

1 **Winter 2018 major sudden stratospheric warming impact on midlatitude mesosphere**
2 **from microwave radiometer measurements**

4 Yuke Wang¹, Valerii Shulga^{1,2}, Gennadi Milinevsky^{1,3}, Aleksey Patoka², Oleksandr
5 Evtushevsky³, Andrew Klekociuk^{4,5}, Wei Han¹, Asen Grytsai³, Dmitry Shulga², Valery
6 Myshenko², Oleksandr Antyufeyev²

7
8 ¹College of Physics, International Center of Future Science, Jilin University, Changchun,
9 130012, China

10 ²Institute of Radio Astronomy, NAS of Ukraine, Kharkiv, 61002, Ukraine

11 ³Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine

12 ⁴Antarctica and the Global System, Australian Antarctic Division, Kingston, 7050, Australia

13 ⁵Department of Physics, University of Adelaide, Adelaide, 5005, Australia

14
15 *Correspondence to:*

16 Gennadi Milinevsky (genmilinevsky@gmail.com) and Valerii Shulga
17 (shulga@rian.kharkov.ua)

18
19 **Abstract.** The impact of a major sudden stratospheric warming (SSW) in the Arctic in
20 February 2018 on the mid-latitude mesosphere is investigated by performing the microwave
21 radiometer measurements of carbon monoxide (CO) and zonal wind above Kharkiv, Ukraine
22 (50.0°N, 36.3°E). The mesospheric peculiarities of this SSW event were observed using a
23 recently designed and installed microwave radiometer in East Europe for the first time. Data
24 from the ERA-Interim and MERRA-2 reanalyses, as well as the Aura Microwave Limb
25 Sounder measurements, are also used. Microwave observations of the daily CO profiles in
26 January–March 2018 allowed the retrieval of mesospheric zonal wind at 70–85 km (below the
27 winter mesopause) over the Kharkiv site. Reversal of the mesospheric westerly from about 10
28 m s⁻¹ to an easterly wind of about -10 m s⁻¹ around 10 February was observed. The local
29 microwave observations at our NH midlatitude site combined with reanalysis data show wide
30 ranging daily variability in CO, zonal wind and temperature in the mesosphere and stratosphere
31 during the SSW of 2018. The observed local CO variability can be explained mainly by
32 horizontal air mass redistribution due to planetary wave activity. Replacement of the CO-rich
33 polar vortex air by CO-poor air of the surrounding area led to a significant mesospheric CO
34 decrease over the station during the SSW and fragmentation of the vortex over the station at the
35 SSW start caused enhanced stratospheric CO at about 30 km. The results of microwave

36 measurements of CO and zonal wind in the midlatitude mesosphere at 70–85 km altitudes,
37 which still is not adequately covered by ground-based observations, are useful for improving
38 our understanding of the SSW impacts in this region.

39

40

41 **1 Introduction**

42

43 Major sudden stratospheric warming (SSW) events which happen roughly [every other year](#) in
44 the North Polar region are produced by strong planetary wave activity according to the model
45 developed by Matsuno (1971) which is supported by numerous observations (Alexander and
46 Shepherd, 2010; Kuttippurath and Nikulin, 2012; Tao et al., 2015). A major SSW event is
47 accompanied by a sharp increase of the stratosphere temperature up to 50 K and the reversal of
48 the zonal wind from climatological westerlies to easterlies over a period of several days
49 (Charlton and Polvani, 2007; Chandran and Collins, 2014; Hu et al., 2014; Tripathi et al., 2016;
50 Butler et al., 2017; Karpechko et al., 2018; Taguchi, 2018; Rao et al., 2018). The primary
51 definition of a SSW event provided by the World Meteorological Organization requires a
52 stratosphere temperature increase and an accompanying zonal wind reversal to easterlies at the
53 10-hPa pressure level (approximately 30 km altitude) and 60° latitude (WMO, 1978). This
54 definition was broadened and detailed in recent papers (Butler et al., 2015; Butler and Gerber,
55 2018; Rao et al., 2019). The summarizing paper, where a SSW database is described, was
56 published in Butler et al. (2017). This useful tool
57 (<https://www.esrl.noaa.gov/csd/groups/csd8/sswcompendium/>) allows analysis of the
58 conditions in the stratosphere, troposphere, and at the surface before, during and after each
59 SSW event representing its evolution, structure, and impact on winter surface climate. The
60 compendium is based on data from six different reanalysis products, covers the 1958–2014
61 period and includes global daily anomaly fields, full fields, and derived products for each SSW
62 event (Butler et al., 2017).

63 The source of the SSW is planetary wave activity born in the troposphere that propagates
64 upward through the tropopause to the stratosphere (Matsuno, 1971; Alexander and Shepherd,
65 2010, Butler et al., 2015). The enhanced wave activity results in the rapid warming of the polar
66 stratosphere and the breakdown of the stratospheric polar vortex (Matsuno, 1971; de la Torre et
67 al., 2012; Chandran and Collins, 2014; Pedatella et al., 2018). The important feature of a SSW
68 event is its impact on lower altitudes, when temperature and wind anomalies descend
69 downward into the high- and mid-latitude troposphere during the following weeks to month
70 and influence the surface weather (Baldwin and Dunkerton, 2001; Zhou et al., 2002; Butler et

71 al., 2015; Yu et al., 2018). The major SSW events may also impact the atmospheric
72 composition of the whole Northern Hemisphere (NH) stratosphere including mid-latitudes
73 (Solomon et al., 1985; Allen et al., 1999; Tao et al., 2015).

74 During the SSW, vertical coupling covers not only the troposphere but extends upward to
75 the mesosphere. Mesospheric responses to the SSW are observed as enhancement in planetary
76 wave amplitude, zonal wind reversal and significant air cooling (Shepherd et al., 2014; Zülicke
77 and Becker, 2013; Stray et al., 2015; Zülicke et al., 2018), substantial depletion of the metal
78 layers (Feng et al., 2017; Gardner, 2018), mesosphere-to-stratosphere descent of trace species
79 (Manney et al., 2009; Salmi et al., 2011). The SSW events are also accompanied by the rapid
80 descent of the stratopause into the stratosphere at the SSW onset, **followed by** formation of the
81 elevated stratopause in the lower mesosphere and gradual stratopause lowering toward its
82 typical position in the SSW recovery phase (Manney et al., 2009; Chandran et al., 2011; Salmi
83 et al., 2011; Tomikawa et al., 2012; Limpasuvan et al., 2016; Orsolini et al., 2010, 2017). The
84 elevated stratopause events provide an evidence of the coupling between the stratosphere and
85 the mesosphere.

86 Among the trace gases, the CO molecule is a good tracer of winter polar vortex dynamics in
87 the upper stratosphere and mesosphere due to its long photochemical lifetime (Solomon et al.,
88 1985; Allen et al., 1999; Rinsland et al., 1999, Shepherd et al. 2014). The CO mixing ratio
89 generally increases with height in the upper stratosphere and mesosphere and increases with
90 latitude toward the winter pole. This is due to the mean meridional circulation which transports
91 CO from the source region in the summer hemisphere and tropics to the extratropical winter
92 mesosphere and stratosphere (Shepherd et al., 2014). Therefore, large abundances of CO appear
93 in the winter polar regions under conditions of large-scale planetary wave activity. Downward
94 meridional transport causes descent of CO between the mesosphere and stratosphere and this
95 process is sensitive to planetary wave amplitudes, and particularly the wave amplitude changes
96 that occur during SSWs (Rinsland et al., 1999; Manney et al., 2009; Kvissel et al., 2012). Due
97 to the large scale descent, high CO values of mesospheric origin are observed at stratospheric
98 altitudes down to 25–30 km (Engel et al., 2006; Huret et al., 2006; Funke et al., 2009). At NH
99 mid-latitudes, CO also exhibits significant variability during periods of planetary wave activity
100 associated with SSWs, when the polar vortex splits and displaces off the pole (Solomon et al.,
101 1985; Allen et al., 1999; Funke et al., 2009).

102 Recent atmospheric models are being extended up to 80–150 km and are used for the study
103 of SSWs (de la Torre et al., 2012; Chandran and Collins, 2014; Shepherd et al., 2014;
104 Limpasuvan et al., 2016; Newnham et al., 2016). For example, de la Torre et al. (2012) applied
105 the Whole Atmosphere Community Climate Model (WACCM) and Shepherd et al. (2014) used

106 the Canadian Middle Atmosphere Model (CMAM) for SSW modeling. The reference wind
107 profiles for the models are mainly retrieved from observations of the radiation of the
108 mesospheric ozone molecules, which allow robust measurements at altitudes up to of
109 approximately 65 km (e.g., Hagen et al., 2018). These data are generally consistent with the
110 most commonly used reanalysis products. However, there are still insufficient observations of
111 middle atmospheric winds at altitudes between 60 and 85 km made with a high vertical
112 resolution to verify atmospheric models and possible long-term trends (Keuer et al., 2007;
113 Hagen et al., 2018; Rüfenacht et al., 2018). This altitude range, where temperature generally
114 decreases with height, which causes inherent vertical instability, is situated below the winter
115 mesopause region at 95–100 km (e.g. Xu et al., 2009) and plays a significant role in the mass
116 and energy exchange between the stratosphere and the mesosphere (Shepherd et al., 2014;
117 Limpasuvan et al., 2016; Gardner, 2018).

118 Microwave radiometry is a ground-based technique that can provide vertical profiles of CO,
119 H_2O and O_3 atmospheric gases and wind data in the upper stratosphere and mesosphere
120 (Rüfenacht et al., 2012; Scheiben et al., 2012; Forkman et al., 2016). The upper stratosphere–
121 mesosphere zonal winds at the 30–85 km altitude region can be measured using the Doppler
122 shift between different observation directions in simultaneously measured spectra of transitions
123 lines of carbon monoxide at 115.3 GHz and ozone O_3 at 110.8 GHz (Rüfenacht et al., 2012;
124 Forkman et al., 2016). Due to high altitude CO residence region, the simultaneous zonal wind
125 measurements using both O_3 and CO provide independent data that extend the wind
126 measurement from the stratospheric to mesospheric altitudes, respectively (Forkman et al.,
127 2016; Piddyachiy et al., 2017).

128 The first ground-based microwave measurements of CO were made in the 1970s and they
129 confirmed theoretical estimations of the vertical CO profile (Waters et al., 1976; Goldsmith et
130 al., 1979). Since the 1990s, the ground-based microwave radiometers measuring CO have been
131 installed in the Northern Hemisphere at high and middle latitudes to provide measurements on
132 a regular basis. Microwave radiometers are operating in Onsala and Kiruna, Sweden, since
133 2008. The results are described in Hoffmann et al. (2011) and in Forkman et al. (2012). The
134 microwave radiometer operated in Bern, Switzerland since 2010 aims to contribute to the
135 significant gap that exists in the middle atmosphere between 40 and 70 km altitude for wind
136 data (Rüfenacht et al., 2012). In the Arctic, the O_3 , N_2O , HNO_3 , and CO spectra were recorded
137 using the Ground-Based Millimetre-wave Spectrometer GBMS (Muscati et al., 2007; Di Biagio
138 et al., 2010).

139 Since 2014, the microwave measuring system for CO observations has been operated in
140 Kharkiv, Ukraine (Piddyachiy et al., 2010; Piddyachiy et al., 2017). Microwave radiometer

141 measurements of CO are used to retrieve mesospheric winds nearby the mesopause region (70–
142 85 km). Methods deriving the wind speed from mesospheric CO measurements are based on
143 the determination of the CO and O₃ lines emission Doppler shift (Eriksson et al., 2011; Hagen
144 et al., 2018).

