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In the reply, the referee’s comments are in italics, our response is in normal text, and 

quotes from the manuscript are in blue. 

Anonymous Referee #1 

 

Major Comments  

1. I found the abstract to be long and confusing, it should grab the reader with the most 

significant results. There’s lots of irrelevant detail such as “vertical wind shear and 

vorticity is insignificant” which does not need to be here. The last sentence (Line 52) 

adds nothing to the abstract and does not follow from the results of the study  

Reply: revised as requested 

2. Restructure the introduction (Lines 83-121). It currently bounces between the various 

ways of measuring TC activity, when it only needs to say that there are implicit (e.g. 

GPI), semi-explicit (e.g. dynamical downscaling) and explicit (e.g. feature tracking) 

methods for measuring storm activity (with references). Then go on to describe GPI 

and VI theory. 

Reply: revised as requested 

3. I think you need more justification in the text as to why Section 3.4 belongs in the 

manuscript – it seems to me to be a rather unnecessary accessory that detracts from 

your GPI and VI results. Also, are there any references that have identified a clear 

physical relationship between ENSO and storms outside the WNP and NA basins?  

Reply: we deleted section 3.4 as suggested 

4. Remove Section 3.5 which is confusing and does not anything to the study  

Reply: we deleted section 3.5 as suggested 

5. Please establish that the GPI and VI differences between G4 and RCP4.5 are 

significant as Table 3 and Figure 1 do not currently support this argument  

Reply: We have done this, making several new tables and figures that show significant 

changes as tested using Wilcoxon signed rank test and Student’s t-test. Fig. 1 has also 

been revised and the whole results re-evaluated using longer TC seasons. 

6. There are many grammatical and spelling issues that need addressing. Please have 

the study checked for grammar.  

Reply: Done 

 

General Comments  
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1. Use acronyms throughout the manuscript – please stop jumping between using 

acronyms and full terminology (e.g. potential intensity and PI are used 

interchangeably) which is confusing. Define acronyms on first usage (e.g. 

Greenhouse Gas GHG) and revert to using them exclusively  

Reply：In general we have but in some cases such as with the example the referee gives, 

Potential Intensity, this can lead to confusion. We use PI to define a term in equation 5, 

while potential intensity is defined as Vpot in equation 2. This is deliberately done since 

the equations define different quantities that may be considered as potential intensity in 

different formulations.   

Use either Stratospheric Sulphate Geoengineering (SSG) or Stratospheric Aerosol 

Injection (SAI) throughout instead of generic terms such as ‘geoengineering’ or ‘SRM’ 

which comprise a variety of other methods that may have completely different impacts 

on storms. 

Reply：Done. 

2. I’d suggest either using Tropical Storms (TS) or Tropical Cyclones (TC) as the 

terminology throughout. I see you use typhoon or hurricane at some points, which 

are basin-exclusive terms and I think not be used  

Reply：Done. 

Occasionally you refer to the use of climate indices such as GPI or VI as the ‘direct’ 

way of measuring TC activity (e.g. L85) or you say storm tracking is ‘indirect’ (L489). 

I disagree completely! Rather, tracking storms is more direct or explicit, whereas 

indices are implicit or as you say empirical. Please change this throughout the 

manuscript.  

Reply：Done. 

3. You often give p-values – note within the text which tests were used to derive these 

p-values (I assume 2-sided t-test but this should be specified)  

Reply：Done, we use Student’s t-tests but usually the Wilcoxon signed rank test. 

  

5. Please check references throughout. My particular gripes are that all papers with 2 

authors should be labelled as such, for instance ‘Tang and Emanuel (2012)’ not ‘Tang 

et al. (2012)’ (see L100). I found many such instances. Some references are misused and 

do not contain pertinent detail to the text (see specific comments for details), while the 

Thomas et al. (2015) reference (Line 120) is missing.  

Reply：Done.  
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6. If you do keep Section 3.5 in the manuscript, please acknowledge the Hadley Centre 

for providing you with the 6 hourly data. Please also acknowledge Kevin Hodges if he 

assisted you in running TRACK.  

Reply： Section 3.5 is deleted. 

Specific Comments 

1. L33 – ‘a complete description of TC variability requires much more dynamical data 

than models can provide at present’ – I don’t think this is true, I think the issue is 

the coarse spatiotemporal resolutions, the models have sufficient dynamics. Please 

rephrase.  

Reply：rewritten as: an accurate description of TC variability requires much higher 

spatial and temporal resolution than the models used in the GeoMIP experiments 

provide 

2. L35 – do you need to list all the individual components of the GPI and VI in the 

abstract? Surely this is more for the Introduction or Methods section  

Reply：rewritten as Genesis potential index (GPI) and ventilation index (VI) are 

combinations of dynamic and thermodynamic variables that provide proxies for TC 

activity under different climate states. 

3. L41 – ‘Globally, GPI under G4 is lower than under RCP4.5, though both have a 

slight decreasing trend’. I am concerned that people might read from this that SAI 

is not able to counteract GPI changes under global-warming. Rather, the slight 

decreasing trend in G4 simply relates to the experimental design (i.e. a constant 

forcing). I would remove the ‘slight decreasing trend’ line and add a caveat in the 

conclusions saying if a different SAI approach were taken (e.g. Jones et al (2018) 

stabilizing global warming at 1.5K) then the GPI trends may be different  

Reply: Yes, rewritten as GPI is consistently and significantly lower under G4 than 

RCP4.5 in 5 out of 6 ocean basins, but it increases under G4 in the South Pacific. 

4. L42 – ‘spatial patterns in the effectiveness of geoengineering show reductions in 

TC’ – I’m not sure what this means, please clarify  

Reply: Yes, rewritten as reply to #3 

5. L47 – ‘genesis potential’ -> ‘GPI’  

Reply：Changed. 

5. L52 – final line – again I’m not sure what you mean by this final sentence. Do you 

mean that simple statistical models based on surface temperature or relative 

humidity changes are appropriate for examining TC changes? I don’t think you 
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really show this though as you don’t explicitly link GPI or VI to modelled TCs in 

this study  

Reply: Agreed, we delete the sentence. 

6. L58-L62 – numerous grammatical issues  

Reply: rewritten as: Anthropogenic greenhouse gas (GHG) emissions are changing 

climate (IPCC, 2007). The best solution for limiting climate change is to reverse the 

growth in net GHG emissions. It is doubtful that reductions in emissions can be done 

fast enough to limit global mean temperatures rises to targets such as the 1.5 or 2C 

pledged at the Paris climate meeting (Rogelj et al., 2015). 

8. L63 – replace ‘retard’ with suitable word such as ‘counteract’  

Reply：Done, replaced with counteract. 

9. L67 – consider replacing ‘facilitate’ with ‘homogenize’  

Reply：Done. 

10. L68 – ‘and is supported by about 12 model groups’ replace with ‘and is currently 

supported by 12 model groups’ – be specific on the number  

Reply：Done. supported by 15 model groups 

11. L69 – ‘Climate system thermodynamics will certainly change under SRM’ – this is 

a strong statement, change compared to what by the way? If you mean compared to 

business-as-usual then change (of a kind) may welcome! Please reword  

Reply：We are not making a value-judgement merely reporting what is well-established, 

we added a few more references to illustrate the point. Rewritten Climate system 

thermodynamics will change under SRM geoengineering because the reduction in short 

wave radiation is designed to offset increases in long wave absorption (Huneeus et al., 

2014; Kashimura, H., M. Abe, S. Watanabe, T. Sekiya, D. Ji, J. C. Moore, J.N.S. Cole and B. 

Kravitz 2017 Shortwave radiative forcing, rapid adjustment, and feedback to the surface by sulfate 

geoengineering: analysis of the Geoengineering Model Intercomparison Project G4 scenario, 

Atmospheric Chemistry and Physics 17, 3339-3356, doi:10.5194/acp-17-3339-2017, 2017; Visioni, 

D., Pitari, G., and Aquila, V.: Sulfate geoengineering: a review of the factors controlling the needed 

injection of sulfur dioxide, Atmos. Chem. Phys., 17, 3879-3889, https://doi.org/10.5194/acp-17-

3879-2017, 2017; Russotto, R. D. and Ackerman, T. P.: Energy transport, polar amplification, and 

ITCZ shifts in the GeoMIP G1 ensemble, Atmospheric Chemistry and Physics, 18, 2287–2305, 

doi:10.5194/acp-18-2287-2018, 2018. ). 

12. L82 – ‘methods that rely on the statistical links between the thermodynamics of the 

ocean and atmosphere with cyclone dynamics have been the topic of studies’. This is 
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not entirely true, Jones et al (2017) do explicitly model storms. Add predominantly 

between have and been  

Reply：Done. 

13. L83 – as mentioned, replace typhoons with TCs  

Reply：Done. 

14. L83 – as mentioned in the major comments, this paragraph is very confusing, please 

revise.  

Many methods have used to study the changes in TCs under climate warming. These 

can be divided into implicit methods, such as the GPI and VI which we focus on here, 

semi-explicit, such as downscaling (Emanuel, 2006; 2013), and explicit such as feature 

tracking storm systems (Hodges, 1995; Jones et al., 2017). Implicit methods rely on 

using historical climate and storm records to quantitative relationships between TC and 

key variables such as local, tropical and global sea surface temperatures, and various 

teleconnection patterns (Grinsted et al., 2012; Emanuel, 2008; Landsea, 2005; Gray, 

1979). Potential intensity theory (Bister et al., 1998; Emanuel et al., 2004) predicts the 

dependence of TC wind speed on the air-sea thermodynamic imbalance and the 

temperature of the lower stratosphere. For example, many studies suggest that wind 

shear has inhibitory effect on the TC activity (Vecchi et al., 2007). Others have also 

identified changes in the large-scale environmental factors influencing tropical storm 

activity to assess TC changes in future (Tippett et al., 2011; Grinsted et al., 2013). 

15. L96 – ‘factors influence genesis’ -> ‘factors influence TC genesis’ or cyclogenesis  

Reply：Changed to factors influence TC cyclogenesis. 

16. L96 – ‘a quantitative theory is lacking’ – please add a suitable reference  

Reply：rewritten as a quantitative theory is lacking (Emanuel, 2013) 

17. L99 – What is the definition of potential intensity, which is rather an abstract 

concept? Define on first use  

Reply：rewritten as The GPI uses four environmental variables: potential intensity, low-

level absolute vorticity, vertical wind shear, and relative humidity. Potential intensity is 

the maximum sustainable intensity of tropical cyclones based on the thermodynamic 

state of the atmosphere and sea surface, that is the difference between the saturation 

enthalpy of the sea surface and the moist static energy of the subcloud layer (Riehl H 

(1950) A model for hurricane formation. J Appl Phys 21:917–925).  

18. L108 – Dynamical potential intensity is more about ocean feedbacks (i.e. storms 

stir up cold water, which in turn reduces the potential intensity) than general ocean 

impacts  
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Reply：rewritten as: Dynamic potential intensity is yet another index designed to 

describe ocean feedbacks on tropical cyclones, that is storms bring cold deeper water 

to the surface, which reduces the potential intensity. 

19. L109 – ‘These indices represent the climatological thermodynamic spatial and 

seasonal control -> please simplify, superfluous language  

Reply：rewritten as: These indices represent the thermodynamic and hence seasonal 

control of TC genesis. 

20. L111 – ‘more or less beyond the abilities of contemporary climate models’. What 

about the high-resolution models though, which are able to model storm intensities 

capably (see Murakami et al (2016) and Roberts et al (2015))  

Reply：Yes, a few models can do this, but that’s what we meant by “more or less”. 

Rewritten as: which is beyond the abilities of most contemporary climate models, in 

particular those we use here. 

21. L112 – Wang et al (2012) only consider one basin – please replace with a suitable 

reference comparing different basins  

Reply：We use Emanuel (2010) and Wing et al., (2015) to replace Wang et.al (2012). 

22. L119 – What do you mean by severe TCs? Perhaps give windspeed constraints  

Reply：Done, we Rewritten as: the frequency of intense TC (those having windspeeds 

larger than 55 ms-1) 

23. L120 – Thomas et al (2015) reference missing from bibliography 

Reply：Sorry, it should be Knutson et al (2015), and we revised it now. 

24. L120 - Kang et al (2012) reference makes no predictions about future changes in 

TC activity, please change to a relevant reference  

Reply: we delete Kang as 2 other references are already cited here.  

25. L126 – The sentence describing Jones et al (2017)’s results is confusing. All you 

need to say is the SAI in the north reduces North Atlantic TC frequency, while SAI in 

the south enhances NA TC frequency. Their results were inconclusive for the G4 

scenario, as investigated here 

Reply: rewritten as: Jones et al. (2017) showed SAI in the northern hemisphere reduced 

the numbers of TC in the North Atlantic while SAI in the southern hemisphere increased 

numbers in the basin.   

26. L131 – Please sell the merits of your study. No other study has looked at GPI and 

VI in the context of SAI. No other study has investigated storm changes under SAI in 
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basins outside the North Atlantic! No other study has attempted to attribute changes to 

storms under SAI to thermodynamic changes. This is good work, an important scientific 

development, and should be highlighted.  

Reply：Thanks for this, we rewrite the paragraph as: In contrast with earlier work that 

has focused only on the impacts of SAI on North Atlantic hurricanes (Moore et al., 2015; 

Jones et al., 2017), we examine ESM simulations of global TC evolution in 6 ocean 

basins using the GPI and VI indices. We then evaluate how far TC changes under SAI 

and GHG forcing can be attributed to thermodynamic changes, and hence be forecast 

in statistical terms.  

 

27. L138 – ‘We quantify the contribution of each variable to TC genesis using two 

statistical methods’. This is a rather weak statement, which variables do you study and 

which statistical methods do you utilize?  

Reply：We rewrite as: We quantify the contribution of SST, relative humidity and wind 

shear to TC genesis based on attribution of monthly variance in GPI and VI in each 

basin’s time series using multiple linear regression methods. 

28. L139 – ‘Finally we study the effect of ENSO on TC and TC track of HadGEM2-ES’, 

what justification have you for including these studies here, they don’t fit with the GPI 

and VI work that you have set up to assess  

Reply：OK, We delete these sections. 

29. L150-L156 – You present the results from Yu et al (2015) and Moore et al (2015), 

but these will necessarily differ to your results as you use 6 models (you include 

NorESM-1) and they use 7 models (CSIRO-MK3L and GISS-E2-R). Please state the 

temperature changes in your ensemble of models, and preferably include ranges. 

Consider also moving this to the results section of the manuscript 

Yes, we delete this text and use revised numbers in the results section 

The climate response to G4 forcing has been discussed by Yu et al. (2015). The general 

pattern of temperature change under GHG forcing includes accentuated Arctic warming, 

and least warming in the tropics. G4 largely reverses these changes, but leaves some 

residual warming in the polar regions and under-cools the tropics. SAI also reduces 

temperatures over land more than over oceans relative to GHG, and hence reduces the 

temperature difference between land and oceans. Between 2020 and 2069, SSTs in the 

6 basins during their TC seasons are 0.4°C (with a model range of 0.2 to 0.6°C) warmer 

in RCP4.5 than under G4. 

30. L162 – Sentence beginning ‘It is, however,’ should have a suitable reference  
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Reply：Rewritten as It is, however, more interesting for TC studies because the sulphate 

aerosol injected into the stratosphere causes radiative heating (Pitari et al., 2014), and 

other indirect effects on the upper troposphere (Visioni et al., 2018)… 

31. L170 – replace ‘vector’ with ‘wind’  

Reply：Done. 

32. L172 – define Cp in Equation (2)  

Reply：Cp is the heat capacity of dry air at constant pressure   

33. L174 – why do you use the 100 hPa level for the outflow temperature? Do you have 

a suitable reference?  

Reply：We use  Wing, A. A., K. Emanuel, and S. Solomon (2015), On the factors affecting trends and variability in tropical cyclone 

potential intensity, Geophys. Res. Lett., 42, 8669–8677, doi:10.1002/2015GL066145 and add some sentences in Section 

3.3 on this choice. Wing et al. (2015.) use the trends in reanalysis and radiosonde 

products at 70 and 100 hPa in TC seasons to represent change in outflow temperature 

across various TC basins and assign its contribution to trends in potV . For convenience 

we choose the tropical tropopause (100 hPa) temperature from the ESM output to 

represent 
OT  

34. L177 – please define what the GPI is, i.e. the theoretical maximum intensity, and 

what increases/decreases to GPI signify (with a suitable reference)  

Reply：We define exactly what GPI is by equation later in the text, and it was discussed 

during the introduction along with other TC proxies. We are not sure exactly what 

should be added here. We do rewrite the introductory sentences to the section slightly: 

The GPI has been widely employed to represent TC activity (e.g., Song et al., 2015), 

and several different formulations have been described (e.g., Emanuel, 2004; 2010). 

Here, we chose to use perhaps the most commonly-used method  

We assess the large-scale environmental conditions for TC generation primarily using 

the GPI, but make use of the VI for comparison purposes. 

