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Abstract. Advances in satellite retrieval of aerosol type can improve the accuracy of near-surface air quality
characterization, by providing broad regional context and decreasing metric uncertainties and errors. The frequent, spatially
extensive and radiometrically consistent instantaneous constraints can be especially useful in areas away from ground
monitors and progressively downwind of emission sources. We present a physical approach to constraining regional-scale
estimates of PM; s, its major chemical component species estimates, and related uncertainty estimates of chemical transport
model (CTM, e.g. the Community Multi-scale Air Quality Model) outputs. This approach uses ground-based monitors where
available, combined with aerosol optical depth and qualitative constraints on aerosol size, shape, and light-absorption
properties from the Multi-angle Imaging SpectroRadiometer (MISR) on the NASA Earth Observing System’s Terra satellite.
The CTM complements these data by providing complete spatial and temporal coverage. Unlike widely used approaches that
train statistical regression models, the technique developed here leverages CTM physical constraints such as conservation of
aerosol mass and meteorological consistency, independent of observations. The CTM also aids in identifying relationships

between observed species concentrations and emission sources.

Aerosol airmass types over populated regions of Central California are characterized using satellite data acquired during the
2013 San Joaquin field deployment of the NASA DISCOVER-AQ project. We investigate the optimal application of
incorporating 275 m horizontal-resolution aerosol airmass-type maps and total-column aerosol optical depth from the MISR
Research Aerosol retrieval algorithm (RA) into regional-scale CTM output. The impact on surface PM, s fields progressively
downwind of large single sources is evaluated using contemporaneous surface observations. Spatiotemporal R* and RMSE
values for the model, constrained by both satellite and surface-monitor measurements based on 10-fold cross-validation, are
0.79 and 0.33 for PM, 5, 0.88 and 0.65 for NO5’, 0.78 and 0.23 for SO42', 1.00 and 1.01 for NH,", 0.73 and 0.23 for OC, and
0.31 and 0.65 for EC, respectively. Regional cross-validation temporal and spatiotemporal R? results for the satellite-based
PM, 5 improve by 30% and 13%, respectively, in comparison to unconstrained CTM simulations, and provide finer spatial
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resolution. SO4> cross-validation values showed the largest spatial and spatiotemporal R? improvement with a 43%
increase. Assessing this physical technique in a well-instrumented region opens the possibility of applying it globally,

especially over areas where surface air quality measurements are scarce or entirely absent.

1 Introduction

To investigate air pollution health effects on humans, population-based epidemiologic time-series studies often use exposure
measures derived from regulatory monitoring networks (Laden et al., 2006;Pope et al., 2009;0zkaynak et al., 2009). Even
for the continental US, many ambient, ground-level fine particulate matter (PM,s) chemical datasets are acquired only once
every three or six days, and data records at many sites are less than a decade or two long. In addition, the monitors tend to
be concentrated in a small number of populated counties, with the exception of the Interagency Monitoring of Projected
Visual Environment (IMPROVE) program sites located primarily in US national parks (Hand et al., 2011). Prior to 2009,
instrument types and sensitivities varied from monitor to monitor and among monitoring networks (Chow et al., 2010),

making comparisons and uncertainty assessment difficult.

Urban-level epidemiological time-series studies often span large geographic regions (Goldstein and Landovitz, 1977;Wade
et al., 2006). Especially for long-term exposure analysis, broad regions within or downwind of urban and industrial centers
are also of concern due to the presence of distributed populations, and natural and agricultural ecosystems. Characterizing
spatial variability is fundamental to effectively conducting environmental epidemiologic studies and air quality assessments.
Reducing exposure-metric error caused by inadequately characterized spatial variability, which is often much larger than
instrument error, can substantially reduce bias and improve precision in epidemiologic results (Ito and Thurston, 1995;Pinto
et al., 2004;Goldman et al., 2012). This is particularly relevant for regional-scale studies, where urban-to-rural gradients of

ambient surface PM, s and chemical species concentrations are often lacking.

Although chemical transport model (CTM) simulations provide more complete spatial and temporal coverage than surface
monitors, they rely on uncertain inputs about pollution source characteristics that can contain significant biases. The
accuracy of the simulated fields is also affected by the accuracy of the simulated meteorology, emissions, and of the physical
and chemical parameterization schemes specified in the model (Cooke et al., 1999;Monks et al., 2009;Tong and Mauzerall,
2006). Errors in these fields can be identified and sometimes quantified by comparison with coincident ground- and aircraft-
based observations. Under satisfactory retrieval conditions, satellite-derived aerosol optical depth (AOD), atmospheric
scattering, light absorption, and extinction by suspended particles can be leveraged to constrain the columnar CTM

simulations in sparsely monitored areas.
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Early space-based PM, s air quality studies directly correlated satellite-derived AOD from the MODerate resolution Imaging
Spectroradiometer (MODIS) instruments and ground-level PM, s concentrations acknowledged, but did not account for,
particle vertical distribution, day-to-day variations, and/or aerosol speciation (Chu et al., 2003;Wang and Christopher,
2003;Engel-Cox et al., 2004;Chu, 2006;Gupta and Christopher, 2009;Wallace and Kanaroglou, 2007;Schaap et al.,
2009;Zhang et al., 2009;Hu and Rao, 2009;Tsai et al., 2011;Hu et al., 2014). This direct total-column AOD-to-surface PM, s
correlation approach works well when the aerosol is almost entirely concentrated in the near-surface boundary layer, but
suffers when transported aerosol makes a significant contribution to the total-column AOD, or when the boundary layer is
deep or variable on short timescales, as has been pointed out by Hidy et al. (2009). Other early studies used surface
measurements (Al-Saadi et al., 2005) or CTMs (Liu et al., 2004;Koelemeijer et al., 2006;Mathur, 2008;Van Donkelaar et al.,
2010;Drury et al., 2010;Wang et al., 2010; Van Donkelaar et al., 2013;Boys et al., 2014;Ma et al., 2014) to provide some
constraint on aerosol vertical distribution, but did not account in detail for either spatial or temporal variations in the
relationship between total-column AOD amounts and surface PM, s concentrations, and provided very limited or no aerosol-
type constraints. Work has been done to improve CTM estimates of surface PM, s by improving the consistency of aerosol
optical properties between models and satellite retrieval algorithms, as well as using CTMs to inform satellite-retrieved
aerosol types (Van Donkelaar et al., 2013;Wang et al., 2010;Drury et al., 2010; Li et al., 2015). The Van Donkelaar et al.
(2010) study used space-based CALIPSO lidar backscatter profiles to validate the GEOS-Chem model vertical distributions
globally, aggregated over a four-year period. Advanced statistical models that use land-use, meteorological, and relative
humidity parameters have been applied to increase the accuracy of AOD-to-PM,s estimates (Kumar et al., 2007;Di
Nicolantonio et al., 2009;Lee et al., 2011;Kloog et al., 2012;Hu et al., 2014; Ma et al., 2014;Song et al., 2014;Lv et al.,
2016;Ma et al., 2016). Several of these statistical models are location-specific, and most rely on surface-based data training
sets to constrain parameters in statistical models, which are then applied elsewhere. Where training data are limited or

entirely absent, there is significant uncertainty with this approach.

The first papers to include some space-based aerosol type information along with AOD from satellites for air quality
applications used the Multi-angle Imaging SpectroRadiometer (MISR) spherical vs. non-spherical distinctions to separate
airborne dust from spherical particles over the continental US, and constrained aerosol vertical distribution and speciated the
spherical components with an aerosol transport model (Liu et al., 2007b;Liu et al., 2007a). Subsequent work applied MISR
aerosol size and shape constraints over the Indian subcontinent and surrounding areas to map seasonal changes in aerosol
type (Dey et al., 2012) and combined MISR particle shape and qualitative light-absorption information to make a first effort

at mapping aerosol airmass types over an urban area, i.e., Mexico City (Patadia et al., 2013).

In the current study, we introduce and enhance a physical approach that takes advantage of satellite coverage over regional

scales for estimating ambient PM,s mass and associated chemically speciated concentrations, as needed in air quality
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applications. The approach uses ground-based PM, s measurements, where available, to anchor speciated, near-surface CTM
aerosol concentrations. To help constrain the model outputs over extended regions, both MISR total-column AOD and
qualitative, column-effective aerosol type observations are also applied when retrieval quality is adequate (generally, where
mid-visible AOD values exceed 0.15). Specifically, we map the satellite-retrieved constraints on spherical light-absorbing,
spherical non-absorbing, and non-spherical particles to the appropriate aerosol chemical species in the CTM, which is
substantially different from previous work. Enhanced aerosol-type retrievals from the MISR Research Aerosol (MISR-RA)
retrieval algorithm (Kahn et al., 2001;Limbacher and Kahn, 2014), at 275 m horizontal resolution, are at the heart of this new
approach.

To demonstrate the method, we apply it over a case study area in the San Joaquin Valley of California during the
DISCOVER-AQ field campaign in this region, on six days when there is good MISR-RA coverage. The results account for
spatiotemporal variability in PM, s and the chemical component concentrations. The accuracy of estimated concentrations
and evaluation of the latest MISR-RA ability to typify urban AOD, aerosol mixtures, and aerosol airmasses, are examined by
comparing the results with speciated ground observations and standard model-fitting statistics. Section 2 describes the
datasets involved, Sect. 3 describes the method and technical approach, and Sect. 4 presents results and validation for our
test cases. Conclusions, along with a brief discussion of prospects for wider application of this approach, are given in Sect.

