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Abstract 30 

The thermodynamics of the ocean and atmosphere partly determine variability in 31 

tropical cyclone (TC) number and intensity and are readily accessible from climate 32 

model output, but an accurate description of TC variability requires much higher spatial 33 

and temporal resolution than the models used in the GeoMIP experiments provide. 34 

Genesis potential index (GPI) and ventilation index (VI) are combinations of dynamic 35 

and thermodynamic variables that provide proxies for TC activity under different 36 

climate states. Here we use five CMIP5 models that have run the RCP4.5 experiment 37 

and the Geoengineering Model Intercomparison Project (GeoMIP) stratospheric 38 

aerosol injection G4 experiment, to calculate the two TC indices over the 2020 to 2069 39 

period across the 6 ocean basins that generate TCs. GPI is consistently and significantly 40 

lower under G4 than RCP4.5 in 5 out of 6 ocean basins, but it increases under G4 in the 41 

South Pacific. The models project potential intensity and relative humidity to be the 42 

dominant variables affecting GPI. Changes in vertical wind shear are significant, but it 43 

is correlated with relative humidity though with different relations across both models 44 

and ocean basins. We find that tropopause temperature is not a useful addition to sea 45 

surface temperature in projecting TC genesis, perhaps because the ESM vary in their 46 

simulation of the various upper tropospheric changes induced by the aerosol injection.  47 

Key word: TC, hurricanes, statistical methods, Geoengineering. 48 

 49 
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1 Introduction  52 

Anthropogenic greenhouse gas (GHG) emissions are changing climate (IPCC, 53 

2007). The best solution for limiting climate change is to reverse the growth in net GHG 54 

emissions. It is doubtful that reductions in emissions can be done fast enough to limit 55 

global mean temperatures rises to targets such as the 1.5 or 2C pledged at the Paris 56 

climate meeting (Rogelj et al., 2015). Geoengineering is the deliberate and large-scale 57 

intervention of Earth’s climate system to counteract climate warming (Crutzen, 2006; 58 

Wigley, 2006). Geoengineering by Stratospheric Aerosol Injection (SAI) attempts to 59 

lessen the incoming sunlight to counteract the effect of global warming. The 60 

Geoengineering Model Intercomparison Project (GeoMIP) (Kravitz et al., 2011) is a 61 

standardized set of experiments designed to homogenize earth system model (ESM) 62 

simulations of geoengineered climates, and is supported by 15 model groups globally, 63 

with further experiments planned under CMIP6 (Kravitz et al., 2015). Climate system 64 

thermodynamics will change under SAI geoengineering because the reduction in short 65 

wave radiation is designed to offset increases in long wave absorption (Huneeus et al., 66 

2014; Kashimura, et al., 2017; Visioni, et al., 2017; Russotto and Ackerman, 2018). 67 

Tropical cyclones (TCs) are one of the most disastrous weather phenomena 68 

influencing agriculture, human life, and property (Chan et al., 2005). The large-scale 69 

changes in surface temperatures under GHG forcing will impact cyclogenesis changing 70 

both the frequency and intensity of TCs (Grinsted et al., 2012; 2013). Hence, how TCs 71 

would change in a geoengineered world is of general as well as scientific interest for its 72 

enormous social and economic impact. However, since almost all climate models do 73 
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not, at present, possess the resolution required to simulate directly the response of TCs 74 

to changing patterns of radiative forcing, methods that rely on the statistical links 75 

between the thermodynamics of the ocean and atmosphere with cyclone dynamics have 76 

predominantly been the topic of studies. 77 

Many methods have used to study the changes in TCs under climate warming. 78 

These can be divided into implicit methods, such as the GPI and VI which we focus on 79 

here, semi-explicit, such as downscaling (Emanuel, 2006; 2013), and explicit such as 80 

feature tracking storm systems (Hodges, 1995; Jones et al., 2017). Implicit methods rely 81 

on using historical climate and storm records to quantitative relationships between TC 82 

and key variables such as local, tropical and global sea surface temperatures, and 83 

various teleconnection patterns (Grinsted et al., 2012; Emanuel et al., 2008; Landsea, 84 

2005; Gray, 1979). Potential intensity theory (Bister and Emanuel, 1998; Emanuel and 85 

Nolan, 2004) predicts the dependence of TC wind speed on the air-sea thermodynamic 86 

imbalance and the temperature of the lower stratosphere. For example, many studies 87 

suggest that wind shear has inhibitory effect on the TC activity (Vecchi and Soden, 88 

2007). Others have also identified changes in the large-scale environmental factors 89 

influencing tropical storm activity to assess TC changes in future (Tippett et al., 2011; 90 

Grinsted et al., 2013). 91 

While much is known about which factors influence TC cyclogenesis, a 92 

quantitative theory is lacking (Emanuel, 2013), so empirical methods have been used 93 

to define the relationship between large-scale environmental factors and tropical 94 
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cyclogenesis. The GPI uses four environmental variables: potential intensity, low-level 95 

absolute vorticity, vertical wind shear, and relative humidity. Potential intensity is the 96 

maximum sustainable intensity of TCs based on the thermodynamic state of the 97 

atmosphere and sea surface, that is the difference between the saturation enthalpy of the 98 

sea surface and the moist static energy of the subcloud layer (Riehl, 1950). Tang and 99 

Emanuel (2012) introduced the VI, defined as the flux of low-entropy air into a tropical 100 

disturbance or TC, because ventilation disrupts the formation of a deep, moist column 101 

that is hypothesized to be necessary for the spin up of the vortex (Bister and Emanuel, 102 

1997; Nolan, 2007; Rappin et al., 2010). For the Atlantic hurricane region, Tippett et al. 103 

(2011) formulated a genesis potential index using the relative sea surface temperature, 104 

defined as the tropical Atlantic sea surface temperatures minus the tropical mean sea 105 

surface temperatures, and midlevel relative humidity in lieu of the potential intensity 106 

and non-dimensional entropy deficit, respectively. Dynamic potential intensity is yet 107 

another index designed to describe ocean feedbacks on TCs, because storms bring cold, 108 

deeper water to the surface, which reduces the potential intensity (Balaguru et al., 2015). 109 

These indices represent the thermodynamic and hence seasonal control of TC genesis 110 

and not the dynamic development of individual storms, which is beyond the abilities of 111 

most contemporary climate models, in particular those we use here. The relative 112 

contribution of the individual large-scale environmental factors to TC genesis may be 113 

different in different ocean basins (Emanuel, 2010; Wing et al., 2015).  114 

An increase in future global TC frequency has been projected based on dynamical 115 
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downscaling CMIP5 models (Emanuel, 2013). However, the same downscaling applied 116 

to the CMIP3 models projected a decrease in global TC frequency (Tory et al., 2013; 117 

