We thank all reviewers for their thorough comments.
Reviewer 1

The manuscript “Global distribution of methane emissions, emission trends, and OH
concentrations and trends inferred from an inversion of GOSAT satellite data for
2010- 2015” from Maasakkers et al., submitted for publication in Atmos. Chem.
Phys., describes the application of a methane emission and OH concentration inverse
modelling scheme to six years of GOSAT column-averaged methane data to obtain
information on methane emissions, OH concentrations and their trends. They explain
the method including error characterization, the conducted sensitivity experiments
and discuss the results, which are compared with published results and emission data
bases. The paper contains new results and covers aspects relevant for Atmos. Chem.
Phys. The paper is very well written and I recommend publication after the mostly
minor aspects listed below have been considered by the authors.

General comments

Several publications exist using GOSAT data in combination with inverse modelling
to improve our knowledge of methane emissions. According to my knowledge, this is
the first publication aiming at simultaneously inferring information on OH (which is
the largest methane sink) together with methane emission information from satellite
data. Despite many efforts in recent year to obtain information on regional / country
scale methane emissions and related trends from satellite data there are still many
open questions (e.g., w.r.t. the reason or the reasons of the renewed methane growths
after 2007) and the published results and conclusions are often apparently in
contradiction. For example, in the abstract it is written: “The observed 2010-2015
growth in atmospheric methane is attributed mostly to an increase in emissions from
India . . .” whereas the recent Nature communications article “Atmospheric
observations show accurate reporting and little growth in India’s methane emissions”
(Ganesan et al., 2017, cited by the authors, and also using GOSAT satellite data)
suggest that this seems not to be the case. Maasakkers et al. state (page 2, line 13 and
following) that “Here we use global 2010-2015 methane observations from the
GOSAT satellite in an analytical inverse analysis with full error characterization to
better quantify methane sources and interpret the recent trend, including changes in
both methane emissions and OH concentrations.” The authors claim to use “full error
characterization” and this is a bold statement. I recommend to formulate this less
drastically.

Full error characterization mainly refers to the error characterization coming from the
analytical inversion compared to using an adjoint. We clarified this by now referring to it as
“closed-form error characterization” everywhere.

One aspect not “fully covered” are biases of the satellite data (e.g., unknown spatio-
temporal error correlations). To assess the impact of biases is difficult but using an
ensemble of satellite data should help to identify robust features and to obtain more
robust conclusions. Here the authors used one GOSAT data product, namely the
University of Leicester GHG-CCI v7 proxy product, but more products are available
(from GHG-CCI and other projects) and it is unclear to what extent the findings are
related to the specific product used for this study. I am aware that using an ensemble



of products would significantly increase the computer time and related resources as
needs for data analysis etc. but I recommend to make use of the available ensemble of
satellite products for future studies.

Other GOSAT data products are consistent, we added a note on that in the GOSAT
paragraph: “Other retrievals of GOSAT data are consistent with the University of
Leicester product (Buchwitz et al.,, 2015).” Using ensembles of satellites are a great
suggestion for future work but outside the scope of the current paper.

Specific comments

Page 3, line 20: The statement related to GOSAT observations (no drift and no
degradation of data quality) citing Kuze et al, 2016, refers to the
interferograms/spectra but not the derived methane product. Please modify that
sentence to make this clear.

Changed to incorporate that: “GOSAT spectra have shown no significant drift or degradation
of data quality since the beginning of the record (Kuze et al., 2016).”

Page 6, line 24: Including a polynomial of latitude has (according to my knowledge)
first been used by Bergamaschi et al. when applying methane inverse modelling to
SCIAMACHY satellite data. I recommend to cite the relevant paper here.

Added that citation: “This bias likely reflects a model overestimate of methane in the
extratropical stratosphere (Saad et al., 2016), which is common across global models due to
excessive meridional transport in the stratosphere (Patra et al., 2011) and was first seen in a
SCIAMACHY inversion using the TMS5 chemical transport model (Bergamaschi et al.,
2007).”

Page 7, line 15: Sentence “SO is taken to be diagonal for lack of better information
but the general effect of error correlation in the observations is accounted for in the
inversion by a regularization factor”. See above my “General comment”. The “general
effect” can be very different from the “specific effect” of biases of a given satellite
product. The approach used may help or not to deal with this aspect. In the best case,
it accounts for some aspects of error correlations but to what extent this is true is
unclear.

We improved the description of the regularization factor (see comment Page 7, Eq. (2)).

Page 7, Eq. (2): Is the use of the gamma factor related to this specific inversion
method or have similar methods to avoid overfitting also used by others (in their peer-
reviewed publications)? If yes are the “scaling factors” similar? Reducing the weight
of the observational terms by a factor of 20 seems very large. Would be good if
additional information on this aspect could be added.

We improved the description of the regularization factor: “The variances in SQ are
underestimated because of correlation in the observational error that is missing in the



diagonal formulation of SQ and is difficult to quantify. We use y to scale the original
diagonal SO to get an optimal covariance matrix to be used in the inversion. Zhang et al.
(2018) showed in an observing system simulation experiment (OSSE) for inversion of
methane satellite data that a regularization factor y = 0.05 adjusts the variances optimally and
prevents over- fitting. This was done by calculating the likelihood at x for a range of values
of y. Diagnosis of overfit and optimization of vy is readily done in an OSSE such as in Zhang
et al. (2018) where the “true” solution is known. Here we find that using y = 1 (as in the pure
Bayesian statement of the optimization problem) produces checkerboard patterns in the
solution that are likely spurious. We choose y = 0.05 consistent with Zhang et al. (2018) for
our base inversion as providing the best balance between prior and observational terms in the
posterior value of the cost function. We examine the sensitivity to the choice of y by
conducting a sensitivity inversion with y =0.1.”

Page 13, line 23: Statement “but this does not exclude the significant increase that we
find here”. Why not? Please provide justification for this statement.

Clarified: “The trend over India totals 0.4 (0.3-0.5) Tg a—1 (range of the inversion ensemble).
Ganesan et al. (2017) found a non-significant trend (0.2 = 0.7 Tg a—1) over India for 2010-
2015 using an ensemble of GOSAT, commercial aircraft (CARIBIC), and surface station
methane data, but our estimate is within their range.”

Page 29, Fig. 3: Middle right panel: What is the reason that the difference has a trend
only in 2014 and 2015? Please explain.

We added additional explanation on this in the text: “The inversion corrects prior
underestimates over tropical regions and an overestimate over China. It also fits the observed
2010-2015 trend in methane concentrations and its latitudinal distribution while the prior
model underestimated the growth rate especially in 2014-2015.”

Page 29, Fig. 3: Bottom panels: The posterior slope is worse (larger deviation from
1.0). Is this a significant finding (or is the slope error too large)?

The difference is small because the background is already well represented by the prior
simulation. Slope errors are not shown here as they are arbitrarily small because a large
number of datapoints originate from the same locations and are as such not fully
uncorrelated.

Page 35, caption Fig. 10: . . . in response to the increasing concentration . . .”. Which
concentration? OH? Please add.

We clarified that we are referring to the methane concentration: “This trend decreases over
the 2010-2015 period because the methane sink rises in response to the increasing methane
concentration, and also because wetland emissions in 2010 are higher than in other years.”

Page 35, Fig. 10: The shown growth rates appear to differ significantly from the
growth rates published by NOAA (see
https://www.esrl.noaa.gov/gmd/ccgg/trends ch4/#global growth). Can you comment
on this?



Added a comment on this in the associated text: “Our 2010-2015 growth rate averages 6.8,
compared to 7.3 ppb a ' in the NOAA record (esrl.noaa.gov/gmd/ccgg/trends ch4). The
increase in the NOAA record is higher because of especially strong growth in 2014 (12.8
ppb) which is not fully captured by the linearized optimization used here. In our base
inversion, this anomaly is explained by a reduced sink from OH.”

Technical comments

Page 4, line 8: add space after “inventory”.
Page 6, line 3: add space after “fields”.
Page 11, line 3: add space after “.org”.

Page 24, reference Sheng et al., 2018. The paper is published in ACP. Please update
the reference.

We incorporated all of these comments.



Reviewer 2

Methane’s rising. Fast. We don’t know why. What’s happening to methane is
arguably the most interesting current greenhouse problem, and there are very wide
implications for efforts to mitigate climate warming. It makes the task of the Paris
Agreement so much harder. Maasakkers et al discuss how best GOSAT satellite data
can be used to tackle this very important problem, addressing the period 2010-2015,
which includes years of very strong growth. Their approach is to use a global inverse
analysis — from this not only do they obtain very interesting new estimates of methane
emissions and growth trends, but also — a crucial question — they estimate the global
abundance of hydroxyl and its trend, and in so doing propose a new proxy for OH.
The paper is very carefully written and it is thorough in its discussion of the
methodological approaches. It takes note of the information available, both top down
(e.g. using the NOAA data) and bottom up (inventory estimates). However, the study
does give very short shrift to the C-isotopic constraints — although it is likely but not
wholly demonstrated that the conclusions are compatible with the C-isotopic shift
observed, the paper would be strengthened if the isotopic constraints were given a bit
more discussion. Overall this paper is a major contribution and should be published
with only minor revisions. It will be much cited.

Detailed comments that the authors may wish to consider. Page 1 Line 14 Maybe give
+2 error on 546Tg. (e.g from table 2)

Because the uncertainty in global emissions is likely underestimated because of the lack of
prior error covariance assumed between the grid cells we opt not to show the uncertainty
without that explanation in the abstract we did include it in the conclusion (see comment P16
L33).

P2 L4 “must”? — maybe “is likely to be”. Also ‘sources’ — maybe better to say
‘activities’. In general a ‘source’ is a thing like a cow, an emission has a flux, and an
activity includes all manner of sins.

Changed to: “is most likely to be” and “anthropogenic activities”.

P2 L5 No mention of the enormous number of tropical human-lit fires, from cow
dung in India to grass and dead leaf fires in the Sahel??

Included biomass burning: “...anthropogenic activities including the oil/gas industry, coal
mining, livestock, landfills, wastewater treatment, biomass burning, and rice cultivation”

P2 L8 Being picky — “concentration” is in a bucket of water. Mole fraction? Mixing
ratio? Or here maybe the ‘methane burden’.

Changed to: “The methane burden rose by”

P2 L9 Being picky again - Citing the growth change in % is referring to a moving
target. It would be much better to cite growth in parts per billion — i.e. not a % of a
changing total. And does the text mean 1% of the whole burden or the anthropogenic
increment? By saying 1% on Line 9, the text implies growth rates were around 16 to
17 ppb/yr in the 1980s — well, they were very high, but not that high, except perhaps



in 1991. Also, 2014 growth was notably high: nearly 13 ppb in about 1820 — that’s
more than 0.4%.