5, and detailed data and ancillary documentation are provided in Supplemental Material.

2 Study Domain and Datasets
2.1 Study Domain

The San Joaquin Valley (SJV), which comprises the southern two-thirds of California’s Central Valley (about 26,000 km?),
has long suffered from severe air pollution issues and is among the most studied air sheds in the US (Ngo et al., 2010;Chow
et al., 2006). The SJV has complex topography and meteorology, particularly in winter, when low planetary boundary layer
(PBL) heights and high pollutant mixing ratios create a challenging environment for chemical transport modeling (Hidy et
al., 2009; Appel et al., 2017). This region is surrounded by the Sierra Nevada to the east, the Diablo and Temblor Ranges to
the west, the Tehachapi Mountains to the south, and the Sacramento Valley to the north (Fig. 1). Although primarily a rural
area, the eight counties that comprise the SJV are home to more than 4 million residents. Despite the semi-arid climate, the
SJV is one of the world’s most productive agricultural regions (Schoups et al., 2005). Its air shed frequently experiences
high PM, 5 concentrations during the winter due to the combination of relatively dry climate, shallow PBL heights, local
source emissions, and the surrounding mountain ranges. The region has been in violation of the PM, s National Ambient Air
Quality Standards for PM, s annual standard since their inception in 1997, and is the largest PM, s nonattainment area in the
continental US (EPA, 2012).
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The study period for this work was selected to coincide with the Deriving Information on Surface Conditions from Column
and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ; http://discover-aq.larc.nasa.gov) field
campaign, which ran from January 16" through February 8" 2013. This campaign was a joint collaboration between NASA,
NOAA, US EPA, multiple universities, and several local organizations, with the goal of characterizing air quality in urban
areas using satellite, aircraft, vertical profiler and ground-based measurements. Targeting the 2013 DISCOVER-AQ
deployment period for this study provides considerable ground- and aircraft-based measurements for aerosols and fine

particulate matter, which we apply as model constraints and for evaluation.

We analyze data for six days during the DISCOVER-AQ period for which (1) MISR observations were made over the study
region, (2) coincident ground and aircraft observations were acquired, including extensive field-campaign data, and (3) the
key observational requirements of relatively cloud-free conditions and the presence of aerosols from different sources are
met. Of the six days for which we have MISR coverage, the mid-visible AOD exceeds 0.15 on three days: January 20",
February 3", and February 5" On lower-AOD days, MISR-RA aerosol type information has higher uncertainty for the
current application and thus the analysis of speciated PM, 5 focuses on the higher-AOD days. Of the three higher-AOD days,
January 20" has the least cloud cover, followed by February 5™, so these days are the main focus of detailed analysis. The
method developed here can in the future be applied to many other polluted regions of the world where AOD exceeding 0.15

is common, such as South and East Asia, North Africa, and many major metropolitan areas.

The ground-based, aircraft, and simulation data used in this study are described briefly in the rest of this section, along with

the MISR-RA retrieval product.

2.2 Ground-based PM Mass and Speciated Measurements

This study focuses on PM; s mass and the five components that dominate total PM; s in the SJV: sulfate (SO,), nitrate (NO3),
ammonium (NHy), elemental carbon (EC), and organic carbon (OC). Data files of ambient aerosol particulate matter species
concentrations for sites within the SJV for January and February 2013 were obtained from two EPA sources: (1) daily
averaged PM, s Federal Reference Method (FRM) and Federal Equivalence Method (FEM) mass from the Air Quality
System (AQS; https://www.epa.gov/aqs), and (2) daily averaged total PM, s and chemically speciated mass (measurements
typically made every third or sixth day) from the Chemical Speciation Network (Solomon et al., 2014).

FRM compliant data from gravimetric filter-based samplers and FEM compliant data from continuous mass monitors
provide spatial variability of PM,s mass (EPA, 2004). The PM,s FRM mass is determined gravimetrically by weighing

particles on filters pre- and post-deployment. They are equilibrated at a constant relative humidity (30-40%) and
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temperature (20-23°C). Monitor locations are shown in Fig. 1, and Table 1 lists monitor summary statistics. Daily PM, s
concentrations measured by the FRM method are considered PM, s ground truth, i.e., their uncertainties are small compared

to those of the other PM, 5 values used in this study.

2.3 DISCOVER-AQ AERONET DRAGON

The AErosol RObotic NETwork (Holben et al., 1998) has 10 permanent sun photometer (SP) monitors operating in the study
region. During the DISCOVER-AQ mid-January through mid-February 2013 deployment, these monitors were
supplemented with an additional 14 temporary monitors termed the Distributed Regional Aerosol Gridded Observation
Network (DRAGON) to provide a more regionally dense dataset for satellite validation and in situ comparisons (Fig. 1).
AERONET/DRAGON SPs measure AOD in multiple spectral bands from the ultraviolet (~340 nm) to the near-infrared
(~1640 nm), with an accuracy within £0.015 (Eck et al., 1999).

We use version 2 level 2 (L2) AERONET/DRAGON AOD and Angstrom Exponent (ANG) data for the six study days. The
L2 data were sun-calibrated after field deployment, cloud screened (Smirnov et al., 2000), and quality controlled. The AOD
at 550 nm wavelength is calculated using a quadratic log-log fit to AERONET observations at shorter and longer
wavelengths (Eck et al., 1999). Columnar AODs at 550 nm derived from AERONET are considered as AOD ground truth in
this study.

2.4 Chemical Transport Model Simulations

Simulations of the coupled Weather Research and Forecasting model (WRF, Skamarock et al., 2008), version 3.4, and the
Community Multiscale Air Quality model (CMAQ, Byun and Schere, 2006), version 5.0.2, were obtained from the US
Environmental Protection Agency (EPA). These hourly atmospheric simulations, at 2 km x 2 km horizontal grid spacing,
cover the entire SJV and surrounding major cities during the months of January and February of 2013. The CMAQ domain
consisted of 35 vertical layers with varying thickness extending from the surface to 50 hPa and an approximately 10 m
midpoint for the lowest (surface) model layer. Concentration fields from the fixed 2 km x 2 km horizontal CMAQ grid were
downscaled to a horizontal grid of 275 m x 275 m by linear interpolation and used as the reference grid for all subsequent
analyses. Emission data were based on the 2011 EPA National Emissions Inventory (EPA, 2015) with 2013 updates to
electric generating unit emissions, fire, and mobile sources. Biogenic emissions were generated in-line to CMAQ using the
Biogenic Emissions Inventory System (BEIS; http://www.cmascenter.org) version 3.14, and the emissions were processed
using the Sparse Matrix Operator Kernel Emissions (Houyoux et al., 2000) version 3.5. The carbon bond 2005 chemical
mechanism used was CBOSTULC (Sarwar et al., 2012;Whitten et al., 2010;Yarwood et al., 2005). The lateral Boundary
Conditions (BCs) for the 2 km simulation were derived from a coupled WRF-CMAQ simulation with 4 km x 4 km

horizontal grid spacing, covering the entire state of California and the surrounding areas. Boundary conditions for the 4 km
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simulation were derived from a 36 km simulation covering the contiguous US, and BCs for the 36 km simulation were
provided by a GEOS-Chem simulation (Bey et al., 2001) with the chemical species mapped to the corresponding CMAQ
species (Appel et al., 2017).

The EPA conducted a model evaluation of CMAQ v5.0.2 with respect to the scientific updates to v5.1 (Appel et al., 2017).
In that study, fine particulate matter simulations were biased low compared to observed concentrations over the SJV during
the winter months. Winter PM, s average mean bias (Model - Observations) in the SJV exceeded -10 pg m™. Errors in
simulated PBL height and mixing were considered to be contributing factors to the January PM, s underestimation in the
SJV. Although CMAQ v5.0.2 is missing several secondary organic aerosol species of anthropogenic volatile organic carbon
(i.e., long-chain alkanes and naphthalene) in its aerosol module (AERO6 v5.0.2), the mass contribution of these species to
PM, s during the winter was minimal (less than £0.5 pg m™) in the SIV (Appel et al., 2017). At the time this study was

conducted, CMAQ v5.1 results were not yet available.

2.5 Satellite Observations

The primary satellite resource for this study is the MISR instrument. We supplement the MISR-RA aerosol data with results
from the MODIS instruments. They offer more extensive spatial coverage and provide up to two observations per day (one
in the morning, and one in the early afternoon), though with larger AOD uncertainty over land, and with no constraints on

aerosol type over land (Levy et al., 2013). We describe these two data sources below.

