

1 **Winter 2018 major sudden stratospheric warming impact on midlatitude mesosphere**
2 **from microwave radiometer measurements**

4 Yuke Wang¹, Valerii Shulga^{1,2}, Gennadi Milinevsky^{1,3}, Aleksey Patoka², Oleksandr
5 Evtushevsky³, Andrew Klekociuk^{4,5}, Wei Han¹, Asen Grytsai³, Dmitry Shulga², Valery
6 Myshenko², Oleksandr Antyufeyev²

7
8 ¹College of Physics, International Center of Future Science, Jilin University, Changchun,
9 130012, China

10 ²Institute of Radio Astronomy, NAS of Ukraine, Kharkiv, 61002, Ukraine

11 ³Taras Shevchenko National University of Kyiv, Kyiv, 01601, Ukraine

12 ⁴Antarctica and the Global System, Australian Antarctic Division, Kingston, 7050, Australia

13 ⁵Department of Physics, University of Adelaide, Adelaide, 5005, Australia

14
15 *Correspondence to:*

16 Gennadi Milinevsky (genmilinevsky@gmail.com) and Valerii Shulga
17 (shulga@rian.kharkov.ua)

18
19 **Abstract.** The impact of a major sudden stratospheric warming (SSW) in the Arctic in
20 February 2018 on the mid-latitude mesosphere is investigated by performing microwave
21 radiometer measurements of carbon monoxide (CO) and zonal wind above Kharkiv, Ukraine
22 (50.0°N, 36.3°E). The mesospheric peculiarities of this SSW event were observed using a
23 recently designed and installed microwave radiometer in East Europe for the first time. Data
24 from the ERA-Interim and MERRA-2 reanalyses, as well as the Aura Microwave Limb
25 Sounder measurements, are also used. Microwave observations of the daily CO profiles in
26 January–March 2018 allowed the retrieval of mesospheric zonal wind at 70–85 km (below the
27 winter mesopause) over the Kharkiv site. Reversal of the mesospheric westerly from about 10
28 m s⁻¹ to an easterly wind of about -10 m s⁻¹ around 10 February was observed. The local
29 microwave observations at our NH midlatitude site combined with reanalysis data show wide
30 ranging daily variability in CO, zonal wind and temperature in the mesosphere and stratosphere
31 during the SSW of 2018. The observed local CO variability can be explained mainly by
32 horizontal air mass redistribution due to planetary wave activity. Replacement of the CO-rich
33 polar vortex air by CO-poor air of the surrounding area led to a significant mesospheric CO
34 decrease over the station during the SSW and fragmentation of the vortex over the station at the
35 SSW start caused enhanced stratospheric CO at about 30 km. Spectral analysis shows

36 intensified westward wave 1 throughout the midlatitude upper stratosphere–mesosphere,
37 consistent with other studies of SSWs in the NH winter polar region. The results of microwave
38 measurements of CO and zonal wind in the midlatitude mesosphere at 70–85 km altitudes,
39 which still is not adequately covered by ground-based observations, are useful for improving
40 our understanding of the SSW impacts in this region.

41

42

43 1 Introduction

44

45 Major sudden stratospheric warming(SSW) events which happen roughly each two years in the
46 North Polar region are produced by strong planetary wave activity according to the model
47 developed by Matsuno (1971) which is supported by numerous observations (Alexander and
48 Shepherd, 2010; Kuttippurath and Nikulin, 2012; Tao et al., 2015). A major SSW event is
49 accompanied by a sharp increase of the stratosphere temperature up to 50 K and the reversal of
50 the zonal wind from climatological westerlies to easterlies over a period of several days
51 (Charlton and Polvani, 2007; Chandran and Collins, 2014; Hu et al., 2014; Tripathi et al., 2016;
52 Butler et al., 2017; Karpechko et al., 2018; Taguchi, 2018; Rao et al., 2018). The primary
53 definition of a SSW event provided by the World Meteorological Organization requires a
54 stratosphere temperature increase and an accompanying zonal wind reversal to easterlies at the
55 10-hPa pressure level (approximately 30 km altitude) and 60° latitude (WMO, 1978). This
56 definition was broadened and detailed in recent papers (Butler et al., 2015; Butler and Gerber,
57 2018; Rao et al., 2019). The summarizing paper, where a SSW database is described, was
58 published in Butler et al. (2017). This useful tool
59 (<https://www.esrl.noaa.gov/csd/groups/csd8/sswcompendium/>) allows analysis of the
60 conditions in the stratosphere, troposphere, and at the surface before, during and after each
61 SSW event representing its evolution, structure, and impact on winter surface climate. The
62 compendium is based on data from six different reanalysis products, covers the 1958–2014
63 period and includes global daily anomaly fields, full fields, and derived products for each SSW
64 event (Butler et al., 2017).

65 The source of the SSW is planetary wave activity born in the troposphere that propagates
66 upward through the tropopause to the stratosphere (Matsuno, 1971; Alexander and Shepherd,
67 2010, Butler et al., 2015). The enhanced wave activity results in the rapid warming of the polar
68 stratosphere and the breakdown of the stratospheric polar vortex (Matsuno, 1971; de la Torre et
69 al., 2012; Chandran and Collins, 2014; Pedatella et al., 2018). The important feature of a SSW
70 event is its impact on lower altitudes, when temperature and wind anomalies descend

71 downward into the high- and mid-latitude troposphere during the following weeks to month
72 and influence the surface weather (Baldwin and Dunkerton, 2001; Zhou et al., 2002; Butler et
73 al., 2015; Yu et al., 2018). The major SSW events may also impact the atmospheric
74 composition of the whole Northern Hemisphere (NH) stratosphere including mid-latitudes
75 (Solomon et al., 1985; Allen et al., 1999; Tao et al., 2015).

76 During the SSW, vertical coupling covers not only the troposphere but extends upward to
77 the mesosphere. Mesospheric responses to the SSW are observed as enhancement in planetary
78 wave amplitude, zonal wind reversal and significant air cooling (Shepherd et al., 2014; Zülicke
79 and Becker, 2013; Stray et al., 2015; Zülicke et al., 2018), substantial depletion of the metal
80 layers (Feng et al., 2017; Gardner, 2018), mesosphere-to-stratosphere descent of trace species
81 (Manney et al., 2009; Salmi et al., 2011). The SSW events are also accompanied by the rapid
82 descent of the stratopause into the stratosphere at the SSW onset, following formation of the
83 elevated stratopause in the lower mesosphere and gradual stratopause lowering toward its
84 typical position in the SSW recovery phase (Manney et al., 2009; Chandran et al., 2011; Salmi
85 et al., 2011; Tomikawa et al., 2012; Limpasuvan et al., 2016; Orsolini et al., 2010, 2017). The
86 elevated stratopause events provide an evidence of the coupling between the stratosphere and
87 the mesosphere.

88 Among the trace gases, the CO molecule is a good tracer of winter polar vortex dynamics in
89 the upper stratosphere and mesosphere due to its long photochemical lifetime (Solomon et al.,
90 1985; Allen et al., 1999; Rinsland et al., 1999, Shepherd et al. 2014). The CO mixing ratio
91 generally increases with height in the upper stratosphere and mesosphere and increases with
92 latitude toward the winter pole. This is due to the mean meridional circulation which transports
93 CO from the source region in the summer hemisphere and tropics to the extratropical winter
94 mesosphere and stratosphere (Shepherd et al., 2014). Therefore, large abundances of CO appear
95 in the winter polar regions under conditions of large-scale planetary wave activity. Downward
96 meridional transport causes descent of CO between the mesosphere and stratosphere and this
97 process is sensitive to planetary wave amplitudes, and particularly the wave amplitude changes
98 that occur during SSWs (Rinsland et al., 1999; Manney et al., 2009; Kvissel et al., 2012). Due
99 to the large scale descent, high CO values of mesospheric origin are observed at stratospheric
100 altitudes down to 25–30 km (Engel et al., 2006; Huret et al., 2006; Funke et al., 2009). At NH
101 mid-latitudes, CO also exhibits significant variability during periods of planetary wave activity
102 associated with SSWs, when the polar vortex splits and displaces off the pole (Solomon et al.,
103 1985; Allen et al., 1999; Funke et al., 2009).

104 Recent atmospheric models are being extended up to 80–150 km and are used for the study
105 of SSWs (de la Torre et al., 2012; Chandran and Collins, 2014; Shepherd et al., 2014;

106 Limpasuvan et al., 2016; Newnham et al., 2016). For example, de la Torre et al. (2012) applied
107 the Whole Atmosphere Community Climate Model (WACCM) and Shepherd et al. (2014) used
108 the Canadian Middle Atmosphere Model (CMAM) for SSW modeling. The reference wind
109 profiles for the models are mainly retrieved from observations of the radiation of the
110 mesospheric ozone molecules, which allow robust measurements at altitudes up to of
111 approximately 65 km (e.g., Hagen et al., 2018). These data are generally consistent with the
112 most commonly used reanalysis products. However, there are still insufficient observations of
113 middle atmospheric winds at altitudes between 60 and 85 km made with a high vertical
114 resolution to verify atmospheric models and possible long-term trends (Keuer et al., 2007;
115 Hagen et al., 2018; Rüfenacht et al., 2018). This altitude range, where temperature generally
116 decreases with height which causes inherent vertical instability, is situated below the winter
117 mesopause region at 95–100 km (e.g. Xu et al., 2009) and plays a significant role in the mass
118 and energy exchange between the stratosphere and the mesosphere (Shepherd et al., 2014;
119 Limpasuvan et al., 2016; Gardner, 2018).

120 Microwave radiometry is a ground-based technique that can provide vertical profiles of CO,
121 H₂O and O₃ atmospheric gases and wind data in the upper stratosphere and mesosphere
122 (Rüfenacht et al., 2012; Scheiben et al., 2012; Forkman et al., 2016). The upper stratosphere–
123 mesosphere zonal winds at the 30–85 km altitude region can be measured using the Doppler
124 shift between different observation directions in simultaneously measured spectra of transitions
125 lines of carbon monoxide at 115.3 GHz and ozone O₃ at 110.8 GHz (Rüfenacht et al., 2012;
126 Forkman et al., 2016). Due to high altitude CO residence region, the simultaneous zonal wind
127 measurements using both O₃ and CO provide independent data that extend the wind
128 measurement from the stratospheric to mesospheric altitudes, respectively (Forkman et al.,
129 2016; Piddyachiy et al., 2017).

130 The first ground-based microwave measurements of CO were made in the 1970s and they
131 confirmed theoretical estimations of the vertical CO profile (Waters et al., 1976; Goldsmith et
132 al., 1979). Since the 1990s, the ground-based microwave radiometers measuring CO have been
133 installed in the Northern Hemisphere at high and middle latitudes to provide measurements on
134 a regular basis. Microwave radiometers are operating in Onsala and Kiruna, Sweden, since
135 2008. The results are described in Hoffmann et al. (2011) and in Forkman et al. (2012). The
136 microwave radiometer operated in Bern, Switzerland since 2010 aims to contribute to the
137 significant gap that exists in the middle atmosphere between 40 and 70 km altitude for wind
138 data (Rüfenacht et al., 2012). In the Arctic, the O₃, N₂O, HNO₃, and CO spectra were recorded
139 using the Ground-Based Millimetre-wave Spectrometer GBMS (Muscari et al., 2007; Di Biagio
140 et al., 2010).

