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Abstract. Advances in satellite retrieval of aerosol type can improve the accuracy of near-surface air quality 10 

characterization, by providing broad regional context and decreasing metric uncertainties and errors. The frequent, spatially 

extensive and radiometrically consistent instantaneous constraints can be especially useful in areas away from ground 

monitors and progressively downwind of emission sources.  We present a physical approach to constraining regional-scale 

estimates of PM2.5, its major chemical component species estimates, and related uncertainty estimates of chemical transport 

model (CTM, e.g. the Community Multi-scale Air Quality Model) outputs. This approach uses ground-based monitors where 15 

available, combined with aerosol optical depth and qualitative constraints on aerosol size, shape, and light-absorption 

properties from the Multi-angle Imaging SpectroRadiometer (MISR) on the NASA Earth Observing System’s Terra satellite. 

The CTM complements these data by providing complete spatial and temporal coverage. Unlike widely used approaches that 

train statistical regression models, the technique developed here leverages CTM physical constraints such as conservation of 

aerosol mass and meteorological consistency, independent of observations. The CTM also aids in identifying relationships 20 

between observed species concentrations and emission sources. 

 

Aerosol airmass types over populated regions of Central California are characterized using satellite data acquired during the 

2013 San Joaquin field deployment of the NASA DISCOVER-AQ project. We investigate the optimal application of 

incorporating 275 m horizontal-resolution aerosol airmass-type maps and total-column aerosol optical depth from the MISR 25 

Research Aerosol retrieval algorithm (RA) into regional-scale CTM output. The impact on surface PM2.5 fields progressively 

downwind of large single sources is evaluated using contemporaneous surface observations. Spatiotemporal R2 and RMSE 

values for the model, constrained by both satellite and surface-monitor measurements based on 10-fold cross-validation, are 

0.79 and 0.33 for PM2.5, 0.88 and 0.65 for NO3
-, 0.78 and 0.23 for SO4

2-, 1.00 and 1.01 for NH4
+, 0.73 and 0.23 for OC, and 

0.31 and 0.65 for EC, respectively.  Regional cross-validation temporal and spatiotemporal R2 results for the satellite-based 30 

PM2.5 improve by 30% and 13%, respectively, in comparison to unconstrained CTM simulations, and provide finer spatial 



2 
 
 

resolution.  SO4
2- cross-validation values showed the largest spatial and spatiotemporal R2 improvement with a 43% 

increase. Assessing this physical technique in a well-instrumented region opens the possibility of applying it globally, 

especially over areas where surface air quality measurements are scarce or entirely absent. 

1 Introduction 

To investigate air pollution health effects on humans, population-based epidemiologic time-series studies often use exposure 5 

measures derived from regulatory monitoring networks (Laden et al., 2006;Pope et al., 2009;Özkaynak et al., 2009).  Even 

for the continental US, many ambient, ground-level fine particulate matter (PM2.5) chemical datasets are acquired only once 

every three or six days, and data records at many sites are less than a decade or two long.  In addition, the monitors tend to 

be concentrated in a small number of populated counties, with the exception of the Interagency Monitoring of Projected 

Visual Environment (IMPROVE) program sites located primarily in US national parks (Hand et al., 2011).  Prior to 2009, 10 

instrument types and sensitivities varied from monitor to monitor and among monitoring networks (Chow et al., 2010), 

making comparisons and uncertainty assessment difficult. 

 

Urban-level epidemiological time-series studies often span large geographic regions (Goldstein and Landovitz, 1977;Wade 

et al., 2006).  Especially for long-term exposure analysis, broad regions within or downwind of urban and industrial centers 15 

are also of concern due to the presence of distributed populations, and natural and agricultural ecosystems.  Characterizing 

spatial variability is fundamental to effectively conducting environmental epidemiologic studies and air quality assessments.  

Reducing exposure-metric error caused by inadequately characterized spatial variability, which is often much larger than 

instrument error, can substantially reduce bias and improve precision in epidemiologic results (Ito and Thurston, 1995;Pinto 

et al., 2004;Goldman et al., 2012).  This is particularly relevant for regional-scale studies, where urban-to-rural gradients of 20 

ambient surface PM2.5 and chemical species concentrations are often lacking. 

 

Although chemical transport model (CTM) simulations provide more complete spatial and temporal coverage than surface 

monitors, they rely on uncertain inputs about pollution source characteristics that can contain significant biases.  The 

accuracy of the simulated fields is also affected by the accuracy of the simulated meteorology, emissions, and of the physical 25 

and chemical parameterization schemes specified in the model (Cooke et al., 1999;Monks et al., 2009;Tong and Mauzerall, 

2006).  Errors in these fields can be identified and sometimes quantified by comparison with coincident ground- and aircraft-

based observations.  Under satisfactory retrieval conditions, satellite-derived aerosol optical depth (AOD), atmospheric 

scattering, light absorption, and extinction by suspended particles can be leveraged to constrain the columnar CTM 

simulations in sparsely monitored areas. 30 
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Early space-based PM2.5 air quality studies directly correlated satellite-derived AOD from the MODerate resolution Imaging 

Spectroradiometer (MODIS) instruments and ground-level PM2.5 concentrations acknowledged, but did not account for, 

particle vertical distribution, day-to-day variations, and/or aerosol speciation (Chu et al., 2003;Wang and Christopher, 

2003;Engel-Cox et al., 2004;Chu, 2006;Gupta and Christopher, 2009;Wallace and Kanaroglou, 2007;Schaap et al., 

2009;Zhang et al., 2009;Hu and Rao, 2009;Tsai et al., 2011;Hu et al., 2014).  This direct total-column AOD-to-surface PM2.5 5 

correlation approach works well when the aerosol is almost entirely concentrated in the near-surface boundary layer, but 

suffers when transported aerosol makes a significant contribution to the total-column AOD, or when the boundary layer is 

deep or variable on short timescales, as has been pointed out by Hidy et al. (2009).  Other early studies used surface 

measurements (Al-Saadi et al., 2005) or CTMs (Liu et al., 2004;Koelemeijer et al., 2006;Mathur, 2008;Van Donkelaar et al., 

2010;Drury et al., 2010;Wang et al., 2010; Van Donkelaar et al., 2013;Boys et al., 2014;Ma et al., 2014) to provide some 10 

constraint on aerosol vertical distribution, but did not account in detail for either spatial or temporal variations in the 

relationship between total-column AOD amounts and surface PM2.5 concentrations, and provided very limited or no aerosol-

type constraints.  Work has been done to improve CTM estimates of surface PM2.5 by improving the consistency of aerosol 

optical properties between models and satellite retrieval algorithms, as well as using CTMs to inform satellite-retrieved 

aerosol types (Van Donkelaar et al., 2013;Wang et al., 2010;Drury et al., 2010; Li et al., 2015).  The Van Donkelaar et al. 15 

(2010) study used space-based CALIPSO lidar backscatter profiles to validate the GEOS-Chem model vertical distributions 

globally, aggregated over a four-year period.  Advanced statistical models that use land-use, meteorological, and relative 

humidity parameters have been applied to increase the accuracy of AOD-to-PM2.5 estimates (Kumar et al., 2007;Di 

Nicolantonio et al., 2009;Lee et al., 2011;Kloog et al., 2012;Hu et al., 2014; Ma et al., 2014;Song et al., 2014;Lv et al., 

2016;Ma et al., 2016).  Several of these statistical models are location-specific, and most rely on surface-based data training 20 

sets to constrain parameters in statistical models, which are then applied elsewhere.  Where training data are limited or 

entirely absent, there is significant uncertainty with this approach. 

 

The first papers to include some space-based aerosol type information along with AOD from satellites for air quality 

applications used the Multi-angle Imaging SpectroRadiometer (MISR) spherical vs. non-spherical distinctions to separate 25 

airborne dust from spherical particles over the continental US, and constrained aerosol vertical distribution and speciated the 

spherical components with an aerosol transport model (Liu et al., 2007b;Liu et al., 2007a).  Subsequent work applied MISR 

aerosol size and shape constraints over the Indian subcontinent and surrounding areas to map seasonal changes in aerosol 

type (Dey et al., 2012) and combined MISR particle shape and qualitative light-absorption information to make a first effort 

at mapping aerosol airmass types over an urban area, i.e., Mexico City (Patadia et al., 2013). 30 

 

In the current study, we introduce and enhance a physical approach that takes advantage of satellite coverage over regional 

scales for estimating ambient PM2.5 mass and associated chemically speciated concentrations, as needed in air quality 
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applications.  The approach uses ground-based PM2.5 measurements, where available, to anchor speciated, near-surface CTM 

aerosol concentrations.  To help constrain the model outputs over extended regions, both MISR total-column AOD and 

qualitative, column-effective aerosol type observations are also applied when retrieval quality is adequate (generally, where 

mid-visible AOD values exceed 0.15).  Specifically, we map the satellite-retrieved constraints on spherical light-absorbing, 

spherical non-absorbing, and non-spherical particles to the appropriate aerosol chemical species in the CTM, which is 5 

substantially different from previous work.  Enhanced aerosol-type retrievals from the MISR Research Aerosol (MISR-RA) 

retrieval algorithm (Kahn et al., 2001;Limbacher and Kahn, 2014), at 275 m horizontal resolution, are at the heart of this new 

approach. 

 

To demonstrate the method, we apply it over a case study area in the San Joaquin Valley of California during the 10 

DISCOVER-AQ field campaign in this region, on six days when there is good MISR-RA coverage.  The results account for 

spatiotemporal variability in PM2.5 and the chemical component concentrations.  The accuracy of estimated concentrations 

and evaluation of the latest MISR-RA ability to typify urban AOD, aerosol mixtures, and aerosol airmasses, are examined by 

comparing the results with speciated ground observations and standard model-fitting statistics.  Section 2 describes the 

datasets involved, Sect. 3 describes the method and technical approach, and Sect. 4 presents results and validation for our 15 

test cases.  Conclusions, along with a brief discussion of prospects for wider application of this approach, are given in Sect. 

5, and detailed data and ancillary documentation are provided in Supplemental Material. 