Emanuel, 2006). Some models show that although Atlantic TC frequency will decrease, 118 

the frequency of intense TC ( those having windspeeds larger than 55 ms-1) will increase, 119 

and different TC basins are predicted to behave differently (Emanuel et al., 2008; 120 

Knutson et al., 2015).  121 

   There has been little research about TC changes under SAI. Moore et al. (2015) 122 

used statistical relation between Atlantic tropical storm surges and spatial patterns of 123 

global surface temperature to deduce that moderate amounts of SAI could reduce the 124 

frequency of the most intense TC relative to GHG only climates. Jones et al. (2017) 125 

showed SAI in the northern hemisphere reduced the numbers of TC in the North 126 

Atlantic while SAI in the southern hemisphere increased numbers in the basin.   127 

   In contrast with earlier work that has focused only on the impacts of SAI on North 128 

Atlantic hurricanes (Moore et al., 2015; Jones et al., 2017), we examine ESM 129 

simulations of global TC evolution in 6 ocean basins using the GPI and VI indices. We 130 

then evaluate how far TC changes under SAI and GHG forcing can be attributed to 131 

thermodynamic changes, and hence be forecast in statistical terms.  132 

Section 2 introduces the methods and data used in this study. Section 3 describes 133 

the temporal and spatial variations of the GPI and ventilation index in five models, in 134 

GHG and SAI simulations. We quantify the contribution of SST, relative humidity and 135 
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wind shear to TC genesis based on attribution of monthly variance in GPI and VI in 136 

each basin’s time series using multiple linear regression methods. Finally, a discussion 137 

and conclusions are provided in section 4. 138 

2 Methods and data 139 

a． Methods 140 

    We use climate model output from the GeoMIP G4 experiment (Kravitz et al., 141 

2011) and the control simulation, RCP4.5 experiment of CMIP5 (Taylor et al., 2012) to 142 

analysis the characteristic of TC changes in the future in different models. G4 is based 143 

on the GHG emissions from the RCP4.5 scenario but short wave radiative forcing is 144 

reduced by injection of SO2 into the equatorial lower stratosphere at altitudes of 16–25 145 

km, at a rate of 5 Tg per year from the year 2020 to 2069. The experiment continues for 146 

a further 20 years to 2089 with only GHG forcing as specified by RCP4.5.  147 

We assess the large-scale environmental conditions for TC generation primarily in 148 

reference to the widely used genesis potential and ventilation index (GPI), and use 149 

results for the VI for comparison. While other indices also exist as mentioned above, 150 

the data fields required to calculate them are presently not all available. The signal to 151 

noise ratio of the G4 experiment is not as large as that of G1 (Yu et al., 2015) where 152 

solar dimming offsets quadrupled CO2 concentrations. It is, however, more interesting 153 

for TC studies because the sulphate aerosol injected into the stratosphere causes 154 

radiative heating (Pitari et al., 2014), and other indirect effects on the upper troposphere 155 
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(Visioni et al., 2018) that will potentially affect the deep tropospheric convention 156 

systems that characterize intense tropical storms.  157 

The GPI has been widely employed to represent TC activity (e.g., Song et al., 158 

2015), and several different formulations have been described (e.g., Emanuel, 2004; 159 

2010). Here, we chose to use perhaps the most commonly-used method, (Emanuel, 160 

2004) to calculate the GPI as follows:    161 
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Where  is the absolute vorticity in s-1, is the relative humidity at 700 hPa in 163 

percent, is the Potential intensity in ms-1, and is the magnitude of the wind 164 

shear from 850 to 200 hPa, in ms-1. Potential intensity (Emanuel, 2000) is defined as 165 

                          (2) 166 
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2014), defined as: 175 

   
pot

shear

V

V
VI m                                      (3) 176 

Where m is the (nondimensional) entropy deficit, defined as: 177 

                                        (4) 178 

where  is the saturation entropy at 600 hPa in the inner core of the TC, is the 179 

environmental entropy at 600 hPa ,  is the saturation entropy at the sea surface 180 

temperature, and is the entropy of the boundary layer, which we chose as the 925 181 

hPa layer. The numerator of (4) is the difference in entropy between the TC and the 182 

environment at mid-levels, while the denominator is the air-sea disequilibrium, both are 183 

calculated following Emanuel (1994). In contrast with GPI where increases correspond 184 

to heightened TCs, increases in VI mean fewer TCs are likely. 185 

b. Data  186 

Although to date 8 ESM have performed the RCP4.5 and G4 simulations, a subset 187 

of 6 models have access to all required model data fields, but one of those, CanESM2, 188 

was not used because all three of the realizations available it failed to pass statistical 189 

tests leaving 5 models (Table 1). The particular tests we did to exclude some data and 190 

models from the analysis are discussed in detail in section 3.2. The rejected simulations 191 

all produced statistically weak and insignificant regression fits to linearized forms of 192 

GPI and VI with all combinations of the thermodynamic and dynamic terms used to 193 
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compute them. Hence, it is unlikely that VI or GPI can meaningfully represent TC 194 

activity in these cases. In comparison, the ESM simulations we do use have regression 195 

models that are significant at least at the 99.9% level, and in many cases, achieve far 196 

higher significance.  197 

We use monthly sea surface temperature (SST), relative humidity, vertical wind 198 

shear, sea level pressure, specific humidity, air temperature on different vertical levels. 199 

All the model outputs at different spatial resolutions were interpolated to a common 200 

grid (128×64) using the bilinear interpolation method. All the models were weighted 201 

equally in the ensemble mean, so the models with more than a single ensemble member 202 

were first averaged before taking the overall model ensemble mean. 203 

c. TC basins 204 

Factors influencing TC change are diverse across different ocean basins. Some 205 

studies (Emanuel, 2010; Knutson et al., 2010) find robust or significant declines in the 206 

frequency of events in the Southern Hemisphere, while the Northern Hemisphere is 207 

relatively constant in the observational record. We therefore examine relationships 208 

across all the six TC basins listed in Table 2. The observed TC annual mean numbers 209 

for the period 1980-2008 for each basin (Emanuel, 2010) are also listed in Table 2. The 210 