2.5.1 MISR-RA

MISR was launched along with the first MODIS instrument aboard Terra, the flagship satellite of NASA’s Earth Observing
System (EOS), in December 1999 (Diner et al., 1998). Since then, Terra has maintained a sun-synchronous orbit,
descending from North-to-South over the equator at a local time of ~10:30 AM. MISR measures upwelling short-wave
radiance from Earth at nine distinct view angles along the line-of-flight (£70.5°, £60.0°, £45.6°, +26.1°, and nadir), in each
of the four spectral bands centered at 446, 558, 672, and 866 nm. The one nadir, four forward, and four aft-viewing push-
broom cameras take approximately 7 minutes to image a given 380 km wide swath of Earth. Due to swath size, it takes
MISR about a week to obtain global coverage. Owing to its multi-spectral, multi-angular capabilities, high spatial resolution
(up to 275 m), and highly accurate radiometric calibration (Bruegge et al., 2007;Limbacher and Kahn, 2015;Limbacher and
Kahn, 2017), the MISR-RA is uniquely capable of supporting air-quality applications by providing information about
aerosol microphysical properties at regional scales. The Version 23 4.4 km x 4.4 km MISR Standard Algorithm (MISR-SA)
AOD product was not available at the time of the evaluation and is not available at higher resolution. The MISR-SA has
greater inconsistencies in aerosol particle retrievals due to limitations in the aerosol climatology included in the algorithm

(74 mixtures for the MISR-SA vs. over 700 for the MISR-RA), poorer surface-reflectance assumptions, issues with the
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radiometric calibration critical for aerosol-type retrievals that are corrected in the MISR-RA, details of the acceptance
criteria, and the spatial resolution at which the algorithm is run. More details are available in the series of papers by
Limbacher and Kahn (2014; 2015; 2017). For particle-type retrievals, the MISR-RA performs considerably better than the
MISR-SA.

High-resolution (275 m) results from the MISR-RA are used to constrain aerosol concentration and type for the CMAQ
model. Because of MISR’s ability to sample over a large range of scattering angles (i.e., between about 60° and 160° at
midlatitudes), the MISR-RA provides column-averaged information regarding aerosol properties under favorable retrieval
conditions (i.e., cloud-free, low surface albedo, mid-visible AOD exceeding about 0.15) (Kahn and Gaitley, 2015;Kahn et
al.,, 2010). This information amounts to constraints on particle shape (non-spherical (dust) vs. spherical AOD fraction),
particle size (typically three-to-five bins, e.g., “small,” “medium,” and “large” AOD fraction, parameterized as the Angstrom
Exponent, ANG), and particle light absorption (typically two-to-four bins, e.g., “dirty” and “clean,” represented as single-
scattering albedo, SSA = 1.0 — [absorbing AOD]/[total AOD]). Although passive satellite remote sensing can only provide
information about aerosol type in two dimensions (column-averaged), a chemical transport model can be used to apportion
the amount of aerosol near the surface (e.g., Liu et al., 2007a; van Donkelaar et al., 2010; this study). A brief summary of the

MISR-RA retrieval process is provided in the supplemental Sect. S1.

Following the work of Patadia et al. (2013), we identify different aerosol airmasses by categorizing aerosol based on the
qualitative particle size, shape, and light-absorption constraints described above. Specifically, for the purposes of this paper,
the 14 aerosol components used by all 774 mixtures included in the refined MISR-RA aerosol climatology (Limbacher and
Kahn, 2014) can be organized into three broad aerosol-type “groups”: spherical light-absorbing, spherical non-absorbing,
and non-spherical (cirrus is ignored in the current application). Especially at low-AOD, the MISR-RA-derived aerosol-type
sensitivity amounts to no more than these three groupings (Kahn and Gaitley, 2015). However, the general microphysical
properties of the three broad aerosol groups (AG) can be associated with specific chemical species identified in the chemical
transport model results, as described below in Sect. 3.2. From the point-of-view of retrieval sensitivity, these three
categories map to common aerosol species as follows (Table S2): (1) Light-Absorbing Carbon (LAC), (2) Inorganic Ions (II)
plus Organic Matter (OM) plus Sea-Salt (SS), and (3) dust. Section S2 in supplemental provides a description of how the
aggregated AOD retrievals are computed for the spherical absorbing aerosol components, and separately for spherical non-
absorbing aerosol components. It is well established that MISR AOD retrievals suffer biases for scenes with substantial
cloud cover (Witek et al., 2013;Shi et al., 2014;Limbacher and Kahn, 2015). Consistent with both Witek et al. (2013) and
Limbacher and Kahn (2015), we present results only for days where clouds cover less than 30% of the scene within the SJV

as indicated by the MISR-RA cloud mask, excluding the rural areas that extend into the Sierra Nevada mountains.
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2.5.2 MODIS - MAIAC

To supplement the MISR-RA AOD values where MISR coverage is lacking, we adopt results from the MODIS Multi-Angle
Implementation of Atmospheric Correction (MAIAC) advanced algorithm (Lyapustin et al., 2018;Lyapustin et al., 2012),
which uses time-series analysis and a combination of pixel- and image-based processing to improve the accuracy of cloud
detection, aerosol retrievals and atmospheric correction for surface retrievals. The following is a brief overview of the
MAIAC Collection 6 version 2.0 (C6v2) June 2017 North America release aerosol product. The current study uses the
MAIAC Atmospheric Properties Products (MCD19A2), which provide AOD at 0.55 pm. A more detailed description of the
MAIAC theoretical background and processing steps can be found in Lyapustin et al. (2018; 2012).

After extensive characterization of the MODIS-observed surface background, the MODIS Level 1B data are gridded to a
fixed sinusoidal projection at 1 km horizontal resolution in order to observe the same grid cell over time. Working with a

»

fixed grid not only facilitates the use of polar-orbiting observations as if they were “geostationary,” it also simplifies
comparison of these datasets to fixed-grid model results and other measurements. In addition to the MODIS instrument on
the Terra satellite, a second MODIS flies aboard NASA’s Aqua satellite, which crosses the equator on the dayside at 1:30
PM local time. As a consequence of residual de-trending and MODIS Collection 6 (C6) Terra-to-Aqua cross-calibration
(Lyapustin et al., 2018), MAIAC currently processes MODIS C6 Terra and Aqua jointly as a single sensor. In addition to
considerably greater spatial coverage than MISR, this joint product offers some diurnal spread in sampling relative to the

MISR snapshots.

For the time series analysis, MAIAC utilizes a 4-16 day sliding window technique of scenes from multiple MODIS
overpasses to retrieve the surface Bi-directional Reflectance Distribution Function (BRDF; 0.466 pm), and spectral
regression coefficients (SRCs; 0.466 pm and 2.13 um), allowing MAIAC to retrieve AOD at 1 km spatial resolution. Unlike
instruments that collect nearly simultaneous observations using push broom scanning, the MAIAC algorithm uses the sliding
window technique of consecutive clear MODIS cross-track scanned scenes (i.e., cloud-free conditions with relatively low
AOD) over several days to acquire multi-angle sets of observations for each location. This allows MAIAC to retrieve the
BRDF from an accumulated, multi-angle set of observations. Working under the assumption that surface reflectance changes
rapidly over space and slowly over time (e.g., seasonal changes) helps the MAIAC internal dynamic land-water-snow
classification. The algorithm produces well-characterized surface reflectance that improves cloud masking, and outperforms

traditional pixel-level cloud detection techniques that rely on spatiotemporal analysis (Kloog et al., 2014).

Although AOD is originally retrieved in the MODIS Blue band B3 at 0.47um, MAIAC offers a standardized and validated
AOD product at 0.55um. With the exception of smoke and dust aerosol detection, the current algorithm does not retrieve

AOD over surfaces occurring at altitudes higher than 3.5 km. Like many satellite-based aerosol retrievals, MAIAC retrievals
9
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are unreliable for very low AOD conditions, over mountainous terrain, and over surfaces with very high albedo. The

retrieval conditions that affect this study include low AOD and some cloud-contaminated scenes.

3 Methods

Air quality ground observations are spatially sparse, and are often temporally incomplete. CTM simulations provide
information that is independent of these observations, and are consistent with meteorology and assumed emissions. But they
can contain biases, and can have difficulty capturing the spatial structure of aerosol dispersion downwind of sources.
Satellites offer spatially extensive, mainly column-effective aerosol amount and type, that, if included appropriately, can
reduce or eliminate fused-model-surface-measurement biases over large areas, especially regions far from concentrated
surface monitors. As there are gaps in the satellite products due to clouds and other retrieval-related issues, we use the
model to help complete variable fields at several stages of the process. We also use the model to estimate the near-surface

components of column-effective satellite values, and use ground-monitor data to constrain and to evaluate the results.

Our approach to fusing surface and satellite-based observations with CMAQ simulations involves five steps, illustrated in
Fig. 2. Note that the left side of Fig. 2 tracks the process for deriving total PM, s, whereas the right side presents the flow for
speciated PM; 5. Blue and orange stars in Fig. 2 indicate where uncertainties are estimated by comparison with AERONET
and the EPA ground monitors, respectively. First, total-column AOD and groupings of model aerosol species that match the
spherical light absorbing, spherical non-absorbing, and non-spherical satellite aerosol-type AG are reconstructed from the
simulated datasets. In Step 2, spatially complete AOD and grouped AOD maps are produced for each of the six study days
by combining MISR-RA and MAIAC satellite retrievals with scaled values of the modeled AOD and AG AOD products
from Step 1, respectively, to fill any remaining gaps. In Step 3, we reconstruct PM,s Mass FRM from the simulated
concentration dataset. Step 4 deconstructs the satellite-based total-column AOD and grouped AOD to surface PM; s and
grouped PM, s mass concentrations using the CTM speciated vertical distributions, respectively. The fifth and final step
involves blending daily averaged ambient ground observations and satellite-based total and grouped PM,s mass

concentrations to estimate daily, spatially refined PM, s mass and speciated pollutant concentrations.