2 Study Domain and Datasets 

2.1 Study Domain 

The San Joaquin Valley (SJV), which comprises the southern two-thirds of California’s Central Valley (about 26,000 km2), 20 

has long suffered from severe air pollution issues and is among the most studied air sheds in the US (Ngo et al., 2010;Chow 

et al., 2006).  The SJV has complex topography and meteorology, particularly in winter, when low planetary boundary layer 

(PBL) heights and high pollutant mixing ratios create a challenging environment for chemical transport modeling (Hidy et 

al., 2009; Appel et al., 2017).  This region is surrounded by the Sierra Nevada to the east, the Diablo and Temblor Ranges to 

the west, the Tehachapi Mountains to the south, and the Sacramento Valley to the north (Fig. 1).  Although primarily a rural 25 

area, the eight counties that comprise the SJV are home to more than 4 million residents.  Despite the semi-arid climate, the 

SJV is one of the world’s most productive agricultural regions (Schoups et al., 2005).  Its air shed frequently experiences 

high PM2.5 concentrations during the winter due to the combination of relatively dry climate, shallow PBL heights, local 

source emissions, and the surrounding mountain ranges.  The region has been in violation of the PM2.5 National Ambient Air 

Quality Standards for PM2.5 annual standard since their inception in 1997, and is the largest PM2.5 nonattainment area in the 30 

continental US (EPA, 2012). 
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The study period for this work was selected to coincide with the Deriving Information on Surface Conditions from Column 

and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ; http://discover-aq.larc.nasa.gov) field 

campaign, which ran from January 16th through February 8th 2013.  This campaign was a joint collaboration between NASA, 

NOAA, US EPA, multiple universities, and several local organizations, with the goal of characterizing air quality in urban 5 

areas using satellite, aircraft, vertical profiler and ground-based measurements.  Targeting the 2013 DISCOVER-AQ 

deployment period for this study provides considerable ground- and aircraft-based measurements for aerosols and fine 

particulate matter, which we apply as model constraints and for evaluation. 

 

We analyze data for six days during the DISCOVER-AQ period for which (1) MISR observations were made over the study 10 

region, (2) coincident ground and aircraft observations were acquired, including extensive field-campaign data, and (3) the 

key observational requirements of relatively cloud-free conditions and the presence of aerosols from different sources are 

met.  Of the six days for which we have MISR coverage, the mid-visible AOD exceeds 0.15 on three days: January 20th, 

February 3rd, and February 5th. On lower-AOD days, MISR-RA aerosol type information has higher uncertainty for the 

current application and thus the analysis of speciated PM2.5 focuses on the higher-AOD days.  Of the three higher-AOD days, 15 

January 20th has the least cloud cover, followed by February 5th, so these days are the main focus of detailed analysis. The 

method developed here can in the future be applied to many other polluted regions of the world where AOD exceeding 0.15 

is common, such as South and East Asia, North Africa, and many major metropolitan areas. 

 

The ground-based, aircraft, and simulation data used in this study are described briefly in the rest of this section, along with 20 

the MISR-RA retrieval product. 

2.2 Ground-based PM Mass and Speciated Measurements 

This study focuses on PM2.5 mass and the five components that dominate total PM2.5 in the SJV: sulfate (SO4), nitrate (NO3), 

ammonium (NH4), elemental carbon (EC), and organic carbon (OC).  Data files of ambient aerosol particulate matter species 

concentrations for sites within the SJV for January and February 2013 were obtained from two EPA sources: (1) daily 25 

averaged PM2.5 Federal Reference Method (FRM) and Federal Equivalence Method (FEM) mass from the Air Quality 

System (AQS; https://www.epa.gov/aqs), and (2) daily averaged total PM2.5 and chemically speciated mass (measurements 

typically made every third or sixth day) from the Chemical Speciation Network (Solomon et al., 2014). 

 

FRM compliant data from gravimetric filter-based samplers and FEM compliant data from continuous mass monitors 30 

provide spatial variability of PM2.5 mass (EPA, 2004).  The PM2.5 FRM mass is determined gravimetrically by weighing 

particles on filters pre- and post-deployment.  They are equilibrated at a constant relative humidity (30-40%) and 
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temperature (20-23°C).  Monitor locations are shown in Fig. 1, and Table 1 lists monitor summary statistics.  Daily PM2.5 

concentrations measured by the FRM method are considered PM2.5 ground truth, i.e., their uncertainties are small compared 

to those of the other PM2.5 values used in this study. 

2.3 DISCOVER-AQ AERONET DRAGON 

The AErosol RObotic NETwork (Holben et al., 1998) has 10 permanent sun photometer (SP) monitors operating in the study 5 

region. During the DISCOVER-AQ mid-January through mid-February 2013 deployment, these monitors were 

supplemented with an additional 14 temporary monitors termed the Distributed Regional Aerosol Gridded Observation 

Network (DRAGON) to provide a more regionally dense dataset for satellite validation and in situ comparisons (Fig. 1). 

AERONET/DRAGON SPs measure AOD in multiple spectral bands from the ultraviolet (~340 nm) to the near-infrared 

(~1640 nm), with an accuracy within ±0.015 (Eck et al., 1999). 10 

 

We use version 2 level 2 (L2) AERONET/DRAGON AOD and Angstrom Exponent (ANG) data for the six study days. The 

L2 data were sun-calibrated after field deployment, cloud screened (Smirnov et al., 2000), and quality controlled. The AOD 

at 550 nm wavelength is calculated using a quadratic log-log fit to AERONET observations at shorter and longer 

wavelengths (Eck et al., 1999). Columnar AODs at 550 nm derived from AERONET are considered as AOD ground truth in 15 

this study. 

2.4 Chemical Transport Model Simulations 

Simulations of the coupled Weather Research and Forecasting model (WRF, Skamarock et al., 2008), version 3.4, and the 

Community Multiscale Air Quality model (CMAQ, Byun and Schere, 2006), version 5.0.2, were obtained from the US 

Environmental Protection Agency (EPA). These hourly atmospheric simulations, at 2 km × 2 km horizontal grid spacing, 20 

cover the entire SJV and surrounding major cities during the months of January and February of 2013.  The CMAQ domain 

consisted of 35 vertical layers with varying thickness extending from the surface to 50 hPa and an approximately 10 m 

midpoint for the lowest (surface) model layer. Concentration fields from the fixed 2 km × 2 km horizontal CMAQ grid were 

downscaled to a horizontal grid of 275 m x 275 m by linear interpolation and used as the reference grid for all subsequent 

analyses.  Emission data were based on the 2011 EPA National Emissions Inventory (EPA, 2015) with 2013 updates to 25 

electric generating unit emissions, fire, and mobile sources. Biogenic emissions were generated in-line to CMAQ using the 

Biogenic Emissions Inventory System (BEIS; http://www.cmascenter.org) version 3.14, and the emissions were processed 

using the Sparse Matrix Operator Kernel Emissions (Houyoux et al., 2000) version 3.5. The carbon bond 2005 chemical 

mechanism used was CB05TULC (Sarwar et al., 2012;Whitten et al., 2010;Yarwood et al., 2005).  The lateral Boundary 

Conditions (BCs) for the 2 km simulation were derived from a coupled WRF-CMAQ simulation with 4 km × 4 km 30 

horizontal grid spacing, covering the entire state of California and the surrounding areas. Boundary conditions for the 4 km 
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simulation were derived from a 36 km simulation covering the contiguous US, and BCs for the 36 km simulation were 

provided by a GEOS-Chem simulation (Bey et al., 2001) with the chemical species mapped to the corresponding CMAQ 

species (Appel et al., 2017). 

 

The EPA conducted a model evaluation of CMAQ v5.0.2 with respect to the scientific updates to v5.1 (Appel et al., 2017). 5 

In that study, fine particulate matter simulations were biased low compared to observed concentrations over the SJV during 

the winter months. Winter PM2.5 average mean bias (Model - Observations) in the SJV exceeded -10 µg m-3. Errors in 

simulated PBL height and mixing were considered to be contributing factors to the January PM2.5 underestimation in the 

SJV. Although CMAQ v5.0.2 is missing several secondary organic aerosol species of anthropogenic volatile organic carbon 

(i.e., long-chain alkanes and naphthalene) in its aerosol module (AERO6 v5.0.2), the mass contribution of these species to 10 

PM2.5 during the winter was minimal (less than ±0.5 µg m-3) in the SJV (Appel et al., 2017).  At the time this study was 

conducted, CMAQ v5.1 results were not yet available. 

2.5 Satellite Observations 

The primary satellite resource for this study is the MISR instrument.  We supplement the MISR-RA aerosol data with results 

from the MODIS instruments.  They offer more extensive spatial coverage and provide up to two observations per day (one 15 

in the morning, and one in the early afternoon), though with larger AOD uncertainty over land, and with no constraints on 

aerosol type over land (Levy et al., 2013).  We describe these two data sources below. 

2.5.1 MISR-RA 

MISR was launched along with the first MODIS instrument aboard Terra, the flagship satellite of NASA’s Earth Observing 

System (EOS), in December 1999 (Diner et al., 1998).  Since then, Terra has maintained a sun-synchronous orbit, 20 

descending from North-to-South over the equator at a local time of ~10:30 AM. MISR measures upwelling short-wave 

radiance from Earth at nine distinct view angles along the line-of-flight (±70.5°, ±60.0°, ±45.6°, ±26.1°, and nadir), in each 

of the four spectral bands centered at 446, 558, 672, and 866 nm.  The one nadir, four forward, and four aft-viewing push-

broom cameras take approximately 7 minutes to image a given 380 km wide swath of Earth. Due to swath size, it takes 

MISR about a week to obtain global coverage.  Owing to its multi-spectral, multi-angular capabilities, high spatial resolution 25 

(up to 275 m), and highly accurate radiometric calibration (Bruegge et al., 2007;Limbacher and Kahn, 2015;Limbacher and 

Kahn, 2017), the MISR-RA is uniquely capable of supporting air-quality applications by providing information about 

aerosol microphysical properties at regional scales.  The Version 23 4.4 km x 4.4 km MISR Standard Algorithm (MISR-SA) 

AOD product was not available at the time of the evaluation and is not available at higher resolution.  The MISR-SA has 

greater inconsistencies in aerosol particle retrievals due to limitations in the aerosol climatology included in the algorithm 30 

(74 mixtures for the MISR-SA vs. over 700 for the MISR-RA), poorer surface-reflectance assumptions, issues with the 
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radiometric calibration critical for aerosol-type retrievals that are corrected in the MISR-RA, details of the acceptance 

criteria, and the spatial resolution at which the algorithm is run. More details are available in the series of papers by 

Limbacher and Kahn (2014; 2015; 2017).  For particle-type retrievals, the MISR-RA performs considerably better than the 

MISR-SA. 