North Atlantic makes up a relatively small fraction of the total, with the Pacific 211 

dominant in the global locations of TCs. 212 

3. Results  213 

The climate response to G4 forcing has been discussed by Yu et al. (2015). The 214 
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general pattern of temperature change under GHG forcing includes accentuated Arctic 215 

warming, and least warming in the tropics. G4 largely reverses these changes, but leaves 216 

some residual warming in the polar regions and under-cools the tropics. SAI also 217 

reduces temperatures over land more than over oceans relative to GHG, and hence 218 

reduces the temperature difference between land and oceans. Between 2020 and 2069, 219 

SSTs in the 6 basins during their TC seasons are 0.4°C (with a model range of 0.2-0.6°C) 220 

warmer in RCP4.5 than under G4. 221 

3.1 The temporal and spatial distribution of GPI and VI  222 

We list the basin GPI and VI by model and month in Table S1.The individual 223 

monthly GPI as a fraction of the annual totals are shown in Table S2. We select northern 224 

and southern TC season on the basis of the each model’s monthly fractions of GPI. We 225 

use a threshold of 10% for above uniformly distributed GPI for RCP4.5 and G4 226 

averaged GPI and find that for the northern basins June-November are above the 227 

threshold, while for the southern basins it is January-June. Thus there are 6 months in 228 

each hemisphere and they account for 68% under both RCP4.5 and G4 of the yearly 229 

total GPI (Table S3). We also notice from Table S2 that under G4 the TC season occurs 230 

about 1 month earlier than under RCP4.5 in both hemispheres, although our choice of 231 

threshold for the TC season means that we can use the same 6 months for each 232 

experiment. The same analysis for VI shows similar results, although the season is less 233 

well-defined than for GPI, for instance VI in August is higher than December in 234 

northern basins as is January in the southern ones, but the general results do not require 235 
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separate definitions of season from those for GPI. The Northern Hemisphere peak TC 236 

season is June through November and January through June in the Southern 237 

Hemisphere, various authors have used longer periods in analyzing model data, e.g. 238 

Emanuel (2013) used all 12 months, while Jones et al., (2017) used June-November for 239 

the North Atlantic hurricane season. Li et al. (2013) note that the Northern Indian TC 240 

basin has a secondary peak in TC around May. This peak is reproduced by the BNU-241 

ESM, HadGEM2-ES, MIROC–ESM and NorESM1-M models where it about half the 242 

size of the peak months later in the year (Table S1). This does not affect the statistical 243 

choice of TC months (Table S2), although it causes the fraction of GPI accounted for 244 

in our TC season to be the lowest for the Northern Indian basin (Table S3). 245 

The models we use have considerable range in their absolute values of GPI, which 246 

is also a generally observed feature of climate models (Emanuel, 2013). The GPI has a 247 

rising trend under RCP4.5 and G4 (Fig. 1). Table 3 shows that there are significantly 248 

(p<0.05 when tested using the Wilcoxon signed rank test) lower values of GPI under 249 

G4 than RCP4.5 for Northern Hemisphere basins in all models except for NorESM1-250 

M, but only MIROC-ESM-CHEM has significantly lower GPI for the Southern 251 

Hemisphere basins. The time series indicate that tropical storms will become more 252 

frequent with time and that G4 significantly reduces the numbers. 253 

Fig. 1 also shows the evolution of VI in the TC seasons during 2020 to 2069 among 254 

the five models. Note that following the definition of VI in Tang and Camargo (2014) 255 

we use the median value not its mean. The models ensemble shows decreasing trends 256 
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over time, indicating a tendency for more TCs, consistent with trends in GPI. Table 3 257 

shows that G4-RCP4.5 differences in Northern Hemisphere basins are significantly 258 

positive except for NorESM1-M, Southern Hemisphere basins show less consistent 259 

results, which is also consistent with GPI which indicates that G4 reduces TC 260 

occurrence, and is more effective in the Northern Hemisphere.  261 

Fig. 2 shows the correlations between model differences G4-RCP4.5 for annual 262 

mean GPI and VI. Most models, and the ensemble show significant anti-correlation 263 

across all TC basins, except the South Pacific where more than half the models have 264 

significant correlation. The ensemble mean correlation is only around -0.3, indicating 265 

that GPI and VI are addressing sufficiently different aspects of TC to warrant 266 

independent analysis. We next examine the spatial pattern of GPI and VI calculated 267 

over the 50-year period: 2020–2069 in the G4 and RCP4.5 experiments. The relative 268 

differences as percentages (GPIG4-GPIRCP4.5)/GPIRCP4.5 during the 6-months of each 269 

hemisphere’s TC season are shown in Fig. 3. These geographic patterns can be 270 

compared with the values in Tables 3 and 4. 271 

Fig. 3a shows that the GPI anomaly varies by region and by model. For instance, 272 

all models except NorESM1-M show negative differences in the North Indian basin. 273 

All models except MIROC-ESM-CHEM show the South Pacific to be reddish in colour 274 

indicating increased GPI under G4 compared with RCP4.5 consistent with Table S1. 275 

Similarly, the North East Pacific basin has positive differences in MIROC-ESM-CHEM 276 

and NorESM1-M. Negative differences indicate fewer tropical storms with SAI than 277 
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under GHG forcing alone. Despite model differences, the ensemble result shows 278 

robustly that the GPI difference generally negative in the Northern Hemisphere but 279 

insignificantly positive in the South Pacific and East Northern Pacific basins (Table 4). 280 

At present the vast majority of tropical storms occur in the Northern Hemisphere (Table 281 

2), so the overall global numbers would likely decrease. 282 

The spatial distribution of VI also has large variation (Fig. 3b). All models except 283 

NorESM1-M have increases in the North Atlantic. In the North East Pacific, all models 284 

except MIROC-ESM-CHEM and NorESM1-M have increases. Increased VI (G4-285 

RCP4.5) differences suggests fewer cyclones in agreement with the results of GPI. In 286 

the North Indian Ocean, all models show increased VI difference in the Arabian Sea 287 

and all except BNU-ESM and MIROC-ESM in the Bay of Bengal. Only MIROC-ESM 288 

shows an increase in the South Pacific. The ensemble results are thus largely simply 289 

opposite in sign to GPI. 290 

3.2 Accounting for changes in GPI and VI 291 

We use two different methods to examine how the contributing climate variables to 292 

GPI and VI account for differences between models and across the TC basins. The 293 

objectives are 1) learn which are the key variables in the model simulations of cyclones; 294 

