  Comparison of model-generated average mixing ratios:  percent differences in multi-week averages.  (a) Average 

surface mixing ratio percent differences for “Plume rise” – “12-bin”.  (b) Average cross-section percent differences along 

cross-section ABCD, for  “Plume rise” – “12-bin” .  (c) Average surface mixing ratio percent differences for 

“Hourly” – “Plume rise”.  (d) Average cross-section percent differences along cross-section ABCD, for “Hourly” – 5 

“Plume rise”.   

 

5 Conclusions 

We have carried out a set of four model scenarios for a 2.5-km resolution nested domain using the GEM-MACH air quality 

forecast model for the Athabasca oil sands region of Alberta, Canada.  These scenarios have allowed us to examine the 10 

relative impacts of aerosol size distribution and plume rise algorithms on model performance, relative to surface and aircraft 

observations of multiple chemical species.   

While a 2-bin configuration with sub-binning of microphysical processes has been employed in the past for operational 

forecasting due to computational processing time constraints (Moran et al., 2010), we find that the 12-bin configuration has 

better performance for all surface PM2.5 prediction metrics, including an overall 34% reduction in the magnitude of the bias 15 

of PM2.5, for a 25% increase in processing time. 
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Comparisons with the model and observed stack plumes showed that all algorithms tended to under-predict plume heights, in 

accord with our companion measurement-driven investigation of plume rise using the Briggs (1984) plume rise algorithm 

(Gordon et al., 2018).  However, in contrast to that work, significant improvements to model performance were found with 

the adoption of a revised plume rise algorithm, also based on Briggs (1984), in which local changes in stability in individual 

model stable and neutral model layers are used to calculate the fractional reduction in buoyancy of the rising plume.  Tests of 5 

the revised algorithm using both annually reported stack parameters and hourly parameters from Continuous Emissions 

Monitoring both resulted in significant improvements in model performance in comparison to the original approach.  

However, the use of hourly observed (and presumed more accurate) stack parameters resulted in degradation of performance 

relative to the use of annual reported values for these parameters.  Further investigation using a specific case study suggested 

that the improvements associated with the revised algorithm may in part be due to model positive biases in lower 10 

atmospheric temperature, resulting in model underestimates in the magnitude of atmospheric temperature gradients.  

Nevertheless, the revised approach was found to correct much of the predominantly negative bias in predicted plume height 

seen for Briggs’ original algorithms, correcting the biases in plume height noted in our companion paper, in which the 

algorithms were driven using observed meteorology.   

Despite these improvements, and the tendency of the model to underestimate temperature gradients, the model still over-15 

predicts the extent of fumigation for all plume rise algorithms tested, implying the need for further work.  The revised 

approach found to be the most favorable in the current work is based on two key parameters; entrainment coefficients 

determined by Briggs from data collected in 1975 to be approximately 0.08 and 0.4 respectively; we recommend that these 

coefficients be re-estimated using more recent data.   

Our simulations have shown that the choice of a plume rise parameterization has a very significant impact on downwind 20 

concentrations of SO2 from the oil sands sources, with the approaches having the more accurate plume heights also resulting 

in significant reductions in surface SO2, and increases in SO2 aloft, helping to correct pre-existing positive and negative 

biases in the model at these elevations.  Smaller impacts were found for NO2, and minimal impacts for ozone.   
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