 5 

High-resolution (275 m) results from the MISR-RA are used to constrain aerosol concentration and type for the CMAQ 

model.  Because of MISR’s ability to sample over a large range of scattering angles (i.e., between about 60° and 160° at 

midlatitudes), the MISR-RA provides column-averaged information regarding aerosol properties under favorable retrieval 

conditions (i.e., cloud-free, low surface albedo, mid-visible AOD exceeding about 0.15) (Kahn and Gaitley, 2015;Kahn et 

al., 2010).  This information amounts to constraints on particle shape (non-spherical (dust) vs. spherical AOD fraction), 10 

particle size (typically three-to-five bins, e.g., “small,” “medium,” and “large” AOD fraction, parameterized as the Angstrom 

Exponent, ANG), and particle light absorption (typically two-to-four bins, e.g., “dirty” and “clean,” represented as single-

scattering albedo, SSA = 1.0 – [absorbing AOD]/[total AOD]).  Although passive satellite remote sensing can only provide 

information about aerosol type in two dimensions (column-averaged), a chemical transport model can be used to apportion 

the amount of aerosol near the surface (e.g., Liu et al., 2007a; van Donkelaar et al., 2010; this study). A brief summary of the 15 

MISR-RA retrieval process is provided in the supplemental Sect. S1. 

 

Following the work of Patadia et al. (2013), we identify different aerosol airmasses by categorizing aerosol based on the 

qualitative particle size, shape, and light-absorption constraints described above.  Specifically, for the purposes of this paper, 

the 14 aerosol components used by all 774 mixtures included in the refined MISR-RA aerosol climatology (Limbacher and 20 

Kahn, 2014) can be organized into three broad aerosol-type “groups”: spherical light-absorbing, spherical non-absorbing, 

and non-spherical (cirrus is ignored in the current application).  Especially at low-AOD, the MISR-RA-derived aerosol-type 

sensitivity amounts to no more than these three groupings (Kahn and Gaitley, 2015).  However, the general microphysical 

properties of the three broad aerosol groups (AG) can be associated with specific chemical species identified in the chemical 

transport model results, as described below in Sect. 3.2.  From the point-of-view of retrieval sensitivity, these three 25 

categories map to common aerosol species as follows (Table S2): (1) Light-Absorbing Carbon (LAC), (2) Inorganic Ions (II) 

plus Organic Matter (OM) plus Sea-Salt (SS), and (3) dust.  Section S2 in supplemental provides a description of how the 

aggregated AOD retrievals are computed for the spherical absorbing aerosol components, and separately for spherical non-

absorbing aerosol components.  It is well established that MISR AOD retrievals suffer biases for scenes with substantial 

cloud cover (Witek et al., 2013;Shi et al., 2014;Limbacher and Kahn, 2015).  Consistent with both Witek et al. (2013) and 30 

Limbacher and Kahn (2015), we present results only for days where clouds cover less than 30% of the scene within the SJV 

as indicated by the MISR-RA cloud mask, excluding the rural areas that extend into the Sierra Nevada mountains. 
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2.5.2 MODIS - MAIAC 

To supplement the MISR-RA AOD values where MISR coverage is lacking, we adopt results from the MODIS Multi-Angle 

Implementation of Atmospheric Correction (MAIAC) advanced algorithm (Lyapustin et al., 2018;Lyapustin et al., 2012), 

which uses time-series analysis and a combination of pixel- and image-based processing to improve the accuracy of cloud 

detection, aerosol retrievals and atmospheric correction for surface retrievals. The following is a brief overview of the 5 

MAIAC Collection 6 version 2.0 (C6v2) June 2017 North America release aerosol product.  The current study uses the 

MAIAC Atmospheric Properties Products (MCD19A2), which provide AOD at 0.55 µm.  A more detailed description of the 

MAIAC theoretical background and processing steps can be found in Lyapustin et al. (2018; 2012). 

 

After extensive characterization of the MODIS-observed surface background, the MODIS Level 1B data are gridded to a 10 

fixed sinusoidal projection at 1 km horizontal resolution in order to observe the same grid cell over time.  Working with a 

fixed grid not only facilitates the use of polar-orbiting observations as if they were “geostationary,” it also simplifies 

comparison of these datasets to fixed-grid model results and other measurements.  In addition to the MODIS instrument on 

the Terra satellite, a second MODIS flies aboard NASA’s Aqua satellite, which crosses the equator on the dayside at 1:30 

PM local time.  As a consequence of residual de-trending and MODIS Collection 6 (C6) Terra-to-Aqua cross-calibration 15 

(Lyapustin et al., 2018), MAIAC currently processes MODIS C6 Terra and Aqua jointly as a single sensor.  In addition to 

considerably greater spatial coverage than MISR, this joint product offers some diurnal spread in sampling relative to the 

MISR snapshots. 

 

For the time series analysis, MAIAC utilizes a 4–16 day sliding window technique of scenes from multiple MODIS 20 

overpasses to retrieve the surface Bi-directional Reflectance Distribution Function (BRDF; 0.466 µm), and spectral 

regression coefficients (SRCs; 0.466 µm and 2.13 µm), allowing MAIAC to retrieve AOD at 1 km spatial resolution.  Unlike 

instruments that collect nearly simultaneous observations using push broom scanning, the MAIAC algorithm uses the sliding 

window technique of consecutive clear MODIS cross-track scanned scenes (i.e., cloud-free conditions with relatively low 

AOD) over several days to acquire multi-angle sets of observations for each location.  This allows MAIAC to retrieve the 25 

BRDF from an accumulated, multi-angle set of observations. Working under the assumption that surface reflectance changes 

rapidly over space and slowly over time (e.g., seasonal changes) helps the MAIAC internal dynamic land-water-snow 

classification.  The algorithm produces well-characterized surface reflectance that improves cloud masking, and outperforms 

traditional pixel-level cloud detection techniques that rely on spatiotemporal analysis (Kloog et al., 2014). 

 30 

Although AOD is originally retrieved in the MODIS Blue band B3 at 0.47µm, MAIAC offers a standardized and validated 

AOD product at 0.55µm.  With the exception of smoke and dust aerosol detection, the current algorithm does not retrieve 

AOD over surfaces occurring at altitudes higher than 3.5 km.  Like many satellite-based aerosol retrievals, MAIAC retrievals 
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are unreliable for very low AOD conditions, over mountainous terrain, and over surfaces with very high albedo.  The 

retrieval conditions that affect this study include low AOD and some cloud-contaminated scenes. 

3 Methods 

Air quality ground observations are spatially sparse, and are often temporally incomplete. CTM simulations provide 

information that is independent of these observations, and are consistent with meteorology and assumed emissions.  But they 5 

can contain biases, and can have difficulty capturing the spatial structure of aerosol dispersion downwind of sources.  

Satellites offer spatially extensive, mainly column-effective aerosol amount and type, that, if included appropriately, can 

reduce or eliminate fused-model-surface-measurement biases over large areas, especially regions far from concentrated 

surface monitors.  As there are gaps in the satellite products due to clouds and other retrieval-related issues, we use the 

model to help complete variable fields at several stages of the process.  We also use the model to estimate the near-surface 10 

components of column-effective satellite values, and use ground-monitor data to constrain and to evaluate the results. 

 

Our approach to fusing surface and satellite-based observations with CMAQ simulations involves five steps, illustrated in 

Fig. 2.  Note that the left side of Fig. 2 tracks the process for deriving total PM2.5, whereas the right side presents the flow for 

speciated PM2.5. Blue and orange stars in Fig. 2 indicate where uncertainties are estimated by comparison with AERONET 15 

and the EPA ground monitors, respectively. First, total-column AOD and groupings of model aerosol species that match the 

spherical light absorbing, spherical non-absorbing, and non-spherical satellite aerosol-type AG are reconstructed from the 

simulated datasets.  In Step 2, spatially complete AOD and grouped AOD maps are produced for each of the six study days 

by combining MISR-RA and MAIAC satellite retrievals with scaled values of the modeled AOD and AG AOD products 

from Step 1, respectively, to fill any remaining gaps.  In Step 3, we reconstruct PM2.5 Mass FRM from the simulated 20 

concentration dataset.  Step 4 deconstructs the satellite-based total-column AOD and grouped AOD to surface PM2.5 and 

grouped PM2.5 mass concentrations using the CTM speciated vertical distributions, respectively.  The fifth and final step 

involves blending daily averaged ambient ground observations and satellite-based total and grouped PM2.5 mass 

concentrations to estimate daily, spatially refined PM2.5 mass and speciated pollutant concentrations. 

 25 

Overall, the inputs are the speciated ground-monitor data, satellite AOD snapshots and AOD grouped by aerosol type, and 

the CMAQ model simulations.  The outputs are the fused ground-monitor, satellite, plus model PM2.5 mass concentration 

field, and speciated versions of this field. A detailed description of the key steps follows. 
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3.1 Step 1 – CMAQ- and Surface-derived PM2.5 Using Reconstruction Method 

A commonly applied PM2.5 mass reconstruction (RM) method, also termed mass closure or material balance, is used to 

compare the sum of major aerosol components to gravimetrically measured PM2.5.  This approach also accounts for 

unmeasured or non-simulated species to avoid double counting. Beginning with Countess et al. (1980), the RM method is 

used to evaluate measurements, characterize spatiotemporal chemical gradients, estimate source contributions to PM, and 5 

calculate visibility impairment due to near-surface aerosol.  Additionally, the reconstructed PM2.5 mass provides insight into 

the spatial variations among the speciated data (Frank, 2006;Hand et al., 2011;Hand et al., 2014;Malm et al., 2011). The 

development of this method, along with the differences between reconstructed and gravimetric mass in the CSN and 

IMPROVE data sets, have been extensively studied in the US (Malm et al., 2011). Chow et al. (2015) provides a detailed 

literature review of the various mass reconstruction equations. 10 

 

For the purposes of this study, the RM equation focuses on the following five representative chemical components, with the 

relevant references cited: (1) inorganic ions (Chow et al., 1994;Chow and Egami, 1997;Andrews et al., 2000;Nolte et al., 

2015);  (2) organic matter (DeBell et al., 2006;Hand et al., 2011);  (3) Elemental Carbon (EC), also referred to as light 

absorbing carbon (Bond and Bergstrom, 2006);  (4) crustal material, which includes mineral and soil particles, referred to 15 

herein as dust (Malm et al., 1994;Malm et al., 2011);  (5) sea salt (Hand et al., 2011);  and (6) other elements (Simon et al., 

2011), which, in the SJV during the study period, made a negligible contribution to PM2.5. The respective references provide 

details as to how multipliers for each species were derived and summarize the evaluation performed for each major PM 

component. 