2) find a subset that can be tested against the understanding of how SAI affects the 295 

atmosphere heat and water balance and 3) examine if variations in TC basin extent or 296 

cyclone seasons may be expected under SAI. 297 

3.2.1 Monthly differences in GPI and VI components between G4 and RCP4.5  298 
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To examine the effects of SAI on cyclone seasonality, we look at the monthly 299 

contributions of the factors that make up GPI and VI. Li et al. (2013) expressed 300 

Equation (1) for GPI as the product of four terms, respectively representing an 301 

atmospheric absolute vorticity term (AV), a vertical wind shear term (WS), a relative 302 

humidity term (RH), and an atmospheric potential intensity term (PI). 303 

          
WS

AVRHPI
GPI


                              (5) 304 

Where PI = (
𝑉𝑝𝑜𝑡

70
)

3

, RH = (
𝐻

50
)

3

, WS = (1 + 0.1𝑉𝑠ℎ𝑒𝑎𝑟)2, AV = |105𝜂|
3

2. 305 

The AV and WS are considered dynamic components, while the RH and PI are 306 

thermodynamic ones. We follow Li et.al. (2013) in identifying the individual monthly 307 

contributions from the four large-scale environmental processes. Taking the natural 308 

logarithm of both sides of Eq. (5), differentiating, and substituting back into Eq (5)  309 

allows GPI to be expressed as annual means and monthly anomalies: 310 

  AVWSRHPIGPI   4321                  (6) 311 

Where    

WS

RHPI

WS

AVRHPI

WS

AVPI

WS

AVRH













4

23

2

1

-









 312 

And     GPIGPIGPI   313 
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In Eq. (6), a bar denotes an annual mean value, and  represents the difference between 314 

an individual month and the annual mean, assuming constant coefficients for 1 , 2 , 315 

3 , and 4 . 316 

We are interested in detecting changes between GHG forcing alone and under SAI, 317 

so we examine the differences G4-RCP4.5 for each model grouping the TC basins by 318 

hemisphere in Fig. 4, and use δ𝐺𝑃𝐼𝐺4 − 𝛿𝐺𝑃𝐼𝑟𝑐𝑝45 to calculate the difference. Fig. 4 319 

clearly shows that RH and WS make the largest contribution to GPI differences in both 320 

hemispheres in all models. In the Northern Hemisphere, RH and WS terms show 321 

negative contributions in the cyclone season. Hence, these are the factors that primarily 322 

enable SAI to reduce GPI relative to GHG. In the Southern Hemisphere there are no 323 

clear difference between GPI under G4 or RCP4.5. Absolute vorticity, AV makes almost 324 

no contribution to the GPI differences under SAI in all models. 325 

We also do the same mathematical transform for VI. We obtain annual means and 326 

monthly anomalies: 327 

   δVI = 𝛼5𝛿(𝑉𝑝𝑜𝑡) + 𝛼6𝛿(𝜒𝑚) + 𝛼7𝛿(𝑉𝑠ℎ𝑒𝑎𝑟)                       (7)   328 

Where   𝛼5 = −𝑉𝑠ℎ𝑒𝑎𝑟
̅̅ ̅̅ ̅̅ ̅̅ 𝜒𝑚̅̅ ̅̅ ̅

𝑉𝑝𝑜𝑡
2̅̅ ̅̅ ̅̅    𝛼6 =

𝑉𝑠ℎ𝑒𝑎𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑉𝑝𝑜𝑡̅̅ ̅̅ ̅̅
   𝛼7 =

𝜒𝑚̅̅ ̅̅ ̅

𝑉𝑝𝑜𝑡̅̅ ̅̅ ̅̅
  329 

         δVI = VI − 𝑉𝐼̅̅ ̅ 330 

Analogously as for GPI, we show also results for VI in Fig. 4. shearV  makes the 331 

largest contribution to ventilation index differences between SAI and GHG forcing in 332 

both hemispheres. 
 

333 



17 

 

3.2.2 Contributions to GPI and VI across TC basins  334 

   The GPI and VI dependencies may be expressed as a regression equation of X on Y 335 

where Y is the GPI or VI anomalies under G4 relative to RCP4.5, and the fractional 336 

contribution to variance, S, of each variable i in X to Y can be written, following Moore 337 

et al. (2006) as,  338 

          𝑆𝑖 = 𝑀𝑖𝐶𝑖𝜎𝑋𝑖/𝜎𝑌                                     (8)      339 

where the X are the standard deviations of the predictor terms, Y is the standard 340 

deviation of the anomalies, C are the correlation coefficients of the X with Y, M are the 341 

regression coefficients of the X with Y. The regression can be expressed as a multiple 342 

linear regression in log space, and the coefficients simply transformed after fitting. 343 

Fitting in log space also allows for the generally heteroscedastic, fractional, nature of 344 

the errors in the variables.  345 

The relative contributions to GPI anomalies from its four variable terms following 346 

the regression Eq. (8) are shown in Fig. 5. RH is the dominant factor for GPI differences 347 

in all models and all TC basins. There is little variance explained for the MIROC-ESM-348 

CHEM and NorESM1-M models compared with the other three models. Fig. 5 also 349 

shows that AV makes very little contribution to variance explained in the (G4-RCP4.5) 350 

differences. In all models, WS makes about the same contribution as PI.   351 

Fig. S1 shows the same analysis as Fig. 5, but for all 9 realizations of MIROC-352 

ESM-CHEM. The first four realizations behave similarly as the BNU-ESM, 353 

HadGEM2-ES and MIROC-ESM models in Fig. 5, with variance accounted for around 354 
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80% of total and the RH terms being about twice as important as WS and PI terms. The 355 

remaining 5 realizations have far lower variance explained, similar as for NorESM1-M, 356 

with RH still the dominant term. 357 

Fig. S2 shows the three variables of the ventilation index in a similar way as Fig. 358 

5. 𝑉𝑠ℎ𝑒𝑎𝑟  makes the largest contribution to VI for all TC basins and all models 359 

especially for the BNU-ESM and MIROC-ESM models. Fig. S3 shows the VI 360 

components for all 9 realizations of MIROC-ESM-CHEM, which appears similarly 361 

divided into two groups as they were for GPI in Fig. S1. Indeed from Fig. S2 it appears 362 

that VI may be simply replaced by 𝑉𝑠ℎ𝑒𝑎𝑟 , for the models where any variance is 363 

explained, but viewing the month by month contributions in Fig. 4 shows that other 364 

components are relatively important for some models during some months of the TC 365 

season. 𝜒𝑚 has no consistent contribution for the models and basins

The statistical power of a regression equation can be expressed as the F-statistic. 367 