145 Our observations in February 2018 using the new microwave radiometer at the mid-latitude
146 Kharkiv station have recorded the mesospheric effects of a major SSW. In mid-February 2018,
147 the stratospheric polar vortex in the Arctic splitted into two sister vortices (Fig. 1), the zonal
148 wind reversed in the stratosphere–mesosphere from westerly to easterly and warm air
149 penetrated into the polar cap regions (Rao et al., 2018; Karpechko et al., 2018; Vargin and
150 Kiryushov, 2019). This caused large-scale disturbances in the middle atmosphere of the polar
151 and middle latitudes. The major SSW in 2018 is not yet widely discussed in publications (Rao
152 et al., 2018; Karpechko et al., 2018; Vargin and Kiryushov, 2019) and in this paper, we give a
153 detailed description of the observed mesospheric CO and zonal wind variations.

154 In Sect. 2, the microwave radiometer and data processing software are briefly described.
155 The SSW event in February 2018 is considered in Sect. 3. The effects of the SSW on mid-
156 latitude mesosphere–stratosphere conditions in the Ukraine longitudinal sector are presented in
157 Sect. 4. Discussion is given in Sect. 5 followed by conclusions in Sect. 6.

158

159

160 **2 Data and methods**

161

162 The microwave radiometer data set registered during the 2017/2018 winter campaign in
163 Kharkiv (50.0°N, 36.3°E) is used in this study to investigate local effects of the winter 2018
164 sudden stratospheric warming on the mesosphere and stratosphere. Since the ground-based
165 microwave measurements are spatially limited by instrument coverage, data on air temperature,
166 zonal wind [and](#) geopotential height were used from reanalyses and satellite databases to
167 interpret the CO profile and the zonal wind microwave observations and to describe the SSW
168 effects in the atmosphere of the surrounding mid-latitude region (30–40°E, 48–52°N).

169

170

171 **2.1 Microwave radiometer, method, and midlatitude data description**

172

173 The microwave radiometer (MWR) with high sensitivity, installed at Kharkiv, Ukraine, is
174 designed for continuous observations of the atmospheric CO profiles and zonal wind speed in
175 the mesosphere using emission lines at 115.3 GHz. The radiometer can continuously provide

176 vertical profiles up to the mesopause region during day and night, even in cloudy conditions
177 (Hagen et al., 2018). However, precipitation, such as strong rain or snow, can prevent the
178 measurements.

179 The receiver of the radiometer has the double-sideband noise temperature of 250 K at an
180 ambient temperature of 10°C (Piddyachiy et al., 2010; 2017). The radiometer was tested during
181 the 2014–2015 period for observation of the CO emission lines in the mesosphere over Kharkiv.
182 These tests proved the reliability of the receiver system, on which further details are provided
183 in Piddyachiy et al. (2017). Since 2015, the radiometer has been used for continuous
184 microwave measurements of CO profiles and mesosphere wind investigations. The first
185 observations of the atmospheric CO spectral lines over Kharkiv have confirmed seasonal
186 variations in the CO abundance (Piddyachiy et al., 2017). Operation of the MWR in a double-
187 sideband mode allows retrieval of wind speed from the Doppler shift of the CO line emission at
188 the 115.3 GHz. Two methods are used to determine wind speed. Firstly the observed line shape
189 is fitted by a Voigt profile and the center frequency is determined (Piddyachiy et al., 2017).
190 Secondly radiative transfer calculations for a horizontally layered atmosphere are used to
191 determine the wind profiles with the Qpack package, version 1.0.93 (Eriksson et al., 2005;
192 Eriksson et. al., 2011), which is specifically designed to work with the forward model of the
193 Atmospheric Radiative Transfer Simulator ARTS (Buehler et al., 2018;
194 <http://www.radiativetransfer.org/>). The results obtained by both methods were almost the same
195 within the error limits. In this paper, both methods were used and provided average values of
196 the zonal wind speed for altitudes of 70–85 km. The time interval of the data used here was
197 January 1 – March 31, 2018, which covers the main phases of the SSW 2018 event.

198

199

200 **2.2 Data from other sources**

201

202 In this study, daily datasets from ERA-Interim global atmospheric reanalysis of European
203 Centre for Medium-Range Weather Forecast (ECMWF; Dee et al., 2011) were downloaded
204 from (<https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/reanalysis-datasets/era-interim>) and have been used for comparison with MWR observations. The ERA-Interim data
205 were used to create temperature and zonal wind velocity profiles and to calculate geopotential
206 height at the stratospheric pressure levels, in order to compare with the data measured over the
207 Kharkiv site. Aura Microwave Limb Sounder (MLS) measurements of the air temperature were
208 analyzed as well (Xu et al., 2009; <https://mls.jpl.nasa.gov/data/readers.php>; see details in the
209 Supplement).

211 Zonal wave amplitudes in geopotential height were analyzed using the National Oceanic and
212 Atmospheric Administration National Centers for Environmental Prediction, Global Data
213 Assimilation System–Climate Prediction Center (NOAA NCEP GDAS–CPC) data at
214 <https://www.cpc.ncep.noaa.gov/products/stratosphere/strat-trop/> and the MERRA-2 data from
215 the National Aeronautics and Space Administration Goddard Space Flight Center, Atmospheric
216 Chemistry and Dynamics Laboratory (NASA GFC ACDL) site at https://acd-ext.gsfc.nasa.gov/Data_services/met/ann_data.html. The detailed description of the data used
217 for analysis is given in the Supplement.

219

220

221 **3 Northern Hemisphere SSW effects**

222

223 Descending air masses are observed throughout the mesosphere and stratosphere of the winter
224 polar region (Orsolini et al., 2010; Chandran and Collins, 2014; Limpasuvan et al., 2016;
225 Zülicke et al., 2018). From Aura MLS vertical profiles, a layered descending sequence of
226 alternating cool and warm anomalies over the polar cap was observed in the 2017/2018 winter
227 (Fig. 2a). The SSW event in Fig. 2a is identified by the rapid warming in the stratosphere and
228 cooling in the mesosphere (upward arrow) starting from 10 February 2018 (left vertical line).

229

230 This event was preceded by progressively descending warm and cold anomalies that formed
231 in January (black and white dashed arrows, respectively). Oscillations in the intensity of the
232 anomalies indicate that they were formed under the influence of large amplitude planetary
233 waves of zonal wave numbers 1 and 2 (Fig. 2c–2e). From 1 January to 10 February (during 41
234 days), descending warm anomalies with a velocity $-850 \text{ m}\cdot\text{day}^{-1}$ were apparent in the
235 mesosphere and the upper stratosphere (75 to 40 km; black dashed arrow in Fig. 2a). Below the
236 warm anomaly, a cold anomaly descended between the upper and lower stratosphere (45 to 20
237 km) with velocity $-600 \text{ m}\cdot\text{day}^{-1}$ (white dashed arrow in Fig. 2a), while a cold mesospheric
238 anomaly in February–March descended with average velocity $-750 \text{ m}\cdot\text{day}^{-1}$ (white dotted
239 arrow in Fig. 2a). Our velocity estimates are similar to those of Salmi et al. (2011) who found
240 that mesospheric NO_x anomalies during the major SSW 2009 were transported from 80 to 55
km in about 40 days, i.e. with velocity $-600 \text{ m}\cdot\text{day}^{-1}$.

241

242 The splitting of the polar vortex (Fig. 1) and the zonal wind reversal (Fig. 2b) started at the
243 time of the wave 2 pulse on 10 February (Fig. 2d and dashed curve in Fig. 2e). Note that this is
244 close to the SSW timing in Rao et al. (2018) and Vargin and Kiryushov (2019), where the SSW
245 onset date was 11 February. As seen from Fig. 2c and solid curve in Fig. 2e, increasing wave 1
amplitude contributed to the destabilization of the polar vortex during January–early February

246 and to temperature and zonal wind oscillations in the mesosphere and stratosphere (Fig. 2a and
247 2b). These oscillations are usually associated with the propagation of planetary waves in the
248 stratosphere and mesosphere (Limpasuvan et al., 2016; Rüfenacht et al., 2016). As noted in an
249 earlier study (Manney et al., 2009; Rao et al., 2018), wave 1 amplitudes were also larger prior
250 to the SSW in 2009, suggesting a role of preconditioning. During 10–15 February, the easterly
251 zonal wind anomaly at the stratopause (about 1 hPa, ~50 km) increased to -60 m s^{-1} (Fig. 2b).
252 At the same time, warming in the polar stratosphere with the largest temperature anomaly of
253 about 20 K was observed between 25 and 45 km in the same time interval (upward arrow in
254 Fig. 2a). Both anomaly peaks are close in time to the wave 1 pulse after the SSW start (Fig. 2c
255 and 2e). The descending negative temperature anomaly in the mesosphere between 50 and 90
256 km persisted during and after the SSW and reached -15 K (dotted arrow in Fig. 2a).

257

258

259 **4 The local SSW effects over the midlatitude station**

260

261 **4.1 CO variability**

262

263 Local variability in the conditions of the atmosphere during the microwave measurements in
264 January–March 2018 at Kharkiv (50.0°N , 36.3°E) is shown in Figs. 3–6. The sharp changes
265 occurred in the 20-day interval from 10 February to 1 March coinciding with the SSW event
266 2018, as indicated by red vertical lines in Figs. 3, 5 and 6. At this time the polar vortex divided
267 into two parts producing two smaller vortices over the longitudinal sectors of North America
268 and Eurasia (Fig. 1). Due to the planetary wave influence (Fig. 2c–2e), the two sub-vortices
269 shifted zonally and meridionally, so that the SSW effects were observed not only in the polar
270 region but also in the middle latitudes (Fig. 4).

271 The CO molecule volume mixing ratio (VMR) near the mesopause at 75–80 km decreased
272 from 10 ppmv of background level to 4 ppmv on 19–21 February (Fig. 3a), when the sharp
273 vertical CO gradient at the lower edge of the CO layer near about 6 ppmv increased in height
274 by about 8 km (between 75 km and 83 km, thick part of the white curve in Fig. 3a). For
275 comparison, the pre- and post-SSW vertical variations of the 6-ppmv contour were observed in
276 a range 2–3 km (white curve in Fig. 3a). Moreover, similar variations in the zonal mean 6-
277 ppmv level are much weaker (yellow curve in Fig. 3e). This indicates that local and regional
278 mesosphere over the MWR site was disturbed by some source acted during the SSW, which is
279 identified below. We take here the 6-ppmv contour as a conditional lower edge of the CO layer
280 since the CO gradients sharply increase from $0.2\text{--}0.3 \text{ ppmv km}^{-1}$ in a 10-km layer below to

281 0.6–0.8 ppmv km^{-1} in a 10-km layer above (below and above the white curve in Fig. 3a). The
282 similar gradient change is a characteristic of the mesospheric CO profiles in boreal winter from
283 ground-based and satellite observations (Fig. 4 in Koo et al., 2017; Fig. 5 in Ryan et al., 2017).

284 The local mesospheric CO variability from the MWR observations over Kharkiv agrees
285 with regional one from the MLS data averaged over the adjacent area 47.5–52.5°N, 26–46°E
286 (Fig. 3b, the white curve for 6 ppmv). However, the zonal mean CO profiles in the same zone
287 do not show an anomalous decrease of the mesospheric CO during the SSW (yellow curve in
288 Fig. 3a, 3b and 3e).

289 Unlike the mesosphere, the CO descent and an increase in CO abundance is observed in
290 the stratosphere from both regional and zonal mean MLS data shortly after the SSW start
291 (contour 0.1 ppmv in Fig. 3d and 3g, respectively). The CO-rich air of 0.1–0.5 ppmv, which is
292 typical for the lower mesosphere (Fig. 3c) descended down to about 30 km (Fig. 3d and 3g), far
293 exceeding typical stratospheric CO mixing ratios on the order of about 0.01–0.02 ppmv (Engel
294 et al., 2006; Huret et al., 2006; Funke et al. 2009). The CO-rich stratospheric anomaly is close
295 in time to the wave 1 peak on 10–15 February (solid curve in Fig. 2e), that was observed
296 through the stratosphere down to the 30 km altitude (Fig. 2c).