Overall, the inputs are the speciated ground-monitor data, satellite AOD snapshots and AOD grouped by aerosol type, and
the CMAQ model simulations. The outputs are the fused ground-monitor, satellite, plus model PM, s mass concentration

field, and speciated versions of this field. A detailed description of the key steps follows.
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3.1 Step 1 — CMAQ- and Surface-derived PM, 5 Using Reconstruction Method

A commonly applied PM, s mass reconstruction (RM) method, also termed mass closure or material balance, is used to
compare the sum of major aerosol components to gravimetrically measured PM,s. This approach also accounts for
unmeasured or non-simulated species to avoid double counting. Beginning with Countess et al. (1980), the RM method is
used to evaluate measurements, characterize spatiotemporal chemical gradients, estimate source contributions to PM, and
calculate visibility impairment due to near-surface aerosol. Additionally, the reconstructed PM, s mass provides insight into
the spatial variations among the speciated data (Frank, 2006;Hand et al., 2011;Hand et al., 2014;Malm et al., 2011). The
development of this method, along with the differences between reconstructed and gravimetric mass in the CSN and
IMPROVE data sets, have been extensively studied in the US (Malm et al., 2011). Chow et al. (2015) provides a detailed

literature review of the various mass reconstruction equations.

For the purposes of this study, the RM equation focuses on the following five representative chemical components, with the
relevant references cited: (1) inorganic ions (Chow et al., 1994;Chow and Egami, 1997;Andrews et al., 2000;Nolte et al.,
2015); (2) organic matter (DeBell et al., 2006;Hand et al., 2011); (3) Elemental Carbon (EC), also referred to as light
absorbing carbon (Bond and Bergstrom, 2006); (4) crustal material, which includes mineral and soil particles, referred to
herein as dust (Malm et al., 1994;Malm et al., 2011); (5) sea salt (Hand et al., 2011); and (6) other elements (Simon et al.,
2011), which, in the SJV during the study period, made a negligible contribution to PM; s. The respective references provide
details as to how multipliers for each species were derived and summarize the evaluation performed for each major PM

component.

In addition to the measured aerosol species of interest, WRF-CMAQ model outputs for relative humidity, temperature, and
speciated aerosol vertical distribution were used in the PM, s mass reconstruction and as needed in the other analysis steps
described hereafter. The RM method, excluding negligible “other” elements, was used to compare ground observations,
CMAQ results, and satellite-derived concentrations. Table S1 in supplemental material provides a summary of the aerosol
equations used for the ground monitor data and CMAQVS5.0.2 simulations. The RM equation used is as follows (Eq. (A) in
Chow et al., 2015):

RM[ug m=3] =
[SO7] + [NH]] + [NO3] + 1.8[0C] + [EC] + 1.8[CI"] + 2.2[Al] + 2.49[Si] + 1.63[Ca] + 1.94[Ti] + 2.42[Fe]
Inorganic lons Organic m Sea Dust
Matter Absorbing Salt
Carbon

(1
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For each of the major chemical components involved, Chow et al. 2015 covers in detail the factors and assumptions required
for the RM calculation, and those contributing to the comparison with gravimetric mass measurements. These factors include
the OM/OC ratio assumptions, carbon sampling and analysis artifacts, ammonium and nitrate volatilization, limitations of
using chloride to estimate sea salt content, and water retention by hygroscopic species on filters (Andrews et al., 2000;Rees
et al., 2004;Tanner et al., 2004;El-Zanan et al., 2005). Using Eq. (1) to estimate OM from OC for CMAQ output allows for
consistency with satellite-derived estimates; in the future we may expand the method to include various organic aerosol

species explicitly in cases where we have more in situ data.

Following the framework of Eq. (1), the reconstructed PM, s mass does not account for the positive and negative factors that
affect gravimetric and speciated measurements (DeBell et al., 2006;Frank, 2006;Hand et al., 2011;Chow et al., 2015). To
close the mass-balance difference between PM, s FRM gravimetric mass and ambient mass (simulated and measured), the
material balance Eq. (1) was adjusted to account for factors affecting gravimetric measurements (Eq. (10) in Frank, et al.,
2006).

PMysprm [0 m™3] = RM — ([NHZ] 055 + [NO3]105) + [PBW] + [Blankpgy] 2
where ammonium and nitrate volatilization are not captured by gravimetric measurements and thus, are accounted as
negative artifacts. The particle bound water (PBW) is the water retained on the filter when particles are sampled and weighed
for mass concentration. This concentration is dependent on ionic composition and relative humidity dependent species
equilibrium prior to laboratory weighing. Blankggy accounts for the passively collected mass value on “blank” filters. The
limitations and uncertainties of the reconstruction method broken down by major chemical components are discussed in
detail elsewhere (Frank, 2006;Chow et al., 2015). The uncertainty estimated for the CMAQ- and satellite-based surface

concentrations are discussed in Sect. 4.

3.2 Step 2 - CMAQ-based Columnar AOD and AOD Subcategorized into Species-related Groups Derived Using the
Reconstructed Extinction Coefficient Method

Section 3.1 summarizes the method applied to calculate the five representative component surface mass concentrations from
the surface observations; these components are also used to derive total-column AOD from CMAQ (T¢paq)- First proposed
by Malm et al. (1994), the reconstructed extinction coefficient method was designed to investigate the spatial and temporal
variability of haze and visibility impairment in the US as part of IMPROVE. Since then this method has been continuously
upgraded by several researchers (Malm et al., 1994;Malm et al., 2000;Malm et al., 2011;Song et al., 2008;Park et al., 2011).
The process estimates extinction AOD using simulated concentrations of II, OM, SS, LAC, and Dust (Table S1) assuming

externally mixed aerosols with respect to the modeled altitude (z), as follows:

= [4 B0y iBacifrn@,iCayi + 2i(l = 0D Bac,ifrnz)iCont) [ 42 3)

particle scattering ef ficiency particle absorption ef ficiency
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where

7 = aerosol extinction optical depth (AOD) at 550 nm

i = chemical component

o = single scattering albedo (SSA)

Bae = specific dry mass extinction efficiency [m?® g
frn = hygroscopic growth factors as a function of height

C = concentration of chemical component i as a function of height [g m™]

Equation 3 is further subdivided for dust by size in accordance with the CMAQ Aitken, accumulation, and coarse particles
size categories (Park et al., 2011). The empirically based factors and their respective literature sources are summarized in
Table S3. The WRF simulated relative humidity data, rA(z), were used to evaluate the height-dependent hygroscopic growth
factors. The ambient particle extinction as a function of height is the sum of the ambient scattering and absorption with
respect to altitude (z), which are the two terms in Eq. (3). From Eq. 3, the dimensionless extinction AOD is obtained by
multiplying the ambient particle extinction by the vertical atmospheric path height of each CMAQ layer. These are added
vertically to obtain columnar AOD values, which are compared to ground- and satellite-based AOD values in the following

subsections to assess uncertainties.

The three CMAQ-based AOD AG (i.e., LAC, [I+OM+SS, and Dust), indicated in Table S2, are calculated using the five
major chemical components derived in Eq. (1). The CMAQ-based total-column AOD AG aggregate is equivalent to the
total-column CMAQ-based AOD. Assessment of the uncertainties in these quantities, using a combination of ground-based

and satellite total-column measurements, is given in Sect. 3.4 below.

3.3 Step 3 — Gap-Filled Satellite-derived AOD and Grouped AOD, Using Scaled CMAQ-based AOD

To obtain a spatially complete AOD map for each case-study day, we combine the MISR-RA-retrieved, MAIAC-retrieved,
and CMAQ-based reconstructed AOD products, as CMAQ can simulate values in all grid boxes, regardless of cloud cover,
surface brightness, terrain, and aerosol optical thickness. The most relevant factor affecting spatially complete satellite-
retrieved AOD in this study is missing retrievals due to the presence of clouds. The combined AOD product is more

complete than the MISR-RA or MAIAC product alone.

The Fig. S1 scatterplots show MISR-RA AOD retrievals are higher than those retrieved by MAIAC, and much closer to the
AERONET ground-truth values, for the three case study days with highest AOD. These scatterplots reinforce the need to
scale MATAC-retrieved AOD before gap-filling MISR-RA-retrieved AOD fields. Based on Fig. S1, a study-specific AOD
adjustment was applied to the MAIAC data; in addition, a filter with an upper bound of 0.4 was used for MAIAC retrievals

13
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to reduce potential cloud contamination. On days when Aqua and Terra MAIAC C6v2 AOD retrievals on the 1 km fixed
sampling grid were available, the MAIAC-Aqua AOD retrievals were used to fill in missing AOD in the MAIAC-Terra
AOD maps (as MAIAC-Terra is closest in time to the MISR-RA retrieval) by linearly regressing values from a 15 x 15
MAIAC-Aqua grid cell region centered on the missing MAIAC-Terra cell value. The 1 km gap-filled MAIAC-Terra AOD
maps were subsequently downscaled and spatially interpolated (via bilinear interpolation) to match the downscaled CMAQ
275 m x 275 m output grid, referred to herein as gap-filled MAIAC. Before combining retrieved AOD products, the 275 m
x 275 m MISR-RA AOD at 558 nm was converted to 550 nm using the retrieved ANG product and the dynamic sampling
grid was re-gridded to match the downscaled CMAQ 275 m x 275 m grid. The gap-filled MAIAC product was then used to
fill in gaps in the MISR-RA AOD product by linearly regressing values from a 15 x 15 gap-filled MAIAC grid cell region
centered on the missing MISR-RA cell value. Larger gaps caused by cloud contamination in the satellite-retrieved AOD
were filled using a 7 x 7 grid cell region of CMAQ-reconstructed AOD value, linearly regressed to the satellite-retrieved
AOD. This procedure was repeated multiple times as needed until the satellite retrieval area within the SJV study region

was filled, referred herein as Tp;ga7-

A unique component of this work involves the use of the MISR-RA aerosol species-specific groups. Consequently, we
produce gap-filled, aerosol-type-grouped AODs from the original MISR-RA-based AG AODs using the model-based

grouped AODs from Step 1 and following the same gap-filling procedure used for 7547

3.4 Uncertainty Estimates for Model-Reconstructed and Satellite Total-Column Quantities

Two sets of intermediate analyses are presented where surface-based in situ as well as column-integrated observations are
provided as ground truth (i.e., their uncertainties are small compared to those of the other values used in this study). First,
satellite-retrieved AOD snapshots are evaluated against coincident AERONET observations. Second, a comparison between
daylight-averaged AERONET AOD data, satellite-retrieved AOD snapshots, and model-reconstructed diurnal AOD is
presented to determine how well the snapshots represent diurnal values in the study region. This material is presented here

rather than in Section 4 below because key decisions in the Method depend on the results of these comparisons.