Changed all increases to average concentration per year: “The methane burden rose by ~ 12
ppb a™' in the late 80s and by ~ 6 ppb a' in the 90s, plateaued in the early 2000s (~ 0.5

ppb a™'), and has resumed increasing at ~ 7 ppb a-1 since 2007
(esrl.noaa.gov/gmd/ccgg/trends_ch4), for reasons that remain unclear (Turner et al., 2017).”

P2 L25 — GOSAT — maybe should mention Miller et al. Nature Communications 10,
Article number: 303 (2019), either here or in the next paragraph.

Added Miller et al. to the list of GOSAT inversions, clarified that we optimize emissions and
trends globally: “A number of inverse analyses have used the GOSAT data to improve
estimates of methane emissions (Monteil et al., 2013; Cressot et al., 2014; Alexe et al., 2015;
Turner et al., 2015; Pandey et al., 2016, 2017; Miller et al., 2019). Here we use the GOSAT
data to optimize not only global emissions but also their 2010-2015 trends together with OH
concentrations and their trends.”

P4 L9 — ‘aseasonal’ — I’m not sure this is valid. Gas use in Eurasia at least is very
winter-dependent, and gas pumping scheduled accordingly. Biomass burning in both
the boreal realm (summer) and tropical (dry season) is very seasonal, and in the
tropics is almost entirely anthropogenic — there are few lightning bolts in the dry
winters.

Added that there is no better prior information available at this point: “Anthropogenic
emissions are assumed as aseasonal for lack of better prior information except for manure
management and rice cultivation.”

P4 L13 — note that Petrenko et al.s work suggests the geological emissions are much
smaller than previously suggested. Petrenko, V.V. et al. (2017) Minimal geological
methane emissions during the Younger Dryas—Preboreal abrupt warming event.
Nature doi:10.1038/nature23316

Added note: “While global geological emissions have previously been estimated to be over
50 Tg a ' (Kirschke et al., 2013), Petrenko et al. (2017) showed that based on ice core
measurements they should no higher than 15 Tga'.”

P4 L30 — 2.4% - quantify that in Tg and then the increase in ppb. A % is a moving
thing. Also on P10 L33 P5 L30 — ‘concentrations’ again. . ..and also on P5 L1

Done: “Our global prior estimate of mean methane emissions for the 2010-2015 period

exceeds the sinks by 13 Tg a1 (Table 1), which drives a 5 ppb a1 increase in methane
concentrations over that period even in the absence of an emission trend.” To maintain the
flow of the paper, we left most ‘concentrations’ in.

P6 L8 to 10 Mention Naus, et al. (2019) Constraints and biases in a tropospheric two-
box model of OH. Atmospheric Chemistry and Physics 19, 407-424. and also perhaps
Lelieveld, J., et al. (2016), Global tropospheric hydroxyl distribution, budget and
reactivity, Atmos Chem Physics, 16, 12477-12493.



Added a reference to Naus et al. (2019) in the introduction where we discuss two-box
models: “Turner et al. (2017) find from a global 2-box model analysis that the surface
record of methane observations is too sparse to arbitrate between methane emissions and
OH concentrations as drivers for the methane increase, though Naus et al. (2019)
pointed out that there are inherent biases in the 2-box modeling approach. ”

To include a comparison to model-based OH like Lelieveld et al. (2016), we included a
reference to the multi-model mean from Naik et al. in the section that discusses the methane
lifetime: “The prior estimate of the global tropospheric OH concentration is based on a
GEOS-Chem full-chemistry simulation (Wecht et al., 2014) that yields a methane lifetime

rOHCH4 of 10.6 years, consistent with the best estimate inferred from the methylchloroform
proxy (Prather et al., 2012) and the 9.7 + 1.5 years estimate from the ACCMIP model
ensemble (Naik et al., 2013).”

P6 L 13 and P5 Table 1 — Cl sink of 9 Tg/yr — should mention Hossaini, R., et al.
(2016) A global model of tropospheric chlorine chemistry: Organic versus inorganic
sources and impact on methane oxidation. Journal of Geophysical Research:
Atmospheres 121.23 (2016).

Added a sentence: “The loss from oxidation by Cl totals 9 Tg a_l, intermediate between
the 12-13 Tg a1 estimated by Hossaini et al. (2016) using the TOMCAT chemical

transport model and 5.3 Tg a1 estimated by Wang et al. (2019) in a GEOS-Chem
simulation with full accounting of tropospheric chlorine. These minor sinks are not
optimized in the inversion.”

P6 L27-30 — the seasonal bias and correction — this is a weakness of the inputs and
although it is comforting to know it doesn’t affect the results significantly it should be
target for future improvement. Seasonal fitting is a tool in identifying specific sources
of emissions — wetlands emit less in drought; biomass burning is limited in the wettest
periods. So it’s important to get seasonality right.

We agree, a seasonal correction that does not depend on the model-observations difference
would be superior and a great suggestion for future work. However, the method used here
still allows for some grid-level seasonal fitting because of the latitudinal form of the seasonal
correction, the appendix shows that resulting emissions are similar with and without seasonal
correction.

P7 L6 —s.d. 13 ppb — i.e about the same as growth in a strong-growth year.
While we agree that is a good comparison in terms of order of magnitude we though it would
be confusing to add here since the standard deviation concerns individual retrievals and not

annual averages.

P7 L30 — ‘correlation in the observational error’ maybe discuss this a little more —
what is the ‘regularization factor’ allowing for?



We improved the description of the regularization factor: “The variances in SQ are
underestimated because of correlation in the observational error that is missing in the
diagonal formulation of SO and is difficult to quantify. We use y to scale the original
diagonal SO to get an optimal covariance matrix to be used in the inversion. Zhang et al.
(2018) showed in an observing system simulation experiment (OSSE) for inversion of
methane satellite data that a regularization factor y = 0.05 adjusts the variances optimally and
prevents over- fitting. This was done by calculating the likelihood at x| for a range of values
of y. Diagnosis of overfit and optimization of vy is readily done in an OSSE such as in Zhang
et al. (2018) where the “true” solution is known. Here we find that using y = 1 (as in the pure
Bayesian statement of the optimization problem) produces checkerboard patterns in the
solution that are likely spurious. We choose vy = 0.05 consistent with Zhang et al. (2018) for
our base inversion as providing the best balance between prior and observational terms in the
posterior value of the cost function. We examine the sensitivity to the choice of y by
conducting a sensitivity inversion with y =0.1.”

P8 L9 — ratio of elements 1009/7 — is this equalisation of OH and emissions correct :
how about the prescribed non-OH sinks.

Minor sinks are not optimized in the inversion as mentioned in paragraph 2.3. Added that the
equalisation ensures that there is no cost-function biased towards OH or emissions: “To
provide equal weight to OH and emissions for explaining global methane trends, we increase
the weight of the OH terms in the cost function (through the OH components of S,) by the
ratio of the number of state vector elements 1009/7 so that from a cost-function
perspective, a change in OH and global methane emissions are equally expensive. The
sensitivity inversion assuming 10% prior error standard deviation on OH instead of 3% is
equivalent to decreasing this weighting by a factor of 11.”

P8 L15 — impact of methane change affecting OH — maybe it can be neglected
globally but is that true at all latitudes (and longitudes)?

We added that methane is well-mixed so changes in local concentrations are relatively small
as well: “There is a small non-linearity from the optimization of OH concentrations because
changes in the methane concentrations affect the loss rate (Houweling et al., 2017) which we
neglect because changes in methane concentrations are small and methane is well-mixed
globally.”

P9 L4 and P 11 L16 — Soil uptake is probably quite strong in many moist well aerated
wet tropical savanna woodlands, and also Cl uptake in the boundary layer may be

strong in some locations. Thus negative emissions are likely in some areas.

Added Cl uptake on P9 L4 and rephrased: “Negative emissions could conceivably be
attributed to locally strong soil uptake or oxidation by Cl atoms, but may also be
unphysical (Miller et al., 2014).”

P9 L19 — ‘perviously’

Changed to “previously”.



P9 L26 — significant sources in high northern latitudes and strongest OH in tropical
troposphere.

Clarified we mean the spatial/seasonal imprint: “Some separation is expected because sources
of methane have a different spatial/seasonal imprint on the global methane distribution than
the OH sink...”

P10 L22 — should probably discuss the Naus et al paper somewhere — maybe here?
(see earlier comment on P6L8)

Discussed Naus et al. 2019 at comment P6LS.

P11 L2. Very interesting, especially overestimate in China. Maybe compare with
Figure 1 in the Miller et al GOSAT paper — they see growth in China, India and
tropical Africa.

Figure 3 shows 2010-2015 means, we clarified that in the caption: “The top panels show

differences between model and GOSAT observations for 2010-2015 means on the 4° x 5°
grid.”

P11 L30 - 32 — in the East Asian context maybe mention Thompson et al, 2015
(Methane emissions in East Asia for 2000-2011 estimated using an atmospheric
Bayesian inversion. Journal of Geophysical Research, 120)? Or 2018 (Variability in
Atmospheric Methane From Fossil Fuel and Microbial Sources Over the Last Three
Decades. Geophysical Research Letters, 45).

Added the 2015 Thompson paper in the description of mean emissions: “We find that the
EDGAR v4.3.2 inventory prominently overestimates anthropogenic emissions over eastern
China, likely from coal production, and around the Persian Gulf, likely from oil/gas
production. The finding of an EDGAR overestimate in China is consistent with previous
inversions of GOSAT data using EDGAR v4.1, v4.2, and v4.2FT2010 as prior estimate
(Monteil et al., 2013; Thompson et al., 2015; Alexe et al., 2015; Turner et al., 2015; Pandey
et al., 2016).”

Added the 2015 Thompson in the discussion on the trend as well: “There are well-defined
anthropogenic positive trends over China, India, and the Persian Gulf. Trends in China are in
areas with dominant emissions from coal mining but also significant contributions from
livestock and waste. In an inversion of surface observations, Thompson et al. (2015)
previously found an increasing trend over China for 2000-2011 which they attributed to
coal mining. ”

Added a citation to Thompson 2018 in the intro section regarding trends: “A trend towards
isotopically lighter methane has been attributed to an increase in microbial sources such as
livestock and wetlands (Schaefer et al., 2016; Schwietzke et al., 2016; Nisbet et al., 2016;
McNorton et al., 2016; Thompson et al., 2018). “

P12 L17 — this finding on lower Chinese emissions is well substantiated and is a
major conclusion that should be discussed in a bit more detail.