297 Horizontal distributions of the CO VMR in the Northern Hemisphere at the stratospheric
298 and mesospheric altitudes in Fig. 4 suggest causes of the different CO variability in the
299 stratosphere and mesosphere in Fig. 3. The dynamical deformation, elongation, and
300 displacements of the polar vortex relative to the pole lead to temporal shifts between the low
301 and high CO amounts over the MWR site at Kharkiv (white circle in Fig. 4). The tendency of
302 the planetary wave westward tilt with altitude (dashed lines in Fig. 4, see also Supplemental
303 Figs. S1 and S2 for more details) also contributes to relative zonal shift between the
304 stratosphere and the mesosphere of the low/high CO over Kharkiv.

305 The observed decrease of the local CO in the mesosphere during the SSW (white curve in
306 Fig. 3a) is consistent with the regional data from the satellite observations (white curve in Fig.
307 3b). The decrease is due to the displacement of the CO-rich air to the west relative to Kharkiv
308 (white circle and contours outlined the CO-rich area in Fig. 4a–4c and 4e–4g). This is a result
309 of the dominance of easterlies during the SSW that led to placing of the CO-poor air over
310 Kharkiv with the lowest CO levels on 19–23 February (Fig. 4c and 4g) in correspondence with
311 the MWR (Fig. 3a) and MLS (Fig. 3b) measurements. Recovery to the westerly regime in early
312 March reversed the rotation of the vortex (2–6 March in Fig. 4d and 4h) and caused recovery of
313 high CO level over Kharkiv (since about 1st of March in Fig. 3a and 3b).

314 The polar vortex split influenced the local CO change in the middle stratosphere (Fig. 4m–
315 4o). The low CO level at ~30 km before the SSW start (Fig. 3d) is associated with the relatively

316 distant location of the CO-rich vortex from Kharkiv (Fig. 4m). The vortex split and easterly
317 circulation caused displacement of the small vortex fragment with the CO level higher than 0.1
318 ppmv to Kharkiv just at the SSW start (9–13 February in Fig. 4n) and corresponding sharp CO
319 increase over the Kharkiv region around 30-km altitude (contour 0.1 ppmv in a few days after
320 10 February in Fig. 3d). Vertical CO profiles in Fig. 3c and 3d show that downward penetration
321 of the mesospheric CO-rich air into the stratosphere took place around 10 February. As seen
322 from Fig. 4f, 4j, and 4n, the mesospheric CO-rich air appears to be contained inside the small
323 sub-vortex over Kharkiv. The large sub-vortex (Fig. 4n and 4o) contributed to the stratospheric
324 CO increase after 10 February in the zonal mean CO profile near 30 km (Fig. 3g). The two sub-
325 vortices in Fig. 4n and 4o provided a longer duration of the mesospheric intrusion in the zonal
326 mean (Fig. 3g) than a short-time influence of the single sub-vortex in regional data (Fig. 3d).

327 It should be noted that the lower edge of the mid-latitude CO-rich air descended in January
328 – mid-February (dashed lines in Fig. 3d and 3g) similarly to the temperature anomaly in the
329 polar region (Fig. 2a). Descent velocity was about -270 and -220 $\text{m}\cdot\text{day}^{-1}$ in the case of the
330 regional and zonal mean data, respectively. This is a few times lower than in the vortex region,
331 nevertheless, it is in the range of the winter descent velocity noted above (Ryan et al., 2018).

332 Note also that the vortex split in the CO distribution can be identified only in the middle
333 and upper stratosphere (Fig. 4n and 4o and Fig. S1j and S1k), but not at the stratopause level
334 (Fig. 4j and 4k) and in the mesosphere (Fig. S2, second and third columns for 9–13 and 19–23
335 February 2018, respectively).

338 **4.2 Zonal wind variability**

339
340 The reversal of the local zonal wind estimated from the CO measurements at the Kharkiv
341 MWR site near the mesopause region was observed. The averaged wind velocity in the altitude
342 range 70–85 km changed between 10 m s^{-1} and -10 m s^{-1} around 10 February (Fig. 5a). After
343 the active phase of the SSW, the zonal wind [recovers](#) to the westerly wind and enhances to 20
344 m s^{-1} reaching the highest velocity observed in January–March (Fig. 5a). This zonal wind peak
345 in early March is accompanied by the CO peak at 18 ppmv around 85 km that is also the
346 highest CO abundance over January–March (Fig. 3a). This is closely consistent with the MLS
347 measurements at the 86-km altitude: Kharkiv was located on the 16-ppmv contour in early
348 March (2–6 March in Fig. 4d).

349 During the SSW event, local zonal wind over the station became easterly between the lower
350 stratosphere and lower mesosphere (-30 m s^{-1} up to -40 m s^{-1} , white contours in Fig. 5b). Note

351 that westerly zonal wind at the stratopause level (~ 50 km) in January 2018 (mid-winter, the
352 pre-SSW conditions) sometimes increased to more than 100 m s^{-1} (black contours in Fig. 5b).

353 The [recovery](#) of the local westerly wind in the upper mesosphere began in late February
354 (Fig. 5a) and later, in early March, in the lower mesosphere–stratosphere (Fig. 5b). The longer
355 persistence of the westerly anomaly in the stratosphere than at the stratopause level [is also](#) seen
356 in the polar region (Fig. 2b). This is a manifestation of the downward migration of the
357 circulation anomalies in the SSW recovery phase, [while](#) a near-instantaneous vertical coupling
358 is observed at the SSW start on 10 February (Fig. 2a–2d and Fig. 5).

361 **4.3 Temperature changes**

363 The MLS temperature profiles show that high temperature variability over the Kharkiv region
364 concentrated at the stratopause level, particularly before and during the SSW 2018 (Fig. 6). As
365 known, the SSW events are accompanied by polar stratopause descent to 30–40 km, by
366 stratopause breakdown and subsequent reformation at very high altitudes of about 70–80 km
367 (Manney et al., 2009; Chandran et al., 2011; Limpasuvan et al., 2016; Orsolini et al., 2017).
368 The midlatitude stratopause exhibits less sharp, but significant oscillations between 40 and 50
369 km in January–first half of February 2018 (dotted curve in Fig. 6) and the highest temperature
370 near -5°C after the SSW start on 12–13 February. The short-time stratopause elevation to the
371 lower-mesospheric altitude ~ 60 km was observed near 20 February, i.e. [close](#) in time to the
372 maximum elevation of the 6-ppmv CO level in the mesosphere (Fig. 3a and 3b). Note that the
373 wave 1 and wave 2 (Fig. 2c–2e), and zonal wind (Fig. 5) do not demonstrate strong anomalies
374 this time. The post-SSW stratopause stabilized at the 50-km altitude and warmed from about
375 -20°C to -10°C (Fig. 6b).

376 Similarly to the CO profile in Fig. 3, the zonal mean temperature variability is much lower
377 above the stratopause than the regional one (Fig. 6b and 6a, respectively). The stratosphere [is](#)
378 equally disturbed in both regional and zonal mean characteristics (Fig. 3d and 3g and Fig. 6a
379 and 6b). This difference may be associated with the influence of the splitted (non-splitted) polar
380 vortex in the stratosphere (mesosphere). The vortex fragments introduce higher local/regional
381 and zonal mean variability in the stratosphere; whereas the vortex region is more uniform in the
382 mesosphere (Fig. 4). That results in the weaker zonal mean variability.

383 During the SSW, the regional stratospheric temperature in Fig. 6a was warmer by $10\text{--}15^\circ\text{C}$
384 in comparison with the pre- and post-SSW temperature. This is about two times lower warming

385 than in the polar region (Fig. 2a) and about three times lower than it is typically observed
386 during the SSWs (see Section 1). It should be noted that this warm stratospheric anomaly in
387 Fig. 6a (contour -50°C) rapidly descended between the upper and lower stratosphere (dashed
388 arrow) in about 10 days. A similar tendency is seen in Fig. 6b from the zonal mean (contour $-$
389 55°C) but with a descent within a few days (arrow). So, the SSW start in the midlatitude
390 stratosphere [is not accompanied by](#) a near-instantaneous vertical coupling [as](#) observed in the
391 polar region (Fig. 2a–2d). Midlatitude stratospheric warming in February 2018 occurred with
392 increasing time lag between the upper and lower stratosphere.

393 As is known, upward propagation of the tropospheric planetary waves into the stratosphere
394 is limited in the easterly zonal wind (Charney and Drazin, 1961). In the changed state of a
395 zonal flow, the critical line for planetary waves (zero wind line) in the polar region descents in
396 a few days that looks like downward propagation of an anomaly from above (Matsuno, 1971;
397 Zhou et al., 2002). Possibly, this process may be delayed in the midlatitude, as seen from Fig.
398 6.

399

400 **5 Discussion**

401

402 The observations of the major SSW effects in February 2018 in the NH midlatitude mesosphere
403 by microwave radiometer at the Kharkiv site, Northern Ukraine (50.0°N , 36.3°E), have been
404 provided. The CO altitude profiles in the mesosphere have been measured by the MWR with
405 one-day time resolution. Using the CO molecule as a tracer, the wind speed has been retrieved
406 from the Doppler shift of the CO 115.3 GHz emission and the mesospheric winds reverse from
407 westerly to easterly below the winter mesopause region (70–85 km) has been detected. A few
408 ground-based observations in the mesosphere by the same method have been undertaken at
409 midlatitudes (Sect. 1). The zonal wind and CO profile variability during the major SSW were
410 compared with the daily zonal wind, temperature [and zonal wave 1/wave 2](#) datasets from the
411 MLS data, the ERA-Interim, and MERRA-2 reanalyses. The SSW started with the polar vortex
412 split around 10 February (Fig. 1), zonal wind reverse in the mesosphere and stratosphere (Fig.
413 2b and Fig. 5) and enhanced stratosphere warming and mesosphere cooling (Fig. 2a).

414

415 **5.1 Wave patterns and CO level**

416

417 As noted in Sect. 1, CO abundance in the extratropical mesosphere increases with latitude
418 toward the winter pole due to meridional transport. CO accumulation results in the formation of
419 the CO layer with the sharp vertical gradient at its lower edge (Solomon et al., 1985; Shepherd

420 et al., 2014). Because of the horizontal CO gradient at the polar vortex edge, its split and
421 displacement during the SSW cause a significant CO variability at the NH midlatitudes
422 (Solomon et al., 1985; Allen et al., 1999; Funke et al., 2009; Shepherd et al., 2014).

423 In Sect. 4a, based on the MWR observations, we have defined the lower CO edge at 6 ppmv
424 and this edge uplifted during the SSW by about 8 km (between 75 km and 83 km, thick part of
425 the white curve in Fig. 3a). This uplifting noticeably stands out against the pre- and post-SSW
426 variations of the 6-ppmv level occurring within 2–3 km (Fig. 4a). The MLS CO measurements
427 show similar variations in the 6-ppmv level over the Kharkiv region (white curve in Fig. 3b)
428 and their absence in the corresponding zonal mean (yellow curve in Fig. 3a, 3b, and 3e).

429 Mesospheric CO profile uplifting is usually associated with the stratopause elevation
430 during the SSW, when air, poor in CO, enters the mesospheric CO layer from below (Kvissel et
431 al., 2012; Shepherd et al., 2014). Similar ascending motions in the stratopause and mesopause
432 regions were observed in the 2013 SSW from nitric oxide (NO) and showed that the NO
433 contours deflected upwards throughout the mesosphere (Orsolini et al., 2017). Our analysis
434 reveals that the local CO profile variations during the SSW 2018 were closely associated with
435 the changes in the planetary wave patterns in the mesosphere.