141 Since 2014, the microwave measuring system for CO observations has been operated in
142 Kharkiv, Ukraine (Piddiyachiy et al., 2010; Piddiyachiy et al., 2017). Microwave radiometer
143 measurements of CO are used to retrieve mesospheric winds nearby the mesopause region (70–
144 85 km). Methods deriving the wind speed from mesospheric CO measurements are based on
145 the determination of the CO and O₃ lines emission Doppler shift (Eriksson et al., 2011; Hagen
146 et al., 2018).

147 Our observations in February 2018 using the new microwave radiometer at the mid-latitude
148 Kharkiv station have recorded the mesospheric effects of a major SSW. In mid-February 2018,
149 the stratospheric polar vortex in the Arctic splitted into two sister vortices (Fig. 1), the zonal
150 wind reversed in the stratosphere–mesosphere from westerly to easterly and warm air
151 penetrated into the polar cap regions (Rao et al., 2018; Karpechko et al., 2018; Vargin and
152 Kiryushov, 2019). This caused large-scale disturbances in the middle atmosphere of the polar
153 and middle latitudes. The major SSW in 2018 is not yet widely discussed in publications (Rao
154 et al., 2018; Karpechko et al., 2018; Vargin and Kiryushov, 2019) and in this paper, we give a
155 detailed description of the observed mesospheric CO and zonal wind variations.

156 In Sect. 2, the microwave radiometer and data processing software are briefly described.
157 The SSW event in February 2018 is considered in Sect. 3. The effects of the SSW on mid-
158 latitude mesosphere–stratosphere conditions in the Ukraine longitudinal sector are presented in
159 Sect. 4. Discussion is given in Sect. 5 followed by conclusions in Sect. 6.

162 **2 Data and methods**

163
164 The microwave radiometer data set registered during the 2017/2018 winter campaign in
165 Kharkiv (50.0°N, 36.3°E) is used in this study to investigate local effects of the winter 2018
166 sudden stratospheric warming on the mesosphere and stratosphere. Since the ground-based
167 microwave measurements are spatially limited by instrument coverage, data on air temperature,
168 zonal wind, geopotential height were used from reanalyses and satellite databases to interpret
169 the CO profile and the zonal wind microwave observations and to describe the SSW effects in
170 the atmosphere of the surrounding mid-latitude region (30–40°E, 48–52°N).

173 **2.1 Microwave radiometer, method, and midlatitude data description**

175 The microwave radiometer (MWR) with high sensitivity, installed at Kharkiv, Ukraine, is
176 designed for continuous observations of the atmospheric CO profiles and zonal wind speed in
177 the mesosphere using emission lines at 115.3 GHz. The radiometer can continuously provide
178 vertical profiles up to the mesopause region during day and night, even in cloudy conditions
179 (Hagen et al., 2018). However, precipitation, such as strong rain or snow, can prevent the
180 measurements.

181 The receiver of the radiometer has the double-sideband noise temperature of 250 K at an
182 ambient temperature of 10°C (Piddyachiy et al., 2010; 2017). The radiometer was tested during
183 the 2014–2015 period for observation of the CO emission lines in the mesosphere over Kharkiv.
184 These tests proved the reliability of the receiver system, on which further details are provided
185 in Piddyachiy et al. (2017). Since 2015, the radiometer has been used for continuous
186 microwave measurements of CO profiles and mesosphere wind investigations. The first
187 observations of the atmospheric CO spectral lines over Kharkiv have confirmed seasonal
188 variations in the CO abundance (Piddyachiy et al., 2017). Operation of the MWR in a double-
189 sideband mode allows retrieval of wind speed from the Doppler shift of the CO line emission at
190 the 115.3 GHz. Two methods are used to determine wind speed. Firstly the observed line shape
191 is fitted by a Voigt profile and the center frequency is determined (Piddyachiy et al., 2017).
192 Secondly radiative transfer calculations for a horizontally layered atmosphere are used to
193 determine the wind profiles with the Qpack package, version 1.0.93 (Eriksson et al., 2005;
194 Eriksson et. al., 2011), which is specifically designed to work with the forward model of the
195 Atmospheric Radiative Transfer Simulator ARTS (Buehler et al., 2018;
196 <http://www.radiativetransfer.org/>). The results obtained by both methods were almost the same
197 within the error limits. In this paper, both methods were used and provided average values of
198 the zonal wind speed for altitudes of 70–85 km. The time interval of the data used here was
199 January 1 – March 31, 2018, which covers the main phases of the SSW 2018 event.

200

201

202 **2.2 Data from other sources**

203

204 In this study, daily datasets from ERA-Interim global atmospheric reanalysis of European
205 Centre for Medium-Range Weather Forecast (ECMWF; Dee et al., 2011) were downloaded
206 from ([https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/reanalysis-datasets/era-
207 interim](https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/reanalysis-datasets/era-interim)) and have been used for comparison with MWR observations. The ERA-Interim data
208 were used to create temperature and zonal wind velocity profiles and to calculate geopotential
209 height at the stratospheric pressure levels, in order to compare with the data measured over the

210 Kharkiv site. Aura Microwave Limb Sounder (MLS) measurements of the air temperature were
211 analyzed as well (Xu et al., 2009; <https://mls.jpl.nasa.gov/data/readers.php>; see details in the
212 Supplement).

213 Zonal wave amplitudes in geopotential height were analyzed using the National Oceanic and
214 Atmospheric Administration National Centers for Environmental Prediction, Global Data
215 Assimilation System–Climate Prediction Center (NOAA NCEP GDAS–CPC) data at
216 <https://www.cpc.ncep.noaa.gov/products/stratosphere/strat-trop/> and the MERRA-2 data from
217 the National Aeronautics and Space Administration Goddard Space Flight Center, Atmospheric
218 Chemistry and Dynamics Laboratory (NASA GFC ACDL) site at https://acd-ext.gsfc.nasa.gov/Data_services/met/ann_data.html. The detailed description of the data used
219 for analysis is given in the Supplement.

221

222

223

224

225

226 **3 Northern Hemisphere SSW effects**

227

228 Descending air masses are observed throughout the mesosphere and stratosphere of the winter
229 polar region (Orsolini et al., 2010; Chandran and Collins, 2014; Limpasuvan et al., 2016;
230 Zülicke et al., 2018). From Aura MLS vertical profiles, a layered descending sequence of
231 alternating cool and warm anomalies over the polar cap was observed in the 2017/2018 winter
232 (Fig. 2a). The SSW event in Fig. 2a is identified by the rapid warming in the stratosphere and
233 cooling in the mesosphere (upward arrow) starting from 10 February 2018 (left vertical line).

234 This event was preceded by progressively descending warm and cold anomalies that formed
235 in January (black and white dashed arrows, respectively). Oscillations in the intensity of the
236 anomalies indicate that they were formed under the influence of large amplitude planetary
237 waves of zonal wave numbers 1 and 2 (Fig. 2c–2e). From 1 January to 10 February (during 41
238 days), descending warm anomalies with a velocity $\sim 850 \text{ m}\cdot\text{day}^{-1}$ were apparent in the
239 mesosphere and the upper stratosphere (75 to 40 km; black dashed arrow in Fig. 2a). Below the
240 warm anomaly, a cold anomaly descended between the upper and lower stratosphere (45 to 20
241 km) with velocity $\sim 600 \text{ m}\cdot\text{day}^{-1}$ (white dashed arrow in Fig. 2a), while a cold mesospheric
242 anomaly in February–March descended with average velocity $\sim 750 \text{ m}\cdot\text{day}^{-1}$ (white dotted
243 arrow in Fig. 2a). Our velocity estimates are similar to those of Salmi et al. (2011) who found

244 that mesospheric NO_x anomalies during the major SSW 2009 were transported from 80 to 55
245 km in about 40 days, i.e. with velocity $\sim 600 \text{ m} \cdot \text{day}^{-1}$.

246 The splitting of the polar vortex (Fig. 1) and the zonal wind reversal (Fig. 2b) started at the
247 time of the wave 2 pulse on 10 February (Fig. 2d and dashed curve in Fig. 2e). Note that this is
248 close to the SSW timing in Rao et al. (2018) and Vargin and Kiryushov (2019), where the SSW
249 onset date was 11 February. As seen from Fig. 2c and solid curve in Fig. 2e, increasing wave 1
250 amplitude contributed to the destabilization of the polar vortex during January–early February
251 and to temperature and zonal wind oscillations in the mesosphere and stratosphere (Fig. 2a and
252 2b). These oscillations are usually associated with the propagation of planetary waves in the
253 stratosphere and mesosphere (Limpasuvan et al., 2016; Rüfenacht et al., 2016). As noted in an
254 earlier study (Manney et al., 2009; Rao et al., 2018), wave 1 amplitudes were also larger prior
255 to the SSW in 2009, suggesting a role of preconditioning. During 10–15 February, the easterly
256 zonal wind anomaly at the stratopause (about 1 hPa, ~ 50 km) increased to -60 m s^{-1} (Fig. 2b).
257 At the same time, warming in the polar stratosphere with the largest temperature anomaly of
258 about 20 K was observed between 25 and 45 km in the same time interval (upward arrow in
259 Fig. 2a). Both anomaly peaks are close in time to the wave 1 pulse after the SSW start (Fig. 2c
260 and 2e). The descending negative temperature anomaly in the mesosphere between 50 and 90
261 km persisted during and after the SSW and reached -15 K (dotted arrow in Fig. 2a).

263 4 The local SSW effects over the midlatitude station

265 4.1 CO variability

267 Local variability in the conditions of the atmosphere during the microwave measurements in
268 January–March 2018 at Kharkiv (50°N , 36°E) is shown in Figs. 3–6. The sharp changes
269 occurred in the 20-day interval from 10 February to 1 March coinciding with the SSW event
270 2018, as indicated by red vertical lines in Figs. 3, 5 and 6. At this time the polar vortex divided
271 into two parts producing two smaller vortices over the longitudinal sectors of North America
272 and Eurasia (Fig. 1). Due to the planetary wave influence (Fig. 2c–2e), the two sub-vortices
273 shifted zonally and meridionally, so that the SSW effects were observed not only in the polar
274 region but also in the middle latitudes (Fig. 4).

275 The CO molecule volume mixing ratio (VMR) near the mesopause at 75–80 km decreased
276 from 10 ppmv of background level to 4 ppmv on 19–21 February (Fig. 3a), when the sharp
277 vertical CO gradient at the lower edge of the CO layer near about 6 ppmv increased in height
278 by about 8 km (between 75 km and 83 km, thick part of the white curve in Fig. 3a). For

279 comparison, the pre- and post-SSW vertical variations of the 6-ppmv contour were observed in
280 a range 2–3 km (white curve in Fig. 3a). Moreover, similar variations in the zonal mean 6-
281 ppmv level are much weaker (yellow curve in Fig. 3e). This indicates that local and regional
282 mesosphere over the MWR site was disturbed by some source acted during the SSW, which is
283 identified below. We take here the 6-ppmv contour as a conditional lower edge of the CO layer
284 since the CO gradients sharply increase from 0.2–0.3 ppmv km^{-1} in a 10-km layer below to
285 0.6–0.8 ppmv km^{-1} in a 10-km layer above (below and above the white curve in Fig. 3a). The
286 similar gradient change is characteristic of the mesospheric CO profiles in boreal winter from
287 ground-based and satellite observations (Fig. 4 in Koo et al., 2017; Fig. 5 in Ryan et al., 2017).