Given that the different variables in Figs 5 and S2 show notable differences in their 368 

contribution to the GPI and VI, we can use the F-statistic to examine if a reduced model 369 

with fewer variables is a better statistical model for the differences under G4 and 370 

RCP4.5. GPI has four variables, so there are 15 combination to examine as shown in 371 

Fig. 6. Only for BNU-ESM and MIROC-ESM do the full set of variables have the 372 

highest F-statistic. However, HadGEM2-ES has best model with all factors except the 373 

atmospheric vorticity term. This is consistent with results shown in Figs. 4 and 5, and 374 

with the analysis by Emanuel (2013). The value of the F-statistic represents the degree 375 
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that the regression model accounts for the data variability compared with model having 376 

no independent variables. The 3 models that the full, or nearly full, set of variables 377 

performs best have F-statistics over 1000 (p<0.001) while NorESM1-M has F of around 378 

25-60. This is still significant at the 99.9% level. When we analyzed the realizations 5-379 

9 of MIROC-ESM-CHEM, we found much lower F-statistics than for realizations 1-4 380 

(Fig. S4), with values similar as for NorESM1-M of 50-100. In general, the models 381 

show RH has the largest F-statistic for single parameter models, consistent with Figs. 4 382 

and 5. Fig. S4 also shows that all three realizations of CanESM2, which we do not use 383 

for TC analysis in this paper, have even lower F values, particularly r2 and r3, which 384 

are around 2 that are not significant.  385 

VI has three variables, so there are 7 combinations possible. As with GPI in Fig. 386 

6, are remarkable differences in the values of F amongst the models. BNU-ESM, 387 

MIROC-ESM, HadGEM2-ES and the realizations 1-4 of MIROC-ESM-CHEM 388 

achieve values over 1000 (p<0.001), while for NorESM1-M and realizations 5-9 of 389 

MIROC-ESM-CHEM have best F-statistics of 50 – 100 (p<0.001). Fig. S5 shows 390 

𝑉𝑠ℎ𝑒𝑎𝑟 has largest contribution to VI for most of models, and MIROC-ESM is the only 391 

models have largest F-statistic for the full set of model variables, as it also had for GPI. 392 

3.3 Primary factors that control GPI and VI changes 393 

The analysis above shows that the common factors across models and basins that 394 

affect TCs are potential intensity ( potV ), relative humidity (H), and vertical wind shear 395 
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(Vshear). We now discuss these factors separately, beginning with potV  as this is function 396 

of several different ESM variables.  397 

According to Eq. (2), potV  is dependent on the static stability of the troposphere, 398 

which is related to both sea surface ( ST ) and upper tropospheric temperatures (
OT ) 399 

where rising air flows out of the storm. Wing et al. (2015) use the trends in reanalysis 400 

and radiosonde products at 70 and 100 hPa in TC seasons to represent change in outflow 401 

temperature across various TC basins and assign its contribution to trends in potV . For 402 

convenience, we choose the tropical tropopause (100 hPa) temperature from the ESM 403 

output to represent
OT . Fig. S6 show the correlations across TC basins and seasons for 404 

the various fields in RCP4.5 and G4, while Fig. 7 shows the correlations in the 405 

differences between G4 and RCP4.5 so that difference made by the SAI can be clearly 406 

evaluated. Fig. 7a shows the dependence of potV  differences (G4-RCP4.5) on ( ST - OT ) 407 

differences for the models. All models have significant correlation for all TC basins 408 

except BNU-ESM in the SI and SP basins and HadGEM2-ES in the SP basin. However, 409 

there is an even stronger dependence for potV   on ST  anomalies (Figs. 7b, S6). The 410 

ensemble mean potV   is better correlated with Ts rather than ( ST  - OT  ) due to better 411 

correlations of all models in all basins except HadGEM2-ES.  412 

All models show significant correlation between GPI and ST anomalies shown as 413 

Fig. 7c. Some models have insignificant correlations in particular basins, e.g., BNU-414 

ESM is slightly anti-correlated in NA, as is HadGEM2-ES in WNP. GPI is not 415 
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significantly correlated with Ts for half the ESM in the NI and SP basins. Fig. S6 shows 416 

that there are fewer significant correlations under G4 than under RCP4.5. 417 

Figs. S7 and S8 show the seasonal cycle of Ts and To for all the models. The annual 418 

cycle of Ts, is very similar, as expected, for all the models, and with good agreement on 419 

the differences in seasonal cycle between the Northern and Southern Hemispheres as 420 

observed (Fig. S9). However, for To the models show differences in the shapes and 421 

phases of the cycles in both hemispheres, for example only the NorESM1-M model 422 

shows roughly antiphase seasonality between the hemispheres. Fig. S9 shows the ERA-423 

interim reanalysis To data, which has similar seasonality in both hemispheres, with peak 424 

temperature anomalies in August ( 1.5C) and a sharp decline to a long minimum by 425 

November or December of similar magnitude. Figs S7 shows that the models generally 426 

follow similar patterns under both G4 and RCP4.5 for Ts, but Fig S8 shows that there 427 

is much larger variability between the models representations of To under G4 and 428 

RCP4.5. HadGEM2-ES is the model with largest amplitude of seasonal cycle, 429 

somewhat larger than in ERA-Interim; other models have smaller amplitudes, with 430 

many around half that observed at present. This degree of difference in To simulation 431 

likely explains some of the inter-model differences in GPI. 432 

We plot H differences between G4 and RCP4.5 as a function of sea surface 433 

temperature differences in Fig. 7d. Relative humidity rises with warming temperatures 434 

under both G4 and RCP4.5 (Fig. S6), as expected. But there are obvious differences 435 

across the ocean basins with weakest response in ENP, NA and NI and strongest 436 
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correlations in the Southern Hemisphere basins. Differences G4-RCP4.5 follow a 437 

similar spatial pattern, with again largest correlations in the southern ocean basins.  438 

Fig 7e shows how RCP4.5-G4 differences in Vshear and Ts are generally anti-439 

correlated. The across-model spread for correlations of Vshear and Ts under both G4 and 440 

RCP4.5 (Fig. S6) are similar as for the other key variables. Anti-correlation with Ts is 441 

weakest in the SP and NA basins, but still significant. In terms of the differences in Fig. 442 

7e, all models show clear significant anti-correlations, with the NI and NA basins 443 

having weakest correlations. Vecchi and Soden (2007) found the North Atlantic and 444 