35. L188 - please define what the VI is and what increases/decreases to VI signify (with 

a suitable reference)  

Reply：As with point #34 we define VI later by equation later in the text, and it was 

discussed during the introduction along with other TC proxies. We are not sure exactly 

what should be added here. We add: In contrast with GPI where increases correspond 

to heightened TCs, increases in VI mean fewer TCs are likely. 

36. L190 – ‘greenhouse gas’ - > RCP4.5  
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Reply：Done. 

37. L193 – ‘air temperature’ on levels or near surface air temperature?  

Reply：Air temperature on different vertical levels . 

38. L200 – ‘researchers’ -> ‘studies’  

Reply：Done. 

39. L200 – Emanuel 2010 is not a suitable reference as it makes no predictions for the 

future, only studying observations from 1908-1958  

Reply：Actually what we discussing is observations, the reference for Emanuel is 

correct, but the Knutson reference should be 2010. Rewritten as Some studies (Emanuel, 

2010; Knutson et al., 2010) find robust or significant declines in the frequency of events 

in the Southern Hemisphere, while the Northern Hemisphere is relatively constant in 

the observational record. 

40. L200 – ‘find’ -> ‘predict’  

Reply：Actually what we discussing is observations, see #39 and changed reference to 

Knutson et al., 2010 

41. L201 – ‘in the Southern Hemisphere’ … under global warming  

Reply：Actually what we discussing is observations, see #39 and changed reference to 

Knutson et al., 2010, Southern Hemisphere, while the Northern Hemisphere is 

relatively constant the observational record. 

42. L201 – ‘but increasing frequency in the northern hemisphere’ – Knutson et al (2015) 

find no such thing! Sure, they find an increase in the East North Pacific and North 

Indian basins, but they also predict a decrease in the North Atlantic and West North 

Pacific basins!  

Reply：Actually what we discussing is observations, the Knutson reference should be 

2010. Rewritten as Some studies (Emanuel, 2010; Knutson et al., 2010) find robust or 

significant declines in the frequency of events in the Southern Hemisphere, while the 

Northern Hemisphere is relatively constant in the observational record. 

43. L203 – ‘The observed TC annual-mean numbers for the period 1980-2008 for each 

basin are also listed in Table 2’ – where did these numbers come from? I can only find 

the basin boundaries in Emanuel 2010. Are these numbers consistent with your basin 

boundaries? Please provide a suitable reference  

Reply：These numbers are from the Figure 3 in Emanuel, (2010). And our basin 

boundaries are consistent with the basin boundaries in Emanuel, (2010). 
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44. L209 – ‘annual’ -> ‘annual-mean’  

Reply：Done. 

45. L210 – you use August to October for the Northern Hemisphere, but the North 

Indian basin has two peaks in activity (one in May) (Li et al., 2013). How does GPI and 

VI change in this second peak in the Indian basin. Please comment on this.  

Reply：We list the model, month and basin GPI and VI in Table S1. Between 2020 and 

2069 the GPI under RCP4.5 in May in the North Indian basin is 44, while under G4 it 

is 55. BNU-ESM, HadGEM2-ES, MIROC–ESM and NorESM1-M both show clear 

secondary peaks in GPI in April, May, June, the other models do not. Significant 

differences (p<0.05 t-test and Wilcoxon signed rank test) are found for MIROC-ESM, 

MIROC-ESM-CHEM and NorESM1-M. The secondary may peak is much smaller than 

the general northern hemisphere peak and we redefine our TC season in any case – see 

point #46. We add: Li et al. (2013) note that the Northern India TC basin has a secondary 

peak in TC around May. This peak is reproduced by the BNU-ESM, HadGEM2-ES, 

MIROC–ESM and NorESM1-M models where it about half the size of the peak months 

later in the year (Table S1). This does not affect the statistical choice of TC months 

(Table S2), although it causes the fraction of GPI accounted for in our TC season to be 

the lowest for the Northern Indian basin (Table S3). 

46. L210 – what percentage of total annual storms in each basin occur during your 

chosen timeframes? These 3 month timeframes seem very narrow to me  

Reply：After reading your points and the major point #5 we reassessed our choices. 

We list the basin GPI and VI by model and month in Table S1.The individual monthly 

GPI as a fraction of the annual totals are shown in Table S2. We select northern and 

southern TC season on the basis of the each model’s monthly fractions of GPI. We use 

a threshold of 10% for above uniformly distributed GPI for RCP4.5 and G4 averaged 

GPI and find that for the northern basins June-November are above the threshold, while 

for the southern basins it is January-June. Thus there are 6 months in each hemisphere 

and they account for 68% under RCP4.5 and 69% under G4 of the yearly total GPI 

(Table S3). We also notice from Table S2 that under G4 the TC season occurs about 1 

month earlier than under RCP4.5 in both hemispheres, although our choice of threshold 

for the TC season means that we can use the same 6 months for each experiment. While 

peak TC season. The same analysis for VI shows similar results, although the season is 

less well-defined than for GPI, for instance VI in August is higher than December in 

northern basins as is January in the southern ones, but the general results do not require 

separate definitions of season from those for GPI. The Northern Hemisphere peak TC 

season is August through October and January through March in the Southern 

Hemisphere season, various authors have used longer periods in analyzing model data, 

e.g. Emanuel (2013) used all 12 months, while Jones et al., (2017) used June-November 
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for the North Atlantic hurricane season. Li et al. (2013) note that the Northern Indian 

TC basin has a secondary peak in TC around May. This peak is reproduced by the BNU-

ESM, HadGEM2-ES, MIROC–ESM and NorESM1-M models where it about half the 

size of the peak months later in the year (Table S1). This does not affect the statistical 

choice of TC months (Table S2), although it causes the fraction of GPI accounted for 

in our TC season to be the lowest for the Northern Indian basin (Table S3). 

 

47. L217 – ‘Furthermore, the G4 means for all models were significantly lower than 

their RCP4.5 values’ – Table 3 seems to say the opposite, that none of the changes to 

GPI are significant! Please give annual-mean values, standard deviations and p-values 

for G4 and RCP4.5, perhaps in Table 1?  

Reply：There was some confusion what trends were significant, and what was different 

under G4 and RCP4.5 that we have now resolved. The revised Table 3, new Table 4 and 

Fig. 1 taking account of the new TC seasons (#46) shows clearer differences. We also 

produce 3 new tables in the SI that show monthly and basin model results, we prefer 

this solution than adding results to our Table 1 as the referee suggests. We write: The 

models we use have considerable range in their absolute values of GPI, which is also a 

generally observed feature of climate models (Emanuel, 2013). The GPI has a rising 

trend under RCP4.5 and G4 (Fig. 1). Table 3 shows that there are significantly (p<0.05 

when tested using the Wilcoxon signed rank test) lower values of GPI under G4 than 

RCP4.5 for Northern Hemisphere basins in all models, but only MIROC-ESM-CHEM 

has significantly lower GPI for the Southern Hemisphere basins. The time series 

indicate that tropical storms will become more frequent with time and that G4 

significantly reduces the numbers. 

48. L221 – ‘The time series indicate that tropical storms will become more frequent 

with time and that G4 significantly reduces numbers’ – Fig. 1 does not indicate this at 

all to me! There are many years, for each model, where the GPI is higher for G4 than 

for RCP4.5. Figure 1 will need rethinking as it does not support the central tenet of 

your paper. How for instance, can a difference of -0.3 % in CanESM2 be significant?  

Reply：See reply to #47. Revised TC season numbers in Table 3: Table 3 shows that 

there are significantly (p<0.05 when tested using the Wilcoxon signed rank test) lower 

values of GPI under G4 than RCP4.5 for Northern Hemisphere basins in all models 

except for NorESM1-M, but only MIROC-ESM-CHEM has significantly lower GPI 

for the Southern Hemisphere basins. 

49. L226 – Sentence starting ‘During most years from 2020 to 2069…’ – this is hardly 

a sufficient statistical test for significance, simply saying VI looks higher for G4 than 

RCP4.5! Please perform significance tests and identify which models show significant 
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VI changes and which ones don’t. Table 3 suggests that no VI changes are significant! 

Reply：Yes, we explicitly now state that we test significance using both Student’s t-test 

(Table S1) and Wilcoxon signed rank test (Tables S1 and 3). We rewrite: Fig. 1 also 

shows the evolution of VI in the TC seasons during 2020 to 2069 among the five models. 

Note that following the definition of VI in Tang et al. (2014) we use the median value 

not its mean. All models show decreasing trends over time, indicating a tendency for 

more TCs, consistent with trends in GPI. Table 3 shows that G4-RCP4.5 differences in 

Northern Hemisphere basins are significantly positive except for NorESM1-M, 

Southern Hemisphere basins show less consistent results, which is also consistent with 

GPI which indicates that G4 reduces TC occurrence, and is more effective in the 

Northern Hemisphere.  

 

Table 3. Differences (G4-RCP4.5) in TC basins and season during 2020-2069 year 

calculated point-by-point. Northern Hemisphere numbers are above and Southern 

Hemisphere below Bold fonts are significant at 95% level using the Wilcoxon signed 

rank test. The ensemble means are not normalized. 

 

50. L231 – ‘As with GPI, there is about a factor of 2-3 range in absolute values between 

the models’ – perhaps plot normalised anomalies relative to 2020-2030 in Figure 1 

instead?  

Reply：We experimented with many different ways of plotting, and now use the 

Models Ts (C) To (C) Ts-To (C) GPI (%) Vpot (ms-1) H (%) Vshear (ms-1)  (×10-8  s-1) VI (%) χm (×10-3) 

BNU-ESM -0.50 

-0.42 

0.12 

0.11 

-0.62 

-0.53 

-3.8 

0.37 

-0.45 

0.070 

-0.071 

0.20 

0.014 

-0.27 

-0.63 

-1.0 

2.2 

-1.5 

16 

15 

MIROC-ESM -0.34 

-0.30 

-0.58 

-0.56 

0.24 

0.26 

-6.7 

-0.86 

-0.94 

-0.50 

-0.36 

-0.19 

0.13 

0.13 

1.3 

-2.3 

2.5 

2.3 

-3.7 

6.8 

MIROC-ESM-

CHEM 

-0.25 

-0.21 

-0.45 

-0.43 

0.21 

0.22 

-4.8 

-11 

6.9 

6.5 

4.8 

3.6 

1.8 

2.2 

-0.054 

-0.027 

1.9 

1.3 

-7.9 

3.6 

NorESM1-M -0.23 

-0.21 

-0.087 

-0.071 

-0.15 

-0.14 

4.8 

-0.73 

-0.52 

-0.62 

-0.51 

-0.10 

0.029 

-0.12 

-3.4 

-0.83 

-2.0 

2.5 

-4.8 

3.3 

HadGEM2-ES -0.65 

-0.61 

0.16 

0.15 

-0.80 

-0.76 

-3.1 

0.39 

-1.0 

-0.71 

0.17 

-0.088 

0.041 

-0.079 

1.9 

1.0 

3.8 

1.1 

35 

30 

Ensemble -0.40 

-0.35 

-0.14 

-0.13 

-0.26 

-0.23 

-2.7 

-2.5 

0.80 

0.95 

0.80 

0.68 

0.40 

0.37 

-0.2 

-0.7 

1.9 

1.0 

7.0 

11.8 
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methods shown, with a different method for VI than GPI because of the separation of 

the model results. 

 

 

 

Figure 1. Five yearly moving annual averages across the 6 TC basins and TC season, 

of (a) GPI, solid lines denote forcing under RCP4.5 and dotted lines values under G4. 

Ensemble mean series were calculate using normalized time series, shifted by the 

ensemble mean. (b) VI with solid lines denoting model ensemble means and shading 

indicating the range across the five models. 

Since we recalculate with new TC season all figures in the paper have been revised, and 

their associated text. We rewrite:  Fig. 2 shows the correlations between model 

differences G4-RCP4.5 for annual mean GPI and VI. Most models, and the ensemble 

show significant anti-correlation across all TC basins, except the South Pacific where 

half the models have significant correlation. The ensemble mean correlation is only 
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around -0.3, indicating that GPI and VI are addressing sufficiently different aspects of 

TC to warrant independent analysis.   

 

51. L245 – ‘All models except NorESM1-M show negative differences in the North 

Indian basin’ – this may be true on a basin-wide basis, but BNU-ESM shows GPI 

increases in the Bay of Bengal. This might indicate a change in the spatial distribution 

of storms in the North Indian basin. This is also apparent in the ensemble-mean  

Reply：Actually with the new TC season BNU-ESM has no clear sign of response in 

NI basin, so our statement is better than the referee’s suggestion. 

52. L269 – consider changing ‘item’ to ‘component’ or ‘term’ throughout this paragraph  

Reply：Done. 

53. L274 – has this decomposition (Eq. 5) been used before? If so, provide a relevant 

reference  

Reply：Yes, it is from Li et al., 2013. We rewrite as : Li et al. (2013) expressed Equation 

(1) for GPI as the product of four terms, respectively representing an atmospheric 

absolute vorticity term (AV), a vertical wind shear term (WS), a relative humidity term 

(RH), and an atmospheric potential intensity term (PI). 

54. L301 – ‘Hence, these are the factors that primarily enable solar geoengineering’  

Reply：Done. 

55. L304 – do you have any idea as to why MIROC-ESM-CHEM is so different?  

Reply：Yes. Firstly there was error in analyzing the MIROC-ESM-CHEM ensemble. 

Second, the 9 members divide into 2 separate groups in terms of how much variance 

the explanatory variables make to linearized GPI and VI. On this basis we exclude 

CanESM2 from the analysis completely, and add new supplementary figures to show 

how MIROC-ESM-CHEM members differ from each other. In section 2 we write 

Although to date 8 ESM have performed the RCP4.5 and G4 simulations, a subset of 6 

models have access to all required model data fields, but one of those, CanESM2, was 

not used because all three of the realizations available it failed to pass statistical tests 

leaving 5 models (Table 1). The particular tests we did to exclude some data and models 

from the analysis are discussed in detail in section 3.2. The rejected simulations all 

produced statistically weak and insignificant regression fits to linearized forms of GPI 

and VI with all combinations of the thermodynamic and dynamic terms used to compute 

them. Hence, it is unlikely that VI or GPI can meaningfully represent TC activity in 

these cases. In comparison, the ESM simulations we do use have regression models that 

are significant at least at the 5% level, and in many cases, achieve far higher significance. 
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In section 3.2.2 Fig. S1 shows the same analysis as Fig. 5, but for all 9 realizations of 

MIROC-ESM-CHEM. The first four realizations behave similarly as the BNU-ESM, 

HadGEM2-ES and MIROC-ESM models in Fig. 5, with variance accounted for around 

80% of total and the RH terms being about twice as important as WS and PI terms. The 

remaining 5 realizations have far lower variance explained, similar as for NorESM1-M, 

with RH still the dominant term…. Fig. S3 shows the VI components for all 9 

realizations of MIROC-ESM-CHEM, which appears similarly divided into two groups 

as they were for GPI in Fig. S1…. When we analyzed the realizations 5-9 of MIROC-

ESM-CHEM we found much lower F-statistics than for realizations 1-4 (Fig. S4), with 

values similar as for NorESM1-M of 50-100. In general, the models show RH has the 

largest F-statistic for single parameter models, consistent with Figs. 4 and 5. Fig. S4 

also shows that all three realizations of CanESM2, which we do not use for TC analysis 

in this paper, have even lower F values, particularly r2 and r3, which are around 2. 

 

Figure S1. As Fig. 5 but for the 9 realizations of MIROC-ESM-CHEM: The fractional 

variance contribution of components of GPI during the TC season and within the six 

TC basins during 2020-2069. 
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Figure S3. As S2 but for the 9 realizations of MIROC-ESM-CHEM: The fractional 

variance contribution of components of VI during the TC season and within the six TC 

basins during 2020-2069. 
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Fig. S4 As Fig6: The F-statistic of the 15 different combinations of regression variables 

for GPI differences between G4 and RCP4.5, but for each realizations 1-9 of MIROC-

ESM-CHEM, (top 3 rows, and for the 3 realizations of CanESM2 (bottom row). The x-

axis on each panel represents the combination of components used as predictors in each 

regression equation: 1:(PI,RH,WS,AV), 2:(PI,RH,WS), 3:(PI,RH,AV),  4:(AV,RH,WS), 

5:(PI,AV,WS), 6:(PI,RH), 7:(PI,WS), 8:(PI,AV), 9:(RH,WS), 10:(RH,AV), 11:(AV,WS), 

12:(PI), 13:(RH), 14:(WS), 15:(AV). 
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56. L312 – Sentence starting ‘Fig. 4 shows that the HadGEM2 values tend to be smaller’ 

– CanESM2 is similarly muted and seems to have the same signs as HadGEM2  

Reply：In fact the new Fig. 3 and 4 shows that HadGEM2 results are not strikingly 

muted or different form the other models. So we delete that part of the sentence. 

57. L356 – ‘The key factors affecting TCs’ – consider adding a more informative title, 

possibly, ‘Primary factors that control GPI and VI changes’?  

Reply：Changed as suggested. 