288 The local mesospheric CO variability from the MWR observations over Kharkiv agrees
289 with regional one from the MLS data averaged over the adjacent area 47.5–52.5°N, 26–46°E
290 (Fig. 3b, the white curve for 6 ppmv). However, the zonal mean CO profiles in the same zone
291 do not show an anomalous decrease of the mesospheric CO during the SSW (yellow curve in
292 Fig. 3a, 3b and 3e).

293 The opposite tendency with the stratospheric CO abundance increase is observed from both
294 regional and zonal mean MLS data shortly after the SSW start (contour 0.1 ppmv in Fig. 3d and
295 3g, respectively). The CO-rich air of 0.1–0.5 ppmv, which is typical for the lower mesosphere
296 (Fig. 3c) descended up to about 30 km (Fig. 3d and 3g), far exceeding typical stratospheric CO
297 mixing ratios on the order of about 0.01–0.02 ppmv (Engel et al., 2006; Huret et al., 2006;
298 Funke et al. 2009). The CO-rich stratospheric anomaly is close in time to the wave 1 peak on
299 10–15 February (solid curve in Fig. 2e), that was observed through the stratosphere down to the
300 30 km altitude (Fig. 2c).

301 Horizontal distributions of the CO VMR in the Northern Hemisphere at the stratospheric
302 and mesospheric altitudes in Fig. 4 explain causes of the different CO variability by vertical in
303 Fig. 3. The dynamical deformation, elongation, and displacements relative to the pole of the
304 polar vortex lead to temporal shifts in the low and high CO amounts over the MWR site at
305 Kharkiv (white circle in Fig. 4). The tendency of the planetary wave westward tilt with altitude
306 (dashed lines in Fig. 4, see also Supplemental Figs. S1 and S2 for more details) also contributes
307 to relative zonal shift between the stratosphere and the mesosphere of the low/high CO over
308 Kharkiv.

309 The observed decrease of the local CO in the mesosphere during the SSW (white curve in
310 Fig. 3a) is consistent with the regional data from the satellite observations (white curve in Fig.
311 3b). The decrease is due to the displacement of the CO-rich air to the west relative to Kharkiv
312 (white circle and contours outlined the CO-rich area in Fig. 4a–4c and 4e–4g). This is a result
313 of the easterly domination during the SSW that led to placing of the CO-poor air over Kharkiv

314 with the lowest CO levels on 19–23 February (Fig. 4c and 4g) in correspondence with the
315 MWR (Fig. 3a) and MLS (Fig. 3b) measurements. Return to the westerly regime in early
316 March reversed the rotation of the vortex (2–6 March in Fig. 4d and 4h) and caused recovery of
317 high CO level over Kharkiv (since about 1st of March in Fig. 3a and 3b).

318 The polar vortex split influenced the local CO change in the middle stratosphere (Fig. 4m–
319 4o). The low CO level at ~30 km before the SSW start (Fig. 3d) is associated with the relatively
320 distant location of the CO-rich vortex from Kharkiv (Fig. 4m). The vortex split and easterly
321 circulation caused displacement of the small vortex fragment with the CO level higher than 0.1
322 ppmv to Kharkiv just at the SSW start (9–13 February in Fig. 4n) and corresponding sharp CO
323 increase over the Kharkiv region around 30-km altitude (contour 0.1 ppmv in a few days after
324 10 February in Fig. 3d). Vertical CO profiles in Fig. 3c and 3d show that downward penetration
325 of the mesospheric CO-rich air into the stratosphere took place around 10 February. As seen
326 from Fig. 4f, 4j, and 4n, the mesospheric CO-rich air appears to be contained inside the small
327 sub-vortex over Kharkiv. The large sub-vortex (Fig. 4n and 4o) contributed to the stratospheric
328 CO increase after 10 February in the zonal mean CO profile near 30 km (Fig. 3g). The two sub-
329 vortices in Fig. 4n and 4o provided a longer duration of the mesospheric intrusion in the zonal
330 mean (Fig. 3g) than a short-time influence of the single sub-vortex in regional data (Fig. 3d).

331 It should be noted that the lower edge of the mid-latitude CO-rich air descended in January
332 – mid-February (dashed lines in Fig. 3d and 3g) similarly to the temperature anomaly in the
333 polar region (Fig. 2a). Descent velocity was about -270 and -220 $\text{m}\cdot\text{day}^{-1}$ in the case of the
334 regional and zonal mean data, respectively. This is a few times lower than in the vortex region,
335 nevertheless, it is in the range of the winter descent velocity noted above (Ryan et al., 2018).

336 Note also that the vortex split in the CO distribution can be identified only in the middle
337 and upper stratosphere (Fig. 4n and 4o and Fig. S1j and S1k), but not at the stratopause level
338 (Fig. 4j and 4k) and in the mesosphere (Fig. S2, second and third columns for 9–13 and 19–23
339 February 2018, respectively).

340

341

342 **4.2 Zonal wind variability**

343

344 The reversal of the local zonal wind estimated from the CO measurements at the Kharkiv
345 MWR site **near** the mesopause region was observed. The averaged wind velocity in the altitude
346 range 70–85 km changed between 10 m s^{-1} and -10 m s^{-1} around 10 February (Fig. 5a). **Positive**
347 (**negative**) values are westerly (easterly) wind components. After the active phase of the SSW,
348 the zonal wind returns to the **westerly wind** and enhances to 20 m s^{-1} reaching the highest

349 velocity observed in January–March (Fig. 5a). This zonal wind peak in early March is
350 accompanied by the CO peak at 18 ppmv around 85 km that is also the highest CO abundance
351 over January–March (Fig. 3a). This is closely consistent with the MLS measurements at the 86-
352 km altitude: Kharkiv was located on the 16-ppmv contour in early March (2–6 March in Fig.
353 4d).

354 During the SSW event, local zonal wind over the station became easterly between the lower
355 stratosphere and lower mesosphere (-30 m s^{-1} up to -40 m s^{-1} , white contours in Fig. 5b). Note
356 that westerly zonal wind at the stratopause level ($\sim 50 \text{ km}$) in January 2018 (mid-winter, the
357 pre-SSW conditions) sometimes increased to more than 100 m s^{-1} (black contours in Fig. 5b).

358 The return of the local westerly wind in the upper mesosphere began in late February (Fig.
359 5a) and later, in early March, in the lower mesosphere–stratosphere (Fig. 5b). The longer
360 persistence of the westerly anomaly in the stratosphere than at the stratopause level is seen also
361 in the polar region (Fig. 2b). This is a manifestation of the downward migration of the
362 circulation anomalies in the SSW recovery phase, although a near-instantaneous vertical
363 coupling is observed at the SSW start on 10 February (Fig. 2a–2d and Fig. 5).

364

365

366 4.3 Temperature changes

367

368 The MLS temperature profiles show that high temperature variability over the Kharkiv region
369 concentrated at the stratopause level, particularly before and during the SSW 2018 (Fig. 6). As
370 known, the SSW events are accompanied by polar stratopause descent to 30–40 km, by
371 stratopause breakdown and subsequent reformation at very high altitudes of about 70–80 km
372 (Manney et al., 2009; Chandran et al., 2011; Limpasuvan et al., 2016; Orsolini et al., 2017).
373 The midlatitude stratopause exhibits less sharp, but significant oscillations between 40 and 50
374 km in January–first half of February 2018 (dotted curve in Fig. 6) and the highest temperature
375 near -5°C after the SSW start on 12–13 February. The short-time stratopause elevation to the
376 lower-mesospheric altitude $\sim 60 \text{ km}$ was observed near 20 February, i.e. close in time to the
377 maximum elevation of the 6-ppmv CO level in the mesosphere (Fig. 3a and 3b). Note that the
378 wave 1 and wave 2 (Fig. 2c–2e), and zonal wind (Fig. 5) do not demonstrate strong anomalies
379 this time. The post-SSW stratopause stabilized at the 50-km altitude and warmed from about
380 -20°C to -10°C (Fig. 6b).

381 Similarly to the CO profile in Fig. 3, the zonal mean temperature variability is much lower
382 above the stratopause than the regional one (Fig. 6b and 6a, respectively). The stratosphere

383 looks about equally disturbed in both regional and zonal mean characteristics (Fig. 3d and 3g
384 and Fig. 6a and 6b). This difference may be associated with the influence of the splitted (non-
385 splitted) polar vortex in the stratosphere (mesosphere). The vortex fragments introduce higher
386 local/regional and zonal mean variability in the stratosphere; whereas the vortex region is more
387 uniform in the mesosphere (Fig. 4). That results in the weaker zonal mean variability.

388 During the SSW, the regional stratospheric temperature in Fig. 6a was warmer by 10–15°C
389 in comparison with the pre- and post-SSW temperature. This is about two times lower warming
390 than in the polar region (Fig. 2a) and about three times lower than it is typically observed
391 during the SSWs (see Section 1). It should be noted that this warm stratospheric anomaly in
392 Fig. 6a (contour –55°C) rapidly descended between the upper and lower stratosphere (dashed
393 arrow) in about 10 days. A similar tendency is seen in Fig. 6b from the zonal mean (contour –
394 55°C) but with a descent within a few days (arrow). So, the SSW start in the midlatitude
395 stratosphere does not accompany by a near-instantaneous vertical coupling observed in the
396 polar region (Fig. 2a–2d). Midlatitude stratospheric warming in February 2018 occurred with
397 increasing time lag between the upper and lower stratosphere.

398 As is known, upward propagation of the tropospheric planetary waves into the stratosphere
399 is limited in the easterly zonal wind (Charney and Drazin, 1961). In the changed state of a
400 zonal flow, the critical line for planetary waves (zero wind line) in the polar region descents in
401 a few days that looks like downward propagation of an anomaly from above (Matsuno, 1971;
402 Zhou et al., 2002). Possibly, this process may be delayed in the midlatitude, as seen from Fig.
403 6.

404

405

406 **4.4 Influences of zonal wave 1 and wave 2**

407

408 Figure 7 shows time–longitude variations in the MLS temperature anomalies in the Kharkiv
409 zone 47.5–52.5°N with respect to the mean climatology 2005–2017. The mesospheric and
410 stratospheric levels during January–March 2018 (Fig. 7a–7c and Fig. 7d and 7e, respectively)
411 are presented. Dashed lines indicate a sharp change in the direction of zonal migration of the
412 temperature anomalies from eastward to westward around 10 February. This change coincides
413 with the reversal of the westerly to easterly at the SSW start (Fig. 2b and Fig. 5). Alternating
414 sequences of the positive and negative anomalies in Fig. 7 indicate the planetary wave ridges
415 and troughs migrating along the midlatitude zone.