436 The MLS CO distribution demonstrates how deformation, elongation (wave 2 effect) and
437 rotation of the CO-rich polar area influence the local CO level over Kharkiv (white circle with
438 respect to the CO contours in Fig. 4a–4h and Fig. S1). The highest elevation of the 6-ppmv CO
439 level in Fig. 3a and 3b corresponds to the lowest CO level over Kharkiv on 19–23 February,
440 when the most distant displacement of the CO contours 16 ppmv and 6 ppmv off the Kharkiv
441 location was observed (Fig. 4c and 4g, respectively; see also the third column in Fig. S1). As
442 known, the strong vertical CO gradient in the winter mesosphere is found at the higher altitudes
443 in the tropics than in the extratropics (Solomon et al., 1985; Allen et al., 1999; Garcia et al.,
444 2014). Then, poleward displacement of the low-latitude air masses is accompanied by the CO
445 abundance decrease and vertical CO gradient elevation at the middle latitudes, as it is observed
446 in Fig. 3a and 3b. A similar effect related to the wave 1 influence was observed during the
447 2003–2004 Arctic warming (Funke et al., 2009): the vortex has shifted from the pole toward
448 the western sector and mid-latitude air poor in CO filled the eastern sector (0–90°E) over 50–
449 80°N and even over the pole.

450 The results of Fig. 4 and Fig. S1 show that meridional displacements of the low-latitude,
451 CO-poor mesospheric air to the Kharkiv region occurred under the planetary wave influence
452 and caused the local CO profile variations in the SSW 2018 (Fig. 3a and 3b). These results,
453 thus, confirm that latitudinal displacements due to wave effects may dramatically affect the
454 local densities of the atmospheric species (Solomon et al., 1985). Figure 6a demonstrates that

455 the local stratopause elevation in February 2018 to about 60 km was relatively small in
456 comparison with the elevation that is characteristic for the polar region, up to 70–80 km
457 (Chandran et al., 2011; Tomikawa et al., 2012; Limpasuvan et al., 2016; Orsolini et al., 2010,
458 2017). No significant stratopause elevation was observed in the zonal mean for 47.5–52.5°N
459 (Fig. 6b). Therefore, the meridional (poleward) and zonal displacements of the CO-rich air
460 masses enclosed within the polar vortex (Solomon et al., 1985; Allen et al., 1999; Funke et al.,
461 2009) rather than stratopause elevation (Kvissel et al., 2012; Shepherd et al., 2014) may be
462 dominant cause of the CO profile uplift observed in the NH midlatitudes during the SSW 2018.

463 In March 2018, after the SSW, vertical CO profile has been re-established (Fig. 3a and 3b)
464 according to the recovery phase following the SSW (Shepherd et al., 2014; Limpasuvan et al.,
465 2016). In the MWR data, the SSW recovery phase in the mesosphere in early March started
466 with the short-term but anomalously high peaks in the local CO (Fig. 3a) and westerly wind
467 (Fig. 5a). These peaks reached the highest values in daily variations of CO and zonal wind over
468 the three months of the observations (January–March). By analogy with the low-CO episode in
469 February discussed above, the high-CO peak in early March 2018 caused by change in the
470 vortex shape [and the return](#) of the CO-rich vortex edge region to the Kharkiv location (compare
471 2–6 March in Fig. 4d and 4h with 19–23 February in Fig. 4c and 4g; see also the same dates in
472 Fig. S2).

473 Wind measurements using the CO layer provide a further means to evaluate the validity of
474 the modeled winds. Furthermore, by combining the measurements with ray tracing of gravity
475 wave propagation (e.g. Kogure et al., 2018), this type of measurement may provide specific
476 insights into wave-mean flow interactions, particularly where local temperature inversions alter
477 gravity wave filtering (Hocke et al., 2018; Fritts et al., 2018).

478

479

480 **5.2 Descent of the midlatitude stratospheric anomalies**

481

482 Alternating altitudinal sequence of warm and cool anomalies progressively descended through
483 the mesosphere and stratosphere of the polar region was observed in January–March 2018 (Fig.
484 2a) in consistency with many observations (Zhou et al., 2002; Orsolini et al., 2010; Shepherd et
485 al., 2014; de Wit et al., 2014; Zülicke et al., 2018). The warm anomaly sharply intensified in
486 the stratosphere between 20 and 50 km with simultaneous strong cooling in the mesosphere in
487 the active phase of SSW since 10 February (vertical arrow in Fig. 2a). Unlike this, the
488 midlatitude temperature anomalies do not show the similar vertical arrangement and regular
489 descent with respect to the same mean climatology 2005–2017 (Fig. [S3](#)).

490 During the SSW of 2018, the upper (lower) stratosphere over the Kharkiv region was cooler
491 (warmer) up to 20°C (10°C) than climatological mean with stepwise descent relative to the pre-
492 SSW one (Fig. S3a). However, excluding unstable anomalies at different altitudes, the air
493 temperature through the mesosphere and stratosphere was close to the climatology during most
494 of the time in January–March 2018 (light blue in Fig. S3a). The zonal mean temperature
495 anomalies in Fig. S3b show steady warming of the air in the stratosphere and lower mesosphere
496 and distinct tendency for the anomaly to descend between about 40 km and 20 km during the
497 SSW (20 days, $\sim -1 \text{ km}\cdot\text{day}^{-1}$). It could be concluded that the temperature anomaly profile
498 observed in the NH midlatitudes may vary in time depending on the observing location and
499 individual SSW event and, thus, differ from climatologically warm (cold) stratospheric
500 (mesospheric) anomaly typical for the SSWs in the NH polar region (e.g. Chandran and
501 Collins, 2014; their Fig. 1g).

502 The CO profiles in Fig. 3 demonstrate opposite tendencies in the vertical shift of the CO-
503 rich air in the NH midlatitudes. The CO descent in the stratosphere occurred during January–
504 February with velocities of about 270 and 220 $\text{m}\cdot\text{day}^{-1}$ in a case of the regional and zonal mean
505 data, respectively (Fig. 3d and 3g). In general, this is in a range of the winter descent velocities
506 observed in the polar vortex (Funke et al., 2009; Salmi et al., 2011; Ryan et al., 2018),
507 however, a few times lower than in the polar vortex in the winter 2017–2018 (Fig. 2a). The
508 deepest penetration of the mesospheric CO levels (0.1–0.5 ppmv) to ~ 30 km was observed
509 immediately after the SSW onset (Fig. 3d and 3g). Although this coincides with the peaks in
510 the wave 1 and wave 2 amplitudes (Fig. 2e), the main reason in the CO increase in the
511 stratosphere over Kharkiv is the location of the small sub-vortex of the split polar vortex (9–13
512 February, Fig. 4n).

513 The MLS CO maps in Fig. 4 show that the high CO amount is concentrated inside the polar
514 vortex and its fragments after splitting. This is a result of meridional and downward transport of
515 CO that is strongest in the winter polar vortex (Rinsland et al., 1999; Manney et al., 2009;
516 Kvissel et al., 2012; Shepherd et al., 2014). Before (4–8 February), during (19–23 February)
517 and after (2–6 March) the SSW, Kharkiv was outside the stratospheric vortex/sub-vortices edge
518 (Fig. 4m, 4o and 4p, respectively) and the CO amount was at low level typical for the
519 midlatitude stratosphere (of about 0.01–0.02 ppmv; Engel et al., 2006; Huret et al., 2006; Funke
520 et al. 2009). Descent of the 0.1-ppmv contour marked by dashed lines in Fig. 3d and 3g is
521 observed due to the episodic shift of the vortex edge toward the Kharkiv region or to the
522 corresponding zone 47.5–52.5°N, respectively.

523 Figure 4 demonstrates that the CO amount inside the polar vortex or its fragments is much
524 higher than in the surrounding area not only in the mesosphere but also in the stratosphere. This
525 leads to the possibility of the enhanced CO appearance even in the stratosphere at about 25–30
526 km (Engel et al., 2006; Huret et al., 2006; Funke et al., 2009). By analogy, the vortex edge shift
527 beyond the Kharkiv region (Fig. 4c and 4g) resulted in lowering of the regional CO mixing
528 ratios in the mesosphere [consistent with](#) both ground-based and satellite observations (Fig. 3a
529 and 3b, respectively). Meridional structure of the mesospheric CO (Sect. 1) provided the uplift
530 of the 6-ppmv level during the SSW relative to pre- and post-SSW levels (Fig. 3a and 3b).

531

532 **6 Conclusions**

533

534 The impact of a major sudden stratospheric warming in February 2018 on the mid-latitude
535 mesosphere was investigated using microwave radiometer measurements in Kharkiv, Ukraine
536 (50.0°N, 36.3°E). The zonal wind reversal has been revealed below the winter mesopause
537 region at 70–85 km altitudes during the SSW using the CO profiles. The reverse of the
538 mesospheric westerly from about 10 m s^{-1} to easterly wind about -10 m s^{-1} around 10 February
539 has been documented. The data from the ERA-Interim and MERRA-2 reanalyses and the Aura
540 MLS temperature profiles have been used for the analysis of stratosphere–mesosphere behavior
541 under the SSW conditions. Our local microwave observations in the NH midlatitude combined
542 with the reanalysis data show wide ranges of daily variability in CO, zonal wind and
543 temperature in the mesosphere and stratosphere during the SSW 2018.

544 [Among the most striking SSW manifestations over the midlatitude station in February](#)
545 2018, there were (i) zonal wind reversal throughout the mesosphere–stratosphere, (ii)
546 oscillations in the vertical profiles of CO, zonal wind and temperature, (iii) descent of the
547 stratospheric CO and temperature anomalies on the time scale of days to months, (iv) wave 2
548 peak at the vortex split date and (v) strong mesospheric CO and westerly peaks at the start of
549 the SSW recovery phase. Generally, the midlatitude SSW effects are known from many event
550 analyses and in most cases they are associated with zonal asymmetry and polar vortex split and
551 displacements relative to the pole (Solomon et al., 1985; Allen et al., 1999; Yuan et al., 2012;
552 Chandran and Collins, 2014). Our results show that the local midlatitude atmosphere variability
553 in the SSW 2018 includes both the large-scale changes in the zonal circulation and temperature
554 typical for the SSWs and local evolution of the altitude-dependent planetary wave patterns in
555 the individual vortex split event.

556 The observed local CO variability can be explained mainly by horizontal air mass
557 redistribution due to planetary wave activity with the replacement of the CO-rich air by CO-

558 poor air and vice versa, in agreement with other studies. The MLS CO fields show that the CO-
559 rich air masses are enclosed within the polar vortex. Horizontal (meridional and zonal)
560 displacements of the edge of the vortex or vortex fragments relative to the ground-based
561 midlatitude station may be a dominant cause of the observed CO profile variations during the
562 SSW 2018. The small sub-vortex located over the station at the SSW start caused the
563 appearance of the enhanced CO level not only in the mesosphere but also in the stratosphere at
564 about 30 km. This indicates that the polar vortex contains the CO-rich air masses with much
565 higher CO amount [than](#) in the surrounding area and this takes place over the stratosphere–
566 mesosphere altitude range.

567 Microwave observations show that sharp altitudinal CO gradient below the mesopause
568 could be used to define the lower edge of the CO layer and to evaluate oscillation and
569 significant elevation of the lower CO edge during the SSW and its trend on a seasonal time
570 scale. The presented results of microwave measurements of CO and zonal wind in the
571 midlatitude mesosphere at 70–85 km altitudes, which is still not adequately covered by ground-
572 based observations (Hagen et al., 2018; Rüfenacht et al., 2018), are suitable for evaluating and
573 potentially improving atmospheric models. Simulations show that planetary wave forcing by
574 westward propagating wave 1 dominates between 40 and 80 km in the winter polar region
575 during the SSW (Limpasuvan et al., 2016). Our spectral analysis reveals that the westward
576 wave 1 during the SSW 2018 is a dominant wave component through the midlatitude upper
577 stratosphere–mesosphere. Instability of the westward polar jet suggested in previous studies
578 (e.g. Limpasuvan et al., 2016) should be analyzed in the context of the westward wave 1
579 generation in the midlatitude upper stratosphere–mesosphere.