58. L357 – You seem to have found in Section 3.2 that relative humidity is the most 

important factor for GPI, and then ignore this finding in Section 3.3, which I found 

curious  

Reply：Actually we discuss RH later but we move that paragraph up and introduce the 

main ideas before discussing PI. 

The analysis above shows that the common factors across models and basins that affect 

TCs are potential intensity ( potV ), relative humidity (H), and vertical wind shear (Vshear). 

We now discuss these factors separately, beginning with potV   as this is function of 

several different ESM variables. 

59. L368 – ‘The model ensemble’ -> ‘The ensemble-mean’  

Reply：Done. 

60. L370 – ‘Fig S3 shows that correlations for both models under RCP4.5 and G4 

separately are not atypical, simply that their G4-RCP4.5 differences are small’ – I’m 

not sure what you mean by this sentence, please rephrase  

Reply：With the new TC seasons this sentence is no longer needed and deleted. Fig. 

7a shows the dependence of potV  differences (G4-RCP4.5) on ( ST - OT ) differences for 

the models. All models have significant correlation for all TC basins except BNU-ESM 

in the SI and SP basins and HadGEM2-ES in the SP basin. However, there is an even 

stronger dependence for potV   on ST  anomalies (Figs. 7b, S3). The ensemble mean 

 is better correlated with Ts rather than ( - ) due to better correlations of all 

models in all basins except HadGEM2-ES. 

potV ST OT



19 

 

61. L373 – Similarly the last sentence is unclear. Do you mean that all models excepts 

CanEMS2 and NorESM1 exhibit significant correlation between Ts and Vpot in all 

basins?  

Reply ： This sentence is deleted and replace with All models show significant 

correlation between GPI and ST  anomalies shown as Fig. 7c. Some models have 

insignificant correlations in particular basins, e.g., BNU-ESM is slightly anti-correlated 

in NA, as is HadGEM2-ES in WNP. GPI is not significantly correlated with Ts for half 

the ESM in the NI and SP basins. Fig. S3 shows that there are fewer significant 

correlations under G4 than under RCP4.5.  

62. L376 – Change ‘variability’ to ‘cycle’ throughout this paragraph  

Reply：Done. 

63. L384 – Remove ‘Comparing’  

Reply：Done. 

64. L388 – The last sentence – can you also plot the seasonal cycle of Ts in ERA-interim 

just to confirm that all the models are doing reasonably well here?  

Reply：Added to renumbered Fig. S9. 

65. L390 – Consider splitting this paragraph into two. It is too long and unwieldy as it 

is  

Reply：Done. 

66. L391 – Sentence beginning ‘In Figs 7d and 7e we plot’ – please reword this sentence 

to something like ‘we plot correlations between H / Vshear and Ts.  

Reply：We plot H differences between G4 and RCP4.5 as a function of sea surface 

temperature differences in Fig. 7d. 

67. L399 – ‘there is generally an anti-correlation between Vshear and  Ts’  

Reply：rewritten as: Fig 7e shows how RCP4.5-G4 differences in Vshear and Ts are 

generally anti-correlated. The across-model spread for correlations of Vshear and Ts  

under both G4 and RCP4.5 (Fig. S3) are similar as for the other key variables. Anti-

correlation with Ts is weakest in the SP and NA basins, but still significant. In terms of 

the differences in Fig. 7e, all models show clear significant anti-correlations, with the 

NI and NA basins having weakest correlations.  

 

68. L402 – Vecchi and Soden (2007) found that wind shear increases in both the North 



20 

 

Atlantic and the East Pacific under global warming.  

Reply：Rewritten as Vecchi and Soden (2007) found the North Atlantic and East North 

Pacific wind shear increases in model projections under global warming. If the models 

assessed here capture the effect under G4 and RCP45, we would expect positive 

correlations between Vshear and Ts over these two basins for G4 and RCP4.5 in Fig. S3. 

69. L404 – ‘If the models assessed here’  

Reply：Done. 

70. L407 to L415 – I’m not sure what you are trying to prove here, it seems peripheral 

and needs to be reworded  

Reply：We delete this section and Fig. S7, though we use the reference in the discussion 

where it may make our point clearer than it was: The final variable, Vshear , shows large 

scatter across the models, but consistent anti-correlation with Ts. However, there are 

also good but different relations between H and Vshear in every basin suggesting that the 

state of this dynamic variable can be explained to a significant degree by the 

thermodynamic state driving H and Ts. This is consistent with analysis (Li et al., 2010), 

showing that prescribed sea surface temperatures can account for some changes in TC 

in the Pacific basins as surface temperature gradients drive trade winds, which changes 

the wind shear 

We deleted sections 3.4 and 3.5 so points #71 - 75 are moot  

71. L441 – ‘The analysis for individual basins indicates most models have significant 

correlations with ENSO in the WNP’ – This is not true! Only 4/7 of the models have 

significant correlation in the WNP in RCP4.5  

72. L448 – is there any previous studies that suggest a link between ENSO and tropical 

cyclone activity in basins outside the North Atlantic and the Pacific. If so, please cite  

73. L449 – ‘is most consistently felt in the Pacific Ocean’ –particularly the South Pacific  

74. L473 – why are the TRACK results so much lower in your Table 4 than in Jones et 

al. (2017)? For instance, you get 1.2 storms per year in the North Atlantic basin in G4 

compared to ~11 per year in their work (their Fig. 4). Their reasoning behind the use 

of the (4.5,3.5,4) configuration was to attain ~10 storms per year on average in the 

historical period. Please check these numbers, they seem wrong.  

75. L487 – Change ‘typical’ to ‘current’  

We delete sections 3.4 and 3.5 so points #71 - 75 are moot  

76. L489 – ‘The storms that may be counted using indirect methods such as the TRACK 

algorithm include the whole climate condition’ – This doesn’t make sense to me. 
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Consider replacing with ‘Simulated storms that may be counted using methods such as 

the TRACK algorithm allow for feedbacks with the climate system’  

Reply：Simulated storms that may be counted using methods such as the TRACK 

algorithm (Hodges, 1995; Jones et al. 2017) that allow for feedbacks with the climate 

system. 

77. L490 – ‘Statistical methods (Moore et al., 2015) also implicitly include feedbacks 

between storm and climate conditions’ – in what way do they include feedbacks? I don’t 

understand this. They are simply diagnostics  

Reply：They do include feedbacks in their maps of teleconnections because they 

consider the non-local changes in e.g. the surface temperature that are both caused by, 

and that cause Atlantic hurricanes. Thus cooling over the USA related to extreme 

hurricanes is because of the cooling they produce, while heating over deserts is related 

to factors that lead to Atlantic hurricanes. We expand slightly the sentence: Statistical 

methods (Moore et al., 2015) may also implicitly include feedbacks between regional 

storm and background global climate conditions 

78. L492 – ‘but dynamical downscaling methods (Emanuel, 2013) cannot include them’ 

– I disagree, Emanuel employs a simple ocean model which can be adjusted to provide 

climate feedback. In fact, I think the semi-explicit scheme offers more opportunity to 

incorporate feedbacks than the statistical methods  

Reply：But that means it has to be manually adjusted rather than automatically 

occurring because of TC events. In that sense it does not include a feedback as the 

statistical methods do. We slightly rewrite to say but dynamical downscaling methods 

(Emanuel, 2013) do not include them 

79. L493 – change ‘apply’ to ‘utilize’  

Reply：Done. 

80. L495 – change ‘relatively little data’ to ‘coarse temporal-resolution data’  

Reply：Done. 

81. L502 – Change ‘diagnose tropical storms in climate models’ to ‘relate tropical 

storm activity to ambient meteorology’  

Reply：Done. 

82. L507 – ‘Thus stratospheric sulphate aerosol injection could lead to fewer TCs in 

the North Atlantic …’ – note that this is one solar geoengineering scenario (a uniform 

one). Injecting aerosol preferentially into one hemisphere may increase the amount of 

storms in the North Atlantic (Jones et al (2017)) with unknown effects in other basins  
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Reply：Rewritten as: Thus the G4 scenario of SAI based on equatorial lower 

stratosphere injection of SO2 could lead to fewer TCs in the North Atlantic and Indian 

Ocean but more TCs in the South Pacific region than under GHG induced global 

warming 

83. L510 – ‘The impact of ENSO on TCs can be detected in the GPI’ – this is poorly 

worded, you have not explicitly looked at ENSO and TCs, only at ENSO and GPI. 

Rephrase in such a way: ‘ENSO is found to be correlated with GPI’. Are there any 

implications specifically in terms of solar geoengineering from your results? I mean, is 

there a decrease in El Nino years in the G4 simulations?  

Reply：We delete discussion of ENSO and this sentence. 

84. L515 – remove ‘such as’  

Reply：Done. 

85. L521 – ‘a simplified representation of TCs depending on fewer variables is possible’ > 

‘a simplified representation of the GPI depending on fewer variables may be possible’  

Reply：Done. 

86. L523 – sentence running from ‘it is encouraging that the thermodynamic state …’ I 

don’t understand what you mean here?  

Reply：Rewritten to clarify that local factors are also important: Although wind shear 

is important and a dynamic variable, it in encouraging that the thermodynamic state of 

the system is of prime importance for the GPI. This suggests that statistical methods of 

predicting changes in TC behavior are plausible, although individual basin behavior 

depends on particular local forcing factors in addition the accessible thermodynamic 

variables used in the GPI and VI. 

87. L529 – ‘(the 100hPa level)’ -> (evaluated at 100 hPa)’  

Reply：Done. 

88. L529 – Replace ‘note that’ with ‘find that changes to’ and add ‘changes’ after GPI  

Reply：Done. 

89. L542 – rather than using temperature changes from Pitari et al (2014), can you give 

the ensemble mean upper-tropospheric temperature changes from your 6-member 

ensemble please  

Reply：We do give this in Table 3, as we say in the text, assuming that 100 hPa 

temperatures represent the upper tropospehere values. Pitari et al., (2014) note a 

warming of the 100 hPa layer under G4 relative to RCP4.5 for the MIROC-ESM-

CHEM model in the 2040s for the tropics. Most models (Table 3) in the TC basins and 
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seasons show a cooling of (ensemble mean of 0.14C) with only HadGEM2-ES and 

BNU-ESM having warming at 100 hPa. Given the complexities of changes in the upper 

troposphere due to the process outlined in the previous paragraph the range in static 

stabilities represented by the model range in Ts-To differences relative to RCP4.5 is 

probably not surprising. Therefore, although we might expect to see an improvement in 

correlation of potential intensity and GPI by using 100 hPa temperatures in addition to 

SSTs, the ability of the models to capture all the processes varies. The result is that the 

models used here have a better relationship with sea surface temperatures than static 

stability, and suggests that the aerosol effects are not being properly simulated to allow 

their impacts on TC genesis to be fully estimated. 

90. L542 – ‘This is about half the range of the G4-RCP4.5 difference in static stability 

(Fig. 7)’ – Figure 7 does not show that changes to static stability…  

Reply：We rewrite this section : In contrast with the solar dimming G1 experiments 

analyzed by Davis et al., (2016), here we analyse G4 which is an aerosol injection 

protocol. The aerosol is prescribed in the GeoMIP G4 protocol (Kravitz et al., 2011a) 

as injected into the equatorial stratosphere at 16-25 km altitude, where most of the direct 

radiative heating takes place (Pitari et al., 2014). However, due to the large size of the 

geoengineering aerosol particles (effective radius of the order of 0.6 μm or more), a 

significant fraction of the stratospheric particles settle below the tropical tropopause 

(Niemeier et al., 2011; English et al., 2012; Cirisan et al, 2013), thus producing some 

diabatic heating a few kilometres immediately below the tropical tropopause. This is 

superimposed on the convectively-driven upper tropospheric cooling caused by surface 

cooling due to the SAI and reduced convection and weakened hydrological cycle (Bala 

et al., 2008). This may be expected to be the dominant process controlling the SAI-

induced changes in atmospheric static stability. Furthermore, recent work (Visioni et al., 

2018 ACP in discussion) explores the secondary of surface cooling on the upper 

troposphere with the impact on cirrus clouds, and the concomitant impact on static 

stability. Surface cooling and lower stratospheric warming, together, tend to stabilize 

the atmosphere, thus decreasing turbulence and water vapor updraft velocities. The net 

effect is an induced cirrus thinning, which serves to increase net global cooling due to 

the SAI.   

91. L544 – remove ‘significant’  

Reply：Done. 

92. L545 – why does T0 not warm with most models under G4? Do you have a reason 

that you can offer? It is that the aerosol particles are small?  

We rewrite this part to try to answer these questions using suggestions from Ref #2. In 

contrast with the solar dimming G1 experiments analyzed by Davis et al., (2016), here 
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we analyse G4 which is an aerosol injection protocol. The aerosol is prescribed in the 

GeoMIP G4 protocol (Kravitz et al., 2011a) as injected into the equatorial stratosphere 

at 16-25 km altitude, where most of the direct radiative heating takes place (Pitari et al., 

2014). However, due to the large size of the geoengineering aerosol particles (effective 

radius of the order of 0.6 μm or more), a significant fraction of the stratospheric particles 

settle below the tropical tropopause (Niemeier et al., 2010; English et al., 2012; Cirisan 

et al, 2013), thus producing some diabatic heating a few kilometres immediately below 

the tropical tropopause. This is superimposed on the convectively-driven upper 

tropospheric cooling caused by surface cooling due to the SAI and reduced convection 

and weakened hydrological cycle (Bala et al., 2008). This may be expected to be the 

dominant process controlling the SAI-induced changes in atmospheric static stability. 

Furthermore, recent work (Visioni et al., 2018 ACP in discussion) explores the 

secondary of surface cooling on the upper troposphere with the impact on cirrus clouds, 

and the concomitant impact on static stability. Surface cooling and lower stratospheric 

warming, together, tend to stabilize the atmosphere, thus decreasing turbulence and 

water vapor updraft velocities. The net effect is an induced cirrus thinning, which serves 

to increase net global cooling due to the SAI. 

Pitari et al. (2014) note a warming of the 100 hPa layer under G4 relative to RCP4.5 

for the MIROC-ESM-CHEM model in the 2040s for the tropics. Most models (Table 3) 

in the TC basins and seasons show a cooling of (ensemble mean of 0.14C) with only 

HadGEM2-ES and BNU-ESM having warming at 100 hPa. Given the complexities of 

changes in the upper troposphere due to the process outlined in the previous paragraph 

the range in static stabilities represented by the model range in Ts-To differences relative 

to RCP4.5 is probably not surprising. Therefore, although we might expect to see an 

improvement in correlation of potential intensity and GPI by using 100 hPa 

temperatures in addition to SSTs, the ability of the models to capture all the processes 

varies. The result is that the models used here have a better relationship with sea surface 

temperatures than static stability, and suggests that the aerosol effects are not being 

properly simulated to allow their impacts on TC genesis to be fully estimated. 

  93. L578 – ‘Many models, owing to their low resolutions, produce much weaker and 

larger TC’ – this statement has been repeated a few times (e.g. L487). Please do not 

repeat statements  

Reply：Rewritten as: Considering the coarse spatio-temporal resolution of most ESM 

models, evaluating the GPI is likely to remain a popular be a good diagnostic of TC 

variations under different climates. 

94. L582 – change ‘would be’ to ‘this is’ 

Reply：Done. 
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In the reply, the referee’s comments are in italics, our response is in normal text, and 

quotes from the manuscript are in blue. 

Anonymous Referee #2 

 

In this numerical work, a statistical approach is described for analysing the effects of 

sulphate geoengineering on the genesis of tropical storms. The procedure is well 

designed on the general methodology of the GeoMIP project, with use of data that 

independent global models have provided in a common database with their G4 

simulations. The manuscript is scientifically robust and deserves publication on ACP. 

Some of the conclusions are important, mainly the fact that the thermodynamic role of 

SST changes induced by geoengineering aerosols dominates over the lower 

stratospheric aerosol heating. However, sometimes the authors compare the SST effects 

with changes in static stability, as if they were two independent things (see for example 

in the conclusions, lines 547-549). Actually, SST changes may affect the atmospheric 

static stability by themselves, even in the absence of a stratospheric warming. I would 

suggest rephrasing. The authors themselves clearly explain how static stability changes 

are controlled by both surface and upper tropospheric temperatures (page 18, lines 

358-360). This is the main specific point I suggest to better clarify all along the 

manuscript, before final publication on ACP. 

Reply：Yes, this is good point. We fully appreciate the point that static stability is not 

the same as SST. Apparently our original sentences were not clear enough on this and 

we have rewritten the entire section discussing impacts on static stability due to SAI, 

with the helpful suggestions from the referee.  

In addition, it is true that the aerosol heating is mostly located in the 16-25 km layer 

(see page 27, lines 540-542); however, due to the large size of the geoengineering 

aerosol particles (effective radius of the order of 0.6 μm or more), a significant fraction 

of the stratospheric particles would settle down below the tropical tropopause 

(Niemeier et al., 2010; English et al., 2012; Cirisan et al, 2013), thus producing some 

diabatic heating superimposed to the convectively-driven upper tropospheric cooling. 

This means that the surface cooling (with associated upper tropospheric tropical 

cooling, due to lesser efficient convective motions) may be expected as the dominant 

process controlling the geoengineering induced changes of atmospheric static stability. 