In the lower–middle stratosphere (22 km in Fig. 7e, 24 and 30 km in Fig. S3h and S3i), the change in the anomaly migration direction is not as pronounced as at the upper levels. The slowly westward migrating positive anomaly is a wave 1 ridge that dominates in the eastern longitudes (black solid line in Fig. 7e and Fig. S3h–S3j). Note that the Kharkiv longitude 36°E (white line in Fig. 7 and Fig. S3) remains out of the wave 1 ridge during January–March. Wave 1 ridge weakens with altitude and wave 1 trough becomes deeper in the western upper stratosphere (Fig. 7d and Fig. S3e–S3g). The vertical wave transformation is accompanied by a westward tilt with altitude seen from the sequential westward shift of both wave 1 ridge and wave 1 trough (solid and dashed lines, respectively, in Fig. S3). This tendency is consistent with the upward propagation of the planetary waves.

Migrating anomalies weaken rapidly after the SSW (to the right of the red vertical line on 1st of March in Fig. 7) as a result of the general decrease in wave activity (Fig. 2e). The results of Fig. 7 and Fig. S3 suggest modification of the zonal wave spectra in time and altitude and Fig. 8 and Fig. 9 present the zonal wave spectra in the lower–middle stratosphere and upper stratosphere–mesosphere, respectively. Figure 8 shows spectra at three levels: 23, 27 and 31 km (lower, middle and upper panel, respectively).

It is seen that short periods <5 days are not statistically significant at these altitudes. Eastward wave 1 exhibit a maximum variance at 10–30 day periods (red curve in Fig. 8d–8f). Westward wave 1 and eastward wave 2 (black and blue curves in Fig. 8d–8f) do not show clear periodicity peak and tend to be more intense at the longest periods, i.e. to be quasi-stationary. This is confirmed by spectra in Fig. 8g–8i. Westward wave 1 apparent from Fig. 8a–8c (black solid line along the wave ridge) is of highest spectral power in Fig. 8d–8f (black curve) and in Fig. 8g–8i (the black vertical line at wave number –1).

To examine the wave spectrum difference in the upper stratosphere–mesosphere before and after the SSW start that is suggested by Fig. 7, the two 40-day time intervals are compared in Fig. 9. These are 20 December–10 February and 10 February–31 March for the intervals of pre- and post SSW initial date, respectively. It is seen from Fig. 9a–9e (Fig. 9f–9j) that eastward (westward) wave 1 demonstrates maximum spectral signal before (after) the SSW start. Transition from eastward to westward propagated wave 1 is seen also from the wave number spectra in Fig. 9k–9o and Fig. 9p–9t, respectively. If the short and long periods (<5 days and >5 days) are present in the first interval, then the periods longer than 10 days dominate in the second interval (Fig. 9k–9o and Fig. 9p–9t, respectively).

The role of wave 1 and wave 2 in the SSW preconditioning and development is known from many studies (Matsuno, 1971; Charlton et al., 2007; Manney et al., 2009; Yuan et al., 2012; Limpasuvan et al., 2016; Rao et al., 2018). Our spectral analysis (Fig. 8 and Fig. 9)

451 reveals the changes in the wave spectra associated with the SSW onset and their altitudinal
452 dependence.

453

454

455 **5 Discussion**

456

457 The observations of the major SSW effects in February 2018 in the NH midlatitude mesosphere
458 by microwave radiometer at the Kharkiv site, Northern Ukraine (50.0°N, 36.3°E), have been
459 provided. The CO altitude profiles in the mesosphere have been measured by the MWR with
460 one-day time resolution. Using the CO molecule as a tracer, the wind speed has been retrieved
461 from the Doppler shift of the CO 115.3 GHz emission and the mesospheric winds reverse from
462 westerly to easterly below the winter mesopause region (70–85 km) has been detected. A few
463 ground-based observations in the mesosphere by the same method have been undertaken at
464 midlatitudes (Sect. 1). The zonal wind and CO profile variability during the major SSW were
465 compared with the daily zonal wind, temperature, zonal wave 1/wave 2 and geopotential height
466 datasets from the MLS data, the ERA-Interim, and MERRA-2 reanalyses. The SSW started
467 with the polar vortex split around 10 February (Fig. 1), zonal wind reverse in the mesosphere
468 and stratosphere (Fig. 2b and Fig. 5) and enhanced stratosphere warming and mesosphere
469 cooling (Fig. 2a).

470 Among the most striking SSW manifestations over the midlatitude station in February
471 2018, there were (i) zonal wind reversal throughout the mesosphere–stratosphere, (ii)
472 oscillations in the vertical profiles of CO, zonal wind and temperature, (iii) descent of the
473 stratospheric CO and temperature anomalies on the time scale of days to months, (iv) change
474 from the eastward to westward wave 1 around the starting date of the SSW and (v) strong
475 mesospheric CO and westerly peaks at the start of the SSW recovery phase. The midlatitude
476 SSW effects are known from many event analyses and in most cases they are associated with
477 zonal asymmetry and polar vortex split and displacements relative to the pole (Solomon et al.,
478 1985; Allen et al., 1999; Yuan et al., 2012; Chandran and Collins, 2014). Our results show that
479 the local midlatitude atmosphere variability in the SSW 2018 combines both the large-scale
480 changes in the zonal circulation and temperature typical for the SSWs and the altitude-
481 dependent planetary wave patterns and their evolution in the individual vortex split event.

482

483

484 **5.1 Wave patterns and CO level**

485

486 As noted in Sect. 1, CO abundance in the extratropical mesosphere [increases with latitude](#)
487 [toward the winter pole](#) due to meridional transport. CO accumulation results in the formation of
488 the CO layer with the sharp vertical gradient at its lower edge (Solomon et al., 1985; Shepherd
489 et al., 2014). [The horizontal CO gradient at the polar vortex edge also exists and the vortex split](#)
490 [and displacement of the pole associated with the SSW cause significant CO variability at the](#)
491 [NH midlatitudes \(Solomon et al., 1985; Allen et al., 1999; Funke et al., 2009; Shepherd et al.,](#)
492 [2014\).](#)

493 In Sect. 4a, based on the [MWR](#) observations, we have defined the lower CO edge at 6 ppmv
494 and this edge uplifted during the SSW by about 8 km (between 75 km and 83 km, thick part of
495 the white curve in Fig. 3a). This uplifting noticeably stands out against the pre- and post-SSW
496 variations of the 6-ppmv level occurring within 2–3 km (Fig. 4a). [The MLS CO measurements](#)
497 [show similar variations in the 6-ppmv level over the Kharkiv region \(white curve in Fig. 3b\)](#)
498 [and their absence in the corresponding zonal mean \(yellow curve in Fig. 3a, 3b, and 3e\).](#)

499 Mesospheric CO profile uplifting is usually associated with the stratopause elevation
500 during the SSW, when air, poor in CO, enters the mesospheric CO layer from below (Kvissel et
501 al., 2012; Shepherd et al., 2014). Similar ascending motions in the stratopause and mesopause
502 regions were observed in the 2013 SSW from nitric oxide (NO) and showed that the NO
503 contours deflected upwards throughout the mesosphere (Orsolini et al., 2017). [Our analysis](#)
504 [reveals that the local CO profile variations during the SSW 2018 were closely associated with](#)
505 [the changes in the planetary wave patterns in the mesosphere.](#)

506 The MLS CO distribution demonstrates how deformation, elongation (wave 2 effect) and
507 rotation of the CO-rich polar area influence the local CO level over Kharkiv (white circle with
508 respect to the CO contours in Fig. 4a–4h and Fig. S1). The highest elevation of the 6-ppmv CO
509 level in Fig. 3a and 3b corresponds to the lowest CO level over Kharkiv on 19–23 February,
510 when the most distant displacement of the CO contours 16 ppmv and 6 ppmv off the Kharkiv
511 location was observed (Fig. 4c and 4g, respectively; see also the third column in Fig. S1). As
512 known, the strong vertical CO gradient in the winter mesosphere is found at the higher altitudes
513 in the tropics than in the extratropics (Solomon et al., 1985; Allen et al., 1999; Garcia et al.,
514 2014). Then, poleward displacement of the low-latitude air masses is accompanied by the CO
515 abundance decrease and vertical CO gradient elevation at the middle latitudes, as it is observed
516 in Fig. 3a and 3b. A similar effect [related to the wave 1 influence](#) was observed during the
517 2003–2004 Arctic warming (Funke et al., 2009): the vortex has shifted from the pole toward
518 the western sector and mid-latitude air poor in CO filled the eastern sector (0–90°E) over 50–
519 80°N and even over the pole.

520 The results of Fig. 4 and Fig. S1 show that meridional displacements of the low-latitude,
521 CO-poor mesospheric air to the Kharkiv region occurred under the planetary wave influence
522 and caused the local CO profile variations in the SSW 2018 (Fig. 3a and 3b). These results,
523 thus, confirm that latitudinal displacements due to wave effects may dramatically affect the
524 local densities of the atmospheric species (Solomon et al., 1985). Figure 6a demonstrates that
525 the local stratopause elevation in February 2018 to about 60 km was relatively small in
526 comparison with the elevation that is characteristic for the polar region, up to 70–80 km
527 (Chandran et al., 2011; Tomikawa et al., 2012; Limpasuvan et al., 2016; Orsolini et al., 2010,
528 2017). No significant stratopause elevation was observed in the zonal mean for 47.5–52.5°N
529 (Fig. 6b). Therefore, the meridional (poleward) and zonal displacements of the CO-rich air
530 masses enclosed within the polar vortex (Solomon et al., 1985; Allen et al., 1999; Funke et al.,
531 2009) rather than stratopause elevation (Kvissel et al., 2012; Shepherd et al., 2014) may be
532 dominant cause of the CO profile uplift observed in the NH midlatitudes during the SSW 2018.

533 In March 2018, after the SSW, vertical CO profile has been re-established (Fig. 3a and 3b)
534 according to the recovery phase following the SSW (Shepherd et al., 2014; Limpasuvan et al.,
535 2016). **In the MWR data, the SSW recovery phase in the mesosphere in early March** started
536 with the short-term but anomalously high peaks in the local CO (Fig. 3a) and westerly wind
537 (Fig. 5a). These peaks reached the highest values in daily variations of CO and zonal wind over
538 the three months of the observations (January–March). **By analogy with the low-CO episode in**
539 **February discussed above, the high-CO peak in early March 2018 caused by change in the**
540 **vortex shape and return of the CO-rich vortex edge region to the Kharkiv location (compare 2–**
541 **6 March in Fig. 4d and 4h with 19–23 February in Fig. 4c and 4g; see also the same dates in**
542 **Fig. S2).**

543 Wind measurements using the CO layer provides a further means to evaluate the validity of
544 the modeled winds. Furthermore, by combining the measurements with ray tracing of gravity
545 wave propagation (e.g. Kogure et al., 2018), this type of measurement may provide particular
546 insights into wave-mean flow interactions, particularly where local temperature inversions alter
547 gravity wave filtering (Hocke et al., 2018; Fritts et al., 2018).