Added a possible explanation: “The overestimate of coal mining emissions may be
because standard IPCC emission factors used by EDGAR v4.2 were too high for
Chinese coal mines and recovery of coal mine methane is not sufficiently taken into
account (Peng et al.,, 2016). Emission factors were decreased in EDGAR v4.3.2
(Janssens-Maenhout et al., 2019) but we still find an overestimate.”

P12 L18 — no mention of tropical wetland increases? Why are they excluded from
likely sources of growth? Or tropical fires if there is a concurrent shift in another
emission source that’s masking the isotopic impact??

Clarified that this paragraph discussed average emissions, not trends: “Results in Figure 5
indicate little change to 2010-2015 average emissions compared to the global prior
inventory by source type even though there are large regional reallocations.”

P12 L29 — absence of information north of 60N is a problem as many of Russia’s
largest gasfields are north of this line, and even in Canada and Norway there are
gasfields are nearly at 60N.

This is mentioned later on in the oil/gas section.

P12 L35 — Uzbek leaks — makes intuitive sense. P13 L 3 Likewise, intuitively
Venezuela’s industry is probably leaky and UNFCCC far from actuality. Note
wetlands fringing Lake Maracaibo also likely a major source of quasi-natural
emissions.

Corrections to wetlands in South America are noted in an earlier paragraph, here we mapped
correction factors to oil/gas emissions specifically.

P13 L18 — compare with Miller et al (2019) map? — China, India.

Added that Miller found lower average emissions over China and trends over China and
India:

“The finding of an EDGAR overestimate in China is consistent with previous global
inversions of GOSAT data using EDGAR v4.1, v4.2, and v4.2FT2010 as prior esti- mate
(Monteil et al., 2013; Thompson et al., 2015; Alexe et al., 2015; Turner et al., 2015; Pandey
etal., 2016) and a regional inversion using EDGAR v4.3.2 (Miller et al., 2019).”

“In an inversion of surface observations, Thompson et al. (2015) previously found an
increasing trend over China for 2000-2011 which they attributed to coal mining. Miller et al.
(2019) found that this trend continued up to 2015 using GOSAT in a regional
inversion.”

“The trend over India is 0.4 (0.3-0.5) Tg a (range of the inversion ensemble), consistent

with the 2010-2015 trend of 0.7 + 0.5 Tg a1 trend from a regional GOSAT inversion by
Miller et al. (2019).”



P13 L20 — inside the error bounds of Ganesan et al, but sense is a bit different as this
analysis suggests India is really quite strongly increasing. Should mention the surge in
Indian coal production and general air pollution (India’s GHG emisisons will soon
surpass the European Union’s).

Improved the wording of the comparison with Ganesan and added a line on what EDGAR
predicts based on activity data: “Ganesan et al. (2017) found a non-significant trend (0.2 £
0.7 Tg a—1) over India for 2010-2015 using an ensemble of GOSAT, commercial aircraft
(CARIBIC), and surface station methane data, but our estimate is not incompatible their
range. EDGAR v4.3.2 predicts a 0.4 Tg a ' increase in anthropogenic emissions from
India between 2010 and 2012 mainly from livestock, coal, and waste based on increasing
activity data (this trend is not included in our prior)”

P13 L27 — source types. Here the paper should say more about the isotopic constraints
and the various measurement-based papers by Schaefer et al, Nisbet et al and
Schwietzke et al. There is a throw-way sentence at the end of the paragraph, but all
the hypotheses about trends need to be consistent with the well-evidenced isotopic
shift to lighter values. So far in the paper the discussion has been without isotopic
constraint and that is OK, but only for the isotopes then to be used as an independent
check on the inferences. For example the statement ‘no source type shows a global
decrease’ — e.g. if biomass burning hasn’t decreased a bit, it is then feasible but fairly
constraining to make that statement tally with the hypothesis that a declining
proportion of methane sourced from biomass burning is masking the isotopic impact
of a fossil fuel increase?

Added a discussion of biomass burning emissions: “Our source attribution of the methane
trend is consistent with isotopic evidence suggesting that the increase in methane over the
past decade has been driven by biogenic sources outside the Arctic (Nisbet et al., 2016;
Schwietzke et al., 2016; Schaefer et al., 2016), including tropical wetlands (McNorton et al.,
2016). Worden et al. (2017) previously found a decrease in biomass burning from 2001-
2007 to 2008-2014 but no significant change for the 2010-2015 period investigated here.
Their argument that a decrease in the biomass burning emissions would have masked
the effect of an increase in fossil fuel emissions on the isotope signature of methane
would not apply for our time period.”

P14 L16 — independence of CH4 and OH abundance constraints — this is very
interesting and valuable if correct. P14 L24 — note that soil and Cl sinks are
prescribed.

Added: “The magnitude of reduction may be overoptimistic because of the idealized
treatment of error statistics, the assumption that the global 3-D OH distribution in the forward
model is correct, and the assumption that the minor sinks (Table 1) are correct.”

P15 L3 and also P 16 L22— OH trend - rather different from favoured hypothesis in
Turner et al (2017).



Turner et al. (2017) did not really present that as their favored hypothesis but rather as
mathematically most likely outcome of the under-constrained problem in their box-model
setup. Because of that we did not include a comparison here.

P15 L 10 — any comment on the extraordinary 13 ppb growth in 2014? Table 2 State
emission trend in ppb or in Tg/yr per year. 0.84+0.04% seems rather high compared
to the NOAA record?

Added Tg/yr numbers in the text: “Our posterior estimates for the 2010-2015 trends are
+0.84 + 0.04 % a ' (4.6 £ 0.2 Tg a™") for emissions and -02 £ 0.8 % a ' (-1.0 3.8 Tga™")
for OH.” These trends are for emissions and OH, a comparison of the concentration growth in
our posterior simulation to NOAA is added below with an additional note on the 2014
growth: “Our 2010-2015 growth rate averages 6.8, compared to 7.3 ppb a ' in the NOAA
record (esrl.noaa.gov/gmd/ccgg/trends ch4). The increase in the NOAA record is higher
because of especially strong growth in 2014 (12.8 ppb) which is not fully captured by the
linearized optimization used here. In our base inversion, this anomaly is explained by a
reduced sink from OH.”

P16 L33 — give error on 546 Tg/yr.
We included the error estimate here.

P17 L17 — high lat biases in the stratosphere — interesting and may have isotopic
impact.

As mentioned in the text, the latitudinal bias is corrected before the inversion.
Fig 2 — would be good to have this large when typeset. Likewise Fig 3 top and Fig. 4.
All these figures are set as two-column figures.
Fig 5 — anthropogenic biomass burning presumably fits in “other” — but this seems
very small. African fires in particular are very large indeed and globally for example

Saunois et al have the biomass burn & biofuel total more like 30-35Tg/yr.

Added clarification from Table 1 here: “(Table 1, "other" includes fossil fuel combustion,
industrial processes, and agricultural field burning)”

Fig 6 — Norway has a large gas industry. Australia has a large coal seam gas and also
offshore gas industry. Turkmenia, UAE and Indonesia are all pretty big. Shouldn’t
they be on the chart? Much bigger producers than India for example.

As mentioned in the caption, we show countries in the top ten of either the EDGAR v4.3.2 or
UNFCCC inventories.

Fig. 10 — add some comment on the very high and global growth in 2014?

Added a note on this in the associated text, see comment P15L10.
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Abstract. We use 2010-2015 observations of atmospheric methane columns from the GOSAT satellite instrument in a global
inverse analysis to improve estimates of methane emissions and their trends over the period, as well as the global concentration
of tropospheric OH (the hydroxyl radical, methane’s main sink) and its trend. Our inversion solves the Bayesian optimization
problem analytically including closed-form characterization of errors. This allows us to (1) quantify the information content
from the inversion towards optimizing methane emissions and its trends, (2) diagnose error correlations between constraints on
emissions and OH concentrations, and (3) generate a large ensemble of solutions testing different assumptions in the inversion.
We show how the analytical approach can be used even when prior error standard deviation distributions are log-normal.
Inversion results show large overestimates of Chinese coal emissions and Middle East oil/gas emissions in the EDGAR v4.3.2
inventory, but little error in the US where we use a new gridded version of the EPA national greenhouse gas inventory as
prior estimate. Oil/gas emissions in the EDGAR v4.3.2 inventory show large differences with national totals reported to the
United Nations Framework Convention on Climate Change (UNFCCC) and our inversion is generally more consistent with
the UNFCCC data. The observed 2010-2015 growth in atmospheric methane is attributed mostly to an increase in emissions
from India, China, and areas with large tropical wetlands. The contribution from OH trends is small in comparison. We find
that the inversion provides strong independent constraints on global methane emissions (546 Tg a=') and global mean OH
concentrations (atmospheric methane lifetime against oxidation by tropospheric OH of 10.8 £ 0.4 years), indicating that

satellite observations of atmospheric methane could provide a proxy for OH concentrations in the future.
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1 Introduction

Methane is an important greenhouse gas with a particularly strong decadal climate impact (Stocker et al., 2013). The atmo-
spheric methane concentration has increased by a factor of 2.5 since pre-industrial times (Hartmann et al., 2013). This increase
is not well understood but mustis most likely to be mainly driven by anthropogenic seurees-activities including the oil/gas in-
dustry, coal mining, livestock, landfills, wastewater treatment, biomass burning, and rice cultivation (Dlugokencky et al., 2011;
Kirschke et al., 2013; Saunois et al., 2016). Wetlands are the main natural source and could be affected by climate change
(Kirschke et al., 2013). Atmospheric methane has a lifetime of 9.1 4= 0.9 years (Prather et al., 2012), with a dominant sink from
oxidation by the hydroxyl radical (OH) that is also subject to interannual variability and trends (Holmes et al., 2013). Methane
eoncentrations The methane burden rose by ~ +%-12 ppb a~! in the +980s-and-earty+990slate 80s and by ~ 6 ppb a~' in
the 90s, plateaued in the early 2000s -anéd-have(~ 0.5 ppb a~!), and has resumed increasing at ~ 6:4-%-7 ppb a~! since 2007
(esrl.noaa.gov/gmd/ccgg/trends_ch4), for reasons that remain unclear (Turner et al., 2017). Inverse analyses can help interpret
these trends by combining atmospheric methane observations with a chemical transport model (CTM) to infer the distribu-
tion of methane emissions most likely to explain the observations (Houweling et al., 2017; Saunois et al., 2016; Jacob et al.,
2016). Here we use global 2010-2015 methane observations from the GOSAT satellite in an analytical inverse analysis with
full-closed-form error characterization to better quantify methane sources and interpret the recent trend, including changes in

both methane emissions and OH concentrations.