At the same time, the aerosol heating in a few kilometres layer immediately below the 

tropical tropopause (due to gravitational sedimentation of large geoengineering sulfate 

aerosols) should also be considered as a contributing smaller effect. 

Reply：Thank you for this insight. We modify the text to take these points into account: 

In contrast with the solar dimming G1 experiments analyzed by Davis et al., (2016), 

here we analyze G4 which is an aerosol injection protocol. The aerosol is prescribed in 

the GeoMIP G4 protocol (Kravitz et al., 2011a) as injected into the equatorial 

stratosphere at 16-25 km altitude, where most of the direct radiative heating takes place 

(Pitari et al., 2014). However, due to the large size of the geoengineering aerosol 
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particles (effective radius of the order of 0.6 μm or more), a significant fraction of the 

stratospheric particles settle below the tropical tropopause (Niemeier et al., 2010; 

English et al., 2012; Cirisan et al, 2013), thus producing some diabatic heating a few 

kilometres immediately below the tropical tropopause. This is superimposed on the 

convectively-driven upper tropospheric cooling caused by surface cooling due to the 

SAI and reduced convection and weakened hydrological cycle (Bala et al., 2008). This 

may be expected to be the dominant process controlling the SAI-induced changes in 

atmospheric static stability 

  

It would be worth to note that another indirect effect of sulfate geoengineering, related 

to the surface cooling and static stability changes, is discussed in Visioni et al. (2018). 

Here the sensitivity of upper tropospheric ice formation is studied with inclusion of the 

aerosol-induced surface cooling, with respect to a reference condition documented in 

Kuebbeler et al. (2016), where only the stratospheric warming due to the aerosols was 

taken into account. The conclusions presented in the manuscript of Wang et al. (2018) 

go in the same direction of what discussed in this other study. 

Reply：Yes, thank you we not this now: Furthermore, recent work (Visioni et al., 2018 

ACP in discussion) explores the surface cooling impact on upper tropospheric cirrus 

cloud formation, and the concomitant impact on static stability. Surface cooling and 

lower stratospheric warming, together, tend to stabilize the atmosphere, thus decreasing 

turbulence and updraft velocities. The net effect is an induced cirrus thinning, which 

indirectly increases net global cooling due to the SAI.   

 

 

Minor points 

P. 3, line 66: the Kravitz reference has a wrong comma between the name and et al. 

Reply：Done 

P. 3, line 72: some more recent articles can be cited here, for example Visioni et al. 

(2017). 

Reply：yes we added Visioni (2017); Kashimura, H., M. Abe, S. Watanabe, T. Sekiya, D. Ji, J. C. 

Moore, J.N.S. Cole and B. Kravitz 2017 Shortwave radiative forcing, rapid adjustment, and feedback to the surface 

by sulfate geoengineering: analysis of the Geoengineering Model Intercomparison Project G4 scenario, Atmospheric 

Chemistry and Physics 17, 3339-3356, doi:10.5194/acp-17-3339-2017, 2017; and Russotto, R. D. and 

Ackerman, T. P.: Energy transport, polar amplification, and ITCZ shifts in the GeoMIP G1 ensemble, 

Atmospheric Chemistry and Physics, 18, 2287–2305, doi:10.5194/acp-18-2287-2018, 2018) 

P. 4, line 83: are used instead of have used. 

Reply：Done 
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P. 6, line 126-130: I would suggest rephrasing this concept, maybe splitting the long 

sentence in two. In its present form it is hard to follow. 

Reply：  Rewritten: Jones et al. (2017) showed SAI in the northern hemisphere 

reduced the numbers of TC in the North Atlantic while SAI in the southern hemisphere 

increased numbers in the basin.   

P. 7, line 149: explain better the altitude at which the injection is simulated, since it has 

been shown how different injection heights may affect differently the climate response 

(Tilmes et al., 2017; Kleinschmitt et al., 2018). 

Reply： Rewritten . G4 is based on the GHG emissions from the RCP4.5 scenario but 

short wave radiative forcing is reduced by injection of SO2 into the equatorial lower 

stratosphere at altitudes of 16–25 km, at a rate of 5 Tg per year from the year 2020 to 

2069.  

P. 8, line 162-165: for a recent study analysing the connection between the 

stratospheric warming due to the sulfur injection and the tropospheric response in term 

of vertical motions, see Visioni et al. (2018) (now under review in ACPD). 

Reply： Rewritten, reference added 

P. 14-15: I suggest to the authors to move some of the longer equations derivations to 

the supplementary material for better readability of the manuscript. 

Reply：Several equations are removed and so improve readability.  
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Figure 1. Five yearly moving annual averages across the 6 TC basins and TC season, 

of (a) GPI, solid lines denote forcing under RCP4.5 and dotted lines values under G4. 

Ensemble mean series were calculate using normalized time series, shifted by the 

ensemble mean. (b) VI with solid lines denoting model ensemble means and shading 

indicating the range across the five models. 
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Abstract 30 

The thermodynamics of the ocean and atmosphere partly determine variability in 31 

tropical cyclone (TC) number and intensity and are readily accessible from climate 32 

model output, but a completean accurate description of TC variability requires much 33 

more dynamical datahigher spatial and temporal resolution than climatethe models 34 

canused in the GeoMIP experiments provide at present. Genesis potential index (GPI) 35 

and ventilation index (VI) are combinations of potential intensity, vertical wind shear, 36 

relative humidity, midlevel entropy deficit, and absolute vorticity that can quantify both 37 

dynamic and thermodynamic and dynamic forcing ofvariables that provide proxies for 38 

TC activity under different climate states. Here we use sixfive CMIP5 models that have 39 

run the RCP4.5 experiment and the Geoengineering Model Intercomparison Project 40 

(GeoMIP) stratospheric aerosol injection G4 experiment, to calculate the two TC 41 

indices over the 2020 to 2069 period across the 6 ocean basins that generate tropical 42 

cyclones. Globally,TCs. GPI is consistently and significantly lower under G4 is lower 43 

than under RCP4.5, though both have a slight increasing trend. Spatial patterns in the 44 

effectiveness in 5 out of geoengineering show reductions in TC in the North Atlantic 45 

basin, and Northern Indian Ocean in all models except NorESM1-M. In the North 46 

Pacific, most models also show relative reductions6 ocean basins, but it increases under 47 

G4. Most in the South Pacific. The models project potential intensity and relative 48 

humidity to be the dominant variables affecting genesis potential.GPI. Changes in 49 

vertical wind shear are significant, but both it and vorticity exhibit relatively small 50 

changesit is correlated with large variationrelative humidity though with different 51 
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relations across both models and ocean basins. We find that tropopause temperature is 52 

not a useful addition to sea surface temperature in projecting TC genesis, despite 53 

radiative heating of the stratosphere due to the aerosol injection, and heating of the 54 

upper troposphere affecting static stability and potential intensity. Thus, simplified 55 

statistical methods that quantify the thermodynamic state of the major genesis basins 56 

may reasonably be used to examine stratospheric aerosol geoengineering impacts on 57 

TC activity.perhaps because the ESM vary in their simulation of the various upper 58 

tropospheric changes induced by the aerosol injection.  59 

Key word: tropical cycloneTC, hurricanes, ENSO, statistical methods , Geoengineering. 60 

 61 

1 Introduction  62 

Anthropogenic greenhouse gases emissiongas (GHG) emissions are changing 63 

climate (IPCC, 2007). The best solution for limiting climate change is to reverse the 64 

growth in net greenhouse gasesGHG emissions. It is doubtful that reductions in 65 

emissionemissions can be done fast enough to limit global mean temperatures rises to 66 

targets such as the 1.5 or 2C pledged at the Paris climate meeting (Rogelj et al., 2015). 67 

Geoengineering is the deliberate and large-scale intervention of Earth’s climate system 68 

to retardcounteract climate warming (Crutzen, 2006; Wigley, 2006). Geoengineering 69 

by solar radiation management (SRMStratospheric Aerosol Injection (SAI) attempts to 70 

lessen the incoming sunlight to counteract the effect of global warming. The 71 

Geoengineering Model Intercomparison Project (GeoMIP) (Kravitz, et al., 2011) is a 72 
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standardized set of experiments designed to facilitatehomogenize earth system model 73 

(ESM) simulations of geoengineered climates, and is supported by about 1215 model 74 

groups globally, with further experiments planned under CMIP6 (Kravitz et al., 2015). 75 

Climate system thermodynamics will certainly change under SRMSAI geoengineering 76 

wherebecause the reduction in short wave radiation is designed to offset increases in 77 

long wave absorption (Huneeus et al., 2014; Kashimura, et al., 2017; Visioni, et al., 78 

2017; Russotto and Ackerman, 2018). 79 

Tropical cyclones (TCs) are one of the most disastrous weather phenomena 80 

influencing agriculture, human life, and property (Chan et al., 2005). The large-scale 81 

changes in surface temperatures under greenhouse gasGHG forcing will impact 82 

cyclogenesis changing both the frequency and intensity of tropical cyclonesTCs 83 

(Grinsted et al., 2012; 2013). Hence, how tropical cyclonesTCs would change in a 84 

geoengineered world is of general as well as scientific interest for its enormous social 85 

and economic impact. However, since almost all climate models do not, at present, 86 

possess the resolution required to simulate directly the response of tropical cyclonesTCs 87 

to changing patterns of radiative forcing, methods that rely on the statistical links 88 

between the thermodynamics of the ocean and atmosphere with cyclone dynamics have 89 

predominantly been the topic of studies. 90 

Many methods have used to study the changes in typhoonsTCs under climate 91 

warming. SomeThese can be divided into implicit methods, such as the GPI and VI 92 

which we focus on the movement of tropical storm tracks, tropical cyclone intensity 93 
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and frequency byhere, semi-explicit, such as downscaling (Emanuel, 2006). The most 94 

direct way is to use; 2013), and explicit such as feature tracking storm systems (Hodges, 95 

1995; Jones et al., 2017). Implicit methods rely on using historical climate and storm 96 

records to quantitatively study tropical cyclone activity and its relation toquantitative 97 

relationships between TC and key variables such as local, tropical and global sea 98 

surface temperatures, and various teleconnection patterns (Grinsted et al., 2012; 99 

Emanuel, et al., 2008; Landsea, 2005; Gray, 1979). Potential intensity theory (Bister et 100 

al.,and Emanuel, 1998; Emanuel et al.,and Nolan, 2004) predicts the dependence of 101 

typhoonTC wind speed on the air-sea thermodynamic imbalance and the temperature 102 

of the lower stratosphere. For example, many studies suggest that wind shear has 103 

inhibitory effect on the TC activity (Vecchi et al.,and Soden, 2007). Others have also 104 

identified changes in the large-scale environmental factors influencing the tropical 105 

storm activity to assess the TC activitieschanges in the future (Tippett et al., 2011; 106 

Grinsted et al., 2013). 107 

While much is known about which factors influence genesisTC cyclogenesis, a 108 

quantitative theory is lacking, (Emanuel, 2013), so empirical methods have been used 109 

to define the relationship between large-scale environmental factors and tropical 110 

cyclogenesis. The GPI uses four environmental variables: potential intensity, low-level 111 

absolute vorticity, vertical wind shear, and relative humidity. Tang et al.Potential 112 

intensity is the maximum sustainable intensity of TCs based on the thermodynamic state 113 

of the atmosphere and sea surface, that is the difference between the saturation enthalpy 114 



35 

 

of the sea surface and the moist static energy of the subcloud layer (Riehl, 1950). Tang 115 

and Emanuel (2012) introduced the VI, defined as the flux of low-entropy air into a 116 

tropical disturbance or TC, because ventilation disrupts the formation of a deep, moist 117 

column that is hypothesized to be necessary for the spin up of the vortex (Bister et 118 

al.,and Emanuel, 1997; Nolan, 2007; Rappin et al., 2010). For the Atlantic hurricane 119 

region, Tippett et al. (2011) formulated a genesis potential index using the relative sea 120 

surface temperature, defined as the tropical Atlantic sea surface temperatures minus the 121 

tropical mean sea surface temperatures, and midlevel relative humidity in lieu of the 122 

potential intensity and non-dimensional entropy deficit, respectively. Dynamic 123 

potential intensity (DPI) is yet another index designed to describe ocean feedbacks on 124 

TCs, because storms bring cold, deeper water to the ocean’s impact on tropical 125 

cyclonessurface, which reduces the potential intensity (Balaguru et al., 2015). These 126 

indices represent the climatological thermodynamic spatial and hence seasonal control 127 

of TC genesis and not the dynamic development of individual storms, which is more or 128 

less beyond the abilities of most contemporary climate models, in particular those we 129 

use here. The relative contribution of the individual large-scale environmental factors 130 

to TC genesis may be different in different ocean basins (WangEmanuel, 2010; Wing et 131 

al., 20122015).  132 

An increase in future global TC frequency has been projected based on statistical-133 

dynamical downscaling CMIP5 models (Emanuel, 2013). However, the same 134 

downscaling applied to the CMIP3 models projected a decrease in global TC frequency 135 
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(Tory et al., 2013; Emanuel et al.,, 2006). Some models show that although Atlantic TC 136 

frequency will decrease, the frequency of severe TCintense TC ( those having 137 

windspeeds larger than 55 ms-1) will increase, and different TC basins are predicted to 138 

behave differently (Emanuel et al., 2008; ThomasKnutson et al., 2015; Kang et al., 139 

2012).  140 

   There has been little research about TC changes under geoengineeringSAI. Moore 141 

et al. (2015) used statistical relation between Atlantic tropical storm surges and spatial 142 

patterns of global surface temperature to deduce that moderate amounts of SRMSAI 143 

could reduce the frequency of the most intense hurricanesTC relative to greenhouse 144 

gasGHG only climates. Jones et al. (2017) show that applying aerosol injection to 145 

northern and southern hemispheres separately showed SAI in the northern hemisphere 146 

reduced the numbers of TC in the North Atlantic if the northern hemisphere was cooled, 147 

while increasing them if aerosol was released onlySAI in the southern hemisphere, 148 

relative to both greenhouse gas forcing both with, and without, global stratospheric 149 

aerosol injection. increased numbers in the basin.   150 

   HereIn contrast with earlier work that has focused only on the impacts of SAI on 151 

North Atlantic hurricanes (Moore et al., 2015; Jones et al., 2017), we examine ESM 152 

simulations of global TC evolution under stratospheric sulphate injection 153 

geoengineering and greenhouse gas forcing based on the climatological in 6 ocean 154 

basins using the GPI and VI indices. We explore the effects of geoengineering on then 155 

evaluate how far TC thermodynamicschanges under SAI and GHG forcing can be 156 
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attributed to thermodynamic changes, and study regional characteristics of typhoon and 157 

hurricane development after implementation of geoengineeringhence be forecast in 158 

statistical terms.  159 

Section 2 introduces the methods and data used in this study. Section 3 describes 160 

the temporal and spatial variations of the GPI and ventilation index in sixfive models, 161 

in greenhouse gasGHG and SRMSAI simulations. We quantify the contribution of each 162 

variableSST, relative humidity and wind shear to TC genesis based on attribution of 163 

monthly variance in GPI and VI in each basin’s time series using two statisticalmultiple 164 

linear regression methods. Finally we study the effect of ENSO on TC. A, a discussion 165 

and conclusions are provided in section 4. 166 

2 Methods and data 167 

a． Methods 168 

    We use climate model output from the GeoMIP G4 experiment (Kravitz et al., 169 

2011) and the control simulation, RCP4.5 experiment of CMIP5 (Taylor et al., 2012) to 170 

analysis the characteristic of TC changes in the future in different models. G4 is based 171 

on the greenhouse gasGHG emissions from the RCP4.5 scenario but short wave 172 

radiative forcing is reduced by injection of SO2 into the equatorial lower stratosphere 173 

at altitudes of 16–25 km, at a rate of 5 Tg per year from the year 2020 to 2069. The 174 

experiment continues for a further 20 years to 2089 with only greenhouse gas forcing 175 

as specified by RCP4.5. The general climate response to G4 forcing has been discussed 176 
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by Yu et al. (2015). Between 2050 and 2069, global surface air temperatures warm by 177 

1.3 °C in RCP4.5, and by 0.79 °C with G4 relative to 2010–2029. Over the same interval, 178 

tropical North Atlantic temperatures in the so-called Main Development Region (MDR) 179 

of cyclogenesis in the basin warm by 0.8 °C and 0.4 °C with RCP4.5, and G4, 180 

respectively (Moore et al., 2015).GHG forcing as specified by RCP4.5.  181 

We assess the large-scale environmental conditions for TC generation primarily in 182 

reference to the widely used genesis potential and ventilation index (GPI), and use 183 

results for the VI for comparison. While other indices also exist as mentioned above, 184 

the data fields required to calculate them are presently not all available. The signal to 185 

noise ratio of the G4 experiment is not as large as that of G1 (Yu et al., 2015) where 186 

solar dimming offsets quadrupled CO2 concentrations. It is, however, more interesting 187 

for TC studies because the sulphate aerosol injected into the stratosphere causes 188 

radiative heating (Pitari et al., 2014), and other indirect effects on the upper troposphere 189 