East North Pacific wind shear increases in model projections under global warming. If 445 

the models assessed here capture the effect under G4 and RCP45, we would expect 446 

positive correlations between Vshear and Ts over these two basins for G4 and RCP4.5 in 447 

Fig. S6.  448 

There are similar significant relationships between H and Vshear under G4 and 449 

RCP4.5 (Fig. S6), and also with their differences (Fig. 7f). This relationship is anti-450 

correlation in all basins for most models, except in the North Atlantic. The strength of 451 

the relationship are similar as for those with Ts, and demonstrates that the 452 

thermodynamic variables Ts and H can be useful proxies for the dynamic Vshear variable. 453 

4 Discussion and Conclusion 454 

Storms simulated by ESM may be counted using methods such as the TRACK 455 

algorithm (Hodges, 1995; Jones et al. 2017) that allow for feedbacks with the climate 456 
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system. Statistical methods (Moore et al., 2015) may also implicitly include feedbacks 457 

between regional storm and background global climate conditions, but dynamical 458 

downscaling methods (Emanuel, 2013) do not include them. The GPI and VI proxies 459 

we utilize here are useful tools for relating storm activity to meteorological conditions 460 

but do not account for changes to TC tracks or intensity. Since they require coarse 461 

temporal-resolution data to calculate (monthly means), compared with daily or 6 hourly 462 

data required for TRACK or the CHIPS tools, and they convey information from more 463 

than simply surface temperature fields, they may give reasonable insights into the 464 

complex changes to TC under SAI schemes.  465 

We evaluated the hurricane index over six TC ocean basins in five CMIP5 and 466 

GeoMIP models. We used G4 and RCP4.5 experiments to assess and compare the 467 

genesis potential and ventilation indices that relate tropical storm activity to ambient 468 

meteorology. Based on the climatology of the years 2020-2069, GPI and VI both show 469 

small rising trends for TC genesis in all five models under both G4 and RCP4.5 470 

scenarios. The TC season as measured by elevated monthly GPI values is almost a 471 

month earlier in G4 than RCP4.5, a result that is consistent across basins and models. 472 

There are fewer TC’s expected globally under SAI G4 than under the purely GHG 473 

forcing of RCP4.5 as assessed by differences significant at the 95% level in both GPI 474 

and VI. All 5 ESM models show significantly reduced GPI under G4 in Northern 475 

Hemisphere basins (Tables 3, 4) but results are inconclusive for southern basins. Spatial 476 

patterns of TCs, show both GPI and VI predicting fewer TC in the North Atlantic and 477 

North Indian Ocean under G4 compared with RCP4.5, and more TC in the South Pacific 478 
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for most models in the ensemble. Thus the G4 scenario of SAI based on equatorial 479 

lower stratosphere injection of SO2 could lead to fewer TCs in the North Atlantic and 480 

Indian Ocean but more TCs in the South Pacific region than under GHG induced global 481 

warming. There is, however, large inter-model variability across the six ocean basins.  482 

Detailed statistical analysis of the two TC indices indicates that NorESM1-M and 5 483 

out of 9 MIROC-ESM-CHEM ensemble members have lower dependencies on 484 

explanatory variables for GPI or VI. This suggests that using GPI and VI to elucidate 485 

TC activity in those particular ESM simulations is much less reliable. It is not obvious 486 

from simple correlations between GPI and VI, or between fields such as Ts or H which 487 

ESM runs have relatively poor relationships for GPI. 488 

The thermodynamic variables potential intensity and relative humidity are the 489 

dominant ones affecting genesis potential, while the dynamic variables absolute 490 

vorticity and entropy deficit are much less important. Vertical wind shear is a dynamic 491 

variable and dominates the ventilation index. By examining the contributions of 492 

variables to differences in GPI and VI under SAI and GHG forced climates, we show 493 

that relative humidity is the dominant factor for GPI differences in all models and all 494 

TC basins. Relative humidity is also usefully correlated with wind shear, though the 495 

North Atlantic displays a qualitatively different relationship than the other basins. The 496 

analysis suggests that a simplified representation of TCs depending on fewer variables 497 

may be possible, but does require analysis of particular model behavior before choosing 498 

those variables. Although wind shear is important and a dynamic variable, it in 499 
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encouraging that the thermodynamic state of the system is of prime importance for the 500 

GPI. This suggests that statistical methods of predicting changes in TC behavior are 501 

plausible, although individual basin behavior depends on particular local forcing factors 502 

in addition the accessible thermodynamic variables used in the GPI and VI.  503 

   Potential intensity is related to the difference between sea surface temperature and 504 

outflow temperature (evaluated at 100 hPa). In fact we find that changes in SSTs alone 505 

provide a better correlation with both potential intensity and GPI changes. This result 506 

is similar with previous observational (Grinsted et al., 2013) and modeling (Wu and 507 

Lau, 1992) studies that suggest it is the geographical distribution of SST anomalies that 508 

are crucial for the development of TC. Recent analysis of GeoMIP results by Davis et 509 

al. (2016), on the extent of the tropical belt under G1 and abrupt4×CO2 experiments, 510 

demonstrates that tropical upper-tropospheric temperature changes are well-correlated 511 

with the change in global-mean surface temperature. This is because changes in the 512 

static stability characterized by upper troposphere and surface temperature differences 513 

scales with the moist adiabatic lapse rate and surface temperatures. 514 

In contrast with the solar dimming G1 experiments analyzed by Davis et al., (2016), 515 

here we analyze G4 which is an aerosol injection protocol. The aerosol is prescribed 516 

(Kravitz et al., 2011a), as injected into the equatorial stratosphere at 16-25 km altitude, 517 

where most of the direct radiative heating takes place (Pitari et al., 2014). However, due 518 

to the large size of the geoengineering aerosol particles (effective radius of the order of 519 

0.6 μm or more), a significant fraction of the stratospheric particles settle below the 520 
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tropical tropopause (Niemeier et al., 2011; English et al., 2012; Cirisan et al, 2013), thus 521 

producing some diabatic heating a few kilometres immediately below the tropical 522 

tropopause. This is superimposed on the convectively-driven upper tropospheric 523 

cooling caused by surface cooling due to the SAI and reduced convection and weakened 524 

hydrological cycle (Bala et al., 2008). This may be expected to be the dominant process 525 

controlling the SAI-induced changes in atmospheric static stability. Furthermore, recent 526 

work (Visioni et al., 2018 ACP in discussion) explores the surface cooling impact on 527 

upper tropospheric cirrus cloud formation, and the concomitant impact on static stability. 528 