A number of explanations have been proposed for the renewed growth of atmospheric methane concentrations since 2007. A
parellel increase in ethane has been proposed as evidence for an increase in oil/gas emissions (Hausmann et al., 2016; Franco

et al., 2016). A trend towards isotopically lighter methane has been attributed to an increase in microbial sources such as live-

stock and wetlands 6
. Worden et al. (2017) suggest that a decrease in open fire emissions may mask the isotopic signature of increasing fossil fuel
emissions. Observations of methyl chloroform, a proxy for global OH concentrations, suggest that a decrease in the methane
sink may be implicated in the renewed growth (Turner et al., 2017; Rigby et al., 2017; McNorton et al., 2018). Turner et al.
(2017) find from a global 2-box model analysis that the surface record of methane observations is too sparse to arbitrate between

o-different-explanations—GOSAT satelite-observations-used-here-provide-much-denserglobal-coverage-methane emissions

and OH concentrations as drivers for the methane increase, though Naus et al. (2019) pointed out that there are inherent biases
in the 2-box modeling approach.

GOSAT was launched in 2009 and measures atmospheric methane columns with high precision (0.7 %) by solar backscatter
in the shortwave infrared (SWIR) (Butz et al., 2011; Buchwitz et al., 2015; Kuze et al., 2016). A number of inverse analyses
have used the GOSAT data to improve estimates of methane emissions i = : §s = : =

Monteil et al., 2013; Cressot et al., 2014; Alexe et al., 2015; Turner et al., 2015; Pandey et al., 2016, 2017; Miller et al., 2019)

. Here we use the GOSAT data to optimize not only global emissions but also their 2010-2015 trends together with OH con-

(Schaefer et al., 2016; Schwi
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centrations and their trends. The independent optimization of OH and emissions in the inversion is based on the different
signatures of those two terms on the methane concentration fields-field (Zhang et al., 2018). We use an analytical inverse
method with closed-form error characterization of the solution, rather than the adjoint approaches used in previous inverse
studies that do not provide rigorous characterization of errors. This allows us in particular to diagnose the error correlation
between the independent constraints on methane emissions and OH concentrations and their trends. It also allows us to readily

conduct inversions for an ensemble of cases once the Jacobian matrix for the problem has been constructed.

2 Data and methods

We use the GEOS-Chem CTM (www.geos-chem.org) as forward model to simulate the distribution of atmospheric methane
and its response to trends. Model results are fit statistically to the GOSAT data by Bayesian optimization, including regu-
larization from prior knowledge of methane emissions and OH concentrations. The January 2010 - December 2015 GOSAT
methane column data are arranged in an observation vector y, and the inversion optimizes a state vector x including global
methane emissions on the 4° x 5° GEOS-Chem grid, 2010-2015 linear trends of emissions on that same grid, and global mean
OH concentrations for individual years (we will also present results from an inversion optimizing a linear OH trend over the
2010-2015 period). The optimal solution X is obtained by minimizing a Bayesian cost function that balances the information
from the observations (weighed by the observational error covariance matrix Sp) and the prior knowledge x, (weighed by the

prior error covariance matrix S,) (Rodgers, 2000). Below we describe the different elements and steps in the inversion.
2.1 GOSAT observations

The TANSO-FTS instrument onboard the Greenhouse Gases Observing Satellite (GOSAT) observes column-averaged dry-air
methane mixing ratios by solar back-scatter in the SWIR with near-unit sensitivity down to the surface (Butz et al., 2011).
The satellite is in polar sun-synchronous orbit. Observations are made at around 13:00 local time for circular pixels of 10 km
diameter. In the default observation mode, the pixels are separated by ~250 km along-track and cross-track, with repeated ob-
servation of the same pixels every 3 days. Denser observations are also made in target mode over features of interest. GOSAT
observations-spectra have shown no significant drift or degradation of data quality since the beginning of the record (Kuze et al.,
2016). We use the University of Leicester version 7 COy proxy retrieval over land (Parker et al., 2011, 2015) from January
2010 to December 2015 in order to have even observations of all seasons. The single-observation precision is 13 ppb and the
relative (regional) bias is 2 ppb compared to ground-based column-averaged dry-air mole factions from the Total Carbon Col-
umn Observing Network (TCCON) (Buchwitz et al., 2015). Other retrievals of GOSAT data are consistent with the University
of Leicester product (Buchwitz et al., 2015). Figure 1 illustrates the GOSAT data ingested in our inversion, representing a total
of 1,211,468 retrievals. Glint data over the oceans and data poleward of 60° are not included because of seasonal sampling

biases (Turner et al., 2015).
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2.2 Prior estimates

The inversion requires prior estimates and error statistics for all components of the state vector including methane emissions on
—2,-1

)

the 4° x 5° GEOS-Chem grid (1009 ice-free land-containing grid cells with prior emissions larger than 8 x 102 Mg km
covering 99% of global emissions), 2010-2015 linear emission trends on the same grid, and global mean OH concentrations

for individual years 2009-2015 (2009 is only used for initialization), for a total of 2025 state vector elements.

Table 1 gives our global prior inventory with the contributions from different source types, and Figure 2 shows the spa-
tial distributions. Monthly wetlands emissions for individual years are from the WetCHARTS v1.0 extended ensemble mean
(Bloom et al., 2017). For anthropogenic emissions we use the EDGAR v4.3.2 global emission inventory for 2012 (edgar.jrc.ec.
europa.eu (Janssens-Maenhout et al., 2019)) as worldwide default), including additional information from EDGAR to subset
the *fuel exploitation’ emissions category into oil/gas and coal mining. Over the continental US, we replace EDGAR v4.3.2
with a gridded version of the US EPA greenhouse gas inventory (Maasakkers et al., 2016). In Canada and Mexico, we use
the oil/gas emissions from Sheng et al. (2017). Anthropogenic emissions are aseasenal-assumed as aseasonal for lack of better
prior information except for manure management and rice cultivation. Seasonal scaling of manure management emissions is
done using the temperature dependence of Maasakkers et al. (2016). Seasonal scaling of rice cultivation emissions is based on
Zhang et al. (2016). Daily global open fire emissions are from QFED (Darmenov and da Silva, 2013). Termite emissions are
from Fung et al. (1991). Emissions from geological macroseeps (oil/gas seeps and mud volcanoes) are based on Etiope (2015)
and Kvenvolden and Rogers (2005). For areal seepage, we use the sedimentary basins (microseepage) and potential geother-
mal seepage maps from Kvenvolden and Rogers (2005) with the emission factor previously used by Lyon et al. (2015). Over

the US, we use the sedimentary basins map from the Energy Information Administration (2016) and basin-specific emission

factors from Etiope and Klusman (2010). While global geological emissions have previously been estimated to be over 50 T
a~! (Kirschke et al., 2013), Petrenko et al. (2017) showed that based on ice core measurements they should no higher than 15

-1

Tga .

Construction of the prior error covariance matrix S, requires estimates of error variances for the prior emissions on the 4°
x 5° grid. For wetland emissions, we use the standard deviation of 4° x 5° annual emissions from the WetCHARTSs ensem-
ble members (Bloom et al., 2017). The error variance averages 58% on the grid-level. For US anthropogenic emissions and
oil/gas emissions in Canada and Mexico, we use the scale-dependent error variances from Maasakkers et al. (2016). For lack
of better information, we assume 50% error standard deviation for EDGAR v4.3.2 emissions (Turner et al., 2015) and 100%
for non-wetland natural emissions. The diagonal terms of S, are then constructed by adding the error variances of individual
source types for 4° x 5° grid cells in quadrature, capping total errors at 50%. We assume no error spatial covariance on the
4° x 5° grid so that S, is diagonal. This is a reasonable assumption for anthropogenic emissions (Maasakkers et al., 2016),

though errors on wetland emissions may still be correlated on that scale (Bloom et al., 2017).
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Table 1. Prior global estimates of methane sources and sinks (mean 2010-2015 values).

Source (Tga™ ) Sink (Tg a b
Natural
Wetlands 161  Tropospheric OH 475
Open fires 15 Stratospheric loss 33
Termites 12 Soil uptake 18
Seeps 5 Tropospheric CI 9
Anthropogenic
Livestock 117
Oil and Natural Gas 70
Coal Mining 38
Rice Cultivation 38
Wastewater 38
Landfills 30

Other Anthropogenic® 25

Total Source 548  Total Sink 535

“including fossil fuel combustion, industrial processes, and agricultural field burning

Our state vector in the inversion includes linear emission trends for 4° x 5° grid cells over the 2010-2015 period, super-
imposed on interannual variability in the case of wetlands and fires. Our global prior estimate of mean methane emissions for
the 2010-2015 period exceeds the sinks by 2:4%-13 Tg a_! (Table 1), which weuld-drive-a-0-3%drives a 5 ppb a~! increase
in methane concentrations over that period even in the absence of an emission trend. Therefore our prior estimate of linear
emission trends for individual 4° x 5° grid cells is zero, with an absolute error standard deviation of 10% of the local prior
emissions over the 2010-2015 time period (1.7% a~1). This error standard deviation is based on trend estimates for North
America inferred from GOSAT data (Turner et al., 2016; Sheng et al., 2018a).

The prior estimate of the global tropospheric OH concentration is based on a GEOS-Chem full-chemistry simulation (Wecht

et al., 2014) that yields a methane lifetime 7'81{}4 of 10.6 years, consistent with the best estimate inferred from the methyl

chloroform proxy (Prather et al., 2012) and the 9.7 4 1.5 years estimate from the ACCMIP model ensemble (Naik et al., 2013

. Here and elsewhere, TCO ]514 is defined as the ratio between the total mass of atmospheric methane (including the stratosphere)

and the annual loss rate from oxidation by OH below the tropopause. The uncertainty in the methane lifetime is about 10%
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(Prather et al., 2012) but the uncertainty on OH interannual variability is less, about 3% (Holmes et al., 2013). We assume a 3%
error standard deviation in the global annual mean OH concentration for our standard inversion but also conduct a sensitivity
study with 10% error standard deviation. We further conduct an inversion taking the OH trend over the 2010-2015 period as
linear, and assuming in that case error standard deviations of 10% for the mean global OH concentration and 5% a~! (absolute)
for the linear trend. Scaling of global OH concentrations in the inversion is done without modifying the spatial or seasonal OH
distribution. Zhang et al. (2018) found that inversions of atmospheric methane data using the 3-D GEOS-Chem OH fields give

consistent results with inversions using other global OH distributions from the ACCMIP model ensemble (Naik et al., 2013).
2.3 Forward model

We use the GEOS-Chem CTM v11-01 at 4° x 5° grid resolution (Wecht et al., 2014; Turner et al., 2015) as forward model for
the inversion. The model is driven with 2009-2015 MERRA-2 meteorological fields (Bosilovich et al., 2016) from the NASA
Global Modeling and Assimilation Office (GMAO). Atmospheric methane concentrations are initialized on January 2009 us-
ing the previous GOSAT inversion results of Turner et al. (2015), shown in that work to be unbiased compared to surface and

aircraft background data including for the tropospheric meridional gradient.