 20 

In addition to the measured aerosol species of interest, WRF-CMAQ model outputs for relative humidity, temperature, and 

speciated aerosol vertical distribution were used in the PM2.5 mass reconstruction and as needed in the other analysis steps 

described hereafter. The RM method, excluding negligible “other” elements, was used to compare ground observations, 

CMAQ results, and satellite-derived concentrations. Table S1 in supplemental material provides a summary of the aerosol 

equations used for the ground monitor data and CMAQv5.0.2 simulations. The RM equation used is as follows (Eq. (A) in 25 

Chow et al., 2015): 

 

 !"[!" !!!] =
[SO!!] + [NH!!] + [NO!!]

!"#$%&"'( !"#$
+ 1.8[!"]

!"#$%&'
!"##$%

+ [!"]
!"#!! 

!"#$%"&'(
 !"#$%&

+ 1.8[Cl!]
!"# 
!"#$

+ 2.2[Al] + 2.49[Si] + 1.63[Ca] + 1.94[Ti]  + 2.42[Fe]
!"#$

             (1) 30 
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For each of the major chemical components involved, Chow et al. 2015 covers in detail the factors and assumptions required 

for the RM calculation, and those contributing to the comparison with gravimetric mass measurements. These factors include 

the OM/OC ratio assumptions, carbon sampling and analysis artifacts, ammonium and nitrate volatilization, limitations of 

using chloride to estimate sea salt content, and water retention by hygroscopic species on filters (Andrews et al., 2000;Rees 

et al., 2004;Tanner et al., 2004;El-Zanan et al., 2005). Using Eq. (1) to estimate OM from OC for CMAQ output allows for 5 

consistency with satellite-derived estimates; in the future we may expand the method to include various organic aerosol 

species explicitly in cases where we have more in situ data. 

 

Following the framework of Eq. (1), the reconstructed PM2.5 mass does not account for the positive and negative factors that 

affect gravimetric and speciated measurements (DeBell et al., 2006;Frank, 2006;Hand et al., 2011;Chow et al., 2015). To 10 

close the mass-balance difference between PM2.5 FRM gravimetric mass and ambient mass (simulated and measured), the 

material balance Eq. (1) was adjusted to account for factors affecting gravimetric measurements (Eq. (10) in Frank, et al., 

2006). 

 !"!.!!"# [!" !!!] = !" − [NH!!]!"## + [NO!!]!"## + !"# + !"#$%!"!     (2) 

where ammonium and nitrate volatilization are not captured by gravimetric measurements and thus, are accounted as 15 

negative artifacts. The particle bound water (PBW) is the water retained on the filter when particles are sampled and weighed 

for mass concentration. This concentration is dependent on ionic composition and relative humidity dependent species 

equilibrium prior to laboratory weighing. BlankFRM accounts for the passively collected mass value on “blank” filters.  The 

limitations and uncertainties of the reconstruction method broken down by major chemical components are discussed in 

detail elsewhere (Frank, 2006;Chow et al., 2015).  The uncertainty estimated for the CMAQ- and satellite-based surface 20 

concentrations are discussed in Sect. 4. 

3.2 Step 2 – CMAQ-based Columnar AOD and AOD Subcategorized into Species-related Groups Derived Using the 
Reconstructed Extinction Coefficient Method 

Section 3.1 summarizes the method applied to calculate the five representative component surface mass concentrations from 

the surface observations; these components are also used to derive total-column AOD from CMAQ (!!"#$). First proposed 25 

by Malm et al. (1994), the reconstructed extinction coefficient method was designed to investigate the spatial and temporal 

variability of haze and visibility impairment in the US as part of IMPROVE. Since then this method has been continuously 

upgraded by several researchers (Malm et al., 1994;Malm et al., 2000;Malm et al., 2011;Song et al., 2008;Park et al., 2011). 

The process estimates extinction AOD using simulated concentrations of II, OM, SS, LAC, and Dust (Table S1) assuming 

externally mixed aerosols with respect to the modeled altitude (z), as follows: 30 

! = !(!),!!!",!!!!(!),!!(!)!!
!"#$%&'( !"#$$%&'() !""#$#!!"#

+ (1 − !(!),!)!!",!!!!(!),!!(!)!! )
!"#$%&'( !"#$%&'($) !""#$#!%$&

!"     (3) 
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where 

τ = aerosol extinction optical depth (AOD) at 550 nm 

i = chemical component 

ω = single scattering albedo (SSA) 

βde = specific dry mass extinction efficiency [m2 g-1] 5 

frh = hygroscopic growth factors as a function of height 

C = concentration of chemical component i as a function of height [g m-3]  

 

Equation 3 is further subdivided for dust by size in accordance with the CMAQ Aitken, accumulation, and coarse particles 

size categories (Park et al., 2011). The empirically based factors and their respective literature sources are summarized in 10 

Table S3.  The WRF simulated relative humidity data, rh(z), were used to evaluate the height-dependent hygroscopic growth 

factors. The ambient particle extinction as a function of height is the sum of the ambient scattering and absorption with 

respect to altitude (z), which are the two terms in Eq. (3). From Eq. 3, the dimensionless extinction AOD is obtained by 

multiplying the ambient particle extinction by the vertical atmospheric path height of each CMAQ layer. These are added 

vertically to obtain columnar AOD values, which are compared to ground- and satellite-based AOD values in the following 15 

subsections to assess uncertainties. 

 

The three CMAQ-based AOD AG (i.e., LAC, II+OM+SS, and Dust), indicated in Table S2, are calculated using the five 

major chemical components derived in Eq. (1).  The CMAQ-based total-column AOD AG aggregate is equivalent to the 

total-column CMAQ-based AOD.  Assessment of the uncertainties in these quantities, using a combination of ground-based 20 

and satellite total-column measurements, is given in Sect. 3.4 below. 

3.3 Step 3 – Gap-Filled Satellite-derived AOD and Grouped AOD, Using Scaled CMAQ-based AOD 

To obtain a spatially complete AOD map for each case-study day, we combine the MISR-RA-retrieved, MAIAC-retrieved, 

and CMAQ-based reconstructed AOD products, as CMAQ can simulate values in all grid boxes, regardless of cloud cover, 

surface brightness, terrain, and aerosol optical thickness. The most relevant factor affecting spatially complete satellite-25 

retrieved AOD in this study is missing retrievals due to the presence of clouds.  The combined AOD product is more 

complete than the MISR-RA or MAIAC product alone. 

 

The Fig. S1 scatterplots show MISR-RA AOD retrievals are higher than those retrieved by MAIAC, and much closer to the 

AERONET ground-truth values, for the three case study days with highest AOD.  These scatterplots reinforce the need to 30 

scale MAIAC-retrieved AOD before gap-filling MISR-RA-retrieved AOD fields.  Based on Fig. S1, a study-specific AOD 

adjustment was applied to the MAIAC data; in addition, a filter with an upper bound of 0.4 was used for MAIAC retrievals 

Mariel Friberg� 7/19/2018 11:07 AM
Deleted: When integrated over a horizontal path, 
the extinction per unit length is sometimes called the 
visibility, typically reported in Mm-1. 35 
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to reduce potential cloud contamination.  On days when Aqua and Terra MAIAC C6v2 AOD retrievals on the 1 km fixed 

sampling grid were available, the MAIAC-Aqua AOD retrievals were used to fill in missing AOD in the MAIAC-Terra 

AOD maps (as MAIAC-Terra is closest in time to the MISR-RA retrieval) by linearly regressing values from a 15 x 15 

MAIAC-Aqua grid cell region centered on the missing MAIAC-Terra cell value.  The 1 km gap-filled MAIAC-Terra AOD 

maps were subsequently downscaled and spatially interpolated (via bilinear interpolation) to match the downscaled CMAQ 5 

275 m × 275 m output grid, referred to herein as gap-filled MAIAC.  Before combining retrieved AOD products, the 275 m 

× 275 m MISR-RA AOD at 558 nm was converted to 550 nm using the retrieved ANG product and the dynamic sampling 

grid was re-gridded to match the downscaled CMAQ 275 m × 275 m grid.  The gap-filled MAIAC product was then used to 

fill in gaps in the MISR-RA AOD product by linearly regressing values from a 15 x 15 gap-filled MAIAC grid cell region 

centered on the missing MISR-RA cell value.  Larger gaps caused by cloud contamination in the satellite-retrieved AOD 10 

were filled using a 7 x 7 grid cell region of CMAQ-reconstructed AOD value, linearly regressed to the satellite-retrieved 

AOD.  This procedure was repeated multiple times as needed until the satellite retrieval area within the SJV study region 

was filled, referred herein as !!"##$%&. 

 

A unique component of this work involves the use of the MISR-RA aerosol species-specific groups.  Consequently, we 15 

produce gap-filled, aerosol-type-grouped AODs from the original MISR-RA-based AG AODs using the model-based 

grouped AODs from Step 1 and following the same gap-filling procedure used for !!"##$%&. 