580 Our observation of variability of the CO layer during the SSW deserves further study,
581 particularly in relation to the implications for modelling of wave dynamics and vertical
582 coupling (Ern et al., 2016; Martineau et al., 2018) and chemical processes (Garcia et al., 2014)
583 in the mesosphere.

584

585

586 *Conflict of Interest.* The authors declare that the research was conducted in the absence of any
587 commercial or financial relationships that could be construed as a potential conflict of interest.

588

589 *Author contributions.* GM coordinated and led the efforts for this manuscript. VS initiated the
590 microwave measurements during the SSW event in Kharkiv. VS, DS, VM and AA developed
591 equipment and provided microwave measurements with data processing by AP and DS. GM,

592 VS, YW, OE, AK, and AG analyzed the results and provided interpretation. GM, OE, AK, VS,
593 and WH wrote the paper with input from all authors.

594

595

596 *Acknowledgments.* This work was supported in part by the Institute of Radio Astronomy of the
597 National Academy of Sciences of Ukraine; by Taras Shevchenko National University of Kyiv,
598 project 19BF051-08; by the College of Physics, International Center of Future Science, Jilin
599 University, China. The microwave radiometer data have been processed using ARTS and
600 Qpack software packages (<http://www.radiativetransfer.org/>). Daily datasets from ERA-Interim
601 reanalysis of European Centre for Medium-Range Weather Forecast (ECMWF) were
602 downloaded from <https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/reanalysis-datasets/era-interim>. The Aura Microwave Limb Sounder (MLS) measurements of air
603 temperature and CO were obtained from <https://mls.jpl.nasa.gov/data/readers.php>. Zonal waves
604 were analyzed using the National Oceanic and Atmospheric Administration National Centers
605 for Environmental Prediction, Global Data Assimilation System–Climate Prediction Center
606 (NOAA NCEP GDAS–CPC data at
607 <https://www.cpc.ncep.noaa.gov/products/stratosphere/strat-trop/> and the MERRA-2 data from
608 the National Aeronautics and Space Administration Goddard Space Flight Center, Atmospheric
609 Chemistry and Dynamics Laboratory (NASA GFC ACDL) site at https://acd-ext.gsfc.nasa.gov/Data_services/met/ann_data.html. Authors thank the two anonymous
610 reviewers for their valuable comments and useful suggestions.

611

612

613

614 **References**

615

616

617 Alexander, S. P. and Shepherd, M. G.: Planetary wave activity in the polar lower stratosphere,
618 *Atmos. Chem. Phys.*, 10, 707–718, <https://doi.org/10.5194/acp-10-707-2010>, 2010.

619 Allen, D. R., Stanford, J. L., López-Valverde, M. A., Nakamura, N., Lary, D. J., Douglass, A.
620 R., Cerniglia, M. C., Remedios, J. J., and Taylor F. W.: Observations of middle atmosphere
621 CO from the UARS ISAMS during the early northern winter 1991/92, *J. Atmos. Sci.*, 56,
622 563–583, 1999.

623 Baldwin, M. P. and Dunkerton, T. J.: Stratospheric harbingers of anomalous weather regimes,
624 *Science*, 294, 581–584, doi:10.1126/science.1063315, 2001.

625 Buehler, S. A., Mendrok, J., Eriksson, P., Perrin, A., Larsson, R., and Lemke, O.: ARTS, the
626 atmospheric radiative transfer simulator – version 2.2, the planetary toolbox edition,
627 *Geosci. Model Dev.*, 11, 1537–1556, doi:10.5194/gmd-11-1537-2018, 2018.

628 Butler, A. H. and Gerber, E. P. Optimizing the definition of a sudden stratospheric warming,
629 *J. Climate*, 31, 2337–2344, doi:10.1175/JCLI-D-17-0648.1, 2018.

630 Butler, A. H., Seidel, D. J., Hardiman, S. C., Butchart, N., Birner, T., and Match, A.: Defining
631 sudden stratospheric warmings, *Bull. Amer. Meteor. Soc.*, 96, 1913–1928,
632 doi:10.1175/bams-d-13-00173.1, 2015.

633 Butler, A. H., Sjoberg, J. P., Seidel, D. J., and Rosenlof, K. H.: A sudden stratospheric warming
634 compendium, *Earth Syst. Sci. Data*, 9, 63–76, doi:10.5194/essd-9-63-2017, 2017.

635 Chandran, A. and Collins, R. L.: Stratospheric sudden warming effects on winds and
636 temperature in the middle atmosphere at middle and low latitudes: a study using WACCM,
637 *Ann. Geophys.*, 32, 859–874, doi:10.5194/angeo-32-859-2014, 2014.

638 Chandran, A., Collins, R. L., Garcia, R. R., and Marsh, D. R.: A case study of an elevated
639 stratopause generated in the Whole Atmosphere Community Climate Model, *Geophys. Res.*
640 *Lett.*, 38, L08804, doi:10.1029/2010GL046566, 2011.

641 Charlton, A. J. and Polvani, L. M.: A new look at stratospheric sudden warmings. Part I:
642 Climatology and modeling benchmarks. *J. Climate*, 20, 449–469, 2007. doi:10.1175/JCLI-
643 D-11-00348.1

644 Charney, J. G. and Drazin, P. G.: Propagation of planetary-scale disturbances from the lower
645 into the upper atmosphere, *J. Geophys. Res.*, 66, 83–109, doi:10.1029/JZ066i001p00083,
646 1961.

647 Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U.,
648 Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg,
649 L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger,
650 L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
651 Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B. K., Peubey,
652 C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis:
653 configuration and performance of the data assimilation system, *Q. J. Roy. Meteor. Soc.*,
654 137, 553–597, doi:10.1002/qj.828, 2011.

655 de la Torre, L., Garcia, R. R., Barriopedro, D., and Chandran, A.: Climatology and
656 characteristics of stratospheric sudden warmings in the Whole Atmosphere Community
657 Climate Model, *J. Geophys. Res.*, 117, D04110, doi:10.1029/2011JD016840, 2012.

658 de Wit, R. J., Hibbins, R. E., Espy, P. J., Orsolini, Y. J., Limpasuvan, V., and Kinnison, D. E.:
659 Observations of gravity wave forcing of the mesopause region during the January 2013

660 major Sudden Stratospheric Warming, *Geophys. Res. Lett.*, 41, 4745–4752,
661 doi:10.1002/2014GL060501, 2014.

662 Di Biagio, C., Muscari, G., di Sarra, A., de Zafra, R. L., Eriksen, P., Fiocco, G., Fiorucci, I.,
663 and Fuà, D.: Evolution of temperature, O₃, CO, and N₂O profiles during the exceptional
664 2009 Arctic major stratospheric warming as observed by lidar and millimeter wave
665 spectroscopy at Thule (76.5N, 68.8W), Greenland, *J. Geophys. Res.*, 115, D24315,
666 doi:10.1029/2010JD014070, 2010.

667 Engel, A., Möbius, T., Haase, H.-P., Bönisch, H., Wetter, T., Schmidt, U., Levin, I.,
668 Reddmann, T., Oelhaf, H., Wetzel, G., Grunow, K., Huret, N., and Pirre, M.: Observation
669 of mesospheric air inside the arctic stratospheric polar vortex in early 2003, *Atmos. Chem.*
670 *Phys.*, 6, 267–282, doi:10.5194/acp-6-267-2006, 2006.

671 Eriksson, P., Buehler, S. A., Davis, C. P., Emde, C., and Lemke, O.: ARTS, the atmospheric
672 radiative transfer simulator, version 2, *J. Quant. Spectrosc. Radiat. Transfer*, 112, 1551–
673 1558, doi: 10.1016/j.jqsrt.2011.03.001, 2011.

674 Eriksson, P., Jiménez, C., and Buehler, S. A.: Qpack, a tool for instrument simulation and
675 retrieval work, *J. Quant. Spectrosc. Radiat. Transfer*, 91, 47–64, doi:
676 10.1016/j.jqsrt.2004.05.050, 2005.

677 Ern, M., Trinh, Q. T., Kaufmann, M., Krisch, I., Preusse, P., UngermaNN, J., Zhu, Y., Gille, J.
678 C., Mlynczak, M. G., Russell III, J. M., Schwartz, M. J., and Riese, M.: Satellite
679 observations of middle atmosphere gravity wave absolute momentum flux and of its
680 vertical gradient during recent stratospheric warmings, *Atmos. Chem. Phys.*, 16, 9983–
681 10019, <https://doi.org/10.5194/acp-16-9983-2016>, 2016.

682 Feng, W., Kaifler, B., Marsh, D. R., Höffner, J., Hoppe, U.-P., Williams, B. P., and Plane, J. M.
683 C.: Impacts of a sudden stratospheric warming on the mesospheric metal layers, *J. Atmos.*
684 *Solar-Terr. Phys.*, 162, 162–171, 2017.

685 Forkman, P., Christensen, O. M., Eriksson, P., Urban, J., and Funke, B.: Six years of
686 mesospheric CO estimated from ground-based frequency-switched microwave radiometry
687 at 57° N compared with satellite instruments, *Atmos. Meas. Tech.*, 5, 2827–2841, doi:
688 10.5194/amt-5-2827-2012, 2012.

689 Forkman, P., Christensen, O. M., Eriksson, P., Billade, B., Vassilev, V., and Shulga, V. M.: A
690 compact receiver system for simultaneous measurements of mesospheric CO and O₃,
691 *Geosci. Instrum. Method. Data Syst.*, 5, 27–44, doi:10.5194/gi-5-27-2016, 2016.

692 Fritts, D. C., Laughman, B., Wang, L., Lund, T. S., and Collins, R. L.: Gravity wave dynamics
693 in a mesospheric inversion layer: 1. Reflection, trapping, and instability dynamics, *J.*
694 *Geophys. Res.-Atmos.*, 123, 626–648, <https://doi.org/10.1002/2017JD027440>, 2018.

695 Funke, B., López-Puertas, M., García-Comas, M., Stiller, G. P., von Clarmann, T., Höpfner, M.,
696 Glatthor, N., Grabowski, U., Kellmann, S., and Linden, A.: Carbon monoxide distributions
697 from the upper troposphere to the mesosphere inferred from 4.7 μ m non-local thermal
698 equilibrium emissions measured by MIPAS on Envisat, *Atmos. Chem. Phys.*, 9, 2387–2411,
699 <https://doi.org/10.5194/acp-9-2387-2009>, 2009.

700 Garcia, R. R., López-Puertas, M., Funke, B., Marsh, D. R., Kinnison, D. E., Smith, A. K., and
701 González-Galindo, F.: On the distribution of CO₂ and CO in the mesosphere and lower
702 thermosphere, *J. Geophys. Res.-Atmos.*, 119, 5700–5718, doi:10.1002/2013JD021208,
703 2014.

704 Gardner, C. S.: Role of wave induced diffusion and energy flux in the vertical transport of
705 atmospheric constituents in the mesopause region, *J. Geophys. Res.-Atmos.*, 123, 6581–
706 6604, <https://doi.org/10.1029/2018JD028359>, 2018.

707 Goldsmith, P. F., Litvak, M. M., Plambeck, R. L., and Williams, D. R.: Carbon monoxide
708 mixing ratios in the mesosphere derived from ground-based microwave measurements, *J. Geophys. Res.*, 84, 416–418, 1979.