The loss from oxidation by tropospheric OH is computed with archived 3-D monthly fields of OH concentrations from a
GEOS-Chem full-chemistry simulation as described by Wecht et al. (2014). Local tropopause information is from the MERRA-
2 data. The global loss rate for individual years is optimized in the inversion by uniform scaling of the OH concentrations. Other
minor loss terms include stratospheric oxidation computed with archived monthly loss frequencies from the NASA Global
Modeling Initiative model (Murray et al., 2012), tropospheric oxidation by CI atoms computed using archived CI concentration

fields from Sherwen et al. (2016) and the reaction rate constant from Allan et al. (2007), and soil uptake as described by Fung

et al. (1991) with temperature-based seasonality based on Ridgwell et al. (1999). The loss from oxidation by ClI totals 9 T

—1

intermediate between the 12-13 Tg a~! estimated by Hossaini et al. (2016) using the TOMCAT chemical transport model

and 5.3 Tg a—! estimated by Wang et al. (2019) in a GEOS-Chem simulation with full accounting of tropospheric chlorine.

These minor sinks are not optimized in the inversion.

The GEOS-Chem simulation of GOSAT methane columns features a latitude-dependent background bias that needs to be
corrected (Turner et al., 2015). This bias likely reflects a model overestimate of methane in the extratropical stratosphere (Saad
et al., 2016), and-which is common across global models due to excessive meridional transport in the stratosphere (Patra et al.,
2011) and was first seen in a SCTAMACHY inversion using the TMS chemical transport model (Bergamaschi et al., 2007).
Stanevich (2018) found significant difference in methane columns simulated by GEOS-Chem at 4° x 5° compared to 2° x
2.5° resolution, but we find that this difference is mainly in the stratosphere (Appendix A). We remove the background bias by
applying the latitudinal correction based on background grid cells from Turner et al. (2015), recomputed with the University of

Leicester v GOSAT proxy retrieval (Parker et al., 2015) and the MERRA-2 meteorological fields. The mean model - GOSAT
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difference in column mean mixing ratio for background 4° x 5° grid cells is fitted to a second order polynomial of latitude:
¢ =(4.00*—1.30) x 107 -5 (1)

where 6 is the latitude in degrees and & is the model correction in ppb. This correction is similar to Turner et al. (2015) who
used £ = (592 — 59) x 1073 — 0.5. A seasonal bias remains after application of this correction and we fix it by removing the
zonal monthly mean concentration differences averaged over rolling 12° latitudinal bands. This seasonal bias may be due to

ie-errors in the seasonality of emissions or atmospheric transport (Saad
et al., 2016; Bader et al., 2016; Stanevich, 2018). We find that the seasonal correction does not affect the inversion results sig-

nificantly, as shown in Appendix B where we optimize emissions for individual seasons separately without applying a seasonal

correction.

2.4 Observational error covariance matrix

The observational error covariance matrix So includes contributions from random instrument and forward model errors. We
construct it by the residual error method of Heald et al. (2004) using the 2010-2015 time series of local methane column dif-
ferences A = ygros—cHEM, prior — Ycosar for individual 4° x 5° grid cells between the GEOS-Chem model with prior

estimates (emissions and OH concentrations) and the GOSAT observations after background bias correction. The mean differ-

ence A = YarOS_CHE M, prior — YGOSAT 18 to be corrected in the inversion while the residual error A’ = A — Ais taken as
the observational error. Statistics of A’ define the observational error variance (diagonal of the observational error covariance
matrix). The same method was previously used in the satellite-based methane inversions by Wecht et al. (2014) and Turner et al.
(2015). The resulting observational error standard deviation averages 13 ppb. The mean instrument error standard deviation is
11 ppb (Parker et al., 2015), implying that most of the observational error is generally from the instrument rather than from the
forward model. This would indeed be expected for the random error of individual measurements. For a given measurement, if
the local error standard deviation computed by the residual error method is smaller than the reported measurement precision,
then we use the latter instead; this is the case for 10% of retrievals. All observational error standard deviations are set to be at
least 10 ppb (this threshold affects 8% of retrievals). So is taken to be diagonal for lack of better information but the general

effect of error correlation in the observations is accounted for in the inversion by a regularization factor (Section 2.5).

2.5 Inversion procedure

We perform inversions with two different specifications of prior error variance statistics: normal and log-normal. Assumption
of normally distributed errors enables a linear optimization problem with an analytical solution including fut-closed-form error
characterization (Rodgers, 2000). Assumption of log-normal errors may be more appropriate for modeling the high tail of the
probability density function (Zavala-Araiza et al., 2015) and also has the advantage of enforcing positive solutions (Miller

et al., 2014), but the optimization problem is then non-linear. By comparing the two approaches we can evaluate consistency
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in results.

Both inversions minimize the Bayesian cost function J(x) (Rodgers, 2000):

J(x) = (x—%a)" Sa”! (x—Xa) +7(y ~F(x))" So " (y — F(x)) 2

where x is the state vector, X, is the prior estimate, S, is the prior error covariance matrix, F(x) is the simulation of obser-

vations y by the GEOS-Chem model, S is the observational error covariance matrix, and -y is a regularization factor (Brasseur

and Jacob, 2017). The variances in So are underestimated because of correlation in the observational error that is missing in the
diagonal formulation of S and is difficult to quantify. We use 7y to scale the original diagonal Sq to get an optimal covariance
matrix to be used in the inversion. Zhang et al. (2018) showed in an observing system simulation experiment (OSSE) for in-
version of methane satellite data that a regularization factor v = 0.05 was-needed-to-prevent-overfittingbecause-of correlation
in i i issi he diag tor-of-So—and-is-otherwise-diffieultto-quantifyadjusts
the variances optimally and prevents overfitting. This was done by calculating the likelihood at X for a range of values of .
Diagnosis of overfit and optimization of -y is readily done in an OSSE such as in Zhang et al. (2018) where the “true” solution is

known. Here we find that using v = 1 (as in the pure Bayesian statement of the optimization problem) produces checkerboard
patterns in the solution that are likely spurious. We choose v = 0.05 consistent with Zhang et al. (2018) for our base inversion
as providing the best balance between prior and observational terms in the posterior value of the cost function;-and-, We exam-

ine the sensitivity to the choice of v by conducting a sensitivity inversion with v = 0.1.

Further balancing of the cost function is needed because the global OH concentration and its interannual variability are
represented by only 7 state vector elements, while the emissions on the 4° x 5° grid are represented by 1009 elements. To
provide equal weight to OH and emissions for explaining global methane trends, we increase the weight of the OH terms in
the cost function (through the OH components of S,) by the ratio of the number of state vector elements 1009/7 so that from

a cost-function perspective, a change in OH and global methane emissions are equally expensive. The sensitivity inversion
assuming 10% prior error standard deviation on OH instead of 3% is equivalent to decreasing this weighting by a factor of 11.

The GEOS-Chem forward model y = F(x) relating methane column concentrations y to the state vector x is essentially
linear. There is a small non-linearity from the optimization of OH concentrations because changes in the methane concentra-
tions affect the loss rate (Houweling et al., 2017) which we neglect because changes in methane concentrations are small and
methane is well-mixed globally. We therefore express the forward model as F(x) = Kx+c where K = 0y/0x is the Jacobian

matrix of the model and c is an initialization constant (January 2009 concentrations taken from Turner et al. (2015)). Replac-
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ing F(x) = Kx in Equation 2 and subtracting the initialization constant ¢ from the observations, the minimization problem

dJ(x)/dx = 0 has an analytical solution for the optimal posterior solution X (Rodgers, 2000):

- So\ !
X = Xa + Sa K’ (KSaKT + 0) (y — Kxa) 3)
gl
The posterior error covariance matrix S describing the error statistics of X is given by:
S=(K"So 'K +8, )" @)
and the averaging kernel matrix (A = 9X/0x) defining the sensitivity of the solution to the true state is given by:
S\ !
A=S.KT (KSaKT + 0) )
v
The trace of the averaging kernel matrix defines the degrees of freedom for signal (DOFS) of the inversion, that is the number
of pieces of information on the state vector that can be gained from the observing system.

The analytical solution as described by Equations 3-5 requires the explicit construction of the Jacobian matrix K charac-
terizing the GEOS-Chem model. We do this column-by-column with GEOS-Chem simulations perturbing independently each
element of the state vector. This is readily achievable even for 2025 state vector elements as a massively parallel computation.
Sparse matrix algebra is used where possible in solving Equations 3-5, taking advantage of the diagonal structure of the error

covariance matrices.

The analytical solution to the Bayesian optimization problem requires assumption of Gaussian errors, but this allows for the

possibility of negative values of state vector elements. Small-negative-Negative emissions could conceivably be attributed to

locally strong soil uptake or oxidation by Cl atoms, but may also be
unphysical (Miller et al., 2014). We can address-this-problerrenforce positivity in the Bayesian solution by optimizing for In(x)
instead of x, with normal Gaussian errors specified for In(x) (corresponding to log-normal errors for x). The model is then
non-linear, so that the solution and the corresponding error statistics must be found iteratively with an updated Jacobian matrix

v = 0y/01nx at each iteration N. This recomputation is immediate using the previously derived Jacobian matrix K for the
linear problem, since the individual scalar elements 0y; /01n(x;) of K’ are related to those of K by y;/0ln(x;) = x,;0y;/0x;.
Thus only a simple scaling of the linear Jacobian matrix is required at each iteration. This conversion to log space is done only
for the emissions component of x. Emission trends and global OH concentrations are still optimized with normal error distri-

butions and no scaling is applied to those rows of the Jacobian.

Optimizing emissions in log space means that the best posterior estimate is for the median of emissions instead of the mean.
The mean and the median of the log-normal distribution are not equal, so that results cannot be summed over grid squares to
rovide a best estimate of the mean. For this reason, analysis of ageregate and global emissions and sinks will be done with
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the inversion using normal errors.