(Visioni et al., 2018) that will potentially affect the deep tropospheric convention 190 

systems that characterize intense tropical storms.  191 

The GPI has been widely employed to represent TC activitiesactivity (e.g., Song 192 

et al., 2015). We use the ), and several different formulations have been described (e.g., 193 

Emanuel et al., (, 2004); 2010). Here, we chose to use perhaps the most commonly-used 194 

method, (Emanuel, 2004) to calculate the GPI as follows:    195 
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Where  is the absolute vorticity in s-1,  is the relative humidity at 700 hPa in 197 

percent,   is the Potential intensity in ms-1, and   is the magnitude of the 198 

vectorwind shear from 850 to 200 hPa, in ms-1. Potential intensity (Emanuel, 2000) is 199 

defined as 200 

                          (2) 201 

Where  is the ocean surface temperature,  is the mean outflow temperature, 202 

which is taken near the tropopause at the 100 hPa level and spatially averaged (Wing et 203 

al., 2015), Cp is the heat capacity of dry air at constant pressure,  is the exchange 204 

coefficient for enthalpy, and   is the drag coefficient.   is the saturation 205 

equivalent potential temperature at the ocean surface, and   is the boundary layer 206 

equivalent potential temperature.  207 

We alsoassess the large-scale environmental conditions for TC generation 208 

primarily using the GPI, but make use a second and more recent method to estimate TC 209 

called the ventilation indexof the VI for comparison purposes (Tang, et al., and Camargo, 210 

2014), defined as: 211 
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V

V
VI m                                      (3) 212 

Where m  is the (nondimensional) entropy deficit, defined as: 213 
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where  is the saturation entropy at 600 hPa in the inner core of the TC, is the 215 

environmental entropy at 600 hPa ,  is the saturation entropy at the sea surface 216 

temperature, and is the entropy of the boundary layer, which we chose as the 925 217 

hPa layer. The numerator of (4) is the difference in entropy between the TC and the 218 

environment at mid-levels, while the denominator is the air-sea disequilibrium, both are 219 

calculated following Emanuel (1994). In contrast with GPI where increases correspond 220 

to heightened TCs, increases in VI mean fewer TCs are likely. 221 

b.  Data  222 

Although to date 8 ESMs have performed the greenhouse gasRCP4.5 and G4 223 

simulations, we selected a subset of 6 models to use here based onhave access to all 224 

required model data fields, but one of those, CanESM2, was not used because all three 225 

of the realizations available it failed to pass statistical tests leaving 5 models (Table 1). 226 

The particular tests we did to exclude some data and models from the analysis are 227 

discussed in detail in section 3.2. The rejected simulations all produced statistically 228 

weak and insignificant regression fits to linearized forms of GPI and VI with all 229 

combinations of the thermodynamic and dynamic terms used to compute them. Hence, 230 

it is unlikely that VI or GPI can meaningfully represent TC activity in these cases. In 231 

comparison, the ESM simulations we do use have regression models that are significant 232 

at least at the 99.9% level, and in many cases, achieve far higher significance.  233 

We use monthly sea surface temperature (SST), relative humidity, vertical wind 234 

shear, sea level pressure, specific humidity, air temperature. on different vertical levels. 235 

*

ms ms

*

SSTs

bs
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All the model outputs at different spatial resolutions were interpolated to a common 236 

grid (128×64) using the bilinear interpolation method. All the models were weighted 237 

equally in the ensemble mean, so the models with more than a single ensemble member 238 

were first averaged before taking the overall model ensemble mean. 239 

c.  TC basins 240 

Factors influencing TC change are diverse across different ocean basins. Some 241 

researchersstudies (Emanuel, 2010; Knutson et al., 20152010) find a declinerobust or 242 

significant declines in the frequency of events in the Southern Hemisphere, but 243 

increasing frequency inwhile the Northern Hemisphere is relatively constant in the 244 

observational record. We therefore examine relationships across all the six TC basins 245 

listed in Table 2. The observed TC annual mean numbers for the period 1980-2008 for 246 

each basin (Emanuel, 2010) are also listed in Table 2. The North Atlantic makes up a 247 

relatively small fraction of the total, with the Pacific dominant in the global locations 248 

of tropical cyclonesTCs. 249 

3 3. Results  250 

The climate response to G4 forcing has been discussed by Yu et al. (2015). The 251 

general pattern of temperature change under GHG forcing includes accentuated Arctic 252 

warming, and least warming in the tropics. G4 largely reverses these changes, but leaves 253 

some residual warming in the polar regions and under-cools the tropics. SAI also 254 

reduces temperatures over land more than over oceans relative to GHG, and hence 255 

reduces the temperature difference between land and oceans. Between 2020 and 2069, 256 
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SSTs in the 6 basins during their TC seasons are 0.4°C (with a model range of 0.2-0.6°C) 257 

warmer in RCP4.5 than under G4. 258 

3.1 The temporal and spatial distribution of GPI and VI  259 

We list the basin GPI and VI by model and month in Table S1. The individual 260 

monthly GPI as a fraction of the annual totals are shown in Table S2. We select northern 261 

and southern TC season on the basis of the each model’s monthly fractions of GPI. We 262 

use a threshold of 10% for above uniformly distributed GPI for RCP4.5 and G4 263 

averaged GPI and find that for the northern basins June-November are above the 264 

threshold, while for the southern basins it is January-June. Thus there are 6 months in 265 

each hemisphere and they account for 68% under both RCP4.5 and G4 of the yearly 266 

total GPI (Table S3). We also notice from Table S2 that under G4 the TC season occurs 267 

about 1 month earlier than under RCP4.5 in both hemispheres, although our choice of 268 

threshold for the TC season means that we can use the same 6 months for each 269 

experiment. While peak TC season. The same analysis for VI shows similar results, 270 

although the season is less well-defined than for GPI, for instance VI in August is higher 271 

than December in northern basins as is January in the southern ones, but the general 272 

results do not require separate definitions of season from those for GPI. The Northern 273 

Hemisphere peak TC season is AugustJune through OctoNovember and January 274 

through MarchJune in the Southern Hemisphere, various authors have used longer 275 

periods in analyzing model data, e.g. Emanuel (2013) used all 12 months, while Jones 276 

et al., (2017) used June-November for the North Atlantic hurricane season. Li et al. The 277 
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time series of annual GPI over the 6 TC basins and during the appropriate TC season 278 

(The Northern Hemisphere peak TC season is defined to be August through October, 279 

and the Southern Hemisphere season is defined to be January through March.) are 280 

shown in Fig. 1. Hereafter, all analyses are calculated and compared using these 281 

monthly periods. The mean differences in the TC indices and their component parts are 282 

tabulated in Table 3.  283 

The GPI has a rising trend, significant at the 95% level, for all models except 284 

BNU-ESM and CanESM2 under RCP4.5, and for all models except CanESM2 and 285 

NorESM1-M under G4. Furthermore, the G4 means for all models were significantly 286 

lower than their RCP4.5 values. (2013) note that the Northern Indian TC basin has a 287 

secondary peak in TC around May. This peak is reproduced by the BNU-ESM, 288 

HadGEM2-ES, MIROC–ESM and NorESM1-M models where it about half the size of 289 

the peak months later in the year (Table S1). This does not affect the statistical choice 290 

of TC months (Table S2), although it causes the fraction of GPI accounted for in our 291 

TC season to be the lowest for the Northern Indian basin (Table S3). 292 

The models we use have considerable range in their absolute values of GPI, which 293 

is also a generally observed feature of climate models (Emanuel, 2013). The MIROC-294 

ESM-CHEM model has the largest difference between G4 and RCP4.5 (-16%) while 295 

CanESM2 shows the smallest difference (-0.3%).The GPI has a rising trend under 296 

RCP4.5 and G4 (Fig. 1). Table 3 shows that there are significantly (p<0.05 when tested 297 

using the Wilcoxon signed rank test) lower values of GPI under G4 than RCP4.5 for 298 
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Northern Hemisphere basins in all models except for NorESM1-M, but only MIROC-299 

ESM-CHEM has significantly lower GPI for the Southern Hemisphere basins. The time 300 

series indicate that tropical storms will become more frequent with time and that G4 301 

significantly reduces the numbers. 302 

Fig. 1 also shows the evolution of ventilation indexVI in the TC seasons during 303 

2020 to 2069 among the sixfive models. Note that following the definition of VI in Tang 304 

et al.and Camargo (2014) we use the median value not its mean. During most years 305 

from 2020 to 2069, CanESM2, HadGEM2-ES, MIROC-ESM-CHEM and NorESM1-306 

M show the VI under G4 lies above that under RCP45. There are no significant trends 307 

throughout the period though allAllThe models ensemble shows slight decreasing 308 

trends. Ventilation is disadvantageous over time, indicating a tendency for TC genesis. 309 

Thus, reducing trends suggest more storms in futureTCs, consistent with trends in GPI. 310 

AsTable 3 shows that G4-RCP4.5 differences in Northern Hemisphere basins are 311 

significantly positive except for NorESM1-M, Southern Hemisphere basins show less 312 

consistent results, which is also consistent with GPI therewhich indicates that G4 313 

reduces TC occurrence, and is about a factor of 2-3 rangemore effective in absolute 314 

values between the modelsthe Northern Hemisphere.  315 

Fig. 2 shows that the correlations between model differences G4-RCP4.5 for annual 316 

mean GPI and VI. Most models , and the ensemble show significant anti-correlation 317 

across all TC basins, with the ensemble having significant anti-correlations for all TC 318 

basins except the South Pacific. The degree of  where more than half the models have 319 
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significant correlation varies widely across the models, with some having coefficients 320 

at great as -0.7 and others as low as 0.1.. The ensemble mean correlation is only around 321 

-0.253, indicating that GPI and VI are addressing sufficiently different aspects of TC to 322 

warrant independent analysis.   323 

We next examine the spatial pattern of GPI and VI calculated over the 3050-year 324 

period: 20402020–2069 in the G4 and RCP4.5 experiments. The relative differences as 325 

percentages (GPIG4-GPIRCP4.5)/GPIRCP4.5 during the peak 3-month season6-months of 326 

each hemisphere’s TC season are shown in Fig. 3. These geographic patterns can be 327 

compared with the values in TableTables 3 and 4. 328 

Fig. 3a shows that the GPI anomaly varies by region and by model. For instance, 329 

all models except NorESM1-M show negative differences in the North Indian basin. In 330 

the Western North Pacific, allAll models except CanESM2 and HadGEM2-ESMIROC-331 

ESM-CHEM show negativethe South Pacific to be reddish in colour indicating 332 

increased GPI under G4 compared with RCP4.5 consistent with Table S1. Similarly, the 333 

North East Pacific basin has positive differences. in MIROC-ESM-CHEM and 334 

NorESM1-M. Negative differences indicate fewer tropical storms with 335 

geoengineeringSAI than under greenhouse gasGHG forcing alone. Despite model 336 

differences, the ensemble result shows robustly that the GPI difference generally 337 

negative in the northern hemisphereNorthern Hemisphere but insignificantly positive 338 

in the southern hemisphere.South Pacific and East Northern Pacific basins (Table 4). At 339 

present the vast majority of tropical storms occur in the northern hemisphereNorthern 340 
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Hemisphere (Table 2), so the overall global numbers would likely decrease. 341 

The spatial distribution of VI also has large variation (Fig. 3b). All models except 342 

NorESM1-M have increases in the North Atlantic. In the West North East Pacific, all 343 

models except MIROC-ESM-CHEM and BNU-ESMNorESM1-M have increases, 344 

suggesting. Increased VI (G4-RCP4.5) differences suggests fewer cyclones in 345 

agreement with the results of GPI. All six models have increases in the North Atlantic. 346 

In the North Indian Ocean, all models show increasing ventilation index 347 

exceptincreased VI difference in the Arabian Sea and all except BNU-ESM and 348 

MIROC-ESM-CHEM and NorESM1-M models, but in the Bay of Bengal. Only 349 

MIROC-ESM shows an increase in the South Indian Ocean, BNU-ESM model shows 350 

a decrease, while other models increase.Pacific. The ensemble results are similar asthus 351 

largely simply opposite in sign to GPI except for the North Indian basin. 352 

3.2 Accounting for changes in GPI and VI 353 

We use two different methods to examine how the contributing climate variables to 354 

GPI and VI account for differences between models and across the TC basins. The 355 

objectives are 1) learn which are the key variables in the model simulations of cyclones; 356 

2) find a subset that can be tested against the understanding of how aerosol injectionSAI 357 

affects the atmosphere heat and water balance and 3) examine if variations in TC basin 358 

extent or cyclone seasons may be expected under aerosol injectionSAI. 359 

3.2.1 Monthly differences in GPI and VI components between G4 and RCP4.5  360 
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To examine the effects of geoengineeringSAI on cyclone seasonality, we look at 361 

the monthly contributions of the factors that make up GPI and VI. Li et al. We can 362 

express(2013) expressed Equation (1) for GPI as the product of four itemsterms, 363 

respectively representing an atmospheric absolute vorticity itemterm (AV), a vertical 364 

wind shear itemterm (WS), a relative humidity itemterm (RH), and an atmospheric 365 

potential intensity itemterm (PI). 366 

          
WS

AVRHPI
GPI


                              (5) 367 

Where PI = (
𝑉𝑝𝑜𝑡

70
)

3

, RH = (
𝐻

50
)

3

, WS = (1 + 0.1𝑉𝑠ℎ𝑒𝑎𝑟)2, AV = |105𝜂|
3

2. 368 

The absolute vorticityAV and vertical wind shear items can be WS are considered 369 

to be dynamic components, while the relative humidityRH and potential intensity 370 

itemsPI are thermodynamic ones. 371 

 We follow ZhiLi et.al. (2013) in identifying the individual monthly contributions 372 

from the four large-scale environmental processes. First takingTaking the natural 373 

logarithm of both sides of Eq. (5), obtainsdifferentiating, and substituting back into Eq 374 

(5)  allows GPI to be expressed as annual means and monthly anomalies: 375 

)log()log()log()log()log( AVWSRHPIGPI                     (6) 376 

And differentiating yields 377 

        
AV

dAV

WS

dWS

RH

dRH

PI

dPI

GPI

dGPI
                            (7) 378 
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Substituting Eq. (5) into Eq. (7), we have 379 

WS

AVPI
dRH

WS

AVRH
dPIdGPI





  380 

       
WS

RHPI
dAV

WS

AVRHPI
dWS







2
                      (8) 381 

Eq. (8) can be expressed as annual means and monthly anomalies: 382 

  AVWSRHPIGPI   4321                  (96) 383 

Where    

WS

RHPI

WS

AVRHPI

WS

AVPI

WS

AVRH













4

23

2

1

-









 384 

And     GPIGPIGPI   385 

In Eq. (96), a bar denotes an annual mean value, and   represents the difference 386 

between an individual month and the annual mean, assuming constant coefficients for387 

1 , 2 , 3 , and 4 . 388 

We are interested in detecting changes between greenhouse gasGHG forcing alone 389 

and under geoengineeringSAI, so we examine the differences G4-RCP4.5 for each 390 

model grouping the TC basins by hemisphere in Fig. 4, and use δ𝐺𝑃𝐼𝐺4 − 𝛿𝐺𝑃𝐼𝑟𝑐𝑝45 391 

to calculate the difference. Fig. 4 clearly shows that RH and WS make the largest 392 
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contribution to GPI differences in both hemispheres in all models except MIROC-ESM-393 

CHEM.. In the Northern Hemisphere, RH and WS itemsterms show negative 394 

contributions in the cyclone season. Hence, these are the factors that enables 395 

geoengineeringprimarily enable SAI to reduce GPI relative to greenhouse gas 396 

forcingGHG. In the Southern Hemisphere there are no clear difference between GPI 397 

under G4 or RCP4.5. Absolute vorticity, AV makes almost no contribution to the GPI 398 

differences under geoengineeringSAI in all models. 399 

We also do the same mathematical transform for ventilation indexVI. We obtain 400 

annual means and monthly anomalies: 401 

   δVI = 𝛼5𝛿(𝑉𝑝𝑜𝑡) + 𝛼6𝛿(𝜒𝑚) + 𝛼7𝛿(𝑉𝑠ℎ𝑒𝑎𝑟)                       402 

(107)   403 

Where   𝛼5 = −𝑉𝑠ℎ𝑒𝑎𝑟
̅̅ ̅̅ ̅̅ ̅̅ 𝜒𝑚̅̅ ̅̅ ̅

𝑉𝑝𝑜𝑡
2̅̅ ̅̅ ̅̅    𝛼6 =

𝑉𝑠ℎ𝑒𝑎𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑉𝑝𝑜𝑡̅̅ ̅̅ ̅̅
   𝛼7 =

𝜒𝑚̅̅ ̅̅ ̅

𝑉𝑝𝑜𝑡̅̅ ̅̅ ̅̅
  404 

         δVI = VI − 𝑉𝐼̅̅ ̅ 405 

Analogously as for GPI, we show also results for VI in Fig. 4. shearV  makes the 406 

largest contribution to ventilation index differences between geoengineering and 407 

greenhouse gas forcing in both hemispheres. SAI and GHG forcing in both hemispheres. 408 

Fig. 4 shows that the HadGEM2 values tend to be smaller than for other models and 409 

often differ in sign of difference from the other models, consistent with the muted 410 

spatial patterns in Fig. 3.
 