3.4.1 Comparison between Satellite-, CMAQ-reconstructed, and Ground-based Total-column AOD Snapshots at
Coincident Times

Evaluation of MISR-RA (Limbacher and Kahn, 2014) and MAIAC (Lyapustin et al., 2011) AOD has been performed
extensively before, but not specifically for the study region, where we have considerable ground-truth data. Overall, there
were 14 AERONET sites across the SJV (Fig. 1) during the six case study days. The number of coincident satellite- and
ground-AOD observations is dependent on the swath width of each satellite instrument, the retrieval algorithm used, and the

polar-orbiting coverage for a given day. Fig. 3 and Table S4 provide scatterplots and a statistical summary, respectively, of
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AERONET AOD collocated in time and space with the MISR-RA, MAIAC, gap-filled MISR-RA AOD (i.e., Trinsat), and
CMAQ results. Although AERONET reports AOD at 550 nm, AOD values at 558 nm were calculated for comparison with
the MISR-RA AOD retrievals. Only those Terra MAIAC AOD retrievals that were temporally coincident with MISR-RA
retrievals were used in this comparison. A window of + fifteen minutes was applied to select AERONET measurements as
spatiotemporally coincident with the satellite overpass, and corresponding CMAQ hourly, reconstructed AOD values were

used.

Overall, the MISR-RA AOD compares well with coincident AERONET AOD, and tends to outperform MAIAC statistically
over the SJV across all our case-study days (Table S4). The two best-case days for this analysis are January 20" and
February 5", where AERONET AOD values were relatively high (AOD>0.15) and there were multiple coincident MISR-
RA retrievals across the region. On these days, MAIAC underestimates AOD compared to AERONET, whereas MISR-RA
slightly overestimates AOD. Specifically, for January 20" and February 5", the MISR-RA-to-AERONET AODs had an
overall R of 0.91 and 0.99, and a NME of 0.08 and 0.12, respectively. For MAIAC, the corresponding values are an overall
R 0f 0.66 and 0.93, and a NME of 0.23 and 0.31, respectively.

The comparison of MISR-RA and MAIAC satellite-retrieved AODs with AERONET also illustrates how gap-filling MISR-
RA with scaled and gap-filled MAIAC retrievals produces a more consistent product. For example, the Fig. 3 subplot for
February 5" shows that gap-filled MISR-RA (i.e., FillSAT) offers better agreement than gap-filled MAIAC at the averaged
AERONET retrieved AOD value of 0.47. On this specific day and location there is no coincident MISR-RA retrieval,
indicating that the gap-filled MISR-RA improvement is due to scaled and gap-filled MAIAC used to gap-fill the MISR-RA
AOD snapshot. Further evident from Fig. 3, the CMAQ reconstructed values systematically underestimate AOD relative to
AERONET in nearly all cases and exhibit greater scatter, hinting at the possible value of applying the measurements as

constraints on the model simulations.

3.4.2 Comparison of Satellite-based AOD Snapshots with Daylight-average Ground-based AOD and with Daylight-
and Diurnal-average Model-based AOD

Unlike aerosol radiative forcing, which depends on daytime solar heating, conditions during the full diurnal cycle are
relevant for many air quality applications. However, AERONET, as well as the satellites, acquire AOD data only during
daylight hours, when the sun is well above the horizon. To test the feasibility of using satellite-based AOD snapshot
retrievals as proxies for AOD averaged over daylight hours for the study region, we compare the satellite retrievals (MISR-
RA, MAIAC, gap-filled MISR-RA) the with daylight-averaged AERONET-retrieved AOD results (Fig. S2). We
subsequently compare the model daylight- and diurnal-average AODs, as well as the AERONET daylight-average AODs,

with the respective short-term values from these data sources (Fig. 4) to assess how well snapshot values represent AOD for
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entire days in the study region. In places where the snapshots are substantially different from the daylight-average or

diurnal-average AOD values, scaled model results would be required to complete the diurnal air quality picture.

For the initial comparison, all retrieved AERONET values per each of the six case-study days were averaged to obtain a
daylight average at each of the 14 sites. For the MISR-RA comparison, we have only the same MISR-RA AOD retrieval
snapshots as in Fig. 3. For the study cases, MAIAC can have multiple Terra and Aqua retrievals over the region during one
day, occurring at different times, due to the wide MODIS swath. As such, MAIAC Terra-retrieved AOD “coincident” with
MISR-RA overpasses are in some cases gap-filled with other scaled-MAIAC Terra/Aqua retrievals acquired during that day.
A third satellite-retrieved AOD product is the gap-filled, primarily MISR-RA-derived AOD (FilISAT) described in Sect. 3.3.
Also shown in Fig. S2 are the CMAQ reconstructed daylight-average AODs, described in Sect. 3.2.

Overall, the MISR-RA and FilISAT values are very nearly identical, and they tend to serve as better proxies for the daylight-
average AERONET values than CMAQ for the study cases. Table S5 contains a statistical summary of the scatterplot data.
For the two best days of January 20™ and February 5, the retrieved AODs for MISR-RA and gap-filled MISR-RA agree
better statistically than the other datasets in terms of correlation and error relative to AERONET daylight-average values.
Although the retrieved AODs for the MISR-RA and gap-filled MISR-RA slightly outperform MAIAC for the specific case
study days, this relationship is likely to change for different domains and time periods. As such, the technique for gap-filling
MISR-RA AOD might need to be dynamic in weighting the MAIAC AOD retrievals when applied to other regions. For
January 20" and February 5", the gap-filled MISR-RA-to-daylight-average-AERONET AODs had overall R-values of 0.81
and 0.78, and NME of 0.16 and 0.28, respectively. This comparison indicates the satellite-retrieved AOD quantities are in

agreement with daylight-averaged ground truth to serve as proxies for the daylight-averaged values during the study period.

A procedure for fusing CMAQ model simulations with surface-based measurements is described briefly in Sect. S3 in the
supplemental material, and in detail in Friberg et al. (2016). This procedure was applied to Cgyer and Ceyyp (Fig. 2) to
produce Creyag, also referred to as FCMAQ. The additional step allows us to assess how the spatially extensive satellite

data affects the results compared to the model constrained only by local surface observations.

To estimate how well the AOD snapshots might characterize the diurnal-average AOD, diurnal-to-hourly ratios for CMAQ
and FCMAQ are plotted against AERONET retrieved AODs acquired within 15 minutes of the satellite overpasses for each
case (Fig. 4 and Table S6). AERONET ratios are plotted as well. The diurnal model and daylight AERONET AOD values
are divided by AODs at Terra overpass time within the hour and within 15 minutes for the model and AERONET ratios,
respectively. On January 18" and 20", FCMAQ and daytime CMAQ ratios exhibit the high variability at locations where

AERONET ratios were near unity, suggesting that CMAQ diurnal-to-hour ratio are at times spatially biased. But generally,
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based on model performance, snapshots acquired at Terra overpass time tend to fall within 10% - 20% of the diurnal-average
value, except in some cases when the AOD at overpass time is approximately less than 0.15. At these smaller AODs, a

small absolute change in AOD will produce larger percent changes.

One possible reason for the scatter in Fig. 4 is the model representation of transported aerosol. Transported aerosol above
the boundary layer is dependent on the lower BCs adopted in the model, and thus is not always well represented by CMAQ
in this region. For example, the model results indicate minimal vertical distribution of dust aerosol, concentrating all the dust
within the planetary boundary layer on the study days, whereas transported dust above the boundary layer is likely to be the
major non-spherical aerosol species in this region and season (e.g., Liu et al., 2007b). Any biases in dust AOD retrievals are
compounded by inaccuracies in the model-based vertical distributions that are applied during the total-column-to-surface
decomposition step. The impact of errors in the adopted vertical distribution of aerosols on these results, beyond the scope of
the current paper, warrants further investigation. Model aerosol vertical distribution can be further constrained by taking
advantage of upwind aerosol elevation retrievals from space-based stereo imaging (MISR), in places where the aerosol
sources produce visible plumes, and downwind aerosol layer heights from space-based lidar (e.g., CALIPSO) (Kahn et al.,

2008).