The iterative solution for the inverse problem with lognormal errors is obtained with the Levenberg-Marquardt method
(Rodgers, 2000) for each iteration N:

— ’ _ ’_ -1 / _ —
X/N+1=X/N+((1+/€)Sig 1+7K]$So 1KN1> <7K1$So 1(y—KXN)—SZ; 1(X/N—X14)) (6)

where x’ = Inx, the initial guess x'q is the prior estimate, and « is a coefficient for iterative approach to the solution that
is set to 100 to start and is gradually decreased as the solution is approached. The prior error covariance matrix S,’ (diagonal
elements s’;) defining error variances for Inx, is derived from the pervieusly-previously described prior error covariance

matrix S, (diagonal elements s 4) by scaling the error variances for the individual elements:

o (22575) (257 |
, TA TA
SpA = B @)

2.6 Error correlations between global estimates of sources and sinks

Inversion results for the spatial distributions of emissions and trends on the 4° x 5° grid are mainly informed by local/regional
patterns of methane concentration. However, implied inversion results for the global methane emission and its trend may be
significantly correlated with those for the global tropospheric OH concentration and its trend. Some separation is expected be-
cause sources of methane have a different spatial/seasonal imprint on the global methane distribution than the OH sink (Zhang
et al., 2018) but it is important to quantify the error correlation, i.e., the extent to which adjustments to the global methane

emission and its trend may be aliased by adjustments to the global OH concentration and its trend.

To do this we reduce the dimensionality of the inverse analysis by collapsing global emissions and trends into one state

vector element each. Following Calisesi et al. (2005), if the state vector can be transformed using a summation matrix W as:

Xred = WX (®)
then the averaging kernel matrix of the reduced system (A,eq) is given by:

Areqa = WAW? )

where W--W* = (WTW) "W is the generalized pseudo-inverse of W{WLW5=LW-L5. Our original state vector x

in this case includes mean 2010-2015 emissions and their linear trends on the 4° x 5° grid, and the global mean tropospheric
OH concentration for 2010-2015 and its linear trend. Again, the minor sinks in Table 1 are not optimized and are maintained
instead at their prior values. We apply the summation matrix W to the emission terms and thus reduce the state vector to four

elements defining the global methane budget (global mean emission, global mean OH concentration, global emission trend,

10
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global OH trend). The off-diagonal terms of the reduced averaging kernel matrix A eq then measure the extent to which dif-
ferences relative to the true state are aliased between sources and sinks in the optimization of this global budget. The advantage
of this summation approach, as compared to a global inversion including just four elements, is that the distribution of methane

emissions and its trends is still optimized.

3 Results and Discussion

We conduct an ensemble of inversions to characterize the sensitivity of the solution to different assumptions made in the for-
mulation of the inverse problem. Our base inversion optimizes annual mean emissions with normal error distributions and
seasonal background correction to the GOSAT-model difference as discussed above. To test whether choices in the regulariza-
tion and cost function construction affect our conclusions we also conduct inversions with (1) log-normal error distributions
for emissions, (2) a regularization factor  of 0.1 instead of 0.05, (3) no seasonal background correction to the model-GOSAT
difference, (4) a 10% error standard deviation on the global OH concentration instead of 3%, (5) optimizing a linear trend
in global OH concentration instead of year-to-year variability, assuming 10% error standard deviation for mean OH and 5%
for the 2010-2015 trend, (6) no interannual variability in prior emission estimates, and (7,8) seasonally-resolved emission
optimization including seasonal correction and not (see Appendix B). All inversions produce consistent results and we will
focus our main presentation on the base inversion, bringing in the sensitivity inversions to illustrate the spread of results and to

address specific issues.

Before presenting results from the inversion, we compare the posterior solution to observations to show that the inversion
accomplishes its task of providing an improved forward model fit to observations. Figure 3 (top and middle panels) shows the
improvement in the GEOS-Chem comparison to the GOSAT data when using posterior vs. prior emissions, emission trends,
and OH concentrations. As expected for a successful inversion, the posterior values provide a better fit to the observations.
The inversion corrects prior underestimates over tropical regions and an overestimate over China. It also fits the observed
2010-2015 trend in methane concentrations and its latitudinal distribution while the prior model underestimated the growth
rate especially in 2014-2015. It does not fully correct the prior bias in the Arctic because GOSAT observations north of 60°N

are not used in the inversion.

Figure 3 also shows independent evaluation of the inversion results with background observations from the NOAA coopera-
tive flask sampling network (esrl.noaa.gov/gmd/ccgg/flask.php), the HIPPO aircraft campaigns across the Pacific and Atlantic
(legs III-V, hippo.ornl.gov(Wofsy, 2011)), and the Total Carbon Column Observing Network network (TCCON, tccondata.org
(Wunch et al., 2011)). These observations are mainly of the seasonal/latitudinal methane background and are not used in the

inversion. The background is already well simulated in the prior estimate, and the posterior simulation does not degrade this
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agreement.

3.1 Spatial distribution and source attribution of methane emissions

Figure 4 shows the global distribution of mean 2010-2015 posterior emissions from the base inversion and from the sensitivity
inversion assuming log-normal errors in the prior emission estimates. Correction patterns are very similar between the two
inversions. Small negative emissions are found in the base inversion for 6 of the 1009 optimized grid cells. The inversion
assuming log-normal errors does not allow these negative emissions. Downward corrections tend to be smaller in the inversion
assuming log-normal errors, while positive corrections are larger and more concentrated in a few grid cells, as would be ex-

pected from the different shapes of the error standard deviation distributions.

The top right panel of Figure 4 shows the diagonal terms of the averaging kernel matrix for the base inversion (averaging
kernel sensitivities), measuring the ability of the observations to constrain the inversion. The trace of the averaging kernel
matrix (DOFS = 128) measures the number of independent pieces of information constrained by the inversion. A Bayesian
inversion without correcting for overfit (v = 1 in Equation 3) would erroneously produce much higher DOFS. We find that the
inversion provides strong constraints on the 4° x 5° grid for source regions in East Asia, central Africa, and South America.
Averaging kernel sensitivities are generally weaker over North America and in Europe, indicating that the inversion provides

more diffuse spatial information in these regions.

We find that the EDGAR v4.3.2 inventory prominently overestimates anthropogenic emissions over eastern China, likely
from coal production, and around the Persian Gulf, likely from oil/gas production. The finding of a-pesitive-inventory-bias-an
EDGAR overestimate in China is consistent with previous global inversions of GOSAT data using EDGAR v4.1, v4.2et-, and
v4-+2FT2010 as prior estimate i

and a regional inversion using EDGAR v4.3.2 (Miller et al., 2019). The overestimate of coal mining emissions may be because

standard IPCC emission factors used by EDGAR v4.2 were too high for Chinese coal mines and recovery of coal mine methane
is not sufficiently taken into account (Peng et al.,

but we still find an overestimate. We find that EDGAR underestimates emissions over Japan and Southeast Asia, where rice
cultivation is the largest anthropogenic source but there are also large wetland emissions. There are also large corrections in

wetland areas of central Africa, South America, and North America.

We do not find large correction factors over the US, except for the southeastern coast which is likely due to an overestimate
of methane emissions from coastal wetlands in the prior WetCHARTSs inventory. This overestimate of US coastal wetland
emissions in WetCHARTS is consistent with a previous inversion of aircraft observations over the Southeast US by Sheng et al.
(2018b) and may be explained by low soil organic carbon in these ecosystems (Holmquist et al., 2018) and/or the overestimated

impacts of partial wetland land-cover classes predominant in the southeastern US (Lehner and D&ll, 2004; Bloom et al., 2017).
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Previous inversions found factor of 2 underestimates of EDGAR v4.2 emissions in-of the South-Central US (Miller et al., 2013;
Turner et al., 2015) but we do not find such an underestimate here and attribute this to our use of the gridded version of the US
EPA inventory as prior estimate (Maasakkers et al., 2016). EDGAR v4.2 allocated oil/gas emissions mainly according to popu-

lation, which greatly underestimates emissions in oil/gas production regions in the South-Central US (Maasakkers et al., 2016).

Improved estimates of global methane emissions for the individual source types of Table 1 can be inferred from our results
by assuming that the relative contributions from different source types in a given 4° x 5° grid cell is correct in the prior in-
ventory. The global posterior estimate for a given source type is then obtained by applying the 4° x 5° posterior/prior ratios
from Figure 4 to the distribution of source types in Figure 2. Results in Figure 5 indicate little change to 2010-2015 average
emissions compared to the global prior inventory by source type even though there are large regional reallocations. Coal min-
ing emissions decrease by 29% mainly due to China, and rice cultivation and livestock increase by 15% and 8% respectively,

mainly driven by the tropics.

There has been particular interest in quantifying emissions from oil/gas exploitation because of the potential for large re-
ductions of these emissions through simple control measures (Zavala-Araiza et al., 2015; Alvarez et al., 2018). The EDGAR
v4.3.2 national oil/gas emission totals can differ greatly from the national (spatially unresolved) totals reported by individual
countries to the United Nations Framework Convention on Climate Change (UNFCCC, 2017). This is shown in Figure 6 with
national oil/gas emissions from the top ten countries in either the EDGAR v4.3.2 or UNFCCC inventories. We can estimate
national oil/gas emission totals from our inversion by again assuming that the relative contributions of oil/gas to total emissions
in individual 4° x 5° grid cells are correct, and by further mapping the 4° x 5° correction factors to the 0.1° x 0.1° emission
EDGAR-EDGAR emission grid. The emission-weighted scaling factor is then used with the national oil/gas totals reported
by EDGAR. Russia is the largest national source but the inversion is limited in its ability to constrain oil/gas emissions there
because a third of these emissions are north of 60°N in EDGAR v4.3.2 (Figure 2).

Results in Figure 6 show that the inversion generally pushes the prior EDGAR v4.3.2 estimates of oil/gas emissions toward
the UNFCCC values. One would expect the UNFCCC national reports to provide better estimates than EDGAR v4.3.2 be-
cause of their use of local information (Scarpelli et al., 2018) as compared to the more generic estimates (HPCE;2006)-used
by EDGAR ;-simitarto-the-on the basis of IPCC Tier 1 methodology and-using-glebal-datasets(IPCC, 2006). Thus we find
that EDGARV4.3.2 greatly underestimates emissions in Uzbekistan, which are high because of leaky infrastructure (Scarpelli
et al., 2018). For Iran, Algeria, Nigeria, Saudi Arabia, and Qatar we find much lower emissions than EDGAR v4.3.2 and
more consistent with the UNFCCC data. For China we are in better agreement with EDGAR v4.3.2 than with the UNFCCC
estimate, which relies on anomalously low emission factors (Larsen et al., 2015). In Venezuela we find higher emissions than

either EDGAR v4.3.2 or UNFCCC. The latest available report from Venezuela to the UNFCCC dates back to 1999.
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3.2 Spatial distribution and source attribution of methane emission trends

Figure 7 shows base inversion results for the linear emission trends on the 4° x 5° grid for 2010-2015 and the associated
averaging kernel sensitivities. Also shown in the bottom right panel is the 2010-2015 time series of posterior OH concentra-
tions with error standard deviations from the posterior error covariance matrix. We find no significant OH trend over the period
although uncertainties are large. The information on the spatial distribution of emission trends originates from local/regional
gradients of atmospheric methane observed by GOSAT, and we find from the posterior error covariance matrix of the inversion
that it is not correlated with information on OH concentrations. Thus the large posterior uncertainty in global OH concentra-
tions does not induce any significant correlated error in the spatial distribution of emission trends. This may be expected in

view of the long lifetime of methane relative to the relevant time scales for atmospheric transport.