411 

3.2.2 Contributions to GPI and VI across TC basins  412 

   The GPI and VI dependencies may be expressed as a regression equation of X on Y 413 
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where Y is the GPI or VI anomalies under G4 relative to RCP4.5, and the fractional 414 

contribution to variance, S, of each variable i in X to Y can be written, following Moore 415 

et al. (2006) as,  416 

          𝑆𝑖 = 𝑀𝑖𝐶𝑖𝜎𝑋𝑖/𝜎𝑌                                     (118)      417 

where the X are the standard deviations of the predictor terms, Y is the standard 418 

deviation of the anomalies, C are the correlation coefficients of the X with Y, M are the 419 

regression coefficients of the X with Y. The regression can be expressed as a multiple 420 

linear regression in log space, and the coefficients simply transformed after fitting. 421 

Fitting in log space also allows for the generally heteroscedastic, fractional, nature of 422 

the errors in the variables.  423 

The relative contributions to GPI anomalies from its four variable itemsterms 424 

following the regression Eq. (118) are shown in Fig. 5. RH is the dominant factor for 425 

GPI differences in all models except MIROC-ESM-CHEM and all TC basins. A 426 

striking feature of Fig. 5There is that there are very similar patterns of variability 427 

between models across all the basinslittle variance explained for the PI and the RH 428 

terms, but not for the WS and AV termsMIROC-ESM-CHEM and NorESM1-M models 429 

compared with the other three models. Fig. 5 also shows that AV makes very little 430 

contribution to variance explained in the (G4-RCP4.5) differences. ForIn all models 431 

except MIROC-ESM-CHEM, WS makes about half the same contribution to variance 432 

explained as RHPI.   433 

Fig. Fig. S1S1 shows the same analysis as Fig. 5, but for all 9 realizations of 434 
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MIROC-ESM-CHEM. The first four realizations behave similarly as the BNU-ESM, 435 

HadGEM2-ES and MIROC-ESM models in Fig. 5, with variance accounted for around 436 

80% of total and the RH terms being about twice as important as WS and PI terms. The 437 

remaining 5 realizations have far lower variance explained, similar as for NorESM1-M, 438 

with RH still the dominant term. 439 

Fig. S2 shows the three variables of the ventilation index in a similar way as Fig. 440 

5. 𝑉𝑠ℎ𝑒𝑎𝑟  makes the largest contribution to VI for all TC basins and all models 441 

especially for the BNU-ESM and MIROC-ESM models. Fig. S3 shows the VI 442 

components for all 9 realizations of MIROC-ESM-CHEM, which appears similarly 443 

divided into two groups as they were for GPI in Fig. S1. Indeed from Fig. S1S2 it 444 

appears that VI may be simply replaced by 𝑉𝑠ℎ𝑒𝑎𝑟, for the models where any variance 445 

is explained, but viewing the month by month contributions in Fig. 4 shows that other 446 

components are relatively important for some models during some months of the TC 447 

season. 𝜒𝑚 has no consistent contribution for the models and basins, and it sometimes 448 

make negative contributions to the difference

The statistical power of a regression equation can be expressed as the F-statistic. 450 

Given that the different variables in Figs 5 and S1S2 show notable differences in their 451 

contribution to the GPI and VI, we can use the F-statistic to examine if a reduced model 452 

with fewer variables is a better statistical model for the differences under G4 and 453 

RCP4.5. GPI has four variables, so there are 15 combination to examine as shown in 454 

Fig. 6. Only for BNU-ESM and MIROC-ESM do the full set of variables have the 455 
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highest F-statistic. NorESM1-M and MIROC-ESM-CHEM stand out as different from 456 

the other models in their general behavior. MIROC-ESM-CHEM is largely governed 457 

by PI and NorESM1-M by RH. In generalHowever, HadGEM2-ES has best model with 458 

all factors except the atmospheric vorticity term. This is consistent with results shown 459 

in Figs. 4 and 5, and with the analysis by Emanuel (2013). The value of the F-statistic 460 

represents the degree that the regression model accounts for the data variability 461 

compared with model having no independent variables. The 3 models that the full, or 462 

nearly full, set of variables performs best have F-statistics over 1000 (p<0.001) while 463 

NorESM1-M has F of around 25-60. This is still significant at the 99.9% level. When 464 

we analyzed the realizations 5-9 of MIROC-ESM-CHEM, we found much lower F-465 

statistics than for realizations 1-4 (Fig. S4), with values similar as for NorESM1-M of 466 

50-100. In general, the models show RH has the largest F-statistic for single parameter 467 

models, consistent with Figs. 4 and 5. Fig. 4 and 5. VI has 3 variables, so there are 7 468 

combinations possible. S4 also shows that all three realizations of CanESM2, which we 469 

do not use for TC analysis in this paper, have even lower F values, particularly r2 and 470 

r3, which are around 2 that are not significant. Fig. S2 shows 𝑉𝑠ℎ𝑒𝑎𝑟  has largest 471 

contribution to VI for most of models, and as for GPI, only BNU-ESM and MIROC-472 

ESM models have largest F-statistic for the full set of model variables. 473 

VI has three variables, so there are 7 combinations possible. As with GPI in Fig. 474 

6, are remarkable differences in the values of F amongst the models. BNU-ESM, 475 

MIROC-ESM, HadGEM2-ES and the realizations 1-4 of MIROC-ESM-CHEM 476 
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achieve values over 1000 (p<0.001), while for NorESM1-M and realizations 5-9 of 477 

MIROC-ESM-CHEM have best F-statistics of 50 – 100 (p<0.001). Fig. S5 shows 478 

𝑉𝑠ℎ𝑒𝑎𝑟 has largest contribution to VI for most of models, and MIROC-ESM is the only 479 

models have largest F-statistic for the full set of model variables, as it also had for GPI. 480 

3.3 The keyPrimary factors affecting TCsthat control GPI and VI changes 481 

The analysis above shows that PIthe common factors across models and basins that 482 

affect TCs are potential intensity ( potV ), relative humidity (H), and vertical wind shear 483 

(Vshear). We now discuss these factors separately, beginning with potV   as this is an 484 

important factor affecting TC genesis. function of several different ESM variables.  485 

According to Eq. (2), potV  is dependent on the static stability of the troposphere, 486 

which is related to both sea surface ( ST ) and upper tropospheric temperatures (
OT ) 487 

where rising air flows out of the storm. Wing et al. (2015) use the trends in reanalysis 488 

and radiosonde products at 70 and 100 hPa in TC seasons to represent change in outflow 489 

temperature across various TC basins and assign its contribution to trends in potV . For 490 

convenience, we choose the tropical tropopause (100 hPa) temperature from the ESM 491 

output to represent
OT . Fig. , and which can be represented by tropical tropopause (100 492 

hPa) temperature. Fig. S3S6 show the correlations across TC basins and seasons for the 493 

various fields in RCP4.5 and G4, while Fig. 7 shows the correlations in the differences 494 

between G4 and RCP4.5 so that difference made by the geoengineeringSAI can be 495 

clearly evaluated. Fig. 7a shows the dependence of potV  differences (G4-RCP4.5) on 496 

( ST - OT ) differences for the models. All models have significant correlation for all TC 497 
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basins except BNU-ESM, which is significant in WNP, ENP, NIthe SI and integrated 498 

over all TCSP basins and HadGEM2-ES in the SP basin. However, there is an even 499 

stronger dependence for potV  on ST anomalies (Figs. 7b, S3S6). The model ensemble 500 

mean potV   is better correlated with Ts rather than ( ST  - OT  ) mostly due to better 501 

correlations of NorESM1-M and HadGEM2-ES in Fig. 7b. all Fig. S3 shows that 502 

correlations for both models under RCP4.5 and G4 separately are not atypical, simply 503 

that their (G4-RCP4.5) differences are small. It is also notable that there are worse 504 

correlations for the model ensemble values of ( ST  - OT  ) with  under G4 than 505 

RCP4.5 (Fig. S3). All models except CanESM2 and NorESM1 in show significant 506 

correlation between GPI and ST anomalies shown as Fig. 7c. And all except these two 507 

models have significant correlations for all TC basins except HadGEM2-ES.  508 

All models show significant correlation between GPI and ST anomalies shown as 509 

Fig. 7c. Some models have insignificant correlations in particular basins, e.g., BNU-510 

ESM is slightly anti-correlated in NA, as is HadGEM2-ES in WNP. GPI is not 511 

significantly correlated with Ts for half the ESM in the NI and SP basins. Fig. S6 shows 512 

that there are fewer significant correlations under G4 than under RCP4.5. 513 

Figs. S4S7 and S5S8 show the seasonal variabilitycycle of Ts and T0To for all the 514 

models. The annual cycle of Ts, is very similar, as expected, for all the models, and with 515 

good agreement on the differences in seasonal cycle between the Northern and Southern 516 

Hemispheres. as observed (Fig. S9). However, for T0To the models show differences in 517 

the shapes and phases of the cycles in both hemispheres, for example only the 518 

NorESM1-M model shows roughly antiphase seasonality between the hemispheres. Fig. 519 

potV
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S6S9 shows the ERA-interim reanalysis T0To data, which has similar seasonality in both 520 

hemispheres, with peak temperature anomalies in August ( 1.5C) and a sharp decline 521 

to a long minimum by November or December of similar magnitude. Comparing Figs. 522 

S5 and S6 S7 shows that the models generally follow similar patterns under both G4 523 

and RCP4.5, except for NorESM1-M andTs, but Fig S8 shows that there is much larger 524 

variability between the models representations of To under G4 and RCP4.5. HadGEM2-525 

ES. HadGEM2-ES is also the model with largest amplitude of seasonal cycle, somewhat 526 

larger than in ERA-Interim; other models have smaller amplitudes, with many around 527 

half that observed at present. This degree of difference in T0To simulation likely 528 

explains muchsome of the inter-model differences in GPI. 529 

The other common factors across models and basins that affect TCs are relative 530 

humidity (H) and vertical wind shear (Vshear). In Figs 7d and 7e we plot H and Vshear We 531 

plot H differences between G4 and RCP4.5 as a function of sea surface temperature 532 

differences in Fig. 7d. Relative humidity rises with warming temperatures under both 533 

G4 and RCP4.5 (Fig. S3S6), as expected. But there are obvious differences across the 534 

ocean basins with weakest response in ENP, NA and NI and strongest correlations in 535 

the Southern Hemisphere basins. Differences G4-RCP4.5 follow a similar spatial 536 

pattern, but with a significant anti-correlationagain largest correlations in North Atlantic. 537 

Across-model the southern ocean basins.  538 

Fig 7e shows how RCP4.5-G4 differences in Vshear and Ts are largergenerally anti-539 

correlated. The across-model spread for correlations of Vshear and Ts under both G4 and 540 
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RCP4.5 (Fig. S3) than S6) are similar as for the other key variables. In contrast Anti-541 

correlation with the other parameters, there Ts is generally an anti-correlation with Ts 542 

across all ocean basins, with the NA basin having the weakest correlations.in the SP 543 

and NA basins, but still significant. In terms of the differences in Fig. 7e, all models 544 

show clear significant anti-correlations except CanESM2, with the NI and NA basins 545 

having weakest correlations. Vecchi et al.and Soden (2007) found the tropicalNorth 546 

Atlantic and East North Pacific wind shear increases in model projections under global 547 

warming. If the models assessed here capture the effect under G4 and RCP45, we would 548 

expect positive correlationcorrelations between Vshear and Ts over the tropical Atlantic 549 

these two basins for G4 and RCP4.5 in Fig. S3, but all models show negative 550 

correlations, although the Pacific Ocean basins more significantly anti-correlated than 551 

NA. S6Li et al. (2010) showed that under warming there is relative shift of towards the 552 

central Pacific Ocean of TC genesis away from the North West Pacific. When we plot 553 

the G4-RCP4.5 GPI difference map over the Pacific Ocean, we also see a clear anomaly 554 

in the Central Pacific (Fig. S7). Li et al. (2010) showed the same effect when using 555 

prescribed sea surface temperature patterns from a suite of models, and they account 556 

for the changes in TC by surface temperature gradients that drive trade winds, which 557 

changes the wind shear. Our result is thus consistent with their findings of changes 558 

under greenhouse gas forcing in the Pacific Ocean if the G4 simulation reverses the 559 

effects of RCP4.5 effectively.  560 

3.4  The effect of ENSO on GPI 561 
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   The El Nino-Southern Oscillation (ENSO) is characterized by interannual sea 562 

surface temperature (SST) variations in the eastern and central equatorial Pacific Ocean. 563 

The impact of ENSO events on the TC activity over the western North Pacific (WNP) 564 

has been studied to provide a better understanding of the large-scale steering flow of 565 

TCs and the tendency of TC tracks to shift (Wang et al., 2002). There is also clear 566 

evidence of teleconnections between ENSO and North Atlantic hurricane season 567 

statistics (Gray, 1984; Grinsted et al., 2013). ENSO may be characterized by measures 568 

of atmospheric or oceanic variability. We examined the simulated Niño3.4 index of 569 

tropical Pacific SSTs in the box 170°W - 120°W, 5°S - 5°N, and the Southern 570 

Oscillation Index (SOI) of standardized sea level pressure differences between Tahiti 571 

and Darwin, Australia. Previous analysis of the GeoMIP model ENSO response 572 

(Gabriel et al., 2015) preferred SST based estimates than noisier atmospheric 573 

representations. They also excluded the BNU-ESM, MIROC-ESM and MIROC-ESM-574 

CHEM models from their analysis because of the model’s unrealistic amplitudes of 575 

ENSO. However, as in the real world, all models and the ensemble we use, show a 576 

significant anti-correlation between Niño3.4 index and SOI, except NorESM1-M under 577 

G4, (There are similar significant relationships between H and Vshear under G4 and 578 

RCP4.5 (Fig. S6), and also with their differences (Fig. 7f). This relationship is anti-579 

correlation in all basins for most models, except in the North Atlantic. The strength of 580 

the relationship are similar as for those with Ts, and demonstrates that the 581 

thermodynamic variables Ts and H can be useful proxies for the dynamic Vshear variable. 582 
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Fig. 8). This suggests that while many models, are deficient in aspects of their ENSO 583 

variability, they all capture at least some important aspects of ENSO. The correlation 584 

coefficients are more significant in RCP4.5 than under G4 for most models. We 585 

combined Niño3.4 and SOI indices with equal weighting to get a single representative 586 

index of ENSO to compare with GPI and VI.  587 

Annual GPI for the TC basins and the ENSO index during the TC seasons are, in 588 

general, significantly correlated under both G4 and RCP4.5 (Fig. 9). The exception 589 

being CanESM2 which exhibits anti-correlation between GPI and ENSO index under 590 

both G4 and RCP4.5. The analysis for individual basins indicates most models have 591 

significant correlations with ENSO in the WNP and the SP basin, except CanESM2 592 

under the G4 experiment, where it is significantly anti-correlated for RCP4.5. BNU-593 

ESM, MIROC-ESM and MIROC-ESM-CHEM have significant correlations in ENP, 594 

with NorESM1 and CanESM2 having little or no correlations. Only MIROC-ESM-595 

CHEM has significant correlation between GPI and ENSO in the NA basin, but the R2 596 

is relatively low, around 0.22. Both BNU-ESM and NorESM1 have significant 597 

correlations in the SI basin, while CanESM2 has significant anti-correlation there. So 598 

the impact of ENSO is most consistently felt in the Pacific Ocean, with perhaps 599 

surprisingly low correlation in the North Atlantic considering the well-known 600 

teleconnections with hurricane activity there.  601 

3.5 TC from Track with HadGEM2-ES 602 
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As a supplemental analysis to the results based on the GPI and VI, we also employ 603 

a widely-used feature tracking software (TRACK vn. 1.4.9) to directly track vorticity 604 

maxima that characterize cyclones. Hodges (1995) provides a detailed account of 605 

TRACK’s core functionality. Jones et al. (2017) also used TRACK to assess 606 

geoengineering impact on North Atlantic hurricane statistics, and we follow their 607 

approach. Firstly, we determine the relative vorticity (ξ) on the 850, 500, and 250 hPa 608 

vertical pressure levels from the zonal (U) and meridional (V) wind using the definition: 609 

ξ = (1/a×cos(θ)) × (dV/dλ – dUcos(θ)/dθ), where a is Earth's radius, and θ and λ are the 610 

latitude and longitude in radians respectively. U and V are required on 6 hour time steps, 611 

but are only available for the HadGEM2-ES model in our ensemble, and limited to the 612 