3.5 Step 4 — Deconstructed Total-column Satellite-measured AOD to Surface PM,s Mass and Speciated
Concentrations

. . . PMj3 5sFRM Speciated :
Using CMAQ-based aerosol vertical profiles, near-surface concentrations (Cg;;5a7 ,=0 and Cgiyysur ,=0) are obtained from the

total-column satellite AOD (Tpy547) and aerosol group AOD (tf5s4r) by the following three intermediate steps. As in
previous work, the key step amounts to using model-derived ratios of total-column to near-surface aerosol distributions to

obtain near-surface values constrained by total-column measurements (e.g., Liu et al., 2004; Van Donkelaar et al., 2010).

In Eq. (4), the column-average dry particle concentrations for the three aerosol groups (C, ;f‘tflsﬂ) are calculated from the
AODS, Tpysar and Thtsar, by reversing the reconstructed extinction process applied to model-only values in Step 2 (Eq.

(3)). The same height-stratified hygroscopic growth and specific dry scattering or absorbing efficiency factors from Step 2

are used here for consistency. The column-average satellite-based AG concentrations (C/ASs,r) are further stratified into the

five column-average representative PM chemical components (Columnar Caheciat®) defined in Step 1 according to Eq.

(1), using the CMAQ-based species-to-aerosol group partition in Eq. (5). With C;ﬂf;‘;te‘i defined, satellite-based total-

PMZ'ST) is obtained using Eq. (1). The satellite-derived column-average concentrations are then scaled to

column PMys (Cp, 5

surface-level concentrations by relying on the vertical distribution of the CMAQ simulations of each species in Eq. (6). The
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satellite-based surface-level PM, s concentrations (CF”ISATZ o) are adjusted to reflect PM, s prm concentrations using Eq. (2).

These relationships were defined in terms of daily AOD and species concentrations.

—ac i

C FLllSAT 4
Fullsar = J(Bae,if ra(z),)dz &)
Speaated _ ~AG Speciated /~AG

Criisar firsar (CCMAQ /Cliiag )

CSpeaated _ CSpeaated Speaated/ Speciated 6
riusar.z=0 = Cruisar  \Comag,z=0/ Cemao (6)

3.6 Step 5 —Optimized PM,s FRM and Speciated Concentrations, Derived by Fusing Satellite-constrained Values
with Ground-monitor Data

The optimized concentration dataset (Copr) closely parallels the surface-measurement-constrained CMAQ simulation
described in Eq. (S4). The Copr dataset is derived by constraining the results with the surface-monitor data near their
locations, and weighting the satellite-constrained concentration values progressively more heavily away from available
ground monitors (Fig. 5). Using Eq. (7), the six daily Ceyp fields coincident with the flight campaign span are replaced
with the satellite-derived daily Cpys4r fields, as these were the days when retrieval conditions were adequate to use the data
for the current application (See Sect. 2.1 above). With only 11.5% of the C¢y0 fields changing due to contributions from the
surface stations, the weighting factors (W; Eq. (S5)) and average temporal correlations between the simulations and surface
observations (R,; Eq. (S7)), across all monitors, did not need to be recalculated. Thus, for this study, Copr diverges from
Cremap for 6 days out of the entire study time period.

—B CSURFs,y,, CFillSAT.
Copt,, = @Comao [WM {=5‘} +(1- st){ ”}] (7

CSURFs, krig CcmaqQ

Using the techniques described in the next section, we assess the performance of the optimized surface concentrations in the

results section.

3.7 Evaluation of Optimized Datasets by Cross-Validation

Three cross-validation techniques are used to evaluate how well the optimized datasets represent diurnal values, and to
identify biases that arise from different sampling frequencies and spatial distribution of monitors across the pollutants. First,
a 10-fold withholding (10-WH) technique is applied to all species. Then a Leave-One-Out (LOO) cross-validation method is
used for all the species with the exception of PM,;s. Finally, a Regional Holdout (RH) is used only for PM,s. Brief

descriptions of these tests are given here; the results of the tests are discussed in Section 4.2 below.
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3.7.1 10-fold Cross-Validation

The dataset performance was evaluated using a 10-fold cross-validation analysis. For each of 10 independently run trials, a
random 10% of the surface observations were held back per day and each method (“fused,” i.e., surface measurements +
model, and “optimized,” i.e., surface + satellite measurements + model) was applied to simulate the withheld data. The
results from the 10 trials were then combined to provide cross-validation results that allow for the exploration of difference
in errors based on proximity to monitors. Across monitors and days, the holdout number corresponds to the number of

surface observations for each pollutant (Table 1), ranging from 44 for PM, s-OC to 779 for PM,s.

3.7.2 Leave-one-out Cross-Validation

As an alternative to the 10-WH method, the LOO withholding is applied to the five PM components to overcome the
sampling and spatial scarcity. By withholding one location at a time, this location-based cross-validation technique can
provide information on how well the CMAQ simulations and satellite-derived concentrations of the fused and optimized
datasets, respectively, represent diurnal values at locations further than 50 km from other monitors (see speciated monitor
locations in Fig. 1). With some sites containing more than one monitor, collocated monitors were considered one location,
and thus all monitors at a location were withheld for LOO. This cross-validation technique does not provide much insight

when the nearest monitor is in close proximity, as is the case with the PM; 5 mass monitors.

3.7.3 Regional Holdout Cross-Validation

A regional withholding technique is used to evaluate fused and optimized PM, 5 datasets, as monitor clustering affects the
cross-validation results. For each of the cross-validation regions in Fig. 1, all but one of the monitors in a region is withheld,
and this is repeated independently for each daily monitor and region. The approach approximates the evaluation of LOO

when the distance between monitor locations is large (i.e., >50 km).

4 Results

Two sets of analyses are presented where surface-based in sifu observations are provided as ground truth (i.e., their
uncertainties are small compared to those of the other values used in this study). First, modeled and deconstructed satellite-
constrained results for PM, s and PM, s grouped by species are evaluated against EPA AQS and CSN ground observations,
respectively. For the second set of analyses, cross-validation is used to evaluate satellite-constrained model performance.
The main objectives of this section are (1) to evaluate the results of Steps 2-5 as much as possible, (for evaluation of Step 1,
see Friberg et al. 2017), (2) to assess where, and to what degree, the satellite data help constrain the model PM, 5 over an
extended region, and (3) where mid-visible AOD values exceed 0.15, to also evaluate the satellite-constrained, speciated

PM,s.
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4.1 Comparison of Satellite-constrained and Model-based Daily PM,s and Speciated Component Surface
Concentrations to Average Daily Ground Truth

We compare now the model-based (Ceyrip), model-fused-with-ground-monitor (Creap), deconstructed satellite-constrained
(Crinsar) and optimized (Copr; model + ground monitor + satellite) daily averaged PM,s and speciated component
concentrations with EPA AQS and CSN observations. Table S7 provides a statistical summary of the comparison between
the ground truth and the modeled, fused, satellite-constrained, and optimized results, stratified by pollutant, day, and dataset.
Fig. 6 presents concentration maps of the four aforementioned datasets with embedded ground-truth PM, s values and their
respective RGB images (depicting cloud coverage) for the three days with relatively high AOD in the study set (January 20",
February 3", and February 5™).

Focusing on the area within the SJV, the higher concentration gradients in Cpyssr are due to the application of satellite
snapshots. The satellite-constrained concentration snapshots tend to provide more realistic spatial distributions of PM, s
compared to the unconstrained model values, Ceyyp. Specifically, the Criyssr maps show greater dynamic ranges of values,
with localized hotspots over known urban areas, such as Bakersfield (35.4° N lat., 119.0° W long.) on January 20™ and
February 5, and Fresno (36.7° N lat., 119.8° W long.) on February 3™. The satellite-constrained snapshot results also tend
agree better with available surface measurements in other high-AOD areas, but cloud contamination and the lack of satellite
diurnal sampling affect the Cryssr values primarily in low-AOD regions. This suggests that the technique will yield
increasingly good results when applied in more heavily polluted areas around the globe. Fig. S3 presents scatterplots
comparing the daily averaged models and the satellite-constrained snapshots of near-surface PM, s to ground monitor values.
They indicate than diurnal variability is significant in some places and times, but not in others. For high-AOD days (Jan.
20" Feb. 3™, and Feb. 5'“), Fig. S3 shows Crysar PMys is in general agreement with surface observations within the
performance range of the model results, and the variability is minimal, especially compared to low AOD days. Of the three
relatively high-AOD days, January 20" has the least amount of cloud contamination, whereas February 5™ has the most.
Following the Fig. 5 weighting between the datasets, the visible contributions of the Ceyp and Criysar datasets to the Crepuo
and Copr PM; 5 fields in Fig. 6 occur at distances of a fifth to a half degree (20 to 50 km) beyond a monitor. At or near a
ground observation, the Copr fields are weighted towards the interpolated surface-observation fields, whereas the influence
of Crinsar on Copr improves the regional behaviour and enhances the spatial gradient structure synoptically. For Ccyyp and
Crisar, the estimated temporal variances are fairly constant and do not depend on distance to the surface observations. The
surface observations, rather than model or satellite-based results, dominate the Crcy4p and Copr temporal correlations at and
near monitor locations, whereas Ceuyp and Criysyr dominate at distances 20 to 50 km beyond a monitor. As such, the
temporal correlations for Ceag, Crinsar, Cremao, and Copr generally do not approach zero away from the surface stations.
For example, on February 5" the interpolated surface-observation field dominates both the satellite and CMAQ values in the

Copr and Crepap PMy s maps. The situation at Bakersfield on this day is a bit different. Here the assumed surface monitor
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uncertainty plays a role, as CMAQ reports a much lower value, the satellite contribution is weighted significantly some
distance from the urban center, and the actual difference between the monitor and the Cypr field is about 12.5%, though the
contrast appears large due to the color scale. The satellite contribution is investigated further and quantified in the validation

exercises of the next section, where we systematically decrease the dependence of Cpprfields on surface observations.