The GOSAT data provide seven independent pieces of information (DOFS) on the spatial distribution of the emission trend.
Again, a Bayesian inversion without correcting for overfit (v = 1) would erroneously indicate much higher DOFS. We find
increasing emissions in the tropics and little change at higher latitudes. There are well-defined anthropogenic positive trends
over China, India, and the Persian Gulf. Trends in China are in areas with dominant emissions from coal mining but also

significant contributions from livestock and waste. In an inversion of surface observations, Thompson et al. (2015) previousl

found an increasing trend over China for 2000-2011 which they attributed to coal mining. Miller et al. (2019) found that this

trend continued up to 2015 using GOSAT in a regional inversion. Trends over India are in areas of rice production but may

also reflect waste management and livestock. The trend over India tetats-is 0.4 (0.3-0.5) Tg a~! (range of the inversion en-

semble), consistent with the 2010-2015 trend of 0.7 & 0.5 Tg a ' from a regional GOSAT inversion by Miller et al. (2019).
Ganesan et al. (2017) found a non-significant trend (0.2 4 0.7 Tg a—') over India for 2010-2015 using an ensemble of GOSAT,
commercial aircraft (CARIBIC), and surface station methane data, but this-deesnot-exclude-the-significantinerease-that-we
find-hereour estimate is not incompatible with their range. EDGAR v4.3.2 predicts a 0.4 Tg a_! increase in anthropogenic

emissions from India between 2010 and 2012 mainly from livestock, coal, and waste based on increasing activity data (this
trend is not included in our prior). The trend over the US is less well defined and not well constrained but suggests an increase

over the eastern part of the country where multiple source types could contribute (Sheng et al., 2018a, b).

The bottom left panel of Figure 7 shows the attribution of the global increasing trend in emissions to individual source types,
following the same assumption that was used in Figure 5 to attribute emissions to source types. We further separate tropical and
extratropical contributions. Boreal wetland trends cannot be constrained by our inversion effectively (no observations north of
60° N). 43% of the 5 Tg a—! global emission trend found in the inversion for 2010-2015 is driven by wetlands (mainly tropical),
16% by livestock, and 11% by oil/gas. No source type shows a global decrease. Our source attribution of the methane trend

is consistent with isotopic evidence suggesting that the increase in methane over the past decade has been driven by biogenic

sources N4 ~ : i ~ utside the Arctic (Nisbet et al., 2016; Schwietzke et al., 2016; Schaefer et al., 2016

, including tropical wetlands (McNorton et al., 2016). Worden et al. (2017) previously found a decrease in biomass burnin
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from 2001-2007 to 2008-2014 but no significant change for the 2010-2015 period investigated here. Their argument that a
decrease in the biomass burning emissions would have masked the effect of an increase in fossil fuel emissions on the isotope
signature of methane would not apply for our time period.

3.3 Global methane budget and trends

The previous sections showed that our inversion of the GOSAT data is able to provide relatively fine information on the spatial
distribution of methane emissions (DOFS = 128) as well as some information on the spatial distribution of 2010-2015 emission
trends (DOFS = 7). This information on the spatial distribution originates from local/regional gradients of atmospheric methane
observed by GOSAT. We now examine to what extent error correlations may limit our ability to independently quantify the

global emission of methane, the global tropospheric OH concentrations, and their respective trends.

To analyze the constraints from the inversion on the global budget of methane, we collapse the inversion to the reduced
4-member global state vector of 2010-2015 mean values described in Section 2.6 (global methane emission, global emission
trend, global tropospheric OH concentration, global OH trend). We use normal errors for all state vector elements (using log-
normal errors could bias the mean). Table 2 compares the prior and posterior values for this global budget. The uncertainty in
global emissions and trends is likely underestimated because of the lack of prior error covariance assumed between the 1009
grid cells. The global mean tropospheric OH concentration is expressed in terms of the corresponding methane lifetime Tg 1{}4.
Figure 8 shows the averaging kernel rows for this reduced global state vector (A,eq in Section 2.6), measuring the sensitivity
of the inversion results to the true values (diagonal terms) and the aliasing due to error correlations (off-diagonal terms). We
find that the mean 2010-2015 global methane emission and OH concentration are strongly and independently constrained, with
averaging kernel sensitivities near unity and little error correlation. On the other hand, there is strong negative error correlation
between emission trends and OH trends, and the OH trend can only be weakly constrained. This is illustrated further in Figure

9 with the joint probability density function (pdf) plots of the posterior estimates, where the confidence levels measure the

probability of a given value and the tilts of the ellipses measure the error correlations.

A major implication of being able to constrain independently the global methane emission and the global OH concentration
is that satellite observations of atmospheric methane can provide an independent proxy for quantifying the global mean tropo-
spheric OH concentration. Our posterior estimate of the methane lifetime Tg 1{1{4 is 10.8 £ 0.4 years. It is strongly constrained
by the inversion, as shown by the averaging kernel sensitivity near unity, and is thus largely independent from the prior estimate
of 10.6 + 1.1 years. So far the main method for estimating global OH has been through the methyl chloroform budget (Prather
et al., 2012), but this is becoming problematic as methyl chloroform concentrations decrease and previously minor potential
sources like ocean outgassing may become significant (Wennberg et al., 2004; Liang et al., 2017). Satellite observations of
methane could provide an alternative. Our inversion confirms the best estimate of global OH from the methyl chloroform

budget (Prather et al., 2012) but reduces its uncertainty from 10% to 4%. The magnitude of reduction may be overoptimistic
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because of the idealized treatment of error statisticsand-, the assumption that the global 3-D OH distribution in the forward

model is correct, and the assumption that the minor sinks (Table 1) are correct. Zhang et al. (2018) present a more thorough

error analysis of this potential of methane satellite observations as proxy for global OH concentrations.

We find on the other hand that there is large error correlation between our estimates of global 2010-2015 emission trends
and OH trends, and limited ability to constrain the OH trend. Fhe-We find that most of the increase in methane is explained
by increasing emissions. Our posterior estimates for the 2010-2015 trends are +0.84 & 0.04 % a~! (4.6 + 0.2 Tg a_ ") for
emissions and -0.2 &+ 0.8 % a~* (-1.0 + 3.8 Tg a_") for OH. The joint pdf in Figure 9 illustrates the error correlation be-
tween the two. Anetherfaetor-Other factors driving the 2010-2015 atmospheric methane trend is-are the initial imbalance in
the 2010 budget, which we can derive from the posterior estimates of the mean 2010-2015 budget imbalance and trends, and
the interannual variability of wetlands emissions as represented by WetCHARTS. Figure 10 shows the contributions of these
different terms to the observed 2010-2015 methane growth. 2010 was a relatively high year for tropical wetlands emissions
according to WetCHARTS, which acts to dampen the overall trend. We can state with some confidence that increasing tropical

emissions (Figure 7) made an important contribution to the 2010-2015 methane trend but any conclusion about the effect of an

OH trend is highly uncertain including in its sign. Our 2010-2015 growth rate averages 6.8 ppb a~ ', compared to 7.3 ppba™ !
in the NOAA record (esrl.noaa.gov/gmd/ccgg/trends_ch4). The increase in the NOAA record is higher because of especially.
strong growth in 2014 (12.8 ppb) which is not fully captured by the linearized optimization used here. In our base inversion,
this anomaly is explained by a reduced sink from OH.

Table 2. Global 2010-2015 methane budget®

Prior Posterior
Mean emission (Tg a b 548 £+ 10 546 + 2
Emission trend (% a~') 0+0.1 0.84 + 0.04
Mean methane lifetime 78/, (2)°  10.6+ 1.1 108 +04
OH trend (% a™ %) 0408 -024+0.38

@ From the inversion optimizing (1) mean 2010-2015 methane emissions on the 4° X 5° grid, (2) linear methane emission trends on that same grid, (3) global
mean 2010-2015 tropospheric OH concentration, and (4) linear trend in global OH concentrations. Expected values and error standard deviations are shown.
The prior estimates are described in Section 2.2. The posterior global emission and its trend are obtained by summing the contributions from all 4° x 5° grid
cells, and the error standard deviations are computed accounting for posterior error correlation. Minor methane sinks totaling 61 Tg a— are not optimized in

the inversion.

b Methane lifetime against oxidation by tropospheric OH, computed as the ratio between the total atmospheric mass of methane (including the stratosphere)

and the annual loss rate from oxidation by OH in the troposphere.
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4 Conclusions

We used 2010-2015 observations of atmospheric methane columns from the GOSAT satellite instrument in a global inverse
analysis to optimize a state vector including (1) mean 2010-2015 methane emissions on a 4° x 5° grid, (2) 2010-2015 emission
trends on that same grid, and (3) global mean tropospheric OH concentrations for individual years. Our work aimed to improve
current understanding of global methane sources and the renewed growth in atmospheric methane over the past decade, and to

examine if satellite observations can independently constrain methane emissions and tropospheric OH, the main methane sink.

Our inversion used the GEOS-Chem chemical transport model as forward model to relate the state vector elements (1)-(3) to
atmospheric methane columns. We fitted the model to the GOSAT observations by analytical solution of the Bayesian problem,
including construction of the full Jacobian matrix. The analytical solution provides closed-form characterization of errors and
of the information content in the solution. This is critical for diagnosing the ability of the GOSAT observations to constrain
emission trends and to achieve separate constraints on emissions and OH concentrations. It also allows us to easily generate
an ensemble of inversions testing different assumptions. Analytical solution of the inverse problem generally requires normal
prior error distributions but we show here that it can be readily extended to log-normal prior error distributions by using a

simple scaling of the original Jacobian matrix.