548

549

550

551

552

553 **5.2 Descent of the midlatitude stratospheric anomalies**

554

555 Alternating altitudinal sequence of warm and cool anomalies progressively descended through
556 the mesosphere and stratosphere of the polar region was observed in January–March 2018 (Fig.
557 2a) in consistency with many observations (Zhou et al., 2002; Orsolini et al., 2010; Shepherd et
558 al., 2014; de Wit et al., 2014; Zülicke et al., 2018). The warm anomaly sharply intensified in
559 the stratosphere between 20 and 50 km with simultaneous strong cooling in the mesosphere in
560 the active phase of SSW since 10 February (vertical arrow in Fig. 2a). Unlike this, the
561 midlatitude temperature anomalies do not show the similar vertical arrangement and regular
562 descent with respect to the same mean climatology 2005–2017 (Fig. S4).

563 During the SSW of 2018, the upper (lower) stratosphere over the Kharkiv region was cooler
564 (warmer) up to 20°C (10°C) than climatological mean with stepwise descent relative to the pre-
565 SSW one (Fig. S4a). However, excluding unstable anomalies at different altitudes, the air
566 temperature through the mesosphere and stratosphere was close to the climatology during most
567 of the time in January–March 2018 (light blue in Fig. S4a). The zonal mean temperature
568 anomalies show steady warming of the air in the stratosphere and lower mesosphere and
569 distinct tendency for the anomaly to descend between about 40 km and 20 km during the SSW
570 (20 days, $\sim -1 \text{ km}\cdot\text{day}^{-1}$). It could be concluded that the temperature anomaly profile observed
571 in the NH midlatitudes may vary in time depending on the observing location and individual
572 SSW event and, thus, differ from climatologically warm (cold) stratospheric (mesospheric)
573 anomaly typical for the SSWs in the NH polar region (e.g. Chandran and Collins, 2014; their
574 Fig. 1g).

575 The CO profiles in Fig. 3 demonstrate opposite tendencies in the vertical shift of the CO-
576 rich air in the NH midlatitudes. The CO descent in the stratosphere occurred during January–
577 February with velocities of about 270 and 220 $\text{m}\cdot\text{day}^{-1}$ in a case of the regional and zonal mean
578 data, respectively (Fig. 3d and 3g). In general, this is in a range of the winter descent velocities
579 observed in the polar vortex (Funke et al., 2009; Salmi et al., 2011; Ryan et al., 2018),
580 however, a few times lower than in the polar vortex in the winter 2017–2018 (Fig. 2a). The
581 deepest penetration of the mesospheric CO levels (0.1–0.5 ppmv) to ~ 30 km was observed
582 immediately after the SSW onset (Fig. 3d and 3g). Although this coincides with the peaks in
583 the wave 1 and wave 2 amplitudes (Fig. 2e), the main reason in the CO increase in the
584 stratosphere over Kharkiv is the location of the small sub-vortex of the splitted polar vortex (9–
585 13 February, Fig. 4n).

586 The MLS CO maps in Fig. 4 show that the high CO amount is concentrated inside the polar
587 vortex and its fragments after splitting. This is a result of meridional and downward transport of
588 CO that is strongest in the winter polar vortex (Rinsland et al., 1999; Manney et al., 2009;

589 Kvissel et al., 2012; Shepherd et al., 2014). Before (4–8 February), during (19–23 February)
590 and after (2–6 March) the SSW, Kharkiv was outside the stratospheric vortex/sub-vortices edge
591 (Fig. 4m, 4o and 4p, respectively) and the CO amount was at low level typical for the
592 midlatitude stratosphere (of about 0.01–0.02 ppmv; Engel et al., 2006; Huret et al., 2006; Funke
593 et al. 2009). Descent of the 0.1-ppmv contour marked by dashed lines in Fig. 3d and 3g is
594 observed due to the episodic shift of the vortex edge toward the Kharkiv region or to the
595 corresponding zone 47.5–52.5°N, respectively.

596 Figure 4 demonstrates that the CO amount inside the polar vortex or its fragments is much
597 higher than in the surrounding area not only in the mesosphere but also in the stratosphere. This
598 leads to the possibility of the enhanced CO appearance even in the stratosphere at about 25–30
599 km (Engel et al., 2006; Huret et al., 2006; Funke et al., 2009). By analogy, the vortex edge shift
600 beyond the Kharkiv region (Fig 4c and 4g) resulted in lowering of the regional CO mixing
601 ratios in the mesosphere consistent to both ground-based and satellite observations (Fig. 3a and
602 3b, respectively). Meridional structure of the mesospheric CO (Sect. 1) provided the uplift of
603 the 6-ppmv level during the SSW relative to pre- and post-SSW levels (Fig. 3a and 3b).

604

605

606 **5.3 Wave spectrum changes**

607

608 As known, amplified wave 1 and wave 2 are dominant zonal wave numbers in the stratosphere
609 and mesosphere that precede the SSW and cause zonal wind reversal and polar vortex
610 displacement off the pole (wave 1) or vortex split (wave 2) at the start and during the SSW
611 (Matsuno, 1971; Charlton et al., 2007; Manney et al., 2009; Yuan et al., 2012; Limpasuvan et
612 al., 2016). Variations in the wave amplitudes (Fig. 2e) are a possible cause of the oscillations in
613 CO, zonal wind and temperature described in Sect. 4. In addition to variability in the anomaly
614 intensity, the character of the zonal circulation is under the wave influence on the different
615 SSW phase (Sect. 4.2). Particularly, the spectral composition of the waves is reflected in the
616 temperature anomaly zonal migration (Sect. 4.4) to which less attention was given in the earlier
617 studies. Clear change from eastward to westward anomaly propagation is seen in the upper
618 stratosphere–mesosphere at the SSW initial date, 10 February 2018 (Fig. 7 and Fig. S3) and it
619 coincides with the zonal wind reversal from westerly to easterly (Fig. 2b and Fig. 5).
620 Corresponding changes occurred in the wave spectra (Fig. 9) with prevailing eastward
621 (westward) wave 1 before (after) 10 February.

622 The simulations made by Limpasuvan et al. (2016) show that the westward propagating
623 planetary wave 1 forcing dominates above 70 km in the winter hemisphere with the SSW onset.

624 Since upward planetary wave propagation is limited in the easterly zonal flow (Charney and
625 Drazin, 1961), the presence of in situ forced planetary waves around the SSW onset due to the
626 jet instability in the underlying polar mesosphere is discussed (Limpasuvan et al., 2016, and
627 references herein). Limpasuvan et al. (2016) have shown that spectral power of the westward
628 wave 1 increases around the SSW onset also in the 40–60 km layer (their Fig. 10b) and this
629 effect may be caused by unstable westward polar jet below 80 km. The results of Section 4.4
630 (Fig. 9) suggest that some kind of instability and westward wave forcing down to the upper
631 stratosphere is possible in the midlatitudes. This possibility needs to be examined in the
632 simulations.

633

634

635 **6 Conclusions**

636

637 The impact of a major sudden stratospheric warming (SSW) in February 2018 on the mid-
638 latitude mesosphere was investigated using microwave radiometer measurements in Kharkiv,
639 Ukraine (50.0°N, 36.3°E). The zonal wind reversal has been revealed below the winter
640 mesopause region at 70–85 km altitudes during the SSW using the CO profiles. The reverse of
641 the mesospheric westerly from about 10 m s^{-1} to easterly wind about -10 m s^{-1} around 10
642 February has been [documented](#). The data from the ERA-Interim and [MERRA-2](#) reanalyses and
643 the Aura MLS temperature profiles have been used for the analysis of stratosphere–mesosphere
644 behavior under the SSW conditions. Our local microwave observations in the NH midlatitude
645 combined with the reanalysis data show wide ranges of daily variability in CO, zonal wind [and](#)
646 temperature in the mesosphere and stratosphere during the SSW 2018.

647 Among the most striking SSW manifestations over the midlatitude station in February
648 2018, there were (i) zonal wind reversal throughout the mesosphere–stratosphere, (ii)
649 oscillations in the [vertical profiles of CO](#), zonal wind and [temperature](#), (iii) [descent of the](#)
650 stratospheric CO and temperature anomalies on the time scale of days to months, (iv) wave 2
651 peak at the vortex split date and change from the eastward to westward wave 1 during the SSW
652 and (v) strong mesospheric CO and westerly peaks at the start of the SSW recovery phase.
653 [Generally, the midlatitude SSW effects are known from many event analyses and in most cases](#)
654 [they are associated with zonal asymmetry and polar vortex split and displacements relative to](#)
655 [the pole \(Solomon et al., 1985; Allen et al., 1999; Yuan et al., 2012; Chandran and Collins,](#)
656 [2014\).](#) From our results, the local midlatitude atmosphere variability in the SSW 2018 combine
657 both the large-scale changes in the zonal circulation and temperature typical for the SSWs and

658 local evolution of the altitude-dependent planetary wave patterns in the individual vortex split
659 event.

660 The observed local CO variability can be explained mainly by horizontal air mass
661 redistribution due to planetary wave activity with the replacement of the CO-rich air by CO-
662 poor air and vice versa, in agreement with other studies. The MLS CO fields show that the CO-
663 rich air masses are enclosed within the polar vortex. Horizontal (meridional and zonal)
664 displacements of the edge of the vortex or vortex fragments relative to the ground-based
665 midlatitude station may be a dominant cause of the observed CO profile variations during the
666 SSW 2018. The small sub-vortex located over the station at the SSW start caused the
667 appearance of the enhanced CO level not only in the mesosphere but also in the stratosphere at
668 about 30 km. This indicates that the polar vortex contains the CO-rich air masses with much
669 higher CO amount than in the surrounding area and this takes place over the stratosphere-
670 mesosphere altitude range.

671 Microwave observations show that sharp altitudinal CO gradient below the mesopause
672 could be used to define the lower edge of the CO layer and to evaluate oscillation and
673 significant elevation of the lower CO edge during the SSW and its trend on a seasonal time
674 scale. The presented results of microwave measurements of CO and zonal wind in the
675 midlatitude mesosphere at 70–85 km altitudes, which is still not adequately covered by ground-
676 based observations (Hagen et al., 2018; Rüfenacht et al., 2018), are suitable for evaluating and
677 potentially improving atmospheric models. Simulations show that planetary wave forcing by
678 westward propagating wave 1 dominates between 40 and 80 km in the winter polar region
679 during the SSW (Limpasuvan et al., 2016). Our spectral analysis reveals that the westward
680 wave 1 during the SSW 2018 is a dominant wave component through the midlatitude upper
681 stratosphere–mesosphere. Instability of the westward polar jet suggested in previous studies
682 (e.g. Limpasuvan et al., 2016) should be analyzed in the context of the westward wave 1
683 generation in the midlatitude upper stratosphere–mesosphere.

684 Our observation of variability of the CO layer during the SSW deserves further study,
685 particularly in relation to the implications for modelling of wave dynamics and vertical
686 coupling (Ern et al., 2016; Martineau et al., 2018) and chemical processes (Garcia et al., 2014)
687 in the mesosphere.