3.4 Uncertainty Estimates for Model-Reconstructed and Satellite Total-Column Quantities 

Two sets of intermediate analyses are presented where surface-based in situ as well as column-integrated observations are 

provided as ground truth (i.e., their uncertainties are small compared to those of the other values used in this study).  First, 20 

satellite-retrieved AOD snapshots are evaluated against coincident AERONET observations.  Second, a comparison between 

daylight-averaged AERONET AOD data, satellite-retrieved AOD snapshots, and model-reconstructed diurnal AOD is 

presented to determine how well the snapshots represent diurnal values in the study region.  This material is presented here 

rather than in Section 4 below because key decisions in the Method depend on the results of these comparisons. 

3.4.1 Comparison between Satellite-, CMAQ-reconstructed, and Ground-based Total-column AOD Snapshots at 25 
Coincident Times 

Evaluation of MISR-RA (Limbacher and Kahn, 2014) and MAIAC (Lyapustin et al., 2011) AOD has been performed 

extensively before, but not specifically for the study region, where we have considerable ground-truth data.  Overall, there 

were 14 AERONET sites across the SJV (Fig. 1) during the six case study days. The number of coincident satellite- and 

ground-AOD observations is dependent on the swath width of each satellite instrument, the retrieval algorithm used, and the 30 

polar-orbiting coverage for a given day. Fig. 3 and Table S4 provide scatterplots and a statistical summary, respectively, of 
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AERONET AOD collocated in time and space with the MISR-RA, MAIAC, gap-filled MISR-RA AOD (i.e., τFillSAT), and 

CMAQ results. Although AERONET reports AOD at 550 nm, AOD values at 558 nm were calculated for comparison with 

the MISR-RA AOD retrievals. Only those Terra MAIAC AOD retrievals that were temporally coincident with MISR-RA 

retrievals were used in this comparison. A window of ± fifteen minutes was applied to select AERONET measurements as 

spatiotemporally coincident with the satellite overpass, and corresponding CMAQ hourly, reconstructed AOD values were 5 

used. 

 

Overall, the MISR-RA AOD compares well with coincident AERONET AOD, and tends to outperform MAIAC statistically 

over the SJV across all our case-study days (Table S4).  The two best-case days for this analysis are January 20th and 

February 5th, where AERONET AOD values were relatively high (AOD≥0.15) and there were multiple coincident MISR-10 

RA retrievals across the region. On these days, MAIAC underestimates AOD compared to AERONET, whereas MISR-RA 

slightly overestimates AOD. Specifically, for January 20th and February 5th, the MISR-RA-to-AERONET AODs had an 

overall R of 0.91 and 0.99, and a NME of 0.08 and 0.12, respectively. For MAIAC, the corresponding values are an overall 

R of 0.66 and 0.93, and a NME of 0.23 and 0.31, respectively. 

 15 

The comparison of MISR-RA and MAIAC satellite-retrieved AODs with AERONET also illustrates how gap-filling MISR-

RA with scaled and gap-filled MAIAC retrievals produces a more consistent product. For example, the Fig. 3 subplot for 

February 5th shows that gap-filled MISR-RA (i.e., FillSAT) offers better agreement than gap-filled MAIAC at the averaged 

AERONET retrieved AOD value of 0.47. On this specific day and location there is no coincident MISR-RA retrieval, 

indicating that the gap-filled MISR-RA improvement is due to scaled and gap-filled MAIAC used to gap-fill the MISR-RA 20 

AOD snapshot.  Further evident from Fig. 3, the CMAQ reconstructed values systematically underestimate AOD relative to 

AERONET in nearly all cases and exhibit greater scatter, hinting at the possible value of applying the measurements as 

constraints on the model simulations. 

3.4.2 Comparison of Satellite-based AOD Snapshots with Daylight-average Ground-based AOD and with Daylight- 
and Diurnal-average Model-based AOD 25 

Unlike aerosol radiative forcing, which depends on daytime solar heating, conditions during the full diurnal cycle are 

relevant for many air quality applications. However, AERONET, as well as the satellites, acquire AOD data only during 

daylight hours, when the sun is well above the horizon. To test the feasibility of using satellite-based AOD snapshot 

retrievals as proxies for AOD averaged over daylight hours for the study region, we compare the satellite retrievals (MISR-

RA, MAIAC, gap-filled MISR-RA) the with daylight-averaged AERONET-retrieved AOD results (Fig. S2).  We 30 

subsequently compare the model daylight- and diurnal-average AODs, as well as the AERONET daylight-average AODs, 

with the respective short-term values from these data sources (Fig. 4) to assess how well snapshot values represent AOD for 
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entire days in the study region.  In places where the snapshots are substantially different from the daylight-average or 

diurnal-average AOD values, scaled model results would be required to complete the diurnal air quality picture. 

 

For the initial comparison, all retrieved AERONET values per each of the six case-study days were averaged to obtain a 

daylight average at each of the 14 sites. For the MISR-RA comparison, we have only the same MISR-RA AOD retrieval 5 

snapshots as in Fig. 3. For the study cases, MAIAC can have multiple Terra and Aqua retrievals over the region during one 

day, occurring at different times, due to the wide MODIS swath. As such, MAIAC Terra-retrieved AOD “coincident” with 

MISR-RA overpasses are in some cases gap-filled with other scaled-MAIAC Terra/Aqua retrievals acquired during that day. 

A third satellite-retrieved AOD product is the gap-filled, primarily MISR-RA-derived AOD (FillSAT) described in Sect. 3.3. 

Also shown in Fig. S2 are the CMAQ reconstructed daylight-average AODs, described in Sect. 3.2. 10 

 

Overall, the MISR-RA and FillSAT values are very nearly identical, and they tend to serve as better proxies for the daylight-

average AERONET values than CMAQ for the study cases.  Table S5 contains a statistical summary of the scatterplot data. 

For the two best days of January 20th and February 5th, the retrieved AODs for MISR-RA and gap-filled MISR-RA agree 

better statistically than the other datasets in terms of correlation and error relative to AERONET daylight-average values. 15 

Although the retrieved AODs for the MISR-RA and gap-filled MISR-RA slightly outperform MAIAC for the specific case 

study days, this relationship is likely to change for different domains and time periods. As such, the technique for gap-filling 

MISR-RA AOD might need to be dynamic in weighting the MAIAC AOD retrievals when applied to other regions. For 

January 20th and February 5th, the gap-filled MISR-RA-to-daylight-average-AERONET AODs had overall R-values of 0.81 

and 0.78, and NME of 0.16 and 0.28, respectively. This comparison indicates the satellite-retrieved AOD quantities are in 20 

agreement with daylight-averaged ground truth to serve as proxies for the daylight-averaged values during the study period. 

 

A procedure for fusing CMAQ model simulations with surface-based measurements is described briefly in Sect. S3 in the 

supplemental material, and in detail in Friberg et al. (2016).  This procedure was applied to CSURF and CCMAQ (Fig. 2) to 

produce CFCMAQ, also referred to as FCMAQ.  The additional step allows us to assess how the spatially extensive satellite 25 

data affects the results compared to the model constrained only by local surface observations. 

 

To estimate how well the AOD snapshots might characterize the diurnal-average AOD, diurnal-to-hourly ratios for CMAQ 

and FCMAQ are plotted against AERONET retrieved AODs acquired within 15 minutes of the satellite overpasses for each 

case (Fig. 4 and Table S6). AERONET ratios are plotted as well.  The diurnal model and daylight AERONET AOD values 30 

are divided by AODs at Terra overpass time within the hour and within 15 minutes for the model and AERONET ratios, 

respectively. On January 18th and 20th, FCMAQ and daytime CMAQ ratios exhibit the high variability at locations where 

AERONET ratios were near unity, suggesting that CMAQ diurnal-to-hour ratio are at times spatially biased.  But generally, 
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based on model performance, snapshots acquired at Terra overpass time tend to fall within 10% - 20% of the diurnal-average 

value, except in some cases when the AOD at overpass time is approximately less than 0.15.  At these smaller AODs, a 

small absolute change in AOD will produce larger percent changes. 

 

One possible reason for the scatter in Fig. 4 is the model representation of transported aerosol.  Transported aerosol above 5 

the boundary layer is dependent on the lower BCs adopted in the model, and thus is not always well represented by CMAQ 

in this region. For example, the model results indicate minimal vertical distribution of dust aerosol, concentrating all the dust 

within the planetary boundary layer on the study days, whereas transported dust above the boundary layer is likely to be the 

major non-spherical aerosol species in this region and season (e.g., Liu et al., 2007b). Any biases in dust AOD retrievals are 

compounded by inaccuracies in the model-based vertical distributions that are applied during the total-column-to-surface 10 

decomposition step. The impact of errors in the adopted vertical distribution of aerosols on these results, beyond the scope of 

the current paper, warrants further investigation. Model aerosol vertical distribution can be further constrained by taking 

advantage of upwind aerosol elevation retrievals from space-based stereo imaging (MISR), in places where the aerosol 

sources produce visible plumes, and downwind aerosol layer heights from space-based lidar (e.g., CALIPSO) (Kahn et al., 

2008). 15 

3.5 Step 4 – Deconstructed Total-column Satellite-measured AOD to Surface PM2.5 Mass and Speciated 
Concentrations 

Using CMAQ-based aerosol vertical profiles, near-surface concentrations (!!"##$%&,!!!
!"!.!!"#  and !!"##$%&,!!!!"#$%&'#( ) are obtained from the 

total-column satellite AOD (!!"##$%&) and aerosol group AOD (!!"##$%&!" ) by the following three intermediate steps.  As in 

previous work, the key step amounts to using model-derived ratios of total-column to near-surface aerosol distributions to 20 

obtain near-surface values constrained by total-column measurements (e.g., Liu et al., 2004; Van Donkelaar et al., 2010). 

 

In Eq. (4), the column-average dry particle concentrations for the three aerosol groups (!!"##$%&!" ) are calculated from the 

AODs, !!"##$%& and !!"##$%&!" , by reversing the reconstructed extinction process applied to model-only values in Step 2 (Eq. 

(3)).  The same height-stratified hygroscopic growth and specific dry scattering or absorbing efficiency factors from Step 2 25 

are used here for consistency.  The column-average satellite-based AG concentrations (!!"##$%&!" ) are further stratified into the 

five column-average representative PM chemical components (!"#$%&'( !!"##$%&!"#$%&'#(), defined in Step 1 according to Eq. 