709 Hagen, J., Murk, A., Rüfenacht, R., Khaykin, S., Hauchecorne, A., and Kämpfer, N.: WIRA-C:
710 a compact 142-GHz-radiometer for continuous middle-atmospheric wind measurements,
711 *Atmos. Meas. Tech.*, 11, 5007–5024, doi: 10.5194/amt-11-5007-2018, 2018.

712 Hocke, K., Lainer, M., Bernet, L., and Kämpfer, N.: Mesospheric inversion layers at mid-
713 latitudes and coincident changes of ozone, water vapour and horizontal wind in the Middle
714 Atmosphere, *Atmosphere*, 9, 171, <https://doi.org/10.3390/atmos9050171>, 2018.

715 Hoffmann, C. G., Raffalski, U., Palm, M., Funke, B., Golchert, S. H. W., Hochschild, G., and
716 Notholt, J.: Observation of strato-mesospheric CO above Kiruna with ground-based
717 microwave radiometry – retrieval and satellite comparison, *Atmos. Meas. Tech.*, 4, 2389–
718 2408, <https://doi.org/10.5194/amt-4-2389-2011>, 2011.

719 Hu, J., Ren, R., and Xu, H.: Occurrence of winter stratospheric sudden warming events and the
720 seasonal timing of spring stratospheric final warming, *J. Atmos. Sci.*, 71, 2319–2334,
721 doi:10.1175/JAS-D-13-0349.1, 2014.

722 Huret, N., Pirre, M., Hauchecorne, A., Robert, C., and Catoire, V.: On the vertical structure of
723 the stratosphere at midlatitudes during the first stage of the polar vortex formation and in
724 the polar region in the presence of a large mesospheric descent, *J. Geophys. Res.*, 111,
725 D06111, doi:10.1029/2005JD006102, 2006.

726 Karpechko, A. Yu., Charlton-Perez, A., Balmaseda, M., Tyrrell, N., and Vitart, F.: Predicting
727 sudden stratospheric warming 2018 and its climate impacts with a multimodel ensemble,
728 *Geophys. Res. Lett.*, 24, 13538–13546, <https://doi.org/10.1029/2018GL081091>, 2018.

730 Keuer, D., Hoffmann, P., Singer, W., and Bremer, J.: Long-term variations of the mesospheric
731 wind field at mid-latitudes, *Ann. Geophys.*, 25, 1779–1790, doi:10.5194/angeo-25-1779-
732 2007, 2007.

733 Kogure, M., Nakamura, T., Ejiri, M. K., Nishiyama, T., Tomikawa, Y., and Tsutsumi, M.:
734 Effects of horizontal wind structure on a gravity wave event in the middle atmosphere over
735 Syowa (69°S, 40°E), the Antarctic, *Geophys. Res. Lett.*, 45, 5151–5157.
736 <https://doi.org/10.1029/2018GL078264>, 2018.

737 Koo, J.-H., Walker, K. A., Jones, A., Sheese, P. E., Boone, C. D., Bernath, P. F., and Manney,
738 G. L.: Global climatology based on the ACE-FTS version 3.5 dataset: Addition of
739 mesospheric levels and carbon-containing species in the UTLS, *J. Quant. Spectrosc. Radiat.*
740 *Transfer*, 186, 52–62, doi:10.1016/j.jqsrt.2016.07.003, 2017.

741 Kuttippurath, J. and Nikulin, G.: A comparative study of the major sudden stratospheric
742 warmings in the Arctic winters 2003/2004–2009/2010, *Atmos. Chem. Phys.*, 12, 8115–
743 8129, <https://doi.org/10.5194/acp-12-8115-2012>, 2012.

744 Kvissel, O. K., Orsolini, Y. J., Stordal, F., Limpasuvan, V., Richter, J., and Marsh, D. R.:
745 Mesospheric intrusion and anomalous chemistry during and after a major stratospheric
746 sudden warming, *J. Atmos. Solar-Terr. Phys.*, 78–79, 116–124,
747 doi:10.1016/j.jastp.2011.08.015, 2012.

748 Limpasuvan, V., Orsolini, Y. J., Chandran, A., Garcia, R. R., and Smith, A. K.: On the
749 composite response of the MLT to major sudden stratospheric warming events with
750 elevated stratopause, *J. Geophys. Res.-Atmos.*, 121, 4518–4537,
751 doi:10.1002/2015JD024401, 2016.

752 Manney, G. L., Schwartz, M. J., Krüger, K., Santee, M. L., Pawson, S., Lee, J. N., Daffer, W.
753 H., Fuller, R. A., and Livesey, N. J.: Aura Microwave Limb Sounder observations of
754 dynamics and transport during the record-breaking 2009 Arctic stratospheric major
755 warming, *Geophys. Res. Lett.*, 36, L12815, doi:10.1029/2009GL038586, 2009.

756 Martineau, P., Son, S.-W., Taguchi, M., and Butler, A. H.: A comparison of the momentum
757 budget in reanalysis datasets during sudden stratospheric warming events, *Atmos. Chem.*
758 *Phys.*, 18, 7169–7187, <https://doi.org/10.5194/acp-18-7169-2018>, 2018.

759 Matsuno, T.: A dynamical model of the stratospheric sudden warming, *J. Atmos. Sci.*, 28,
760 1479–1494, [https://doi.org/10.1175/1520-0469\(1971\)028<1479:ADMOTS>2.0.CO;2](https://doi.org/10.1175/1520-0469(1971)028<1479:ADMOTS>2.0.CO;2),
761 1971.

762 Muscari, G., di Sarra, A., de Zafra, R. L., Lucci, F., Baordo, F., Angelini, F., and Fiocco, G.:
763 Middle atmospheric O₃, CO, N₂O, HNO₃, and temperature profiles during the warm Arctic
764 winter 2001–2002, *J. Geophys. Res.*, 112, D14304, doi:10.1029/2006JD007849, 2007.

765 Newnham, D. A., Ford, G. P., Moffat-Griffin, T., and Pumphrey, H. C.: Simulation study for
766 measurement of horizontal wind profiles in the polar stratosphere and mesosphere using
767 ground-based observations of ozone and carbon monoxide lines in the 230–250 GHz
768 region, *Atmos. Meas. Tech.*, 9, 3309–3323, doi:10.5194/amt-9-3309-2016, 2016.

769 Orsolini, Y. J., Limpasuvan, V., Pérot, K., Espy, P., Hibbins, R., Lossow, S., Larsson, K. R.,
770 and Murtagh, D.: Modelling the descent of nitric oxide during the elevated stratopause
771 event of January 2013, *J. Atmos. Solar-Terr. Phys.*, 155, 50–61,
772 doi:10.1016/j.jastp.2017.01.006, 2017.

773 Orsolini, Y. J., Urban, J., Murtagh, D. P., Lossow, S., and Limpasuvan, V.: Descent from the
774 polar mesosphere and anomalously high stratopause observed in 8 years of water vapor and
775 temperature satellite observations by the Odin Sub-Millimeter Radiometer, *J. Geophys.*
776 *Res.*, 115, D12305, doi:10.1029/2009JD013501, 2010.

777 Pedatella, N. M., Chau, J. L., Schmidt, H., Goncharenko, L. P., Stolle, C., Hocke, K., Harvey,
778 V. L., Funke, B., and Siddiqui, T. A.: How sudden stratospheric warming affects the whole
779 atmosphere, *Eos*, 99, <https://doi.org/10.1029/2018EO092441>, 2018.

780 Piddyachiy, V., Shulga, V., Myshenko, V., Korolev, A., Antyufeyev, O., Shulga, D., and
781 Forkman, P.: Microwave radiometer for spectral observations of mesospheric carbon
782 monoxide at 115 GHz over Kharkiv, Ukraine, *J. Infrared Milli. Terahz. Waves*, 38, 292–
783 302, doi:10.1007/s10762-016-0334-1, 2017.

784 Piddyachiy, V. I., Shulga, V. M., Myshenko, V. V., Korolev, A. M., Myshenko, A. V.,
785 Antyufeyev, A. V., Poladich, A. V., and Shkodin, V. I.: 3-mm wave spectroradiometer for
786 studies of atmospheric trace gases, *Radiophys. Quantum El.*, 53(5-6), 326–333.
787 <https://doi.org/10.1007/s11141-010-9231-y>, 2010.

788 Rao, J., Ren, R.-C., Chen, H., Liu, X., Yu, Y., and Yang, Y.: Sub-seasonal to seasonal
789 hindcasts of stratospheric sudden warming by BCC_CSM1.1(m): A comparison with
790 ECMWF, *Adv. Atmos. Sci.*, 36, 479–494, doi:10.1007/s00376-018-8165-8, 2019.

791 Rao, J., Ren, R., Chen, H., Yu, Yu., and Zhou, Y.: The stratospheric sudden warming event in
792 February 2018 and its prediction by a climate system model, *J. Geophys. Res.-Atmos.*, 123,
793 13332–13345, doi:10.1029/2018JD028908, 2018.

794 Rinsland, C. P., Salawitch, R. J., Gunson, M. R., Solomon, S., Zander, R., Mahieu, E.,
795 Goldman, A., Newchurch, M. J., Irion, F. W., and Chang, A. Y.: Polar stratospheric descent
796 of NO_y and CO and Arctic denitrification during winter 1992–1993, *J. Geophys. Res.*, 104,
797 1847–1861, 1999.

798 Rüfenacht, R., Baumgarten, G., Hildebrand, J., Schranz, F., Matthias, V., Stober, G., Lübken,
799 F.-J., and Kämpfer, N.: Intercomparison of middle-atmospheric wind in observations and

800 models, *Atmos. Meas. Tech.*, 11, 1971–1987, <https://doi.org/10.5194/amt-11-1971-2018>,
801 2018.

802 Rüfenacht, R., Hocke, K., and Kämpfer, N.: First continuous ground-based observations of
803 long period oscillations in the vertically resolved wind field of the stratosphere and
804 mesosphere, *Atmos. Chem. Phys.*, 16, 4915–4925, <https://doi.org/10.5194/acp-16-4915-2016>, 2016.

805 Rüfenacht, R., Kämpfer, N., and Murk, A.: First middle-atmospheric zonal wind profile
806 measurements with a new ground-based microwave Doppler-spectroradiometer, *Atmos.*
807 *Meas. Tech.*, 5, 2647–2659, doi:10.5194/amt-5-2647-2012, 2012.

808 Ryan, N. J., Kinnison, D. E., Garcia, R. R., Hoffmann, C. G., Palm, M., Raffalski, U., and
809 Notholt, J.: Assessing the ability to derive rates of polar middle-atmospheric descent using
810 trace gas measurements from remote sensors, *Atmos. Chem. Phys.*, 18, 1457–1474,
811 <https://doi.org/10.5194/acp-18-1457-2018>, 2018.

812 Ryan, N. J., Palm, M., Raffalski, U., Larsson, R., Manney, G., Millán, L., and Notholt, J.:
813 Strato-mesospheric carbon monoxide profiles above Kiruna, Sweden (67.8°N, 20.4°E),
814 since 2008, *Earth Syst. Sci. Data*, 9, 77–89, doi:10.5194/essd-9-77-2017, 2017.

815 Salmi, S. M., Verronen, P. T., Thölix, L., Kyrölä, E., Backman, L., Karpechko, A. Yu., and
816 Seppälä, A.: Mesosphere-to-stratosphere descent of odd nitrogen in February–March 2009
817 after sudden stratospheric warming, *Atmos. Chem. Phys.*, 11, 4645–4655,
818 <https://doi.org/10.5194/acp-11-4645-2011>, 2011.

819 Scheiben, D., Straub, C., Hocke, K., Forkman, P., and Kämpfer, N.: Observations of middle
820 atmospheric H₂O and O₃ during the 2010 major sudden stratospheric warming by a network
821 of microwave radiometers, *Atmos. Chem. Phys.*, 12, 7753–7765,
822 <https://doi.org/10.5194/acp-12-7753-2012>, 2012.