688
689
690 *Conflict of Interest.* The authors declare that the research was conducted in the absence of any
691 commercial or financial relationships that could be construed as a potential conflict of interest.

693 *Author contributions.* GM coordinated and led the efforts for this manuscript. VS initiated the
694 microwave measurements during the SSW event in Kharkiv. VS, DS, VM and AA developed
695 equipment and provided microwave measurements with data processing by AP and DS. GM,
696 VS, YW, OE, AK, and AG analyzed the results and provided interpretation. GM, OE, AK, VS,
697 and WH wrote the paper with input from all authors.

698

699

700 *Acknowledgments.* This work was supported in part by the Institute of Radio Astronomy of the
701 National Academy of Sciences of Ukraine; by Taras Shevchenko National University of Kyiv,
702 project 19BF051-08; by the College of Physics, International Center of Future Science, Jilin
703 University, China. The microwave radiometer data have been processed using ARTS and
704 Qpack software packages (<http://www.radiativetransfer.org/>). Daily datasets from ERA-Interim
705 reanalysis of European Centre for Medium-Range Weather Forecast (ECMWF) were
706 downloaded from <https://www.ecmwf.int/en/forecasts/datasets/archive-datasets/reanalysis-datasets/era-interim>. The Aura Microwave Limb Sounder (MLS) measurements of air
707 temperature and CO were obtained from <https://mls.jpl.nasa.gov/data/readers.php>. **Zonal waves**
708 were analyzed using the National Oceanic and Atmospheric Administration National Centers
709 for Environmental Prediction, Global Data Assimilation System–Climate Prediction Center
710 (NOAA NCEP GDAS–CPC) data at
711 <https://www.cpc.ncep.noaa.gov/products/stratosphere/strat-trop/> and the MERRA-2 data from
712 the National Aeronautics and Space Administration Goddard Space Flight Center, Atmospheric
713 Chemistry and Dynamics Laboratory (NASA GFC ACDL) site at https://acd-ext.gsfc.nasa.gov/Data_services/met/ann_data.html. Authors thank the two anonymous
714 reviewers for their valuable comments and useful suggestions.

715

716

717 718 719 **References**

720

721 Alexander, S. P. and Shepherd, M. G.: Planetary wave activity in the polar lower stratosphere,
722 *Atmos. Chem. Phys.*, 10, 707–718, <https://doi.org/10.5194/acp-10-707-2010>, 2010.

723 Allen, D. R., Stanford, J. L., López-Valverde, M. A., Nakamura, N., Lary, D. J., Douglass, A.
724 R., Cerniglia, M. C., Remedios, J. J., and Taylor F. W.: Observations of middle atmosphere
725 CO from the UARS ISAMS during the early northern winter 1991/92, *J. Atmos. Sci.*, 56,
726 563–583, 1999.

727 Baldwin, M. P. and Dunkerton, T. J.: Stratospheric harbingers of anomalous weather regimes,
728 *Science*, 294, 581–584, doi:10.1126/science.1063315, 2001.

729 Buehler, S. A., Mendrok, J., Eriksson, P., Perrin, A., Larsson, R., and Lemke, O.: ARTS, the
730 atmospheric radiative transfer simulator – version 2.2, the planetary toolbox edition,
731 *Geosci. Model Dev.*, 11, 1537–1556, doi:10.5194/gmd-11-1537-2018, 2018.

732 Butler, A. H. and Gerber, E. P. Optimizing the definition of a sudden stratospheric warming,
733 *J. Climate*, 31, 2337–2344, doi:10.1175/JCLI-D-17-0648.1, 2018.

734 Butler, A. H., Seidel, D. J., Hardiman, S. C., Butchart, N., Birner, T., and Match, A.: Defining
735 sudden stratospheric warmings, *Bull. Amer. Meteor. Soc.*, 96, 1913–1928,
736 doi:10.1175/bams-d-13-00173.1, 2015.

737 Butler, A. H., Sjoberg, J. P., Seidel, D. J., and Rosenlof, K. H.: A sudden stratospheric warming
738 compendium, *Earth Syst. Sci. Data*, 9, 63–76, doi:10.5194/essd-9-63-2017, 2017.

739 Chandran, A. and Collins, R. L.: Stratospheric sudden warming effects on winds and
740 temperature in the middle atmosphere at middle and low latitudes: a study using WACCM,
741 *Ann. Geophys.*, 32, 859–874, doi:10.5194/angeo-32-859-2014, 2014.

742 Chandran, A., Collins, R. L., Garcia, R. R., and Marsh, D. R.: A case study of an elevated
743 stratopause generated in the Whole Atmosphere Community Climate Model, *Geophys. Res.*
744 *Lett.*, 38, L08804, doi:10.1029/2010GL046566, 2011.

745 Charlton, A. J. and Polvani, L. M.: A new look at stratospheric sudden warmings. Part I:
746 *Climatology and modeling benchmarks*. *J. Climate*, 20, 449–469, 2007.

747 Charney, J. G. and Drazin, P. G.: Propagation of planetary-scale disturbances from the lower
748 into the upper atmosphere, *J. Geophys. Res.*, 66, 83–109, doi:10.1029/JZ066i001p00083,
749 1961.

750 Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U.,
751 Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg,
752 L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger,
753 L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
754 Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B. K., Peubey,
755 C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis:
756 configuration and performance of the data assimilation system, *Q. J. Roy. Meteor. Soc.*,
757 137, 553–597, doi:10.1002/qj.828, 2011.

758 de la Torre, L., Garcia, R. R., Barriopedro, D., and Chandran, A.: Climatology and
759 characteristics of stratospheric sudden warmings in the Whole Atmosphere Community
760 Climate Model, *J. Geophys. Res.*, 117, D04110, doi:10.1029/2011JD016840, 2012.

761 de Wit, R. J., Hibbins, R. E., Espy, P. J., Orsolini, Y. J., Limpasuvan, V., and Kinnison, D. E.:
762 Observations of gravity wave forcing of the mesopause region during the January 2013
763 major Sudden Stratospheric Warming, *Geophys. Res. Lett.*, 41, 4745–4752,
764 doi:10.1002/2014GL060501, 2014.

765 Di Biagio, C., Muscari, G., di Sarra, A., de Zafra, R. L., Eriksen, P., Fiocco, G., Fiorucci, I.,
766 and Fuà, D.: Evolution of temperature, O₃, CO, and N₂O profiles during the exceptional
767 2009 Arctic major stratospheric warming as observed by lidar and millimeter wave
768 spectroscopy at Thule (76.5N, 68.8W), Greenland, *J. Geophys. Res.*, 115, D24315,
769 doi:10.1029/2010JD014070, 2010.

770 Engel, A., Möbius, T., Haase, H.-P., Bönisch, H., Wetter, T., Schmidt, U., Levin, I.,
771 Reddmann, T., Oelhaf, H., Wetzel, G., Grunow, K., Huret, N., and Pirre, M.: Observation
772 of mesospheric air inside the arctic stratospheric polar vortex in early 2003, *Atmos. Chem.*
773 *Phys.*, 6, 267–282, doi:10.5194/acp-6-267-2006, 2006.

774 Eriksson, P., Buehler, S. A., Davis, C. P., Emde, C., and Lemke, O.: ARTS, the atmospheric
775 radiative transfer simulator, version 2, *J. Quant. Spectrosc. Radiat. Transfer*, 112, 1551–
776 1558, doi: 10.1016/j.jqsrt.2011.03.001, 2011.

777 Eriksson, P., Jiménez, C., and Buehler, S. A.: Qpack, a tool for instrument simulation and
778 retrieval work, *J. Quant. Spectrosc. Radiat. Transfer*, 91, 47–64, doi:
779 10.1016/j.jqsrt.2004.05.050, 2005.

780 Ern, M., Trinh, Q. T., Kaufmann, M., Krisch, I., Preusse, P., UngermaNN, J., Zhu, Y., Gille, J.
781 C., Mlynczak, M. G., Russell III, J. M., Schwartz, M. J., and Riese, M.: Satellite
782 observations of middle atmosphere gravity wave absolute momentum flux and of its
783 vertical gradient during recent stratospheric warmings, *Atmos. Chem. Phys.*, 16, 9983–
784 10019, <https://doi.org/10.5194/acp-16-9983-2016>, 2016.

785 Feng, W., Kaifler, B., Marsh, D. R., Höffner, J., Hoppe, U.-P., Williams, B. P., and Plane J. M.
786 C.: Impacts of a sudden stratospheric warming on the mesospheric metal layers, *J. Atmos.*
787 *Solar-Terr. Phys.*, 162, 162–171, 2017.

788 Forkman, P., Christensen, O. M., Eriksson, P., Urban, J., and Funke, B.: Six years of
789 mesospheric CO estimated from ground-based frequency-switched microwave radiometry
790 at 57° N compared with satellite instruments, *Atmos. Meas. Tech.*, 5, 2827–2841, doi:
791 10.5194/amt-5-2827-2012, 2012.

792 Forkman, P., Christensen, O. M., Eriksson, P., Billade, B., Vassilev, V., and Shulga, V. M.: A
793 compact receiver system for simultaneous measurements of mesospheric CO and O₃,
794 *Geosci. Instrum. Method. Data Syst.*, 5, 27–44, doi:10.5194/gi-5-27-2016, 2016.

795 Fritts, D. C., Laughman, B., Wang, L., Lund, T. S., and Collins, R. L.: Gravity wave dynamics
796 in a mesospheric inversion layer: 1. Reflection, trapping, and instability dynamics. *J.*
797 *Geophys. Res.-Atmos.*, 123, 626–648, <https://doi.org/10.1002/2017JD027440>, 2018.

798 Funke, B., López-Puertas, M., García-Comas, M., Stiller, G. P., von Clarmann, T., Höpfner, M.,
799 Glatthor, N., Grabowski, U., Kellmann, S., and Linden, A.: Carbon monoxide distributions
800 from the upper troposphere to the mesosphere inferred from 4.7 μ m non-local thermal
801 equilibrium emissions measured by MIPAS on Envisat, *Atmos. Chem. Phys.*, 9, 2387–2411,
802 <https://doi.org/10.5194/acp-9-2387-2009>, 2009.

803 García, R. R., López-Puertas, M., Funke, B., Marsh, D. R., Kinnison, D. E., Smith, A. K., and
804 González-Galindo, F.: On the distribution of CO₂ and CO in the mesosphere and lower
805 thermosphere, *J. Geophys. Res.-Atmos.*, 119, 5700–5718, doi:10.1002/2013JD021208,
806 2014.

807 Gardner, C. S.: Role of wave induced diffusion and energy flux in the vertical transport of
808 atmospheric constituents in the mesopause region, *J. Geophys. Res.-Atmos.*, 123, 6581–
809 6604, <https://doi.org/10.1029/2018JD028359>, 2018.

810 Goldsmith, P. F., Litvak, M. M., Plambeck, R. L., and Williams, D. R.: Carbon monoxide
811 mixing ratios in the mesosphere derived from ground-based microwave measurements, *J.*
812 *Geophys. Res.*, 84, 416–418, 1979.