(1), using the CMAQ-based species-to-aerosol group partition in Eq. (5).  With !!"##$%&
!"#$%&'#( defined, satellite-based total-

column PM2.5 (!!"##$%&
!"!.! ) is obtained using Eq. (1). The satellite-derived column-average concentrations are then scaled to 

surface-level concentrations by relying on the vertical distribution of the CMAQ simulations of each species in Eq. (6). The 30 
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satellite-based surface-level PM2.5 concentrations (!!"##$%&,!!!
!"!.! ) are adjusted to reflect PM2.5 FRM concentrations using Eq. (2).  

These relationships were defined in terms of daily AOD and species concentrations. 

!!"##$%&!" = !!"##$%&!"

(!!",!!!! ! ,!)!"
           (4) 

!!"##$%&
!"#$%&'#( = !!"##$%&!" !!"#$!"#$!"#$% !!"#$!"          (5) 

!!"##$%&,!!!!"#$%&'#( = !!"##$%&
!"#$%&'#( !!"#$,!!!!"#$%&'#( !!"#$!"#$%&'#(         (6) 5 

3.6 Step 5 –Optimized PM2.5 FRM and Speciated Concentrations, Derived by Fusing Satellite-constrained Values 
with Ground-monitor Data 

The optimized concentration dataset (COPT) closely parallels the surface-measurement-constrained CMAQ simulation 

described in Eq. (S4).  The COPT dataset is derived by constraining the results with the surface-monitor data near their 

locations, and weighting the satellite-constrained concentration values progressively more heavily away from available 10 

ground monitors (Fig. 5).  Using Eq. (7), the six daily CCMAQ fields coincident with the flight campaign span are replaced 

with the satellite-derived daily CFillSAT fields, as these were the days when retrieval conditions were adequate to use the data 

for the current application (See Sect. 2.1 above). With only 11.5% of the CCMAQ fields changing due to contributions from the 

surface stations, the weighting factors (W; Eq. (S5)) and average temporal correlations between the simulations and surface 

observations (R2; Eq. (S7)), across all monitors, did not need to be recalculated.  Thus, for this study, COPT diverges from 15 

CFCMAQ for 6 days out of the entire study time period. 

!!"#!,! = !!!"#$!
! !!,!

!!"#$!!,!
!!"#$!! !"#$

+ 1 −!!,!
!!"##$%&!,!
!!"#$!

      (7) 

 

Using the techniques described in the next section, we assess the performance of the optimized surface concentrations in the 

results section. 20 

3.7 Evaluation of Optimized Datasets by Cross-Validation 

Three cross-validation techniques are used to evaluate how well the optimized datasets represent diurnal values, and to 

identify biases that arise from different sampling frequencies and spatial distribution of monitors across the pollutants. First, 

a 10-fold withholding (10-WH) technique is applied to all species. Then a Leave-One-Out (LOO) cross-validation method is 

used for all the species with the exception of PM2.5. Finally, a Regional Holdout (RH) is used only for PM2.5.  Brief 25 

descriptions of these tests are given here; the results of the tests are discussed in Section 4.2 below. 
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3.7.1 10-fold Cross-Validation 

The dataset performance was evaluated using a 10-fold cross-validation analysis.  For each of 10 independently run trials, a 

random 10% of the surface observations were held back per day and each method (“fused,” i.e., surface measurements + 

model, and “optimized,” i.e., surface + satellite measurements + model) was applied to simulate the withheld data.  The 

results from the 10 trials were then combined to provide cross-validation results that allow for the exploration of difference 5 

in errors based on proximity to monitors.  Across monitors and days, the holdout number corresponds to the number of 

surface observations for each pollutant (Table 1), ranging from 44 for PM2.5-OC to 779 for PM2.5. 

3.7.2 Leave-one-out Cross-Validation 

As an alternative to the 10-WH method, the LOO withholding is applied to the five PM components to overcome the 

sampling and spatial scarcity. By withholding one location at a time, this location-based cross-validation technique can 10 

provide information on how well the CMAQ simulations and satellite-derived concentrations of the fused and optimized 

datasets, respectively, represent diurnal values at locations further than 50 km from other monitors (see speciated monitor 

locations in Fig. 1). With some sites containing more than one monitor, collocated monitors were considered one location, 

and thus all monitors at a location were withheld for LOO.  This cross-validation technique does not provide much insight 

when the nearest monitor is in close proximity, as is the case with the PM2.5 mass monitors. 15 

3.7.3 Regional Holdout Cross-Validation 

A regional withholding technique is used to evaluate fused and optimized PM2.5 datasets, as monitor clustering affects the 

cross-validation results. For each of the cross-validation regions in Fig. 1, all but one of the monitors in a region is withheld, 

and this is repeated independently for each daily monitor and region. The approach approximates the evaluation of LOO 

when the distance between monitor locations is large (i.e., >50 km). 20 

4 Results 

Two sets of analyses are presented where surface-based in situ observations are provided as ground truth (i.e., their 

uncertainties are small compared to those of the other values used in this study).  First, modeled and deconstructed satellite-

constrained results for PM2.5 and PM2.5 grouped by species are evaluated against EPA AQS and CSN ground observations, 

respectively.  For the second set of analyses, cross-validation is used to evaluate satellite-constrained model performance. 25 

The main objectives of this section are (1) to evaluate the results of Steps 2-5 as much as possible, (for evaluation of Step 1, 

see Friberg et al. 2017), (2) to assess where, and to what degree, the satellite data help constrain the model PM2.5 over an 

extended region, and (3) where mid-visible AOD values exceed 0.15, to also evaluate the satellite-constrained, speciated 

PM2.5.  
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4.1 Comparison of Satellite-constrained and Model-based Daily PM2.5 and Speciated Component Surface 
Concentrations to Average Daily Ground Truth 

We compare now the model-based (CCMAQ), model-fused-with-ground-monitor (CFCMAQ), deconstructed satellite-constrained 

(CFillSAT) and optimized (COPT; model + ground monitor + satellite) daily averaged PM2.5 and speciated component 

concentrations with EPA AQS and CSN observations. Table S7 provides a statistical summary of the comparison between 5 

the ground truth and the modeled, fused, satellite-constrained, and optimized results, stratified by pollutant, day, and dataset. 

Fig. 6 presents concentration maps of the four aforementioned datasets with embedded ground-truth PM2.5 values and their 

respective RGB images (depicting cloud coverage) for the three days with relatively high AOD in the study set (January 20th, 

February 3rd, and February 5th).  

 10 

Focusing on the area within the SJV, the higher concentration gradients in CFillSAT are due to the application of satellite 

snapshots. The satellite-constrained concentration snapshots tend to provide more realistic spatial distributions of PM2.5 

compared to the unconstrained model values, CCMAQ. Specifically, the CFillSAT maps show greater dynamic ranges of values, 

with localized hotspots over known urban areas, such as Bakersfield (35.4˚ N lat., 119.0˚ W long.) on January 20th and 

February 5th, and Fresno (36.7˚ N lat., 119.8˚ W long.) on February 3rd. The satellite-constrained snapshot results also tend 15 

agree better with available surface measurements in other high-AOD areas, but cloud contamination and the lack of satellite 

diurnal sampling affect the CFillSAT values primarily in low-AOD regions. This suggests that the technique will yield 

increasingly good results when applied in more heavily polluted areas around the globe.  Fig. S3 presents scatterplots 

comparing the daily averaged models and the satellite-constrained snapshots of near-surface PM2.5 to ground monitor values.  

They indicate than diurnal variability is significant in some places and times, but not in others.  For high-AOD days (Jan. 20 

20th, Feb. 3rd, and Feb. 5th), Fig. S3 shows CFillSAT PM2.5 is in general agreement with surface observations within the 

performance range of the model results, and the variability is minimal, especially compared to low AOD days.  Of the three 

relatively high-AOD days, January 20th has the least amount of cloud contamination, whereas February 5th has the most.  

Following the Fig. 5 weighting between the datasets, the visible contributions of the CCMAQ and CFillSAT datasets to the CFCMAQ 

and COPT PM2.5 fields in Fig. 6 occur at distances of a fifth to a half degree (20 to 50 km) beyond a monitor.  At or near a 25 

ground observation, the COPT fields are weighted towards the interpolated surface-observation fields, whereas the influence 

of CFillSAT on COPT improves the regional behaviour and enhances the spatial gradient structure synoptically.  For CCMAQ and 

CFillSAT, the estimated temporal variances are fairly constant and do not depend on distance to the surface observations. The 

surface observations, rather than model or satellite-based results, dominate the CFCMAQ and COPT temporal correlations at and 

near monitor locations, whereas CCMAQ and CFillSAT dominate at distances 20 to 50 km beyond a monitor.  As such, the 30 

temporal correlations for CCMAQ, CFillSAT, CFCMAQ, and COPT generally do not approach zero away from the surface stations.  

For example, on February 5th, the interpolated surface-observation field dominates both the satellite and CMAQ values in the 

COPT and CFCMAQ PM2.5 maps.  The situation at Bakersfield on this day is a bit different.  Here the assumed surface monitor 
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uncertainty plays a role, as CMAQ reports a much lower value, the satellite contribution is weighted significantly some 

distance from the urban center, and the actual difference between the monitor and the COPT field is about 12.5%, though the 

contrast appears large due to the color scale. The satellite contribution is investigated further and quantified in the validation 

exercises of the next section, where we systematically decrease the dependence of COPT fields on surface observations. 

 5 

Figures 7 and S4 provide speciated NO3, NH4, and SO4 surface concentration maps for January 20th and February 3rd; 

respectively; ground-truth data, available only for February 3rd, are included in Fig. 7.  For the evaluation of the modeled and 

satellite-constrained surface concentrations, sparse ground observations of speciated PM have a large impact, especially on 

the high-AOD days.  This is compounded by ground-monitor sampling infrequency, as evident in the correlation ranges 

(Table S7). Fig. S4 demonstrates the ability of satellite aerosol retrievals to characterize the spatial distributions of speciated 10 

aerosol airmass types more realistically and consistently than the models across all three species. Unlike for PM2.5, there 

were no speciated monitor measurements available on January 20th, so the OPT results are equal to FillSAT (Fig. S4).  