Surface cooling and lower stratospheric warming, together, tend to stabilize the 529 

atmosphere, thus decreasing turbulence and updraft velocities. The net effect is an 530 

induced cirrus thinning, which indirectly increases net global cooling due to the SAI.  531 

Pitari et al. (2014) note a warming of the 100 hPa layer under G4 relative to RCP4.5 532 

for the MIROC-ESM-CHEM model in the 2040s for the tropics. Most models (Table 3) 533 

in the TC basins and seasons show a cooling of (ensemble mean of 0.14C) with only 534 

HadGEM2-ES and BNU-ESM having warming at 100 hPa. Given the complexities of 535 

changes in the upper troposphere due to the process outlined in the previous paragraph 536 

the range in static stabilities represented by the model range in Ts-To differences 537 

relative to RCP4.5 is probably not surprising. Therefore, although we might expect to 538 

see an improvement in correlation of potential intensity and GPI by using 100 hPa 539 

temperatures in addition to SSTs, the ability of the models to capture all the processes 540 

varies. The result is that the models used here have a better relationship with sea surface 541 
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temperatures than static stability, and suggests that the aerosol effects are not being 542 

simulated well enough to allow their impacts on TC genesis to be fully estimated.  543 

The change in relative humidity on the tropical ocean basins in future is a key 544 

aspect of TC genesis according to our analysis. Models tend to agree on the sign of 545 

change in relative humidity as temperatures rise, but there are consistent differences in 546 

response strength across the ocean basins. This indicates that although relative humidity 547 

is important for most models, changes in TC genesis processes between basins affect 548 

its utility as a predictor variable. Here we used the widely utilized formulation of GPI 549 

given by Emanuel and Nolan (2004), which specified moisture in terms of relative 550 

humidity. More recently Emanuel (2010) reformulate GPI in terms of “saturation deficit” 551 

that is a measure of the moist entropy deficit of the middle troposphere, which becomes 552 

larger as the middle troposphere becomes drier. This parameter has the same 553 

denominator as m in Eq (4), which is used in the calculation of VI, Eq (3), while the 554 

numerator varies only in the definition of the boundary layer. Our analysis of the 555 

dependence of the three terms that describe VI shows m is moderately important in 556 

some models (Fig. S5), and more useful reduced regression models are (𝑉𝑝𝑜𝑡, 𝜒𝑚), or 557 

(𝑉𝑠ℎ𝑒𝑎𝑟 , 𝜒𝑚 ) than (𝑉𝑝𝑜𝑡 , 𝑉𝑠ℎ𝑒𝑎𝑟) . This consistent with analysis of 6 ESM models 21st 558 

century trends in GPI by Emanuel (2013), who also notes that vorticity does not 559 

contribute to trends.  560 

The final variable, Vshear , shows large scatter across the models, but consistent anti-561 

correlation with Ts. However, there are also good but different relations between H and 562 
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Vshear in every basin suggesting that the state of this dynamic variable can be explained 563 

to a significant degree by the thermodynamic state driving H and Ts. This is consistent 564 

with analysis (Li et al., 2010), showing that prescribed sea surface temperatures can 565 

account for some changes in TC in the Pacific basins as surface temperature gradients 566 

drive trade winds, which changes the wind shear. Overall our analysis of the driving 567 

parameters in GPI, suggests that despite large model differences, the simple dependence 568 

of GPI on surface temperatures is reasonably robust. 569 

   Smyth et al. (2017) report the seasonal migration of the Intertropical Convergence 570 

Zone (ITCZ) in G1, associated with preferential cooling of the summer hemisphere, 571 

and annual mean ITCZ shifts in some models that are correlated with the warming of 572 

one hemisphere relative to the other. ITCZ location is correlated with TC and season. 573 

The timing of the TC season under G4 is about a month earlier in both hemispheres 574 

than under RCP4.5. This might also be a function of the reduced amplitude of ITCZ 575 

motion, though this effect has not yet been verified as occurring under SAI as prescribed 576 

by G4. It is plausible because reduced solar heating of the ocean basins mean that less 577 

sea water is heated and there will be reduced lag of those surface waters with solar 578 

zenith position. Our analysis of seasonality of TCs shows that there appears to be a 579 

difference in behavior between the Southern and Northern Hemispheres, with the 580 

southern one showing no consistent changes between models under RCP4.5 and G4 581 

scenarios. Davis et al. (2016) show that there are differences in the evolution of the 582 

northern and southern Hadley cells under GHG forcing, with the expansion of the 583 
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northern one scaling non-linearly with temperature. Differences seem to be driven 584 

fundamentally by the equator-pole temperature gradient, and therefore may be expected 585 

given the far greater fraction of land surface and larger polar amplification in the 586 

Northern Hemisphere.  587 

   Considering the coarse spatio-temporal resolution of most ESM models, evaluating 588 

the GPI is likely to remain a popular be a good diagnostic of TC variability under 589 

different climates. The results presented here suggest that SAI produces reductions in 590 

TCs across most of the major storm basins, and this is primarily due to reduced sea 591 

surface temperatures in the genesis regions.  592 
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Figures and tables 767 

Table 1. Climate models used in this study 768 

Model Reference 
Resolution 

(Lon×Lat) 

ensembl

e 

member

s 

BNU-ESM Ji et al. (2014) 128×64 1 

HadGEM2-ES Collins et al.(2011) 192×144 3 

MIROC-ESM Watanabe et al. (2011) 128×64 1 

MIROC-ESM-

CHEM 
Watanabe et al. (2011) 128×64 9 

NorESM1-M Bentsen et al. (2013) 144×96 1 

 769 

Table 2. Definitions of regions and numbers of observed TC 770 

Region Latitudes Longitudes 
Annual Mean Numbers and 
percentages (1980-2008) 

North Atlantic (NA) 6-18N 20-60W 12 (15%) 

Eastern North Pacific (ENP) 5-16N 90-170W 15 (19%) 

Western North Pacific (WNP) 5-20N 110-150E 25 (32%) 

North Indian (NI) 5-20N 50-110E 4 (5%) 

South Indian (SI) 5-20S 50-100E 
23 (29%) 

South Pacific (SP) 5-20S 160E-130W 

 771 

  772 
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 773 

Table 3. Differences (G4-RCP4.5) in TC basins and season during 2020-2069 year 774 

calculated point-by-point. Northern Hemisphere numbers are above and Southern 775 

Hemisphere below. GPI and VI are expressed as percentages (G4-RCP4.5)/RCP4.5. 776 

Bold fonts are significant at 95% level according to the Wilcoxon signed-rank test.  777 