813 Hagen, J., Murk, A., Rüfenacht, R., Khaykin, S., Hauchecorne, A., and Kämpfer, N.: WIRA-C:
814 a compact 142-GHz-radiometer for continuous middle-atmospheric wind measurements.
815 *Atmos. Meas. Tech.*, 11, 5007–5024, doi: 10.5194/amt-11-5007-2018, 2018.

816 Hocke, K., Lainer, M., Bernet, L., and Kämpfer, N.: Mesospheric inversion layers at mid-
817 latitudes and coincident changes of ozone, water vapour and horizontal wind in the Middle
818 Atmosphere. *Atmosphere*, 9, 171, <https://doi.org/10.3390/atmos9050171>, 2018.

819 Hoffmann, C. G., Raffalski, U., Palm, M., Funke, B., Golchert, S. H. W., Hochschild, G., and
820 Notholt, J.: Observation of strato-mesospheric CO above Kiruna with ground-based
821 microwave radiometry – retrieval and satellite comparison, *Atmos. Meas. Tech.*, 4, 2389–
822 2408, <https://doi.org/10.5194/amt-4-2389-2011>, 2011.

823 Hu, J., Ren, R., and Xu, H.: Occurrence of winter stratospheric sudden warming events and the
824 seasonal timing of spring stratospheric final warming, *J. Atmos. Sci.*, 71, 2319–2334,
825 doi:10.1175/JAS-D-13-0349.1, 2014.

826 Huret, N., Pirre, M., Hauchecorne, A., Robert, C., and Catoire V.: On the vertical structure of
827 the stratosphere at midlatitudes during the first stage of the polar vortex formation and in
828 the polar region in the presence of a large mesospheric descent, *J. Geophys. Res.*, 111,
829 D06111, doi:10.1029/2005JD006102, 2006.

830 Karpechko, A. Yu., Charlton-Perez, A., Balmaseda, M., Tyrrell, N., and Vitart, F.: Predicting
831 sudden stratospheric warming 2018 and its climate impacts with a multimodel ensemble,
832 *Geophys. Res. Lett.*, **24**, 13538–13546, <https://doi.org/10.1029/2018GL081091>, 2018.

833 Keuer, D., Hoffmann, P., Singer, W., and Bremer, J.: Long-term variations of the mesospheric
834 wind field at mid-latitudes, *Ann. Geophys.*, **25**, 1779–1790, doi:10.5194/angeo-25-1779-
835 2007, 2007.

836 Kogure, M., Nakamura, T., Ejiri, M. K., Nishiyama, T., Tomikawa, Y., and Tsutsumi, M.:
837 Effects of horizontal wind structure on a gravity wave event in the middle atmosphere over
838 Syowa (69°S, 40°E), the Antarctic, *Geophys. Res. Lett.*, **45**, 5151–5157.
839 <https://doi.org/10.1029/2018GL078264>, 2018.

840 Koo, J.-H., Walker, K. A., Jones, A., Sheese, P. E., Boone, C. D., Bernath, P. F., and Manney,
841 G. L.: Global climatology based on the ACE-FTS version 3.5 dataset: Addition of
842 mesospheric levels and carbon-containing species in the UTLS, *J. Quant. Spectrosc. Radiat.*
843 Transfer, **186**, 52–62, doi:10.1016/j.jqsrt.2016.07.003, 2017.

844 Kuttippurath, J. and Nikulin, G.: A comparative study of the major sudden stratospheric
845 warmings in the Arctic winters 2003/2004–2009/2010, *Atmos. Chem. Phys.*, **12**, 8115–
846 8129, <https://doi.org/10.5194/acp-12-8115-2012>, 2012.

847 Kvissel, O. K., Orsolini, Y. J., Stordal, F., Limpasuvan, V., Richter, J., and Marsh, D. R.:
848 Mesospheric intrusion and anomalous chemistry during and after a major stratospheric
849 sudden warming. *J. Atmos. Solar-Terr. Phys.*, **78–79**, 116–124,
850 doi:10.1016/j.jastp.2011.08.015, 2012.

851 Limpasuvan, V., Orsolini, Y. J., Chandran, A., Garcia, R. R., and Smith, A. K.: On the
852 composite response of the MLT to major sudden stratospheric warming events with
853 elevated stratopause, *J. Geophys. Res.-Atmos.*, **121**, 4518–4537,
854 doi:10.1002/2015JD024401, 2016.

855 Manney, G. L., Schwartz, M. J., Krüger, K., Santee, M. L., Pawson, S., Lee, J. N., Daffer, W.
856 H., Fuller, R. A., and Livesey, N. J.: Aura Microwave Limb Sounder observations of
857 dynamics and transport during the record-breaking 2009 Arctic stratospheric major
858 warming, *Geophys. Res. Lett.*, **36**, L12815, doi:10.1029/2009GL038586, 2009.

859 Martineau, P., Son, S.-W., Taguchi, M., and Butler, A. H.: A comparison of the momentum
860 budget in reanalysis datasets during sudden stratospheric warming events, *Atmos. Chem.*
861 *Phys.*, **18**, 7169–7187, <https://doi.org/10.5194/acp-18-7169-2018>, 2018.

862 Matsuno, T.: A dynamical model of the stratospheric sudden warming, *J. Atmos. Sci.*, **28**,
863 1479–1494, [https://doi.org/10.1175/1520-0469\(1971\)028<1479:ADMOTS>2.0.CO;2](https://doi.org/10.1175/1520-0469(1971)028<1479:ADMOTS>2.0.CO;2),
864 1971.

865 Muscari, G., di Sarra, A., de Zafra, R. L., Lucci, F., Baordo, F., Angelini, F., and Fiocco, G.:
866 Middle atmospheric O₃, CO, N₂O, HNO₃, and temperature profiles during the warm Arctic
867 winter 2001–2002, *J. Geophys. Res.*, 112, D14304, doi:10.1029/2006JD007849, 2007.

868 Newnham, D. A., Ford, G. P., Moffat-Griffin, T., and Pumphrey, H. C.: Simulation study for
869 measurement of horizontal wind profiles in the polar stratosphere and mesosphere using
870 ground-based observations of ozone and carbon monoxide lines in the 230–250 GHz
871 region, *Atmos. Meas. Tech.*, 9, 3309–3323, doi:10.5194/amt-9-3309-2016, 2016.

872 Orsolini, Y. J., Limpasuvan, V., Pérot, K., Espy, P., Hibbins, R., Lossow, S., Larsson, K. R.,
873 and Murtagh, D.: Modelling the descent of nitric oxide during the elevated stratopause
874 event of January 2013, *J. Atmos. Solar-Terr. Phys.*, 155, 50–61,
875 doi:10.1016/j.jastp.2017.01.006, 2017.

876 Orsolini, Y. J., Urban, J., Murtagh, D. P., Lossow, S., and Limpasuvan, V.: Descent from the
877 polar mesosphere and anomalously high stratopause observed in 8 years of water vapor and
878 temperature satellite observations by the Odin Sub-Millimeter Radiometer, *J. Geophys.*
879 *Res.*, 115, D12305, doi:10.1029/2009JD013501, 2010.

880 Pedatella, N. M., Chau, J. L., Schmidt, H., Goncharenko, L. P., Stolle, C., Hocke, K., Harvey,
881 V. L., Funke, B., and Siddiqui, T. A.: How sudden stratospheric warming affects the whole
882 atmosphere, *Eos*, 99, available at <https://doi.org/10.1029/2018EO092441>, 2018.

883 Piddyachiy, V., Shulga, V., Myshenko, V., Korolev, A., Antyufeyev, O., Shulga, D., and
884 Forkman, P.: Microwave radiometer for spectral observations of mesospheric carbon
885 monoxide at 115 GHz over Kharkiv, Ukraine, *J. Infrared Milli. Terahz. Waves*, 38, 292–
886 302, doi:10.1007/s10762-016-0334-1, 2017.

887 Piddyachiy, V. I., Shulga, V. M., Myshenko, V. V., Korolev, A. M., Myshenko, A. V.,
888 Antyufeyev, A. V., Poladich, A. V., and Shkodin, V. I.: 3-mm wave spectroradiometer for
889 studies of atmospheric trace gases. *Radiophys Quantum El.*, 53(5-6), 326–333.
890 <https://doi.org/10.1007/s11141-010-9231-y>, 2010.

891 Rao, J., Ren, R.-C., Chen, H., Liu, X., Yu, Y., and Yang, Y.: Sub-seasonal to seasonal
892 hindcasts of stratospheric sudden warming by BCC_CSM1.1(m): A comparison with
893 ECMWF. *Adv. Atmos. Sci.*, 36, 479–494, doi:10.1007/s00376-018-8165-8, 2019.

894 Rao, J., Ren, R., Chen, H., Yu, Yu., and Zhou, Y.: The stratospheric sudden warming event in
895 February 2018 and its prediction by a climate system model, *J. Geophys. Res.-Atmos.*, 123,
896 13332–13345, doi:10.1029/2018JD028908, 2018.

897 Rinsland, C. P., Salawitch, R. J., Gunson, M. R., Solomon, S., Zander, R., Mahieu, E.,
898 Goldman, A., Newchurch, M. J., Irion, F. W., and Chang, A. Y.: Polar stratospheric descent

899 of NO_y and CO and Arctic denitrification during winter 1992–1993, *J. Geophys. Res.*, 104,
900 1847–1861, 1999.

901 Rüfenacht, R., Baumgarten, G., Hildebrand, J., Schranz, F., Matthias, V., Stober, G., Lübken,
902 F.-J., and Kämpfer, N.: Intercomparison of middle-atmospheric wind in observations and
903 models, *Atmos. Meas. Tech.*, 11, 1971–1987, <https://doi.org/10.5194/amt-11-1971-2018>,
904 2018.

905 Rüfenacht, R., Hocke, K., and Kämpfer, N.: First continuous ground-based observations of
906 long period oscillations in the vertically resolved wind field of the stratosphere and
907 mesosphere, *Atmos. Chem. Phys.*, 16, 4915–4925, <https://doi.org/10.5194/acp-16-4915-2016>, 2016.

909 Rüfenacht, R., Kämpfer, N., and Murk, A.: First middle-atmospheric zonal wind profile
910 measurements with a new ground-based microwave Doppler-spectroradiometer, *Atmos.*
911 *Meas. Tech.*, 5, 2647–2659, doi:10.5194/amt-5-2647-2012, 2012.

912 Ryan, N. J., Kinnison, D. E., Garcia, R. R., Hoffmann, C. G., Palm, M., Raffalski, U., and
913 Notholt, J.: Assessing the ability to derive rates of polar middle-atmospheric descent using
914 trace gas measurements from remote sensors, *Atmos. Chem. Phys.*, 18, 1457–1474,
915 <https://doi.org/10.5194/acp-18-1457-2018>, 2018.

916 Ryan, N. J., Palm, M., Raffalski, U., Larsson, R., Manney, G., Millán, L., and Notholt, J.:
917 Strato-mesospheric carbon monoxide profiles above Kiruna, Sweden (67.8°N, 20.4°E),
918 since 2008, *Earth Syst. Sci. Data*, 9, 77–89, doi:10.5194/essd-9-77-2017, 2017.