Figures 7 and S4 provide speciated NOs;, NH,4, and SO, surface concentration maps for January 20" and February 3“‘;
respectively; ground-truth data, available only for February 3™, are included in Fig. 7. For the evaluation of the modeled and
satellite-constrained surface concentrations, sparse ground observations of speciated PM have a large impact, especially on
the high-AOD days. This is compounded by ground-monitor sampling infrequency, as evident in the correlation ranges
(Table S7). Fig. S4 demonstrates the ability of satellite acrosol retrievals to characterize the spatial distributions of speciated
aerosol airmass types more realistically and consistently than the models across all three species. Unlike for PM, s, there
were no speciated monitor measurements available on January 20®, so the OPT results are equal to FillSAT (Fig. S4).
Although the Ceuap and Criysar results show agreement around the locations of known emission sources, the satellite-derived
aerosol concentrations at the surface show more realistic horizontal dispersion patterns, and the spatial distribution better
reflects the likely influence of topographic features. Specifically, during SJV winters, wide horizontal uniformity of
ammonium nitrate concentrations is characteristic of this air basin, due to the near-surface inversion (Watson and Chow,
2002). Particulate nitrate is known to form over non-urban areas when high ammonia emissions from the surface, and nitric
acid, formed aloft during night-time decoupling, mix during the morning collapse of the inversion (Watson and Chow,
2002). Throughout the region, consecutive days with low PBL heights are known to produce increased and spatially more
uniform concentrations of fine particulate matter, nitrate, and sulfate (Watson and Chow, 2002). The Cprys4r spatial structure
and background concentration ranges of 10-15 pg m™ for nitrate and 4-5 pg m™ for ammonium (Fig. S4) reflect the
aforementioned concentration dynamics. The differences between the model and satellite-constrained concentration
gradients within the SIV are visible on January 20" and February 3", and the related surface mixing and plume dispersion
are evident, especially in Fig. S4. Given the very limited speciated monitor measurements available, the Fig. S5 scatterplots

show Crysar provides better agreement than the model and fused-model values.

Comparing the results of the current analysis with previous studies that attempt to apply satellite data to surface air quality
assessment is a challenge for the following reasons: (1) limited, non-overlapping case study domains; (2) disparity in the
spatial resolution at which the analyses are performed, which can bias pixel-to-point comparisons; (3) limited number of
ground-truth observations; (4) prevalence of statistics that were averaged over entire seasons or years; (5) lack of actual
surface-concentration statistics reported for the satellite-derived values (i.e., many studies report correlations just between
satellite-derived, total-column AOD and surface-based PM,s) and (6) where AOD is the satellite-reported quantity used,
algorithm version differences between the AERONET, MISR-RA, and MAIAC products used.
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With regard to performance comparisons, the statistical-regression-technique study by Liu et al. (2007b; herein referred to as
Liu2007b) is the most similar to the current analysis. Liu2007b compares 54 ground observations to satellite-derived surface
concentrations for PM, s mass and speciated particles over the western US. The statistical regression technique used 3-hour
averaged CTM (GEOS-Chem) results coincident with Terra overpasses for 2005 at 2° by 2.5° spatial resolution. The
Liu2007b regression results with removed outliers were as follows: PM; s R2:0421, NO; R*= 0.23, SO, R’= 0.11, and OC
R*=0.11. In our study, the spatial R? values for PM, 5 averaged 0.53 across all days and 0.73 on Jan. 20" the clearest day
with high AOD. The spatial R? values for the Crisar speciated PM on February 12“‘, the only day for which we have more
than one surface measurement, are 0.48 for NO3, 0.10 for SO, 0.46 for OC, 0.63 for NHy, and 0.41 for EC.

4.2 Comparison of CMAQ, Fused, and Optimized Datasets to Observed Concentrations

The model, fused, and optimized datasets are included in the 10-WH cross-validation comparison with the monitor data.
The RMSE, MB, and the spatiotemporal, temporal, and spatial mean correlations for the five datasets are presented in Table
S8. The spatiotemporal R? Copr 10.wi values are 0.79 for PM, s, 0.88 for NOs, 0.78 for SOy, 1.0 for NH,, 0.73 for OC, and
0.31 for EC. The similarities among the PM, s speciated component 10-WH cross-validation statistics are affected by low
numbers of available observations, sampling frequency, and coincident satellite-retrieval data, particularly for NH4 and EC.
As a result, when compared to Ceyg, the Coprjo.wn EC results show a 40% increase in spatial R? and 10% decrease in
spatiotemporal R?, whereas the cross-validation spatiotemporal R* values for NH, are biased high. The SO, spatial and
spatiotemporal R? cross-validation results for both Cremap and Copr show the largest improvement over the unconstrained
model, with a 43% increase compared to the CMAQ simulation performance. The PM, s temporal and spatiotemporal R?
cross-validation results are 30% and 13% higher than the CMAQ simulations. The Copr results from the 10-WH cross-
validation would normally provide robust cross-validation results that allow for the exploration of error differences based on
proximity to monitors. Overall, the statistical improvement between the CMAQ simulations and cross-validated datasets
suggest the empirically based mass reconstruction factors, specific dry efficiencies, and SSA values adopted were adequate
for the SJV domain. The 5-cities study 10-WH cross-validation spatiotemporal R? ranges were 0.81-0.89 for SO4, 0.67-0.83
for PM; s, 0.52-0.72 for NOs3, 0.43-0.80 for NHy, and 0.32-0.51 for OC (Friberg et al., 2017). In light of the 5-cities study,

the results for relatively homogeneous pollutants of secondary origin of this study fall within these ranges.

Unlike 10-WH, LOO cross-validation results allow us to leverage the spatial distribution of monitor locations throughout the
domain. Table 2 shows the LOO temporal Rz, MB, and RMSE values averaged across monitor locations. The NHy Copr 100
results improved the most across the PM, s component species and outperformed temporal R? for Cremap and Crevao Loo

values by 10 and 8%. NH, cross-validation performance is highest for monitor locations closest to the agricultural emission
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sources in the southern area of domain. This finding agrees with the general expectation that aerosol type uncertainties being
lowest when the mid-visible AOD is higher than ~0.15. For SO, the cross-validation for both Creuup 100 and Copr oo
datasets show significant improvements in temporal R? and RMSE. For NO;, temporal R%of Cremag oo is slightly higher
than that of Copro0, Whereas the opposite is true for MB. The OC Coproo results are mixed between locations, whereas

the EC Copr oo shows improvements across all locations.

To explore the PMys Crysarimpact on Coppr, i.e., combining the surface monitor data with the CMAQ simulation plus
satellite results, the spatial cross-validation performance assessment of PM,s Copr was expanded to include Regional
Holdout (RH), which minimizes the effect of clustered monitors on statistics (Table 3). As expected, removing PM, 5
clustered monitors increased the cross-validated dataset reliance of Creyup and Copr on Ceargp and Crisar, thus decreasing
temporal R? values. PM, s Copry results are similar for the Cemap and Crenap rir datasets, with temporal R? values of 0.71-
0.84 for Crepmag e and 0.72-0.83 for Copr gy.  Improvements in the cross-validation results with respect to CMAQ
simulations are observed for the northern half of the SJV domain, regions 1 and 2 in Fig. 1. Proximity to emission sources,
meteorology, and topography contribute to the performance differences between northern regions 1 and 2, and southern
regions 3 and 4. The dominant primary PM, 5 mass emission sources (i.e., residential wood combustion, and motor vehicles)
as well as the major secondary aerosols in the SJV are associated with urban hotspots such as Fresno and Bakersfield (Chen
et al., 2007). Winter wind speeds in the SJV are typically below 4 m s (Watson and Chow, 2002). As compared to the
southern portion of the SJV, the wind speed is slightly higher and is more consistently southeasterly in the northern part of
the domain (Cahill et al., 2011;Hayes et al., 1989). During the winter, regional transport occurs when the nocturnal
boundary layer is decoupled from the air aloft; as a result, these higher wind speeds aloft tend not to ventilate the surface,
intensifying pollutant surface concentrations throughout the SJV (Chow et al., 1999), whereas dust originating from desert

sources to the east and southeast is likely transported aloft.

In summary these results suggest the optimization method is a viable way of constraining CTM simulations using satellite-
retrieved information where ground observations are not available, especially where the AOD is higher than in the SJV cases
available for the current study. Based on these results, including the satellite data improves short- and long-term
spatiotemporal air quality metrics for PM,s mass, and long-term air quality metrics for PM,s speciated components,

especially in areas where surface measurements are lacking.

5 Conclusions

Even in the best-monitored urban areas, ground-based networks have limited spatial coverage. Building on earlier work that

produced a method for fusing surface-based measurements with model simulations (Friberg et al., 2016; 2017), the current
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study relies on both satellite-derived AOD and particle property information contained in the satellite retrievals as additional
constraints on the model outputs. The strength of the satellite data is broad spatial coverage, providing radiances that tend to
have uniform quality over space and time compared to most suborbital observation datasets. The satellite provides vastly
more spatial coverage than the surface stations alone, and this is especially important downwind of major pollution sources.
The main limitations of the satellite data are lack of vertical discrimination in most situations, lack of diurnal coverage, and
only crude aerosol-type sensitivity, especially at low AOD. The physical approach presented here uses CTM simulation
along with surface-based measurements to address these limitations. Where satellite data are missing or where the AOD is
too low to provide reliable aerosol type from the MISR-RA, the method relies on the model, tuned, to the extent possible, by

satellite and surface measurements.