Although the CCMAQ and CFillSAT results show agreement around the locations of known emission sources, the satellite-derived 

aerosol concentrations at the surface show more realistic horizontal dispersion patterns, and the spatial distribution better 

reflects the likely influence of topographic features.  Specifically, during SJV winters, wide horizontal uniformity of 15 

ammonium nitrate concentrations is characteristic of this air basin, due to the near-surface inversion (Watson and Chow, 

2002).  Particulate nitrate is known to form over non-urban areas when high ammonia emissions from the surface, and nitric 

acid, formed aloft during night-time decoupling, mix during the morning collapse of the inversion (Watson and Chow, 

2002).  Throughout the region, consecutive days with low PBL heights are known to produce increased and spatially more 

uniform concentrations of fine particulate matter, nitrate, and sulfate (Watson and Chow, 2002).  The CFillSAT spatial structure 20 

and background concentration ranges of 10-15 µg m-3 for nitrate and 4-5 µg m-3 for ammonium (Fig. S4) reflect the 

aforementioned concentration dynamics.  The differences between the model and satellite-constrained concentration 

gradients within the SJV are visible on January 20th and February 3rd, and the related surface mixing and plume dispersion 

are evident, especially in Fig. S4. Given the very limited speciated monitor measurements available, the Fig. S5 scatterplots 

show CFillSAT provides better agreement than the model and fused-model values. 25 

 

Comparing the results of the current analysis with previous studies that attempt to apply satellite data to surface air quality 

assessment is a challenge for the following reasons: (1) limited, non-overlapping case study domains; (2) disparity in the 

spatial resolution at which the analyses are performed, which can bias pixel-to-point comparisons; (3) limited number of 

ground-truth observations; (4) prevalence of statistics that were averaged over entire seasons or years; (5) lack of actual 30 

surface-concentration statistics reported for the satellite-derived values (i.e., many studies report correlations just between 

satellite-derived, total-column AOD and surface-based PM2.5) and (6) where AOD is the satellite-reported quantity used, 

algorithm version differences between the AERONET, MISR-RA, and MAIAC products used. 
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With regard to performance comparisons, the statistical-regression-technique study by Liu et al. (2007b; herein referred to as 

Liu2007b) is the most similar to the current analysis. Liu2007b compares 54 ground observations to satellite-derived surface 

concentrations for PM2.5 mass and speciated particles over the western US.  The statistical regression technique used 3-hour 

averaged CTM (GEOS-Chem) results coincident with Terra overpasses for 2005 at 2° by 2.5° spatial resolution.  The 5 

Liu2007b regression results with removed outliers were as follows: PM2.5 R2=0.21, NO3 R2= 0.23, SO4 R2= 0.11, and OC 

R2= 0.11.  In our study, the spatial R2 values for PM2.5 averaged 0.53 across all days and 0.73 on Jan. 20th, the clearest day 

with high AOD.  The spatial R2 values for the CFillSAT speciated PM on February 12th, the only day for which we have more 

than one surface measurement, are 0.48 for NO3, 0.10 for SO4, 0.46 for OC, 0.63 for NH4, and 0.41 for EC. 

 10 

4.2 Comparison of CMAQ, Fused, and Optimized Datasets to Observed Concentrations 

The model, fused, and optimized datasets are included in the 10-WH cross-validation comparison with the monitor data.  

The RMSE, MB, and the spatiotemporal, temporal, and spatial mean correlations for the five datasets are presented in Table 

S8.  The spatiotemporal R2 COPT 10-WH values are 0.79 for PM2.5, 0.88 for NO3, 0.78 for SO4, 1.0 for NH4, 0.73 for OC, and 

0.31 for EC.  The similarities among the PM2.5 speciated component 10-WH cross-validation statistics are affected by low 15 

numbers of available observations, sampling frequency, and coincident satellite-retrieval data, particularly for NH4 and EC.  

As a result, when compared to CCMAQ, the COPT 10-WH EC results show a 40% increase in spatial R2 and 10% decrease in 

spatiotemporal R2, whereas the cross-validation spatiotemporal R2 values for NH4 are biased high.  The SO4 spatial and 

spatiotemporal R2 cross-validation results for both CFCMAQ and COPT show the largest improvement over the unconstrained 

model, with a 43% increase compared to the CMAQ simulation performance.  The PM2.5 temporal and spatiotemporal R2 20 

cross-validation results are 30% and 13% higher than the CMAQ simulations.  The COPT results from the 10-WH cross-

validation would normally provide robust cross-validation results that allow for the exploration of error differences based on 

proximity to monitors.  Overall, the statistical improvement between the CMAQ simulations and cross-validated datasets 

suggest the empirically based mass reconstruction factors, specific dry efficiencies, and SSA values adopted were adequate 

for the SJV domain.  The 5-cities study 10-WH cross-validation spatiotemporal R2 ranges were 0.81-0.89 for SO4, 0.67-0.83 25 

for PM2.5, 0.52-0.72 for NO3, 0.43-0.80 for NH4, and 0.32-0.51 for OC (Friberg et al., 2017).  In light of the 5-cities study, 

the results for relatively homogeneous pollutants of secondary origin of this study fall within these ranges. 

 

Unlike 10-WH, LOO cross-validation results allow us to leverage the spatial distribution of monitor locations throughout the 

domain.  Table 2 shows the LOO temporal R2, MB, and RMSE values averaged across monitor locations.  The NH4 COPT LOO 30 

results improved the most across the PM2.5 component species and outperformed temporal R2 for CFCMAQ and CFCMAQ LOO 

values by 10 and 8%.  NH4 cross-validation performance is highest for monitor locations closest to the agricultural emission 
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sources in the southern area of domain. This finding agrees with the general expectation that aerosol type uncertainties being 

lowest when the mid-visible AOD is higher than ~0.15. For SO4, the cross-validation for both CFCMAQ LOO and COPT LOO 

datasets show significant improvements in temporal R2 and RMSE. For NO3, temporal R2 of CFCMAQ LOO is slightly higher 

than that of COPT LOO, whereas the opposite is true for MB.  The OC COPT LOO results are mixed between locations, whereas 

the EC COPT LOO shows improvements across all locations. 5 

 

To explore the PM2.5 CFillSAT impact on COPT, i.e., combining the surface monitor data with the CMAQ simulation plus 

satellite results, the spatial cross-validation performance assessment of PM2.5 COPT was expanded to include Regional 

Holdout (RH), which minimizes the effect of clustered monitors on statistics (Table 3).  As expected, removing PM2.5 

clustered monitors increased the cross-validated dataset reliance of CFCMAQ and COPT on CCMAQ and CFillSAT, thus decreasing 10 

temporal R2 values.  PM2.5 COPT RH results are similar for the CCMAQ and CFCMAQ RH datasets, with temporal R2 values of 0.71-

0.84 for CFCMAQ RH and 0.72-0.83 for COPT RH.  Improvements in the cross-validation results with respect to CMAQ 

simulations are observed for the northern half of the SJV domain, regions 1 and 2 in Fig. 1.  Proximity to emission sources, 

meteorology, and topography contribute to the performance differences between northern regions 1 and 2, and southern 

regions 3 and 4.  The dominant primary PM2.5 mass emission sources (i.e., residential wood combustion, and motor vehicles) 15 

as well as the major secondary aerosols in the SJV are associated with urban hotspots such as Fresno and Bakersfield (Chen 

et al., 2007).  Winter wind speeds in the SJV are typically below 4 m s-1 (Watson and Chow, 2002).  As compared to the 

southern portion of the SJV, the wind speed is slightly higher and is more consistently southeasterly in the northern part of 

the domain (Cahill et al., 2011;Hayes et al., 1989).  During the winter, regional transport occurs when the nocturnal 

boundary layer is decoupled from the air aloft; as a result, these higher wind speeds aloft tend not to ventilate the surface, 20 

intensifying pollutant surface concentrations throughout the SJV (Chow et al., 1999), whereas dust originating from desert 

sources to the east and southeast is likely transported aloft. 

 

In summary these results suggest the optimization method is a viable way of constraining CTM simulations using satellite-

retrieved information where ground observations are not available, especially where the AOD is higher than in the SJV cases 25 

available for the current study.  Based on these results, including the satellite data improves short- and long-term 

spatiotemporal air quality metrics for PM2.5 mass, and long-term air quality metrics for PM2.5 speciated components, 

especially in areas where surface measurements are lacking. 

5 Conclusions 

Even in the best-monitored urban areas, ground-based networks have limited spatial coverage.  Building on earlier work that 30 

produced a method for fusing surface-based measurements with model simulations (Friberg et al., 2016; 2017), the current 
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study relies on both satellite-derived AOD and particle property information contained in the satellite retrievals as additional 

constraints on the model outputs.  The strength of the satellite data is broad spatial coverage, providing radiances that tend to 

have uniform quality over space and time compared to most suborbital observation datasets.  The satellite provides vastly 

more spatial coverage than the surface stations alone, and this is especially important downwind of major pollution sources.  

The main limitations of the satellite data are lack of vertical discrimination in most situations, lack of diurnal coverage, and 5 

only crude aerosol-type sensitivity, especially at low AOD.  The physical approach presented here uses CTM simulation 

along with surface-based measurements to address these limitations.  Where satellite data are missing or where the AOD is 

too low to provide reliable aerosol type from the MISR-RA, the method relies on the model, tuned, to the extent possible, by 

satellite and surface measurements. 

 10 

Satellite and ground-based aerosol measurements were combined with numerical model simulations to: (1) generate aerosol 

airmass type maps covering the central California test region for DISCOVER-AQ campaign time period in 2013, (2) explore 

the viability of using satellite data to improve aerosol airmass type mapping over extended regions, and (3) contribute 

regional context to what is known about air pollution sources and trends from point sampling monitors. 