Northern Hemisphere TC season. TRACK detects storms lasting at least 2 days and 613 

additionally requires values setting for three parameters. We follow Jones et al. (2017) 614 

in selecting: ξ1 ≥ 4.5 to express the minimum vorticity intensity required; ξV ≥ 3.5 for 615 

the warmth of cyclone core; ξ1 and ξV thresholds must be met for at least 4 consecutive 616 

time steps. These criteria represent a relaxation of standard parameters (6, 6, 4) but were 617 

tuned to produce a match in the statistics of Atlantic hurricanes contained in the 618 

HURDAT2 database (Landsea,et al., 2013) from the HADGEM2-ES historical 619 

simulation.  620 

In contrast with Jones et al. (2017) which used data from June through November, 621 

we confine the analysis to the Northern Hemisphere TC season (August, September, 622 

October). The TRACK results suggest that there are significantly more TC under G4 623 

than with RCP4.5 (Table 4) in all basins except the Eastern North Pacific. This 624 



60 

 

surprising result is not consistent with the changes in GPI and VI for the Northern 625 

Hemisphere (Table 3). Table 3 shows that the G4 cools relative to RCP4.5 and that wind 626 

shear increases. Furthermore, the TRACK result is not consistent with i) the findings of 627 

the statistical model based on surface temperatures (Moore et al., 2015), ii) the proxies 628 

(including wind shear) for TC examined by Jones et al. (2017), iii) the statistical-629 

dynamical downscaling CHIPS model of Emanuel (2013). Jones et al. (2017) show that 630 

TCs numbers evaluated using the direct counting of storms using the TRACK scheme 631 

(Bengtsson et al., 2007) produce much smaller differences between G4 and RCP4.5 632 

than those using statistical downscaling based on either statistical-dynamical 633 

downscaling using CHIPS (Emanuel et al., 2004) or simply surface temperatures 634 

(Moore et al., 2015).  635 

4 Discussion and Conclusion 636 

TypicalStorms simulated by ESM are run in coarse-resolution that cannot resolve 637 

tropical cyclones and hence do not directly reproduce observed storm intensities and 638 

synoptic features related to cyclogenesis (Camargo, 2013). The storms that may be 639 

counted using indirect methods such as the TRACK algorithm include(Hodges, 1995; 640 

Jones et al. 2017) that allow for feedbacks with the whole climate conditionsystem. 641 

Statistical methods (Moore et al., 2015) may also implicitly include feedbacks between 642 

regional storm and background global climate conditions, but dynamical downscaling 643 

methods (Emanuel, 2013) cannotdo not include them. The GPI and VI proxies we 644 

applyutilize here are useful tools for relating storm activity to meteorological conditions 645 
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but do not account for changes to TC tracks or intensity. Since they require relatively 646 

littlecoarse temporal-resolution data to calculate (monthly means), compared with daily 647 

or 6 hourly data required for TRACK or the CHIPS tools, and they convey information 648 

from more than simply surface temperature fields, they may give reasonable insights 649 

into the complex changes to TC under SRM geoengineeringSAI schemes.  650 

We evaluated the hurricane index over six TC ocean basins in sixfive CMIP5 and 651 

GeoMIP models. We used G4 and RCP4.5 experiments to assess and compare the 652 

genesis potential and ventilation indices that diagnoserelate tropical storms in climate 653 

models.storm activity to ambient meteorology. Based on the climatology of the years 654 

20402020-2069, GPI and VI both show small rising trends for TC genesis in all sixfive 655 

models under both G4 and RCP4.5 scenarios. The TC season as measured by elevated 656 

monthly GPI values is almost a month earlier in G4 than RCP4.5, a result that is 657 

consistent across basins and models. There are fewer TC’s expected globally under SAI 658 

G4 than under the purely GHG forcing of RCP4.5 as assessed by differences significant 659 

at the 95% level in both GPI and VI. All 5 ESM models show significantly reduced GPI 660 

under G4 in Northern Hemisphere basins (Tables 3, 4) but results are inconclusive for 661 

southern basins. Spatial patterns of TCs, show both GPI and VI predicting fewer TC in 662 

the North Atlantic and North Indian Ocean under G4 compared with RCP4.5, and more 663 

TC in the South Pacific for most models in the ensemble. Thus stratospheric sulphate 664 

aerosolthe G4 scenario of SAI based on equatorial lower stratosphere injection of SO2 665 

could lead to fewer TCs in the North Atlantic and Indian Ocean but more TCs in the 666 

South Pacific region than under greenhouse gasGHG induced global warming. There 667 
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is, however, large inter-model variationsvariability across the six ocean basins. The 668 

impact of ENSO on TCs can be detected in the GPI and shows a rising tendency for 669 

GPI under El Niño conditions across the TC basins, especially in the Pacific Ocean. 670 

Detailed statistical analysis of the two TC indices indicates that theDetailed 671 

statistical analysis of the two TC indices indicates that NorESM1-M and 5 out of 9 672 

MIROC-ESM-CHEM ensemble members have lower dependencies on explanatory 673 

variables for GPI or VI. This suggests that using GPI and VI to elucidate TC activity in 674 

those particular ESM simulations is much less reliable. It is not obvious from simple 675 

correlations between GPI and VI, or between fields such as Ts or H which ESM runs 676 

have relatively poor relationships for GPI. 677 

The thermodynamic variables potential intensity and relative humidity are the 678 

dominant ones affecting genesis potential, while the dynamic variables such as absolute 679 

vorticity and entropy deficit are much less important. Vertical wind shear is a dynamic 680 

variable and dominates the ventilation index. By examining the contributions of 681 

variables to differences in GPI and VI under geoengineeringSAI and greenhouse 682 

gasGHG forced climates, we show that relative humidity is the dominant factor for GPI 683 

differences in all models and all TC basins, except . Relative humidityMIROC-ESM-684 

CHEM for which potential intensity is also usefully correlated with wind shear, though 685 

the dominant factor.North Atlantic displays a qualitatively different relationship than 686 

the other basins. The analysis suggests that a simplified representation of TCs 687 

depending on fewer variables ismay be possible, but does require analysis of particular 688 
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model behavior before choosing those variables. Although wind shear is important and 689 

a dynamic variable, it in encouraging that the thermodynamic state of the system is of 690 

prime importance for the GPI, suggesting. This suggests that statistical methods of 691 

predicting changes in hurricane and stormTC behavior are plausible. But, these indices 692 

cannot fully represent, although individual basin behavior depends on particular local 693 

forcing factors in addition the actual TC variations due toaccessible thermodynamic 694 

variables used in the complexity of TC genesisGPI and evolutionVI.  695 

   Potential intensity is related to the difference between sea surface temperature and 696 

outflow temperature (theevaluated at 100 hPa level). In fact we notefind that changes 697 

in SSTs alone provide a better correlation with both potential intensity and GPI changes. 698 

This result is similar with previous observational (Grinsted et al., 2013) and modeling 699 

(Wu and Lau, 1992) studies that suggest it is the geographical distribution of SST 700 

anomalies that are crucial for the development of TC. Recent analysis of GeoMIP 701 

results by Davis et al. (2016), on the extent of the tropical belt under G1 and 702 

4abrupt4×CO2 experiments, demonstrates that tropical upper-tropospheric temperature 703 

changes are well-correlated with the change in global-mean surface temperature. This 704 

is because changes in the static stability characterized by upper troposphere and surface 705 

temperature differences scales with the moist adiabatic lapse rate and surface 706 

temperatures.  707 

In contrast with the solar dimming G1 experiments analyzed by Davis et al., (2016), 708 

here we analysisanalyze G4 which is an aerosol injection schemeprotocol. The aerosol 709 
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heatsis prescribed (Kravitz et al., 2011a), as injected into the equatorial stratosphere 710 

mainly between the at 16-25 km elevation injection levelsaltitude, where most of the 711 

direct radiative heating takes place (Pitari et al., 2014). However, due to the large size 712 

of the geoengineering aerosol particles (effective radius of the order of 0.6 μm or more), 713 

a significant fraction of the stratospheric particles settle below the tropical tropopause 714 

(Niemeier et al., 2011; English et al., 2012; Cirisan et al, 2013), thus producing some 715 

diabatic heating a few kilometres immediately below the tropical tropopause. This is 716 

superimposed on the convectively-driven upper tropospheric cooling caused by surface 717 

cooling due to the SAI and reduced convection and weakened hydrological cycle (Bala 718 

et al., 2008). This may be expected to be the dominant process controlling the SAI-719 

induced changes in atmospheric static stability. Furthermore, recent work (Visioni et al., 720 

2018 ACP in discussion) explores the surface cooling impact on upper tropospheric 721 

cirrus cloud formation, and the concomitant impact on static stability. Surface cooling 722 

and lower stratospheric warming, together, tend to stabilize the atmosphere, thus 723 

decreasing turbulence and updraft velocities. The net effect is an induced cirrus thinning, 724 

which indirectly increases net global cooling due to the SAI. Furthermore, recent work 725 

(Visioni et al., 2018 ACP in discussion) explores the secondary of surface cooling on 726 

the upper troposphere with the impact on cirrus clouds, and the concomitant impact on 727 

static stability. Surface cooling and lower stratospheric warming at the tropopause of 728 

about 0.6 C, together, tend to stabilize the atmosphere, thus decreasing turbulence and 729 

water vapor updraft velocities. The net effect is an induced cirrus thinning, which serves 730 

to increase net global cooling due to the SAI.  731 
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Pitari et al. (2014) note a warming of the 100 hPa layer under G4 relative to RCP4.5 732 

for the MIROC-ESM-CHEM model (Pitari et al., 2014). This is about halfin the 2040s 733 

for the tropics. Most models (Table 3) in the TC basins and seasons show a cooling of 734 

(ensemble mean of 0.14C) with only HadGEM2-ES and BNU-ESM having warming 735 

at 100 hPa. Given the complexities of changes in the upper troposphere due to the 736 

process outlined in the previous paragraph the range of the G4-in static stabilities 737 

represented by the model range in Ts-To differences relative to RCP4.5 difference in 738 

static stability (Fig. 7). Hence,is probably not surprising. Therefore, although we 739 

wouldmight expect to see a significantan improvement in correlation of potential 740 

intensity and GPI by using 100 hPa temperatures in addition to SSTs, but we do not. 741 

Table 3 shows that the upper troposphere measured by T0 does not warm with most 742 

models under G4, which is consistent with the impact of G1 on the troposphere.the 743 

ability of the models to capture all the processes varies. The result is that the models 744 

used here have a better relationship with sea surface temperatures than static stability, 745 

and suggests that the aerosol heating effects are not influencingbeing simulated well 746 

enough to allow their impacts on TC genesis to be fully estimated.  747 

The change in relative humidity on the tropical ocean basins in future is a key 748 

aspect of TC genesis according to our analysis. Models tend to agree on the sign of 749 

change in relative humidity as temperatures rise, but there are consistent differences in 750 

response strength of response across the ocean basins. The differences in response (G4-751 

RCP4.5) even indicate a difference in sign of North Atlantic response under 752 
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geoengineering from the other basins. This indicates that although relative humidity is 753 

important for most models, changes in TC genesis processes between basins affect its 754 

utility as a predictor variable. Here we used the widely utilized formulation of GPI 755 

given by Emanuel and Nolan (2004), which specified moisture in terms of relative 756 

humidity. More recently Emanuel (2010) reformulate GPI in terms of “saturation deficit” 757 

that is a measure of the moist entropy deficit of the middle troposphere, which becomes 758 

larger as the middle troposphere becomes drier. This parameter has the same 759 

denominator as m in Eq (4), which is used in the calculation of VI, Eq (3), while the 760 

numerator varies only in the definition of the boundary layer. Our analysis of the 761 

dependence of the three terms that describe VI shows m is moderately important in 762 

some models (Fig. S5), and more useful reduced regression models are (𝑉𝑝𝑜𝑡, 𝜒𝑚), or 763 

(𝑉𝑠ℎ𝑒𝑎𝑟 , 𝜒𝑚 ) than (𝑉𝑝𝑜𝑡 , 𝑉𝑠ℎ𝑒𝑎𝑟) . This consistent with analysis of 6 ESM models 21st 764 

century trends in GPI by Emanuel (2013), who also notes that vorticity does not 765 

contribute to trends.  766 

The final variable, vertical wind shearVshear , shows large scatter across the models, 767 

but consistent anti-correlation with Ts. However, there are also good but different 768 

relations between Vshear and surface temperature, and that relationship is somewhat 769 

stronger under G4 than RCP4.5. The changes in GPI over the Pacific Ocean under G4 770 

compared with RCP4.5 are similar to previous results comparing patterns of TC genesis 771 

under 20th century H and Vshear in every basin suggesting that the state of this dynamic 772 

variable can be explained to a significant degree by the thermodynamic state driving H 773 
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and Ts. This is consistent with analysis (Li et al., 2010), showing that prescribed sea 774 

surface temperatures relative to 21st patterns (Li et al., 2010).can account for some 775 

changes in TC in the Pacific basins as surface temperature gradients drive trade winds, 776 

which changes the wind shear. Overall our analysis of the driving parameters in GPI, 777 

suggests that despite large model differences, the simple dependence of GPI on surface 778 

temperatures is reasonably robust. 779 

   Smyth et al. (2017) report the seasonal migration of the Intertropical Convergence 780 

Zone (ITCZ) in G1, associated with preferential cooling of the summer hemisphere, 781 

and annual mean ITCZ shifts in some models that are correlated with the warming of 782 

one hemisphere relative to the other. ITCZ location is correlated with tropical cyclone 783 

and season.TC and season. The timing of the TC season under G4 is about a month 784 

earlier in both hemispheres than under RCP4.5. This might also be a function of the 785 

reduced amplitude of ITCZ motion, though this effect has not yet been verified as 786 

occurring under SAI as prescribed by G4. It is plausible because reduced solar heating 787 

of the ocean basins mean that less sea water is heated and there will be reduced lag of 788 

those surface waters with solar zenith position. Our analysis of seasonality of TCs 789 

shows that there appears to be a difference in behavior between the Southern and 790 

Northern Hemispheres, with the southern one showing no consistent changes between 791 

models under RCP4.5 and G4 scenarios. Davis et al. (2016) show that there are 792 

differences in the evolution of the northern and southern Hadley cells under 793 

greenhouseGHG forcing, with the expansion of the northern one scaling non-linearly 794 
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with temperature. Differences seem to be driven fundamentally by the equator-pole 795 

temperature gradient, and therefore may be expected given the far greater fraction of 796 

land surface and larger polar amplification in the Northern compared with Southern 797 

Hemisphere.  798 

   Many models, owing to their low resolutions, produce much weaker and larger TCs 799 

(Camargo et al., 2005) than seen observationally. Considering the insufficientcoarse 800 

spatio-temporal resolution of most ESM models, evaluating the GPI and VI mayis 801 

likely to remain a popular be a bettergood diagnostic of TC variationsvariability under 802 

different climates. The results presented here suggest that SRMSAI produces reductions 803 

in TCs across most of the major storm basins, and would bethis is primarily due to 804 

reduced sea surface temperatures in the genesis regions.  805 
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 1029 

Table 1. Climate models used in this study 1030 

Model Reference 
Resolution 

(Lon×Lat) 

ensembl

e 

member

s 

BNU-ESM Ji et al. (2014) 128×64 1 

CanESM2 Chylek et al. (2011) 128×64 3 

HadGEM2-ES Collins et al.(2011) 192×144 3 

MIROC-ESM Watanabe et al. (2011) 128×64 1 

MIROC-ESM-

CHEM 
Watanabe et al. (2011) 128×64 9 

NorESM1-M Bentsen et al. (2013) 144×96 1 

Model Reference 
Resolution 

(Lon×Lat) 

ensembl

e 

member

s 

BNU-ESM Ji et al. (2014) 128×64 1 

HadGEM2-ES Collins et al.(2011) 192×144 3 

MIROC-ESM Watanabe et al. (2011) 128×64 1 

MIROC-ESM-

CHEM 
Watanabe et al. (2011) 128×64 9 

NorESM1-M Bentsen et al. (2013) 144×96 1 

 1031 

Table 2. Definitions of Regionsregions and numbers of observed TC 1032 
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Region Latitudes Longitudes 
Annual Mean Numbers and 
percentages (1980-2008) 

North Atlantic (NA) 6-18N 20-60W 12 (15%) 

Eastern North Pacific (ENP) 5-16N 90-170W 15 (19%) 

Western North Pacific (WNP) 5-20N 110-150E 25 (32%) 

North Indian (NI) 5-20N 50-110E 4 (5%) 

South Indian (SI) 5-20S 50-100E 
23 (29%) 

South Pacific (SP) 5-20S 160E-130W 

 1033 

 1034 

 1035 

  1036 
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 1037 

Table 3. Differences (G4-RCP4.5) in TC basins and season during 20402020-2069 1038 

year calculated point-by-point. Northern Hemisphere numbers are above and Southern 1039 

Hemisphere below. GPI and VI are expressed as percentages (G4-RCP4.5)/RCP4.5. 1040 

Bold fonts are significant at 95% level. The ensemble means are not normalized 1041 

according to the Wilcoxon signed-rank test.  1042 

 1043 

 1044 

 1045 

 1046 

Models Ts (C) To (C) Ts-To (C) GPI (%) Vpot (ms-1) H (%) Vshear (ms-1)  (×10-8  s-1) 