Our optimization of mean 2010-2015 methane emissions on the 4° x 5° grid, achieves 128 degrees of information for sig-
nal (DOFS), with strong constraints in source regions. The EDGAR v4.3.2 anthropogenic emission inventory taken as default
anthropogenic prior estimate in the inversion is too high in China (coal emissions) and in the Middle East (oil/gas emissions).
Oil/gas national totals in EDGAR v4.3.2 can differ greatly from the values reported by individual countries to the United
Nations Framework Convention on Climate Change (UNFCCC), and our inversion results are generally more consistent with
the UNFCCC estimates. We find little correction to anthropogenic US emissions when a new gridded version of the US EPA
greenhouse gas inventory is used as anthropogenic prior estimate. Previous inverse studies that relied on the EDGAR v4.2
inventory as prior found large underestimates of US emissions, but this may reflect errors in the spatial distribution of EDGAR

v4.2 oil/gas emissions.

Optimization of methane emission trends over the 2010-2015 period yields a DOFS of 7 on the 4° x 5° grid, meaning that
only strong source regions can be constrained. We find that the 2010-2015 increasing trend in atmospheric methane is mostly
due to increasing emissions rather than decreasing OH concentrations. Most of the increase is in tropical wetlands, India, and
China. Trends in North America and Europe are small. Our findings are consistent with isotopic constraints pointing to tropical

biogenic sources as responsible for the renewed growth of methane over the past decade.

We further examined the ability of the GOSAT data to constrain the global methane emission and its trend over the 2010-2015

period independently from the global OH concentration and its trend. For this purpose we considered a reduced 4-component

17



10

15

20

25

30

state vector consisting of (1) the global mean methane emission for 2010-2015, (2) the global emission trend over that period,
(3) the global mean OH concentration for 2010-2015, (4) the global OH trend over that period. (1) and (2) were obtained by
collapsing the inverse solutions for emissions on the 4° x 5° grid, so that the distributions of emissions and their trends are
still optimized. Results show that the global methane emission (546 & 2 Tg a~!) can be constrained independently from the
global OH concentration (atmospheric methane lifetime against oxidation by tropospheric OH of 10.8 + 0.4 years), with little
error correlation. This is because methane emissions and loss have different and separable signatures on atmospheric methane
columns. An important implication is that satellite observations of atmospheric methane can serve as a useful proxy for the
global OH concentration. In contrast, we find that errors on the 2010-2015 OH trends are strongly correlated with the stronger

signal from emission trends.

Satellite observations of atmospheric methane are expected to vastly improve in the near future with the launch of the
TROPOMI instrument in October 2017, the advent of geostationary observations from the GeoCARB instrument to be launched
in the early 2020s, and other instruments measuring methane on local to global scales (Jacob et al., 2016). Our work with the
relatively sparse GOSAT data suggests that this future constellation of satellites will enable the mapping of emissions at fine
scales. Satellite observations of methane could also provide an effective means for monitoring OH concentrations, replacing

methyl chloroform whose ability to serve as an OH proxy is declining.

Appendix A: AppendixA:-Comparison of forward model simulations at 4° X 5° and 2° X 2.5° resolutions

Stanevich (2018) pointed out significant global meridional biases in the GEOS-Chem simulation of methane columns at 4° x
5° resolution relative to 2° x 2.5°, and they argued that 2° x 2.5° was much better to-for use in global inversions of methane
sources. However, we find that most of the difference between the two resolutions is in the stratosphere, which we correct fol-
lowing Equation 1. Figure A1l illustrates this point with the differences between the two resolutions averaged over latitudinal
bands. Values are 2010-2015 means for the full column and for the tropospheric column only. There are large high-latitude
biases for the total column but these are mainly in the stratosphere. The tropospheric bias is less than 5 ppb at all latitudes.
Results for individual seasons are similar. Buchwitz et al. (2015) consider that biases below 10 ppb are acceptable in methane

inversions.

Appendix B: Appendix-B:-Sensitivity to seasonal bias in prior emission estimates

The GEOS-Chem forward model simulation using prior emission estimates shows a seasonal background bias relative to
GOSAT observations, for which we applied a latitude-dependent correction (Section 2.3). This correction could mask a bias in

the seasonality of prior emissions. We conducted an additional inversion in which we did not apply this seasonal correction and
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instead optimized emissions for individual seasons with no prior error correlation between seasons. This brings the total size
of the state vector up to 5052, which challenges the power of the GOSAT observations to provide independent constraints. As
shown in Figure A2, the effective posterior/prior ratios found by summing the seasonal emissions are very similar to the ones
from the base inversion. This indicates that the global pattern of scaling factors is not driven by corrections made to improve
the seasonal agreement between the model and GOSAT. The effective scaling factors are smaller in magnitude and smoother
than the previous results because fewer observations are available per state vector element, resulting in smoothing error (Turner

and Jacob, 2015).
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Figure 1. 2010-2015 average of the GOSAT methane dry column mixing ratios used in our inversion. Data are from the University of
Leicester version 7 CO2 proxy retrieval (Parker et al., 2015), excluding glint observations over the oceans and observations poleward of 60°.
GOSAT pixels are 10-km circular diameter and are inflated here to 0.5° for visibility. The red stripes are a-sampling-an averaging artefact as
these retrievals are from towards the end of the 2010-2015 time period when methane was higher.
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Figure 2. Prior estimates of methane emissions from wetlands, livestock, coal mining, oil/gas, eoal-mining,-wastewater and landfills, and

other sources. Values are 2010-2015 averages and are shown on the 4° x 5° GEOS-Chem grid used for the inversion. Global totals for each

source type are given in Table 1.
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Figure 3. Comparisons of observed methane concentrations to the GEOS-Chem forward model using either prior or posterior (optimized)
estimates of 2010-2015 emissions and OH concentrations. The top panels show mean20+0-26+5-differences with-between model and GOSAT
observations for 2010-2015 means on the 4° x 5° grid. The middle panels show the monthly time series of the differences averaged over
latitude bands. The bottom panels show independent 2010-2015 comparisons to global observations from NOAA surface stations, HIPPO
aircraft meridional cross-sections over the Pacific (2010 and 2011, with the model sampled along the flight tracks), and the TCCON network.
Reduced major axis (RMA) regressions are as shown along with the 1:1 line (in grey). HIPPO observations are averaged over GEOS-Chem

grid cells. The NOAA surface stations and HIPPO aircraft measure local methane dry air mole fractions while the TCCON network measures

column-averaged dry-air mole factions. We apply the same latitudinal and seasonal corrections to TCCON that we applied to GOSAT.
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Figure 4. Optimization of the global distribution of mean 2010-2015 methane emissions using GOSAT observations. Prior emissions are
in the top left panel (see breakdown in Figure 2). The top right panel shows averaging kernel sensitivities for the base inversion (diagonal
elements of the averaging kernel matrix), with the degrees of freedom for signal (DOFS, trace of the averaging kernel matrix) in legend. The
middle panels show the posterior emissions from the base inversion and the associated ratios between posterior and prior emissions. Grey
grid cells (for example in North Africa and Australia) indicate small negative posterior emissions. The bottom row shows the same but for

the inversion assuming log-normal prior errors, which does not allow for negative posterior emissions.
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Figure 5. Global methane emissions by source type in the prior estimate for the inversion (Table 1, “other” includes fossil fuel combustion,
industrial processes, and agricultural field burning) and in the posterior estimate. Values are 2010-2015 means. The attribution to source
types in the posterior estimate is done by assuming that the relative contributions of different source types in individual 4° x 5° grid cells
are correct in the prior estimate. Posterior estimates are from the base inversion and error bars show the ranges of results from the inversion

ensemble.
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Figure 6. National estimates of methane emissions from the oil/gas industry for countries in the top ten of either the EDGAR v4.3.2 or
UNFCCC inventories. Values reported by individual countries to the UNFCCC for 2012 (Annex I countries) or the closest year (non-Annex I
countries: Nigeria (1994), Venezuela (1999), Algeria (2000), Iran (2000), India (2010), Saudi Arabia (2010), and China (2012)) are compared
to 2012 emissions from EDGAR v4.3.2 national oil/gas totals, and to the posterior values from our base inversion as described in the text.

Black lines are ranges for the ensemble of inversions. ¥

v432-inventories—A large part of Russian emissions are too far north to be effectively constrained by the inversion.
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Figure 7. 2010-2015 methane emission trends and global tropospheric OH trends as optimized by the inversion of GOSAT data, and corre-
sponding averaging kernel sensitivities (diagonal terms of the average kernel matrix). The degrees of information for signal or DOFS (trace
of the averaging kernel matrix) is shown inset. The bottom left panel gives the global attribution of the emission trends to individual source
types, with ranges from the inversion ensemble. Shaded sections of the bars indicate the contribution from the tropics (24°S-24°N). The

vertical bars in the OH trend panel are the posterior error standard deviations from the base inversion. The 2010-2015 decreasing trend in

OH concentrations is not statistically significant (95% confidence level).
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Figure 8. Constraints on the global 2010-2015 methane budget from our inversion of GOSAT data. The lines show the rows of the averaging

kernel matrix A,eq (Equation 9) for the reduced 4-element state vector consisting of the 2010-2015 mean emission, the linear emission

trend, the 2010-2015 mean tropospheric OH concentration, and the linear OH trend.
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Figure 9. Joint probability density functions (pdfs) for the global methane budget as constrained by the 2010-2015 GOSAT data. The left

panel shows the joint pdfs of the 2010-2015 global mean methane emission and methane lifetime against oxidation by tropospheric OH. The

right panel shows the joint pdfs of the 2010-2015 global emission trend and OH trend. Contours show confidence ranges from 0.1 to 0.9. The

error correlation coefficients are shown inset. The tilt of the ellipse indicates the extent of error correlation.
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= Growth rate
7771 2010 Budget imbalance + prior IAV
Il Emission trend
F B2 OH trend

N
o

Rate of atmospheric methane increase (ppb a’ )

|

2010 2011 2012 2013 2014 2015
Year

Figure 10. Attribution of the 2010-2015 increase in the atmospheric burden of methane. The grey bars show the trend imposed by the 2010
imbalance between sources and sinks combined with the interannual variability (IAV) of the prior estimate (mainly from wetlands). This

trend decreases over the 2010-2015 period because the methane sink rises in response to the increasing methane concentration, and also

because wetland emissions in 2010 are higher than in other years. Purple and orange show the contributions of the 2010-2015 methane
emission trends and OH trends. The apportionment of the emission trend by source region and source type is shown in Figure 7. The OH

trend has high uncertainty as discussed in the text.
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Figure Al. Difference between methane column concentrations simulated by GEOS-Chem at 4° x 5° versus 2° x 2.5°. Values are 2010-

2015 averages over latitudinal bands for total atmospheric columns and tropospheric columns.
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Figure A2. Results from the seasonal inversion, showing effective posterior scaling factors in the top panel and the seasonal scaling factors

in the four bottom panels.
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