 15 

Satellite data helps capture PM2.5 distributions over large, under-sampled or un-sampled regions, and its fusion with model 

results tends to represent spatial gradients better than the unconstrained model. Applied appropriately, satellite data can also 

improve speciated PM2.5 where AOD is sufficiently high (generally mid-visible AOD >~0.15 in the study region). We used 

retrievals from the MISR-RA, to take advantage of the higher spatial resolution and greater aerosol-type accuracy and 

precision compared to the standard products. However, to avoid over-interpreting the data, we classified the satellite aerosol-20 

type results into three broad groups for application as a model constraint: spherical light-absorbing, spherical non-absorbing, 

and non-spherical. The satellite-constrained concentration maps are spatially consistent with topography, typifying localized 

hotspots over known urban areas, and exhibiting realistic dispersion patterns in the SJV.  Comparison with daylight-averaged 

AERONET and diurnally averaged CMAQ modeling demonstrated that, for AOD >~ 0.15 and with outliers removed, the 

satellite-derived snapshots represent the diurnal values within 10 – 20 % for the study cases.  Furthermore, satellite-derived 25 

PM2.5 is in agreement with surface observations, to within the scatter of unconstrained model results, and variability was 

reduced on higher AOD days.  These results suggest satellite retrievals in conjunction with model results can improve PM2.5 

spatial characterization in situations where the AOD is sufficiently high.  The satellite aerosol retrievals also represent the 

spatial distributions of speciated aerosol airmass types more realistically and consistently than the unconstrained model and 

the model constrained only by surface-monitor data, for nitrate, ammonium, and possibly also sulfate. 30 

 

For the current study, model-based aerosol vertical distributions were used to address the lack of profile measurements.  

However, model aerosol vertical distribution could be constrained on large scales with space-based stereo imaging (e.g., 
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from MISR) near emission sources, at least where plumes are visible in the imagery, and with space-based lidar (e.g., 

CALIPSO) downwind of sources.  Diurnal sampling, the second major limitation in the current satellite application, can be 

assessed and corrected where needed with a model that has been scaled to available satellite snapshots. Comparison of 

diurnal variation results to other studies was hindered by the following factors: (1) the unique weather pattern and pollution 

transport characteristic of the SJV (i.e., persistent inversion and very low PBL height), (2) differences in product version 5 

uncertainty (i.e., AERONET versions between this and earlier studies), and (3) disparity in satellite-retrieved spatial 

resolution (i.e., biases in earlier studies due to coarser spatial resolution).  Future research assessing diurnal sampling could 

benefit from the inclusion of Visible Infrared Imaging Radiometer Suite (VIIRS) instrument datasets, such as daylight-

retrieved AOD (Jackson et al., 2013) and Day/Night Band as an estimate of PM2.5 surface change (Wang et al., 2016).  

Eventually, AOD and possibly speciated AOD from geostationary platforms will provide at least daylight if not fully diurnal 10 

values. 

 

Under adequate observing conditions, the technique presented here improves the representation of pollutant spatial 

distributions in air quality models downwind of emission sources.  It is physically based in that it leverages components of a 

CTM such as the meteorology, conservation of aerosol mass, and assumed emissions, and complements statistical 15 

approaches that rely on tuning parameters in a regression-type model.  The new method offers the ability to compare 

satellite-derived PM2.5 and speciated concentrations directly to surface measurements.  Although the study domain and 

timeframe did not offer the high AOD levels where this method would work best, the SJV offered a substantial quantity of 

suborbital observations for assessing the results, due to the DISCOVER-AQ campaign. 

 20 

Expanding this work by applying the technique to the other areas with key ground measurements (i.e., Baltimore 

DISCOVER-AQ campaign) is a possible next step toward establishing the strengths and limitations of the method.  The 

technique takes advantage of the stable (i.e., consistent), long-term satellite observations that offer global coverage, and 

provides speciated constraints based on retrieved microphysical properties for AOD retrievals above about 0.15.  Once the 

aforementioned analyses are completed, the method will likely be applied to a selection of globally distributed urban regions 25 

that are downwind of sources, in locations where particulate pollution levels tend to be high. 
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Figure 1: San Joaquin study area shows the ground elevation, EPA AQS and CSN monitors, and AERONET sites during the 
NASA DISCOVER-AQ flight campaign.  

State Boundary 
San Joaquin Valley 
AERONET 
PM2.5 Speciated Monitors 
PM2.5 Mass Monitors 
Cross-validation Regions 
 

Legend 

1

2

3
4

2

3

 Bakersfield

Fresno



33 
 
 

Table 1: EPA AQS and CSN monitor summary statistics for 52 days (6 days). 

  

Pollutant No. of 
Monitors 

Sampling Frequency OBS Mean SD

PM2.5, µg/m3  22 (21) 13 daily; 6 1-in-3; 3 1-in-6  779 (95)  21.20 (28.31)  13.33 (13.51)
PM2.5-SO4, µg/m3  7 (6)  6 1-in-3; 1 1-in-6  86 (11)  0.77 (1.13)  0.46 (0.69)
PM2.5-NO3, µg/m3  7 (6)  6 1-in-3; 1 1-in-6  86 (11)  7.27 (9.81)  6.11 (7.38)
PM2.5-NH4, µg/m3  5 (4)  4 1-in-3; 1 1-in-6  54 (7)  2.07 (3.65)  2.25 (3.32)
PM2.5-EC, µg/m3  4 (4)  3 1-in-3; 1 1-in-6  44 (8)  1.28 (1.14)  0.77 (0.34)
PM2.5-OC, µg/m3  4 (4)  3 1-in-3; 1 1-in-6  44 (8)  5.25 (5.73)  3.09 (2.48)
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Figure 2: Methods flow chart connecting satellite retrieved AOD to Modeled AOD, PM2.5 Mass, and PM2.5 Speciated Mass. The 
parenthetical terms are defined in their respective steps in the methods section.   
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Figure 3: Scatterplot comparisons of AERONET coincidences with MISR-RA, MAIAC, gap-filled MISR-RA, and CMAQ results 
within ±15 minutes of Terra overpass time. The MAIAC and AERONET AOD comparisons are plotted at 550 nm, whereas the 
MISR-RA and AERONET AOD comparisons are at 558 nm; the dotted lines indicate the 0.15 AOD threshold; a 1:1 dashed lines 
are shown for reference.5 
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Figure 4: Scatterplots of daylight-averages to the Terra overpass time ratios versus AERONET AOD retrievals within ±15 minutes 
of Terra overpass time. Two ratios are shown for CMAQ: daytime average-to-hour ratio and diurnal average-to-hour ratio. The 
FCMAQ ratios shown are the FCMAQ diurnal to CMAQ hour values. The dashed unity lines are included for reference.  
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Figure 5:  Theoretical plot of fused and optimized dataset weights as a function of distance from surface observations. Three 
regimes identify the contribution of each dataset towards improving concentration field estimates stratified by distance.  As 
applied here, the exponential decay rate that reflects the temporal Pearson correlation between ground observations as a function 
of distance is species-specific. The temporal variations between ground observations and CMAQ or FillSAT are more consistent 5 
(shown as constant), independent of ground observations, and therefore, are not functions of distance to monitor.  FCMAQ 
(surface measurements + model) and OPT (surface + satellite measurements + model) curves show how the strengths of the 
ground observations and other datasets are maximized using temporal correlations as each grid cell is a function of distance from 
a ground observation.  
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Figure 6: PM2.5 FRM calculated concentration maps with monitor observations (filled circles) and RBG images for the three days 
during the study period with highest AOD.  The resolution of the concentration maps is 275 m, whereas the size of the observation 
markers is ~ 0.1 degrees (~ 11.1 km).  5 
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Figure 7: NH4, SO4, and NO3 calculated concentration maps and monitor observations (filled circles) for February 3rd.   
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Table 2: Comparison of averaged temporal R2, mean bias, and root means square error values between observations and leave-
one-out cross-validation (LOO CV) for 52 days across all locations. 

  

Species Dataset Temporal	R2 Mean	Bias RMSE

CMAQ 0.52 0.43 0.94
FCMAQ 1.00 0.91 1.24
OPT 1.00 0.70 1.13
FCMAQ	LOO	CV 0.56 0.90 1.44
OPT	LOO	CV 0.62 0.71 1.39
CMAQ 0.28 0.02 0.57
FCMAQ 1.00 0.00 0.12
OPT 0.99 -0.09 0.11
FCMAQ	LOO	CV 0.75 -0.06 0.41
OPT	LOO	CV 0.63 -0.13 0.36
CMAQ 0.73 0.16 0.49
FCMAQ 1.00 0.26 0.35
OPT 1.00 0.12 0.31
FCMAQ	LOO	CV 0.89 0.14 0.39
OPT	LOO	CV 0.85 0.02 0.38
CMAQ 0.68 -0.08 0.36
FCMAQ 1.00 -0.11 0.14
OPT 1.00 -0.15 0.13
FCMAQ	LOO	CV 0.68 -0.12 0.34
OPT	LOO	CV 0.70 -0.14 0.30
CMAQ 0.52 0.31 0.53
FCMAQ 1.00 0.74 0.85
OPT 1.00 0.69 0.83
FCMAQ	LOO	CV 0.74 0.84 0.87
OPT	LOO	CV 0.76 0.80 0.88

NH4

SO4

NO3

OC

EC
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Table 3: Comparison of temporal R2, mean bias, and root means square error PM2.5 values between observations and all 
simulation, including regional holdout cross-validation (RH CV) for 52 days. 

 

PM2.5 Dataset Temporal	R2 Mean	Bias RMSE
CMAQ 0.68 0.17 0.40
FCMAQ 1.00 0.10 0.15
OPT 1.00 0.09 0.15
FCMAQ	RH	CV 0.71 -0.10 0.46
OPT	RH	CV 0.73 -0.12 0.46
CMAQ 0.63 -0.04 0.33
FCMAQ 0.99 0.05 0.18
OPT 0.99 0.03 0.16
FCMAQ	RH	CV 0.75 0.05 0.33
OPT	RH	CV 0.72 0.03 0.36
CMAQ 0.77 -0.11 0.30
FCMAQ 1.00 -0.15 0.17
OPT 1.00 -0.17 0.17
FCMAQ	RH	CV 0.76 0.06 0.31
OPT	RH	CV 0.76 0.02 0.32
CMAQ 0.82 -0.11 0.34
FCMAQ 1.00 -0.19 0.24
OPT 1.00 -0.23 0.23
FCMAQ	RH	CV 0.84 -0.07 0.41
OPT	RH	CV 0.83 -0.11 0.39

Region	3

Region	4

Region	1

Region	2