919 Salmi, S. M., Verronen, P. T., Thölix, L., Kyrölä, E., Backman, L., Karpechko, A. Yu., and
920 Seppälä, A.: Mesosphere-to-stratosphere descent of odd nitrogen in February–March 2009
921 after sudden stratospheric warming, *Atmos. Chem. Phys.*, 11, 4645–4655,
922 <https://doi.org/10.5194/acp-11-4645-2011>, 2011.

923 Scheiben, D., Straub, C., Hocke, K., Forkman, P., and Kämpfer, N.: Observations of middle
924 atmospheric H₂O and O₃ during the 2010 major sudden stratospheric warming by a network
925 of microwave radiometers, *Atmos. Chem. Phys.*, 12, 7753–7765,
926 <https://doi.org/10.5194/acp-12-7753-2012>, 2012.

927 Shepherd, M. G., Beagley, S. R., and Fomichev, V. I.: Stratospheric warming influence on the
928 mesosphere/lower thermosphere as seen by the extended CMAM, *Ann. Geophys.*, 32, 589–
929 608, doi:10.5194/angeo-32-589-2014, 2014.

930 Solomon, S., Garcia, R. R., Olivero, J. J., Bevilacqua, R. M., Schwartz, P. R., Clancy, R. T.,
931 and Muhleman, D. O.: Photochemistry and transport of carbon monoxide in the middle
932 atmosphere, *J. Atmos. Sci.*, 42, 1072–1083, 1985.

933 Stray, N. H., Orsolini, Y. J., Espy, P. J., Limpasuvan, V., and Hibbins, R. E.: Observations of
934 planetary waves in the mesosphere-lower thermosphere during stratospheric warming
935 events, *Atmos. Chem. Phys.*, 15, 4997–5005, <https://doi.org/10.5194/acp-15-4997-2015>,
936 2015.

937 Tao, M., Konopka, P., Ploeger, F., Grooß, J.-U., Müller, R., Volk, C. M., Walker, K. A., and
938 Riese, M.: Impact of the 2009 major sudden stratospheric warming on the composition of
939 the stratosphere, *Atmos. Chem. Phys.*, 15, 8695–8715, <https://doi.org/10.5194/acp-15-8695-2015>, 2015.

941 Taguchi, M.: Comparison of subseasonal-to-seasonal model forecasts for major stratospheric
942 sudden warmings, *J. Geophys. Res.-Atmos.*, 123, 10,231–10,247,
943 doi:10.1029/2018jd028755, 2018.

944 Tomikawa, Y., Sato, K., Watanabe, S., Kawatani, Y., Miyazaki, K., and Takahashi, M.: Growth
945 of planetary waves and the formation of an elevated stratopause after a major stratospheric
946 sudden warming in a T213L256 GCM, *J. Geophys. Res.*, 117, D16101,
947 doi:10.1029/2011JD017243, 2012.

948 Tripathi, O. P., Baldwin, M., Charlton-Perez, A., Charron, M., Cheung, J. C. H., Eckermann, S.
949 D., Gerber, E., Jackson, D. R., Kuroda, Yu., Lang, A., McLay, J., Mizuta, R., Reynolds, C.,
950 Roff, G., Sigmond, M., Son, S.-W., and Stockdale, T.: Examining the predictability of the
951 stratospheric sudden warming of January 2013 Using Multiple NWP Systems, *Mon.
952 Weather Rev.*, 144, 1935–1960, doi:10.1175/mwr-d-15-0010.1, 2016.

953 Vargin, P. N. and Kiryushov, B. M.: Major sudden stratospheric warming in the Arctic in
954 February 2018 and its impacts on the troposphere, mesosphere, and ozone layer, *Russian
955 Meteorology and Hydrology*, 44, 112–123, doi:10.3103/S1068373919020043, 2019.

956 Waters, J. W., Wilson, W. J., and Shimabukuro, F. I.: Microwave measurement of mesospheric
957 carbon monoxide, *Science*, 191, 1174–1175, doi:10.1126/science.191.4232.1174, 1976.

958 WMO Commission for Atmospheric Sciences. Abridged Final Report of the Seventh Session,
959 Manila, 27 February – 10 March, 1978. WMO-No. 509, 113 p., available at:
960 http://library.wmo.int/pmb_ged/wmo_509_en.pdf, 1978.

961 Xu, X., Manson, A. H., Meek, C. E., Chshyolkova, T., Drummond, J. R., Hall, C. M., Riggin,
962 D. M., and Hibbins, R. E.: Vertical and interhemispheric links in the stratosphere-
963 mesosphere as revealed by the day-to-day variability of Aura-MLS temperature data, *Ann.
964 Geophys.*, 27, 3387–3409, doi:10.5194/angeo-27-3387-2009, 2009.

965 Yu, Y., Cai, M., Shi, C., and Ren, R.: On the linkage among strong stratospheric mass
966 circulation, stratospheric sudden warming, and cold weather events, *Mon. Weather Rev.*,
967 146, 2717–2739, doi:10.1175/MWR-D-18-0110.1, 2018.

968 Yuan, T., Thurairajah, B., She, C. Y., Chandran, A., Collins, R. L., and Krueger, D. A.: Wind
969 and temperature response of midlatitude mesopause region to the 2009 Sudden
970 Stratospheric Warming, *J. Geophys. Res.*, 117, D09114, doi:10.1029/2011JD017142, 2012.

971 Zhou, S., Miller, A. J., Wang, J., and James, K. A.: Downward-propagating temperature
972 anomalies in the preconditioned polar stratosphere, *J. Climate*, 15, 781–792,
973 doi:10.1175/1520-0442(2002)015<0781:DPTAIT>2.0.CO;2, 2002.

974 Zülicke, C. and Becker, E.: The structure of the mesosphere during sudden stratospheric
975 warmings in a global circulation model, *J. Geophys. Res.-Atmos.*, 118, 2255–2271,
976 doi:10.1002/jgrd.50219, 2013.

977 Zülicke, C., Becker, E., Matthias, V., Peters, D. H. W., Schmidt, H., Liu, H.-L., de la Torre
978 Ramos, L., and Mitchell, D. M.: Coupling of stratospheric warmings with mesospheric
979 coolings in observations and simulations, *J. Climate*, 31, 1107–1133, doi:10.1175/JCLI-D-
980 17-0047, 1, 2018.

981

982

983

984

985

986

987 **Figure 1.** The polar vortex split at the 10-hPa pressure level during the SSW event in February
988 2018. Geopotential heights are calculated from ERA-Interim reanalysis data.

989

993 **Figure 2.** The development of the SSW in 2018 from the vertical profiles of (a) Aura MLS
 994 temperature anomalies in December 2017–April 2018 at polar zone 60–75°N (with respect to
 995 the mean climatology 2005–2017), (b) zonal mean zonal wind anomalies, (c) wave 1 and (d)
 996 wave 2 amplitudes in geopotential height in January–March by NOAA NCEP GDAS-CPC data
 997 (climatology 1981–2010). (e) zonal wave 1 and wave 2 amplitudes in geopotential height at 10
 998 hPa, 60°N, by the MERRA-2 time series from the NASA GFC ACDL data. The SSW-related
 999 anomalous variability between 10 February and 1 March 2018 is bounded by red vertical lines.

1005 **Figure 3.** (a) Mesospheric CO profile from microwave measurements over Kharkiv averaged
 1006 in altitude range 70–85 km, and vertical CO profile from the MLS measurements averaged over
 1007 latitudes 47.5–52.5°N and longitudes (b)–(d) 26–46°E centered at the Kharkiv MWR site
 1008 (50°N, 36°E) and (e)–(g) 0–360°E for zonal mean. Selected CO levels are highlighted by white,
 1009 black and yellow contours (see text for details). Data for January–March 2018 are presented
 1010 and time interval of significant variations in the atmosphere parameters due to the SSW event
 1011 (from 10 February to 1 March 2018) is bounded by red vertical lines.

1014
1015
1016

1017
1018

1019 **Figure 4.** The 5-day mean CO field over the NH (0–90°N) from the MLS measurements at the
1020 two mesospheric (75 km and 86 km) and stratospheric (32 km and 50 km) levels before (4–8
1021 February), during (9–13 and 19–23 February) and after (2–6 March) the SSW 2018. White
1022 circle shows location of the MWR site Kharkiv relatively the high/low CO amounts marked off
1023 by the black contours. Dashed lines indicate clockwise rotation of the elongated polar vortex
1024 with altitude as manifestation of upward propagation of planetary waves with their westward
1025 tilt with altitude.

1026
1027
1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

Figure 5. (a) Mesospheric zonal wind microwave measurements over Kharkiv (averaged in altitude range $70\text{--}85\text{ km}$, vertical bars are standard deviations) compared to (b) time-altitude local zonal wind from the ERA-Interim reanalysis data averaged over latitudes $48\text{--}52^{\circ}\text{N}$ and longitudes $34\text{--}38^{\circ}\text{E}$ (centered at the Kharkiv microwave radiometer site, $50^{\circ}\text{N}, 36^{\circ}\text{E}$). Time interval of significant variations in the atmosphere parameters due to the SSW event (from 10 February to 1 March, 2018) is bounded by red vertical lines.

1043

1044

1045

1046

1047 **Figure 6.** MLS temperature profiles (a) over the Kharkiv region and (b) zonal average in the
 1048 zone 47.5–52.5°N. Dashed arrows indicate downward warming.

1049

1050

1051

1052

1053

1054

1055

1056 **Figure 7.** Time–longitude variations of the MLS temperature anomalies in the Kharkiv zone
 1057 $47.5\text{--}52.5^\circ\text{N}$ with respect to the mean climatology 2005–2017 during January–March 2018.
 1058 Dashed lines show change of the zonal anomaly propagation from eastward to westward near
 1059 10 February, at the start of the SSW 2018.

1060

1061

1062

1063

1064

1065

1066

1067 **Figure 8.** (left) As in Fig. 7, but for the zonal temperature anomalies in the lower-middle
 1068 stratosphere at 23, 27 and 31 km (lower, middle and upper panels, respectively) during 20
 1069 December 2017 – 20 February 2018; (middle) wave 1 and wave 2 periods versus variance and
 1070 (right) wave number spectra for the corresponding altitudes. Dashed line in the middle column
 1071 marks the 95% confidence limit and bold curves highlight the wavenumber variance exceeding
 1072 this limit.

1073

1074

1075

1076

1077

MLS Temperature Zonal Analysis, Lat=[47.5,52.5]
Wave 1 / Wave 2 Components

1078

1079

1080 **Figure 9.** The spectral analysis of the zonal temperature anomalies as in Fig. 8 (middle and
1081 right) but for the upper stratosphere–mesosphere: (a–e, k–o) before and (f–j, p–t) after the SSW
1082 start on 10 February 2018. Red and black lines indicate the eastward and westward propagating
1083 wavenumbers, respectively. Bold curves to the right of dashed line in (a–j) and spectra in (k–t)
1084 show the wavenumber variance exceeding the 95% confidence limit.

1085

1086