823 Shepherd, M. G., Beagley, S. R., and Fomichev, V. I.: Stratospheric warming influence on the
824 mesosphere/lower thermosphere as seen by the extended CMAM, *Ann. Geophys.*, 32, 589–
825 608, doi:10.5194/angeo-32-589-2014, 2014.

826 Solomon, S., Garcia, R. R., Olivero, J. J., Bevilacqua, R. M., Schwartz, P. R., Clancy, R. T.,
827 and Muhleman, D. O.: Photochemistry and transport of carbon monoxide in the middle
828 atmosphere, *J. Atmos. Sci.*, 42, 1072–1083, 1985.

829 Stray, N. H., Orsolini, Y. J., Espy, P. J., Limpasuvan, V., and Hibbins, R. E.: Observations of
830 planetary waves in the mesosphere-lower thermosphere during stratospheric warming
831 events, *Atmos. Chem. Phys.*, 15, 4997–5005, <https://doi.org/10.5194/acp-15-4997-2015>,
832 2015.

833

834 Tao, M., Konopka, P., Ploeger, F., Grooß, J.-U., Müller, R., Volk, C. M., Walker, K. A., and
835 Riese, M.: Impact of the 2009 major sudden stratospheric warming on the composition of
836 the stratosphere, *Atmos. Chem. Phys.*, 15, 8695–8715, <https://doi.org/10.5194/acp-15-8695-2015>, 2015.

838 Taguchi, M.: Comparison of subseasonal-to-seasonal model forecasts for major stratospheric
839 sudden warmings, *J. Geophys. Res.-Atmos.*, 123, 10,231–10,247,
840 doi:10.1029/2018jd028755, 2018.

841 Tomikawa, Y., Sato, K., Watanabe, S., Kawatani, Y., Miyazaki, K., and Takahashi, M.: Growth
842 of planetary waves and the formation of an elevated stratopause after a major stratospheric
843 sudden warming in a T213L256 GCM, *J. Geophys. Res.*, 117, D16101,
844 doi:10.1029/2011JD017243, 2012.

845 Tripathi, O. P., Baldwin, M., Charlton-Perez, A., Charron, M., Cheung, J. C. H., Eckermann, S.
846 D., Gerber, E., Jackson, D. R., Kuroda, Yu., Lang, A., McLay, J., Mizuta, R., Reynolds, C.,
847 Roff, G., Sigmond, M., Son, S.-W., and Stockdale, T.: Examining the predictability of the
848 stratospheric sudden warming of January 2013 using multiple NWP systems, *Mon. Weather
849 Rev.*, 144, 1935–1960, doi:10.1175/mwr-d-15-0010.1, 2016.

850 Vargin, P. N. and Kiryushov, B. M.: Major sudden stratospheric warming in the Arctic in
851 February 2018 and its impacts on the troposphere, mesosphere, and ozone layer, *Russian
852 Meteorology and Hydrology*, 44, 112–123, doi:10.3103/S1068373919020043, 2019.

853 Waters, J. W., Wilson, W. J., and Shimabukuro, F. I.: Microwave measurement of mesospheric
854 carbon monoxide, *Science*, 191, 1174–1175, doi:10.1126/science.191.4232.1174, 1976.

855 WMO Commission for Atmospheric Sciences. Abridged Final Report of the Seventh Session,
856 Manila, 27 February – 10 March, 1978. WMO-No. 509, 113 p., available at:
857 http://library.wmo.int/pmb_ged/wmo_509_en.pdf, 1978.

858 Xu, X., Manson, A. H., Meek, C. E., Chshyolkova, T., Drummond, J. R., Hall, C. M., Riggin,
859 D. M., and Hibbins, R. E.: Vertical and interhemispheric links in the stratosphere-
860 mesosphere as revealed by the day-to-day variability of Aura-MLS temperature data, *Ann.
861 Geophys.*, 27, 3387–3409, doi:10.5194/angeo-27-3387-2009, 2009.

862 Yu, Y., Cai, M., Shi, C., and Ren, R.: On the linkage among strong stratospheric mass
863 circulation, stratospheric sudden warming, and cold weather events, *Mon. Weather Rev.*,
864 146, 2717–2739, doi:10.1175/MWR-D-18-0110.1, 2018.

865 Yuan, T., Thurairajah, B., She, C. Y., Chandran, A., Collins, R. L., and Krueger, D. A.: Wind
866 and temperature response of midlatitude mesopause region to the 2009 Sudden
867 Stratospheric Warming, *J. Geophys. Res.*, 117, D09114, doi:10.1029/2011JD017142, 2012.

868 Zhou, S., Miller, A. J., Wang, J., and James, K. A.: Downward-propagating temperature
869 anomalies in the preconditioned polar stratosphere, *J. Climate*, 15, 781–792,
870 doi:10.1175/1520-0442(2002)015<0781:DPTAIT>2.0.CO;2, 2002.

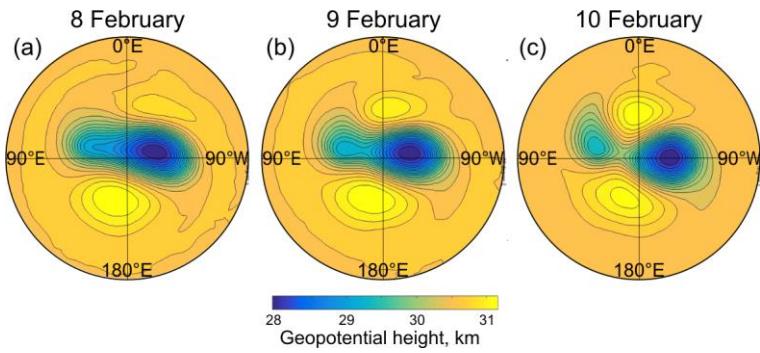
871 Zülicke, C. and Becker, E.: The structure of the mesosphere during sudden stratospheric
872 warmings in a global circulation model, *J. Geophys. Res.-Atmos.*, 118, 2255–2271,
873 doi:10.1002/jgrd.50219, 2013.

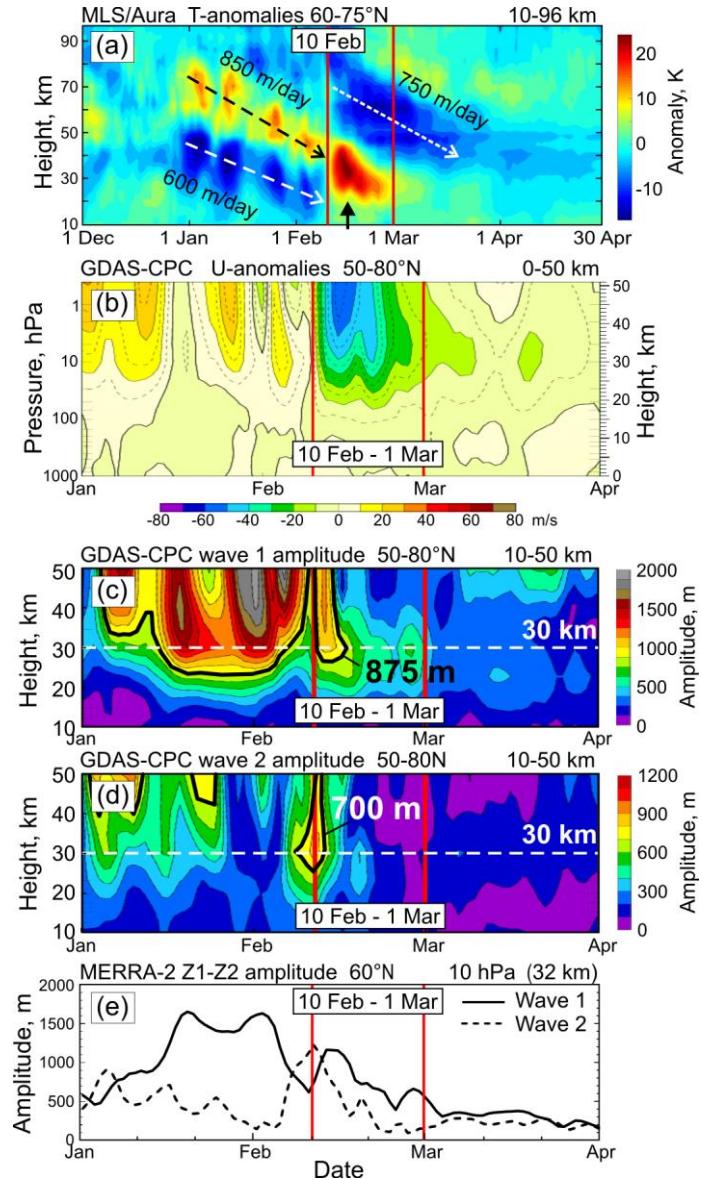
874 Zülicke, C., Becker, E., Matthias, V., Peters, D. H. W., Schmidt, H., Liu, H.-L., de la Torre
875 Ramos, L., and Mitchell, D. M.: Coupling of stratospheric warmings with mesospheric
876 coolings in observations and simulations, *J. Climate*, 31, 1107–1133, doi:10.1175/JCLI-D-
877 17-0047, 1, 2018.