 778 

 779 

 780 

  781 

Models Ts (C) To (C) Ts-To (C) GPI (%) Vpot (ms-1) H (%) Vshear (ms-1)  (×10-8  s-1) VI (%) χm (×10-3) 

BNU-ESM 
-0.50 

-0.42 

0.12 

0.11 

-0.62 

-0.53 

-3.8 

0.37 

-0.45 

0.070 

-0.071 

0.20 

0.014 

-0.27 

-0.63 

-1.0 

2.2 

-1.5 

16 

15 

MIROC-ESM 
-0.34 

-0.30 

-0.58 

-0.56 

0.24 

0.26 

-6.7 

-0.86 

-0.94 

-0.50 

-0.36 

-0.19 

0.13 

0.13 

1.3 

-2.3 

2.5 

2.3 

-3.7 

6.8 

MIROC-ESM-

CHEM 

-0.25 

-0.21 

-0.45 

-0.43 

0.21 

0.22 

-4.8 

-11 

6.9 

6.5 

4.8 

3.6 

1.8 

2.2 

-0.054 

-0.027 

1.9 

1.3 

-7.9 

3.6 

NorESM1-M 
-0.23 

-0.21 

-0.087 

-0.071 

-0.15 

-0.14 

4.8 

-0.73 

-0.52 

-0.62 

-0.51 

-0.10 

0.029 

-0.12 

-3.4 

-0.83 

-2.0 

2.5 

-4.8 

3.3 

HadGEM2-ES 
-0.65 

-0.61 

0.16 

0.15 

-0.80 

-0.76 

-3.1 

0.39 

-1.0 

-0.71 

0.17 

-0.088 

0.041 

-0.079 

1.9 

1.0 

3.8 

1.1 

35 

30 

Ensemble 
-0.40 

-0.35 

-0.14 

-0.13 

-0.26 

-0.23 

-2.7 

-2.5 

0.80 

0.95 

0.80 

0.68 

0.40 

0.37 

-0.2 

-0.7 

1.9 

1.0 

7.0 

11.8 
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Table 4 Across basin differences in GPI and VI calculated as (G4-RCP4.5)/RCP4.5 as 782 

percentages for averaged over the period 2020-2069. GPI are written above VI in each 783 

cell. Bold means the difference is significant at the 5% level according to the 784 

Wilcoxon signed-rank test. 785 

  786 

Models WNP ENP NA NI SI SP all 

BNU-ESM 
2.8 

3.0 

-4.0 

5.6 

-3.7 

3.0 

-8.7 

1.9 

0.9 

-0.7 

2.1 

-1.7 

-3.3 

0.7 

MIROC-ESM 
-4.2 

8.1 

-5.6 

2.4 

-8.4 

1.9 

-4.6 

1.9 

2.2 

2.2 

8.5 

0.1 

-6.1 

2.3 

MIROC-ESM-

CHEM  

-4.1 

-1.7 

-7.7 

-0.9 

-10.2 

3.9 

-12.2 

8.0 

-14.0 

1.2 

-3.0 

0.3 

-8.6 

2.0 

NorESM1-M 
0.4 

-1.7 

37.0 

-8.1 

9.1 

-1.3 

11.2 

6.0 

-0.3 

4.7 

3.1 

1.3 

0.9 

-0.8 

HadGEM2-ES 
3.2 

4.0 

-6.8 

6.0 

-5.2 

0.9 

-4.2 

7.1 

-0.7 

2.5 

2.1 

0.1 

-2.3 

3.0 

Ensemble 
-0.4 

2.3 

3.3 

1.0 

-3.7 

1.7 

-3.7 

5.0 

-2.4 

2.0 

2.6 

0.5 

-3.9 

1.5 
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 787 

 788 

 789 

Figure 1. Five yearly moving annual averages across the 6 TC basins and TC season, of (a) 790 

normalized GPI shifted by the each model’s mean over 2020-2069, solid lines denote forcing 791 

under RCP4.5 and dotted lines values under G4. The ensemble was calculated as the mean of 792 

normalized models then offset by the mean across-model GPI. (b) VI with solid lines denoting 793 

model ensemble means and shading indicating the range across the five models. 794 
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 795 

Figure 2. The correlation coefficients (R2) between annual GPI and VI anomalies (G4-RCP4.5) 796 

during TC season and six ocean TC basins. The MIROC-ESM-CHEM model has 4 ensemble 797 

members, the HadGEM2-ES model has 3 ensemble members, and other models have one 798 

member. Each model is weighted equally and normalized for the ensemble regardless of the 799 

number of separate realizations. Dashed line represent R2=0. 800 
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 814 

 815 

Figure 3. Spatial distribution at each grid point during the appropriate TC season between 816 

2020-2069 of the anomaly (GPIG4-GPIRCP4.5)/GPIRCP4.5 as a percentage, for a) GPI and b) VI. 817 

Yellow rectangles delimit the six TC ocean basins. The Northern Hemisphere TC season is 818 
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defined as June through November, and the Southern Hemisphere season is defined to be 819 

January through June. 820 

 821 

 822 

 823 

 824 

 825 

 826 

Figure 4 The mean month contribution of each variable to the difference (G4-RCP4.5) for the 827 

years 2020-2069 in TC basins and TC season in GPI and VI. 828 
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 829 

Figure 5. The fractional variance contribution of components of GPI during the TC season and 830 

within the six TC basins during 2020-2069.  831 

 832 
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Figure 6. The F-statistic of the 15 different combinations of regression variables for GPI 833 

differences between G4 and RCP4.5. The x-axis on each panel represents the combination of 834 

components used as predictors in each regression equation: 1:(PI,RH,WS,AV), 2:(PI,RH,WS), 835 

3:(PI,RH,AV),  4:(AV,RH,WS), 5:(PI,AV,WS), 6:(PI,RH), 7:(PI,WS), 8:(PI,AV), 9:(RH,WS), 836 

10:(RH,AV), 11:(AV,WS), 12:(PI), 13:(RH), 14:(WS), 15:(AV). 837 

 838 

Figure 7. The correlations (R2) between differences (G4-RCP4.5) during TC season and across 839 

the six TC basins for the years 2020-2069 for (a) Vpot anomalies as a function static stability Ts-840 

To. Panels b-e show R2 coefficients for anomalies with sea surface temperature differences (Ts) 841 

and: (b) Vpot, (c) GPI , (d) relative humidity, (e) vertical wind shear. Each model is weighted 842 

equally in the ensembles regardless of number of observations. 843 
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