Satellite and ground-based aerosol measurements were combined with numerical model simulations to: (1) generate aerosol
airmass type maps covering the central California test region for DISCOVER-AQ campaign time period in 2013, (2) explore
the viability of using satellite data to improve aerosol airmass type mapping over extended regions, and (3) contribute

regional context to what is known about air pollution sources and trends from point sampling monitors.

Satellite data helps capture PM, s distributions over large, under-sampled or un-sampled regions, and its fusion with model
results tends to represent spatial gradients better than the unconstrained model. Applied appropriately, satellite data can also
improve speciated PM, s where AOD is sufficiently high (generally mid-visible AOD >~0.15 in the study region). We used
retrievals from the MISR-RA, to take advantage of the higher spatial resolution and greater aerosol-type accuracy and
precision compared to the standard products. However, to avoid over-interpreting the data, we classified the satellite acrosol-
type results into three broad groups for application as a model constraint: spherical light-absorbing, spherical non-absorbing,
and non-spherical. The satellite-constrained concentration maps are spatially consistent with topography, typifying localized
hotspots over known urban areas, and exhibiting realistic dispersion patterns in the SJV. Comparison with daylight-averaged
AERONET and diurnally averaged CMAQ modeling demonstrated that, for AOD >~ 0.15 and with outliers removed, the
satellite-derived snapshots represent the diurnal values within 10 — 20 % for the study cases. Furthermore, satellite-derived
PM, s is in agreement with surface observations, to within the scatter of unconstrained model results, and variability was
reduced on higher AOD days. These results suggest satellite retrievals in conjunction with model results can improve PM, 5
spatial characterization in situations where the AOD is sufficiently high. The satellite aerosol retrievals also represent the
spatial distributions of speciated aerosol airmass types more realistically and consistently than the unconstrained model and

the model constrained only by surface-monitor data, for nitrate, ammonium, and possibly also sulfate.

For the current study, model-based aerosol vertical distributions were used to address the lack of profile measurements.

However, model aerosol vertical distribution could be constrained on large scales with space-based stereo imaging (e.g.,
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from MISR) near emission sources, at least where plumes are visible in the imagery, and with space-based lidar (e.g.,
CALIPSO) downwind of sources. Diurnal sampling, the second major limitation in the current satellite application, can be
assessed and corrected where needed with a model that has been scaled to available satellite snapshots. Comparison of
diurnal variation results to other studies was hindered by the following factors: (1) the unique weather pattern and pollution
transport characteristic of the SIV (i.e., persistent inversion and very low PBL height), (2) differences in product version
uncertainty (i.e., AERONET versions between this and earlier studies), and (3) disparity in satellite-retrieved spatial
resolution (i.e., biases in earlier studies due to coarser spatial resolution). Future research assessing diurnal sampling could
benefit from the inclusion of Visible Infrared Imaging Radiometer Suite (VIIRS) instrument datasets, such as daylight-
retrieved AOD (Jackson et al., 2013) and Day/Night Band as an estimate of PM, s surface change (Wang et al., 2016).
Eventually, AOD and possibly speciated AOD from geostationary platforms will provide at least daylight if not fully diurnal

values.

Under adequate observing conditions, the technique presented here improves the representation of pollutant spatial
distributions in air quality models downwind of emission sources. It is physically based in that it leverages components of a
CTM such as the meteorology, conservation of aerosol mass, and assumed emissions, and complements statistical
approaches that rely on tuning parameters in a regression-type model. The new method offers the ability to compare
satellite-derived PM,s and speciated concentrations directly to surface measurements. Although the study domain and
timeframe did not offer the high AOD levels where this method would work best, the SJV offered a substantial quantity of

suborbital observations for assessing the results, due to the DISCOVER-AQ campaign.

Expanding this work by applying the technique to the other areas with key ground measurements (i.e., Baltimore
DISCOVER-AQ campaign) is a possible next step toward establishing the strengths and limitations of the method. The
technique takes advantage of the stable (i.e., consistent), long-term satellite observations that offer global coverage, and
provides speciated constraints based on retrieved microphysical properties for AOD retrievals above about 0.15. Once the
aforementioned analyses are completed, the method will likely be applied to a selection of globally distributed urban regions

that are downwind of sources, in locations where particulate pollution levels tend to be high.
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Figure 1: San Joaquin study area shows the ground elevation, EPA AQS and CSN monitors, and AERONET sites during the
NASA DISCOVER-AQ flight campaign.
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Table 1: EPA AQS and CSN monitor summary statistics for 52 days (6 days).

Pollutant Mlzz.it‘()lfrs Sampling Frequency OBS Mean SD
PM, ;, pg/m’ 22(21) 13 daily; 6 1-in-3;3 1-in-6  779(95)  21.20 (28.31) 13.33 (13.51)
PM,;-SO,, pg/m’ 7(6) 6 1-in-3; 1 1-in-6 86 (11) 0.77 (1.13) 0.46 (0.69)
PM,;-NO,, pg/m’ 7(6) 6 1-in-3; 1 1-in-6 86 (11) 7.27 (9.81) 6.1 (7.38)
PM, -NH,, pg/m* 5(4)  41-n3; 1 1-in-6 54 (7) 2.07 (3.65) 2.25(3.32)
PM,;-EC, ng/m’ 4(4) 3 1-in3;1 l-in6 44 (8) 1.28 (1.14) 0.77 (0.34)
PM,5-OC, pg/m’ 4(4) 3 l-n3; 1 l-in6 44 (8) 5.25(5.73) 3.09 (2.48)
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parenthetical terms are defined in their respective steps in the methods section.
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Figure 3: Scatterplot comparisons of AERONET coincidences with MISR-RA, MAIAC, gap-filled MISR-RA, and CMAQ results
within +15 minutes of Terra overpass time. The MAIAC and AERONET AOD comparisons are plotted at 550 nm, whereas the
MISR-RA and AERONET AOD comparisons are at 558 nm; the dotted lines indicate the 0.15 AOD threshold; a 1:1 dashed lines

are shown for reference.
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Figure 4: Scatterplots of daylight-averages to the Terra overpass time ratios versus AERONET AOD retrievals within £15 minutes
of Terra overpass time. Two ratios are shown for CMAQ: daytime average-to-hour ratio and diurnal average-to-hour ratio. The
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during the study period with highest AOD. The resolution of the concentration maps is 275 m, whereas the size of the observation
5 markers is ~ 0.1 degrees (~ 11.1 km).
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Table 2: Comparison of averaged temporal R, mean bias, and root means square error values between observations and leave-
one-out cross-validation (LOO CV) for 52 days across all locations.

Species Dataset Temporal R> Mean Bias RMSE
CMAQ 0.52 0.43 0.94
FCMAQ 1.00 0.91 1.24

NH4  OPT 1.00 0.70 1.13
FCMAQ LOO cV 0.56 0.90 1.44
OPT LOO CV 0.62 0.71 1.39
CMAQ 0.28 0.02 0.57
FCMAQ 1.00 0.00 0.12
S04  OPT 0.99 -0.09 0.11
FCMAQ LOO CV 0.75 -0.06 0.41
OPT LOO CV 0.63 -0.13 0.36
CMAQ 0.73 0.16 0.49
FCMAQ 1.00 0.26 0.35
NO3 OPT 1.00 0.12 0.31
FCMAQ LOO CV 0.89 0.14 0.39
OPT LOO CV 0.85 0.02 0.38
CMAQ 0.68 -0.08 0.36
FCMAQ 1.00 -0.11 0.14
ocC OPT 1.00 -0.15 0.13
FCMAQ LOO cV 0.68 -0.12 0.34
OPT LOO CV 0.70 -0.14 0.30
CMAQ 0.52 0.31 0.53
FCMAQ 1.00 0.74 0.85
EC OPT 1.00 0.69 0.83
FCMAQ LOO CV 0.74 0.84 0.87

OPT LOO CV 0.76 0.80 0.88 ,
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Table 3: Comparison of temporal R%, mean bias, and root means square error PM, s values between observations and all

simulation, including regional holdout cross-validation (RH CV) for 52 days.
PM, Dataset Temporal R> Mean Bias RMSE
CMAQ 0.68 0.17 0.40
FCMAQ 1.00 0.10 0.15
Region1 OPT 1.00 0.09 0.15
FCMAQ RH CV 0.71 -0.10 0.46
OPT RH CV 0.73 -0.12 0.46
CMAQ 0.63 -0.04 0.33
FCMAQ 0.99 0.05 0.18
Region 2 OPT 0.99 0.03 0.16
FCMAQ RH CV 0.75 0.05 0.33
OPTRH CV 0.72 0.03 0.36
CMAQ 0.77 -0.11 0.30
FCMAQ 1.00 -0.15 0.17
Region 3 OPT 1.00 -0.17 0.17
FCMAQ RH CV 0.76 0.06 0.31
OPT RH CV 0.76 0.02 0.32
CMAQ 0.82 -0.11 0.34
FCMAQ 1.00 -0.19 0.24
Region 4 OPT 1.00 -0.23 0.23
FCMAQ RH CV 0.84 -0.07 0.41
OPTRH CV 0.83 -0.11 0.39 ,
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