878

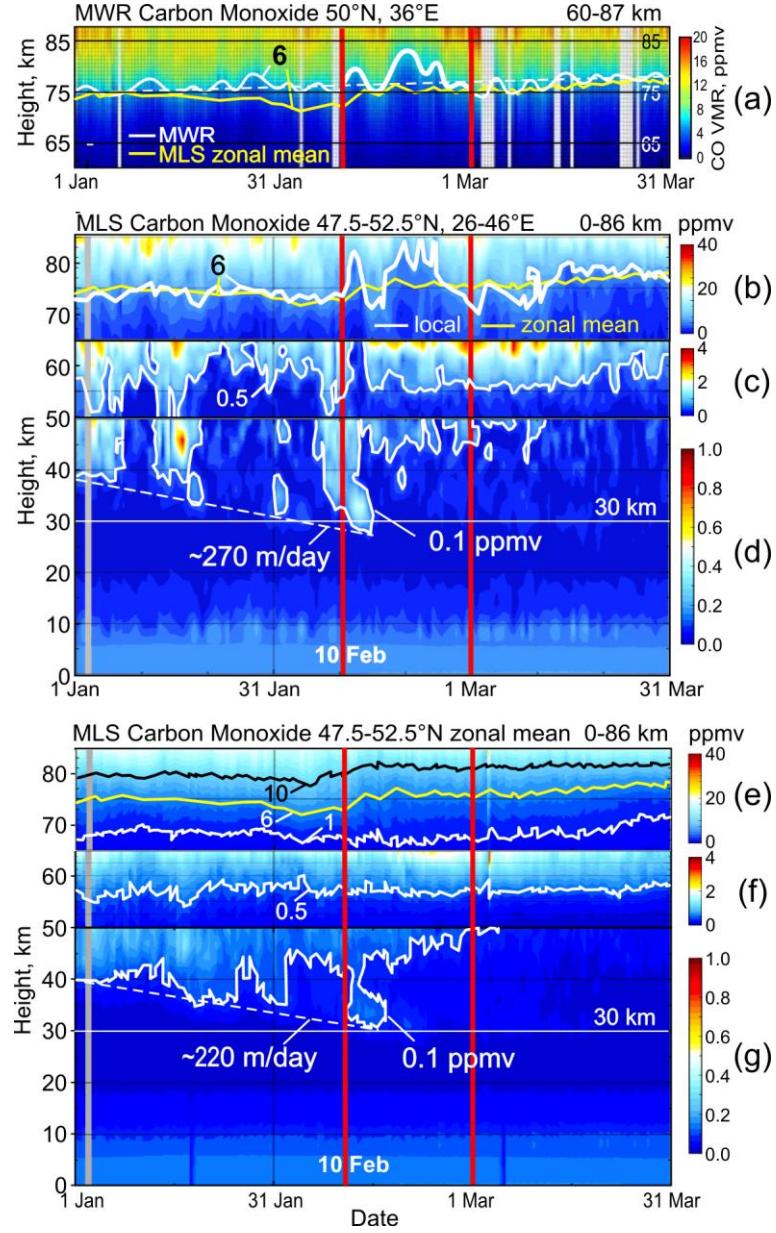
879

880


881


882

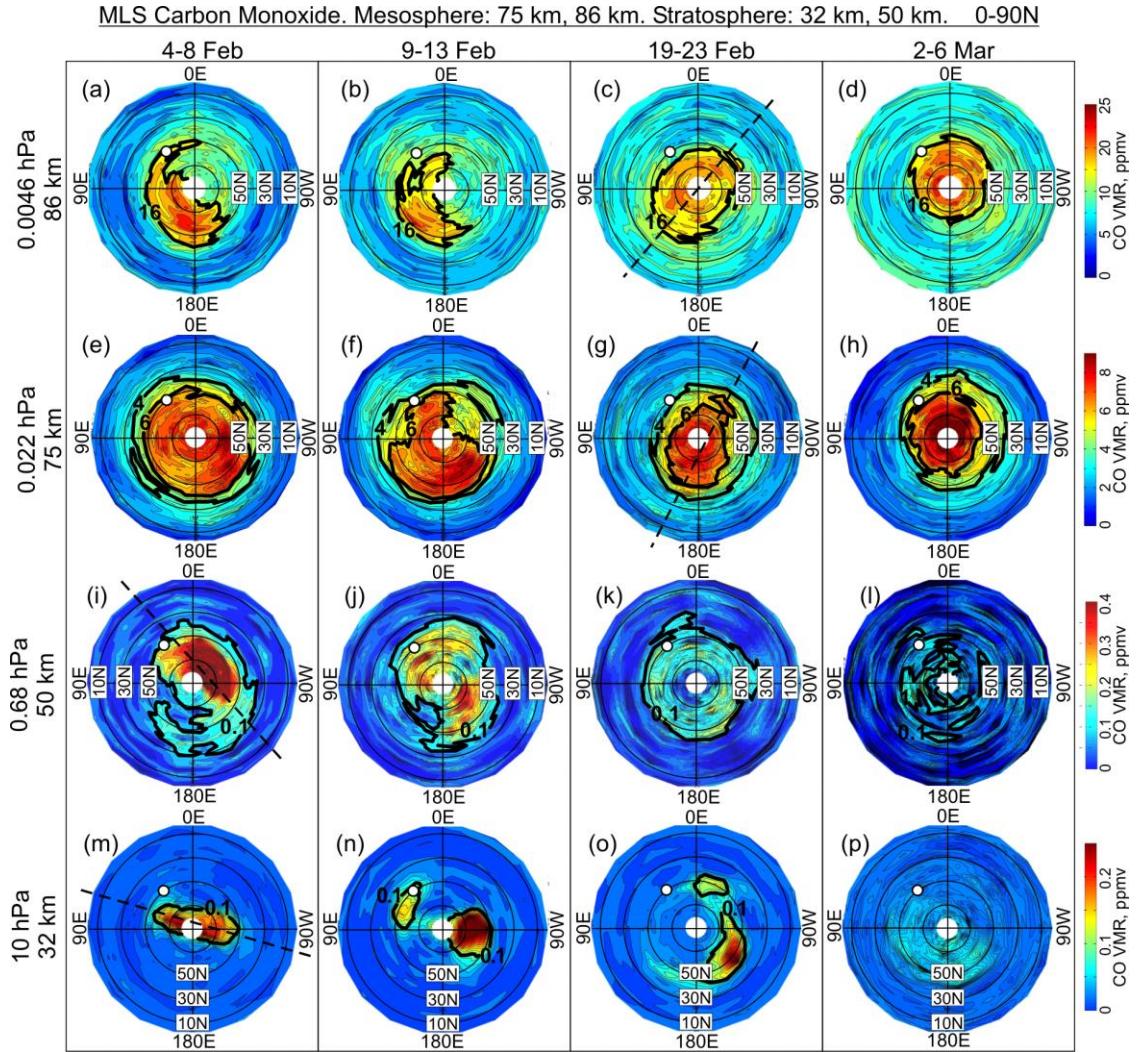
883


884 **Figure 1.** The polar vortex split at the 10-hPa pressure level during the SSW event in February
885 2018. Geopotential heights are calculated from ERA-Interim reanalysis data.

886

890 **Figure 2.** The development of the SSW in 2018 from the vertical profiles of (a) Aura MLS
 891 temperature anomalies in December 2017–April 2018 at polar zone 60–75°N (with respect to
 892 the mean climatology 2005–2017), (b) zonal mean zonal wind anomalies, (c) wave 1 and (d)
 893 wave 2 amplitudes in geopotential height in January–March by NOAA NCEP GDAS-CPC data
 894 (climatology 1981–2010). (e) zonal wave 1 and wave 2 amplitudes in geopotential height at 10
 895 hPa, 60°N, by the MERRA-2 time series from the NASA GFC ACDL data. The SSW-related
 896 anomalous variability between 10 February and 1 March 2018 is bounded by red vertical lines.
 897

900


901

902 **Figure 3.** (a) Mesospheric CO profile from microwave measurements over Kharkiv averaged
 903 in altitude range 70–85 km, and vertical CO profile from the MLS measurements averaged over
 904 latitudes 47.5–52.5°N and longitudes (b)–(d) 26–46°E centered at the Kharkiv MWR site
 905 (50°N, 36°E) and (e)–(g) 0–360°E for zonal mean. Selected CO levels are highlighted by white,
 906 black and yellow contours (see text for details). Data for January–March 2018 are presented
 907 and time interval of significant variations in the atmosphere parameters due to the SSW event
 908 (from 10 February to 1 March 2018) is bounded by red vertical lines.

909

910

911
912
913

914
915

916 **Figure 4.** The 5-day mean CO field over the NH (0–90°N) from the MLS measurements at the
917 two mesospheric (75 km and 86 km) and stratospheric (32 km and 50 km) levels before (4–8
918 February), during (9–13 and 19–23 February) and after (2–6 March) the SSW 2018. White
919 circle shows location of the MWR site Kharkiv relatively the high/low CO amounts marked off
920 by the black contours. Dashed lines indicate clockwise rotation of the elongated polar vortex
921 with altitude as manifestation of upward propagation of planetary waves with their westward
922 tilt with altitude.

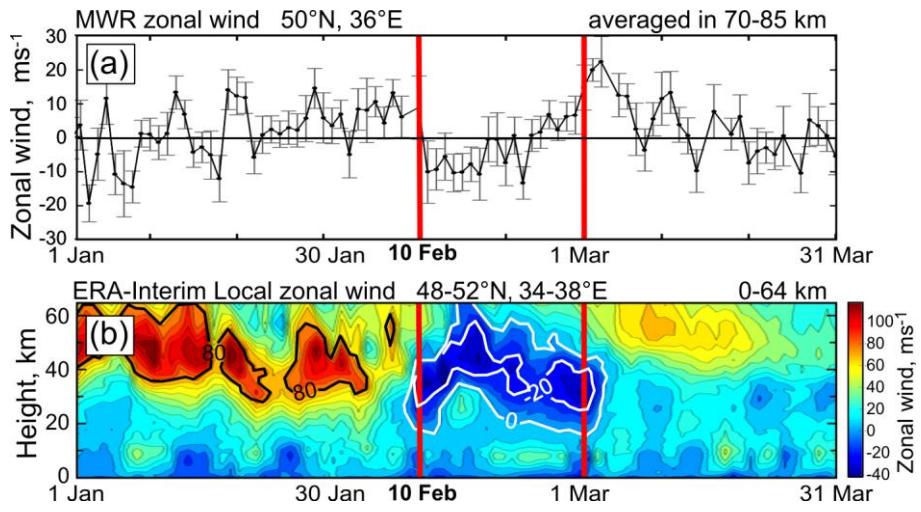
923
924
925

926

927

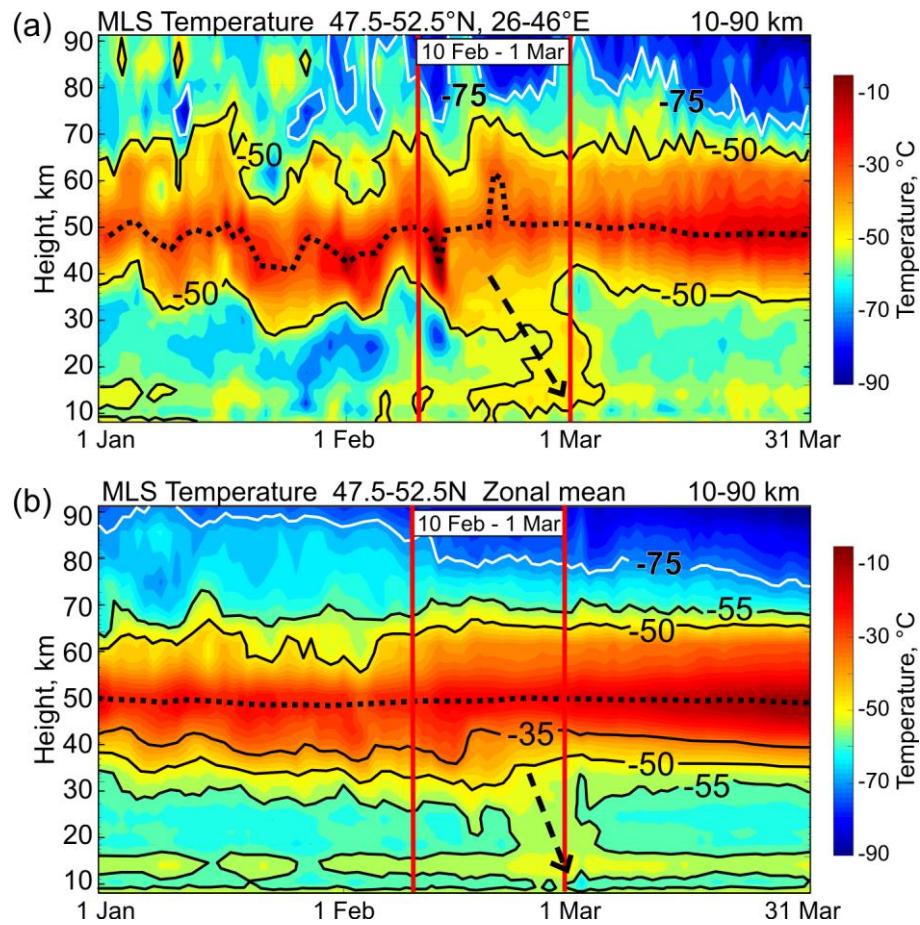
928

929


930

931 **Figure 5.** (a) Mesospheric zonal wind microwave measurements over Kharkiv (averaged in
 932 altitude range 70–85 km, vertical bars are standard deviations) compared to (b) time-altitude
 933 local zonal wind from the ERA-Interim reanalysis data averaged over latitudes 48–52°N and
 934 longitudes 34–38°E (centered at the Kharkiv microwave radiometer site, 50°N, 36°E). Time
 935 interval of significant variations in the atmosphere parameters due to the SSW event (from 10
 936 February to 1 March, 2018) is bounded by red vertical lines.

937


938

939

940

941

942

943

944

945

946

947

948

Figure 6. MLS temperature profiles (a) over the Kharkiv region and (b) zonal average in the zone 47.5–52.5°N. Dashed arrows indicate downward warming.