VI 

(×103)

(%) 

χm 

(×10310-3) 

BNU-ESM 
-0.5150 

-0.4342 

0.023 

-12 

0.04411 

-0.5362 

-0.3853 

-3.8 

0.62 

0.05737 

-0.59 

-45 

0.040070 

-0.26071 

0.7320 

0.012 

014 

-0.07627 

-0.63 

-1.2 

0.83 

20 

7.2.2 

-1.5 

17 

1916 

15 

MIROC-ESM 
-0.3234 

-0.2430 

-0.5258 

-0.5256 

0.2024 

0.2826 

-6.7 

-0.50 

0.002786 

-1.0.94 

-0.2850 

-0.28 

36 

-0.1219 

0.28 

-13 

0.1613 

1.3 

-0.322.3 

15 

1.62.5 

2.3 

-4.9 

3.7 

6.8.6 

MIROC-ESM-

CHEM 

-0.2925 

-0.2421 

-0.5045 

-0.4843 

0.2721 

0.2922 

-2.6 

0.194.8 

-11 

6.629 

6.345 

4.68 

3.56 

1.98 

2.32 

-0.56054 

-0.76027 

8.7 

-5.81.9 

1.3 

-11 

1.27.9 

3.6 

NorESM1-

MCanESM2 

-0.5023 

-0.4621 

-0.13087 

-0.086071 

-0.3715 

-0.3714 

4.8 

-0.017 

-0.04473 

-0.8652 

-0.4462 

-0.1751 

-0.2110 

-0.045 

029 

-0.02612 

-3.4 

-0.08 

-5.383 

13 

-2.70 

2.5 

19 

-4.98 

3.3 

HadGEM2-

ESNorESM1-M 

-0.2765 

-0.2461 

-0.13 

-16 

0.1415 

-0.1580 

-0.09576 

-2.7 

3.1.9 

0.39 

-1.0 

-0.6571 

-0.2417 

-0.52088 

0.33 

041 

-0.085079 

-3.7 

-1.9 

1.0 

19 

-213.8 

1.1 

2.8 

-9.835 

30 

HadGEM2-

ESEnsemble 

-0.7540 

-0.7035 

-0.14 

-0.13 

0.075 

-0.8826 

-0.7323 

-0.30 

0.0532.7 

-2.5 

-1.2 

-0.6680 

0.95 

0.43 

-80 

0.01868 

0.083 

-40 

0.02837 

5.8 

1-0.2 

-0.7 

23 

3.41.9 

1.0 

52 

377.0 

11.8 

Ensemble -0.44 

-0.38 

-0.17 

-0.20 

-0.24 

-0.17 

-1.1 

0.38 

0.33 

0.71 

0.73 

0.60 

0.43 

0.38 

0.44 

-0.98 

16 

-3.0 

12 

10 
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 1047 

 1048 

 1049 

 1050 

  1051 
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Table 4. Mean TC frequency Across basin differences in Northern Hemisphere basins 1052 

fromGPI  and VI calculated as (G4-RCP4.5)/RCP4.5 as percentages for averaged 1053 

over the 3-member ensemble of periodHadGEM2-ES using TRACK (4.5, 3.5, 4) during 1054 

August, September, October 2020-2069. GPI are written above VI in each cell. Bold 1055 

indicates regions with significantly more TC under G4 than RCP4.5means the 1056 

difference is significant at the 955% level according to the Wilcoxon signed-rank test. 1057 

Models WNP ENP NA NI SI SP all 

BNU-ESMRegion 

Mean 

G42.8 

3.0 

Mean 

RCP4.

-4.0 

5.6 

St.Dev 

RCP4.5

-3.7 

3.0 

-8.7 

1.9 

0.9 

-0.7 

2.1 

-1.7 

-3.3 

0.7 

WNPMIROC-ESM 
-4.2 

8.1 

-5.06 

2.4 

-8.4 

1.9 

-4.6 

1.9 

2.02 

2.2 

8.5 

0.1.8 

-6.1 

2.3 

MIROC-ESM-CHEM 

ENP 

3.-4.1 

-1.7 

11.-7.7 

-0.9 

-10.2 

3.9 

-12.2 

8.0 

-14.0 

1.2 

-3.0 

0.3 

-8.6 

2.0 

NANorESM1-M 
0.4 

-1.27 

137.0 

-8.1 

9.1 

-1.3 

11.2 

6.0 

-0.83 

4.7 

3.1 

1.3 

0.9 

-0.8 

HadGEM2-ES 
3.2 

4.0 

-6.8 

6.0 

-5.2 

0.9 

-4.2 

7.1 

-0.7 

2.5 

2.1 

0.1 

-2.3 

3.0 

EnsembleNI 
-0.4 

2.3.5 

3.3 

1.0 

-3.7 

1.7 

-3.7 

5.0 

-2.4 

2.0 

2.6 

0.5 

-3.9 

1.5 
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 1058 

 1059 

 1060 

 1061 

 1062 

 1063 

Models WNP ENP NA NI SI SP all 

BNU-ESM 
2.8 

3.0 

-4.0 

5.6 

-3.7 

3.0 

-8.7 

1.9 

0.9 

-0.7 

2.1 

-1.7 

-3.3 

0.7 

MIROC-ESM 
-4.2 

8.1 

-5.6 

2.4 

-8.4 

1.9 

-4.6 

1.9 

2.2 

2.2 

8.5 

0.1 

-6.1 

2.3 

MIROC-ESM-

CHEM  

-4.1 

-1.7 

-7.7 

-0.9 

-10.2 

3.9 

-12.2 

8.0 

-14.0 

1.2 

-3.0 

0.3 

-8.6 

2.0 

NorESM1-M 
0.4 

-1.7 

37.0 

-8.1 

9.1 

-1.3 

11.2 

6.0 

-0.3 

4.7 

3.1 

1.3 

0.9 

-0.8 

HadGEM2-ES 
3.2 

4.0 

-6.8 

6.0 

-5.2 

0.9 

-4.2 

7.1 

-0.7 

2.5 

2.1 

0.1 

-2.3 

3.0 

Ensemble 
-0.4 

2.3 

3.3 

1.0 

-3.7 

1.7 

-3.7 

5.0 

-2.4 

2.0 

2.6 

0.5 

-3.9 

1.5 
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 1065 
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 1067 

 1068 

 1069 

 1070 

Figure 1. Five yearly moving annual averages, of (a) GPI index and (b) ventilation index 1071 

in across the 6 TC seasonbasins and TC basin. Solidseason, of (a) normalized GPI shifted by 1072 

the each model’s mean over 2020-2069, solid lines denote forcing under RCP4.5 and dotted 1073 

lines values under G4. The Ensemble mean series were calculate using normalized time 1074 

series, shifted by the ensemble was calculated as the mean of normalized models then offset 1075 

by the mean across-model GPI. (b) VI with solid lines denoting model ensemble means and 1076 

shading indicating the range across the five models. 1077 
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 1078 

 1079 

Figure 2. The correlation coefficients (R2) between annual GPI and VI anomalies (G4-RCP4.5) 1080 

during TC season and six ocean TC basins. The MIROC-ESM-CHEM model has 94 ensemble 1081 

members, the CanESM2HadGEM2-ES model has 3 ensemble members, and other models 1082 

have one member. Each model is weighted equally and normalized for the ensemble regardless 1083 

of the number of separate realizations. Dashed line represent R2=0. 1084 
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 1085 

 1086 

 1087 

 1088 

  1089 

 1090 

 1091 
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 1094 

 1095 

 1096 

 1097 

 1098 

 1099 

 1100 

 1101 

 1102 

 1103 

 1104 
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 1105 

Figure 3. Spatial distribution at each grid point during the appropriate TC season between 1106 

20402020-2069 of the anomaly (GPIG4-GPIRCP4.5)/GPIRCP4.5 as a percentage, for a) GPI and b) 1107 

VI. Yellow rectangles delimit the six TC ocean basins. The Northern Hemisphere peak TC 1108 

season is defined to be Augustas June through OctoberNovember, and the Southern 1109 

Hemisphere season is defined to be January through March. June. 1110 

 1111 

 1112 

 1113 

 1114 

 1115 
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 1116 

 1117 

Figure 4 The mean month contribution of each variable to the difference (G4-RCP4.5) for the 1118 

years 20402020-2069 in TC basins and TC season in GPI and VI. Brown lines represent 1119 

Southern Hemisphere and purple lines represent Northern Hemisphere TC seasons. 1120 

 1121 

 1122 
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 1123 

 1124 

Figure 5. The fractional variance contribution of components of GPI during the TC season and 1125 

within the six TC basins during 20402020-2069.  1126 
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 1127 

 1128 

Figure 6. The F-statistic of the 15 different combinations of regression variables for GPI 1129 

differences between G4 and RCP4.5. The x-axis on each panel represents the combination of 1130 

components used as predictors in each regression equation: 1:(PI,RH,WS,AV), 2:(PI,RH,WS), 1131 

3:(PI,RH,AV),  4:(AV,RH,WS), 5:(PI,AV,WS), 6:(PI,RH), 7:(PI,WS), 8:(PI,AV), 9:(RH,WS), 1132 

10:(RH,AV), 11:(AV,WS), 12:(PI), 13:(RH), 14:(WS), 15:(AV). 1133 

 1134 

 1135 
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 1136 

 1137 

Figure 7. The correlations (R2) between differences (G4-RCP4.5) during TC season and across 1138 

the six TC basins for the years 20402020-2069 for (a) potV Vpot anomalies as a function static 1139 

stability ST  - OT  .Ts-To. Panels b-e show R2 coefficients for anomalies with sea surface 1140 

temperature differences (Ts) and: (b) potV ,) Vpot, (c) GPI , (d) relative humidity, (e) vertical wind 1141 

shear. Each model is weighted equally in the ensembles regardless of number of observations. 1142 
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 1143 

Figure 8. The model correlation coefficients between annual Niño3.4 index and SOI 1144 

during TC season for 2040-2069.  1145 

 1146 

Figure 9. The correlation of GPI as a function of (Niño3.4-SOI)/2 during TC season 1147 

and six TC basins and all TC basins for the G4 and RCP4.5 experiments. 1148 

  1149 
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Supplementary Material 1150 

Table S1: see Excel spreadsheet “gpi_basin_month.xls”, where data can be found by 1151 

model, month, basin and experiment. Sheet “GPI” contains the GPI results for RCP4.5, 1152 

G4, the t-test and Wilcoxon signed-rank test results for their difference over the years 1153 

2020-2069. Sheet “VI” contains the VI analogous results.  1154 

 1155 

Table S2  Monthly GPI and VI as a fraction of the annual totals. Note that in the TC 1156 

season VI is relatively low. The TC seasons defined by 10% anomaly in GPI months 1157 

are highlighted in yellow. 1158 

  1159 

 1160 

 1161 

 1162 

 1163 

 1164 

 1165 

 1166 

 1167 

 1168 

 1169 

 1170 

 1171 

 1172 

 1173 

 1174 

 1175 

 1176 

 1177 

 1178 

 1179 

  1180 

GPI NH SH Anomalies 

Month RCP4.5 G4 RCP4.5 G4 NH mean SH mean 

1 0.07 0.05 0.08 0.10 0.69 1.10 

2 0.04 0.03 0.10 0.11 0.40 1.25 

3 0.03 0.03 0.12 0.12 0.32 1.43 

4 0.04 0.05 0.13 0.14 0.52 1.59 

5 0.07 0.09 0.13 0.13 0.92 1.52 

6 0.10 0.11 0.11 0.08 1.27 1.16 

7 0.11 0.12 0.07 0.06 1.38 0.77 

8 0.11 0.11 0.05 0.04 1.35 0.52 

9 0.11 0.12 0.04 0.04 1.39 0.49 

10 0.12 0.11 0.05 0.05 1.39 0.57 

11 0.11 0.11 0.06 0.06 1.29 0.71 

12 0.10 0.09 0.07 0.08 1.09 0.89        

VI NH NH Anomalies 

Month RCP4.5 G4 RCP4.5  G4 NH mean SH mean 

1 0.09 0.10 0.07 0.06 1.17 0.78 

2 0.11 0.11 0.06 0.06 1.32 0.69 

3 0.11 0.11 0.05 0.05 1.34 0.63 

4 0.10 0.10 0.05 0.06 1.20 0.67 

5 0.09 0.08 0.07 0.07 0.99 0.87 

6 0.07 0.07 0.09 0.09 0.85 1.04 

7 0.07 0.08 0.10 0.10 0.92 1.21 

8 0.08 0.08 0.11 0.11 0.96 1.33 

9 0.08 0.07 0.11 0.12 0.89 1.37 

10 0.06 0.06 0.11 0.11 0.71 1.32 

11 0.06 0.06 0.10 0.09 0.73 1.15 

12 0.07 0.08 0.08 0.08 0.92 0.93 
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 1181 

Table S3: The fraction of total annual GPI and VI accounted for by the 6 month TC 1182 

seasons chosen in each hemisphere across the 6 TC basins. Note that in the TC season 1183 

VI is relatively low.  1184 

 GPI VI 

Basin RCP4.5 G4 RCP4.5 G4 

WNP 0.62 0.64 0.43 0.43 

ENP 0.70 0.71 0.35 0.33 

NA 0.75 0.71 0.34 0.34 

NI 0.58 0.60 0.60 0.61 

SI 0.67 0.66 0.40 0.42 

SP 0.74 0.76 0.38 0.38 

mean 0.68 0.68 0.42 0.42 

 1185 

 1186 

 1187 

 1188 

 1189 

 1190 

 1191 

 1192 

 1193 

  1194 
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 1195 

     1196 

 1197 

Figure S1. As Fig. 5 but for the 9 realizations of MIROC-ESM-CHEM: The 1198 

fractional variance contribution of components of GPI during the TC season and 1199 

within the six TC basins during 2020-2069. 1200 

 1201 

 1202 

 1203 
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 1204 

Figure S2. The fractional variance contribution of components of VI during the TC 1205 

season and within the six TC basins during 2020-2069. 1206 

1207 
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 1208 

Figure S3. As S2 but for the 9 realizations of MIROC-ESM-CHEM: The fractional 1209 

variance contribution of components of VI during the TC season and within the six 1210 

TC basins during 2020-2069. 1211 

  1212 
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 1213 

 1214 

 1215 

 1216 

Fig. S4 As Fig6: The F-statistic of the 15 different combinations of regression 1217 

variables for GPI differences between G4 and RCP4.5, but for each of realizations 1-9 1218 

of MIROC-ESM-CHEM, (top 3 rows), and for the 3 realizations of CanESM2 1219 

(bottom row). The x-axis on each panel represents the combination of components 1220 

used as predictors in each regression equation: 1:(PI,RH,WS,AV), 2:(PI,RH,WS), 1221 

3:(PI,RH,AV),  4:(AV,RH,WS), 5:(PI,AV,WS), 6:(PI,RH), 7:(PI,WS), 8:(PI,AV), 9:(RH,WS), 1222 

10:(RH,AV), 11:(AV,WS), 12:(PI), 13:(RH), 14:(WS), 15:(AV). 1223 

 1224 

  1225 
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 1226 

Figure S5. The F-statistic of the 7 different combinations of regression variables for VI 1227 

differences between G4 and RCP4.5. The x-axis on each panel represents the combination of 1228 

components used as predictors in each regression equation: 1:( 𝑉𝑝𝑜𝑡 , 𝑉𝑠ℎ𝑒𝑎𝑟 , 𝜒𝑚 ), 1229 

2:(𝑉𝑝𝑜𝑡, 𝑉𝑠ℎ𝑒𝑎𝑟), 3:(𝑉𝑝𝑜𝑡 , 𝜒𝑚), 4:(𝑉𝑠ℎ𝑒𝑎𝑟, 𝜒𝑚), 5:(𝑉𝑝𝑜𝑡), 6:(𝜒𝑚), 7:(𝑉𝑠ℎ𝑒𝑎𝑟). 1230 

  1231 
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 1232 

Figure S6. The correlations (R2) between variable fields in RCP4.5 (left column), and G4 (right 1233 

column) separately for comparison with Fig. 7. Top to bottom Vpot anomalies as a function static 1234 

stability Ts-To; sea surface temperature differences (Ts) and: Vpot , GPI, relative humidity, and 1235 

vertical wind shear. Data is during TC season and across the six TC basins for the years 2020-1236 

2069. Each model is weighted equally in the ensembles regardless of number of observations. 1237 

  1238 
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 1239 

 1240 

 1241 

Figure S7.The seasonal cycle of Ts during 2020-2069 in Northern and Southern Hemisphere 1242 

TC basins. 1243 

T
s 

an
o
m

al
y
 (
℃

) 



102 

 

 1244 

 1245 

 1246 

Figure S8. The seasonal cycle of To (100hPa) during 2020-2069 in Northern and Southern 1247 

Hemisphere TC basins. 1248 
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 1249 

Figure S9. The seasonal cycle of To (100hPa) and Ts in Northern and Southern Hemisphere TC 1250 

basins from ERA-interim for 1987-2016. 1251 

 1252 

 1253 

 1254 


