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Received and published: 20 February 2019
In the manuscript "Photolytically-Generated Sulfuric Acid and Particle Formation: Dependence
on Precursor Species”, the authors Hanson et al. present a set of well
carried out flow tube experiments of sulfuric acid formation and new-particle formation.
The experiments, accompanied by model simulations, are explained very well, and the
analysis and interpretation of the obtained data is convincing (though | feel could be
streamlined a bit). | especially like the good level of detail in section 2 ("Methods"). The
paper concludes with a comparison of the experimental results to existing literature and
discusses the effects mainly of adding base compounds (ammonia and dimethylamine)
to the system — not only in the authors’ experiments, but at this kind of new-particle formation
experiments in general. In total, | think this is interesting work that deserves
publication. | did find several points where the manuscript could be substantially im-

C1
proved or at least clarified. | think that overall these "main comments" concern details
of how the results are presented, but | believe they need to be considered prior to
acceptance. Finally, although this is a convincing, interesting and detailed study of
flow tube SA nucleation (and including an interesting application of the authors’ model,
which seems to work out quite well), | have found that scientifically it eventually "only"
corroborates our existing understanding, at least mostly. I.e. it has remained unclear to
me what aspects of the study ultimately contribute "new knowledge". The authors may
in general want to better work out where such added value (to the community) exactly
lies.

Main comments:

A central topic of the Title, i.e. the role of precursor species in H2SO4 new-particle
formation, seems not well represented in the introduction. | suggest better guidance
here (in the intro) for the reader as to where the paper will be heading to (hopefully,
presuming at this stage, to the role of precursor species). Indeed, it kind of remains unclear,
at first, what is actually meant by 'precursor’ (e.g. after reading the abstract). And

the word 'precursor’ actually only appears once in the entire text, referring (I believe)

to involved in the reactions leading to the formation of H2SO4. But it hasn’t been clear
to me until quite a bit into reading the manuscript, if this was the (only) kind of 'precursor’
the authors had in mind with the title. ... Finally, after reading the manuscript, |

actually doubt that the title is appropriate, as | don't actually see the "dependence on
precursor species” in both SA and particle production as a main topic of the work as a
whole. Maybe that will change in a revised manuscript. But essentially, | am seeing a
study of SA formation and subsequent particle formation, with most of the work going
into explaining what drives particle formation and growth rates. It is certainly carefully
carried out and explained (and almost throughout nice to read), but ends up mostly
confirming the community’s understanding of the underlying processes. 'Dependence

on precursor species’ is part of this, but | feel it is not the overall "new thing" here.

Fig. 2 would benefit from a discussion, better (if possible) display of, uncertainty esti-

mates. E.g., the authors themselves mention large corrections applied in case of small
particle sizes (section 3.1, 2nd paragraph).
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Comment [R1]: We agree with this point and
believe this reviewer detailed this issue in their
comment at the bottom of C4 regarding a more

systematic presentation of the results. In
Comment [R2]: We have a new title (s
Comment [R3]: New title: “H2SO4 and

Comment [R4]: We added a paragrap
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Page 6, line 5 & Fig. 2: Has the change in particle size distributions (PSD) between
2/23 and 5/15 (Fig. 2b) occurred gradually? With only those two chosen dates shown
in Fig. 2b, one wonders how reproducible the PSD were overall, also considering
substantial variations in 'baseline’ total number concentrations (Fig. 2a).

Fig. 4: The legend of panel (a) needs some explanation. The last sentence of the
caption misses a verb or something.

Section 3.2.2 (varying SO2) First (page 9, line 5 & Fig. 5, | suggest to also show the
model case excluding the HO2+SO2 reaction be in Fig. 5. That would quickly illustrate
how model results improve and also make this paragraph easier to understand.

Then, | am not sure | completely follow the matter of the NH3. 70 pptv of NH3 at inlet
were assumed in the modeling (also lines in Fig. 5), but do | understand correctly
that no NH3 was added for the experimental data shown, and NH3 is assumed as
contaminant? Especially, as later in this section the potential role of ppq levels of
dimethylamine is discussed, I'd be curious to see how the model would play out in the
absence of any contaminant (i.e. also without NH3). That would maybe lead to the
guestion: How much dimethylamine would be needed INSTEAD of NH3 to _fit the
experimental data? Again, | might have run into a misunderstanding, in which case
some clarification would benefit the section...

Fig. 6: The legend of panel (b) needs some explanation. (Cf. comment on Fig. 4
above.) Same issue also in Figs. 9 and 10.

Comparing Figs. 6b and 4a, and as per the related discussions in section 3.2, it looks

like the addition of NH3 makes the leading-edge mode easier to fit, as the <10-nm

minimum is more pronounced. This is in agreement with the model simulations (Fig.

S1). However, in Fig. 2b (and discussion), the less pronounced minimum had been
C3

attributed to more contaminants contributing to new-particle formation in the earlier
(vs later) times of spring. (Actually, Fig. 2b vs. Fig. S1 is already discussed in section
3.1 also.) So from that, one could conclude at least that "contaminant” 6= NH3.

But following the CLOUD works and others, it seems most likely however that NH3

or other base compounds (amines) would be the primar suspects as for the kind of
contaminant suspected. So | see a contradiction here. To resolve that, | suggest the
authors discuss somewhere, how purported contaminants would make that minimum
(_2.4nm) less pronounced, whereas if bases ("contaminants") were added upstream
the opposite would be observed. (And, if applicable, if effective contaminants to blame

for Fig. 2b could be something other than bases.) Is it merely the different spatial distribution

of contaminants vs. added bases in the flow tube? But if so, does the model
manage to simulate those observations, and how does that align with my comment on
(understanding of) section 3.2.2 above?

Comment [R5]: We were prompted to examine
more data and we finalized and thus added data to
the paper: from mid-May through June 20. We
therefore added several distributions to the former
Fig. 2a, added a second figure for the new data and
moved them both to the Supplement. The
distributions do not show a clear secular trend
outside the scatter. There are time periods with
unique characteristics in,nd 0. (in the new Fig.

2 a nd b) but we now state that, within the scatter
there is not a substantive change since the mesh wa
installed.

Comment [R6]: Fig. 4a is moved to the
Supplement and its caption was better explained.

Comment [R7]: This is now done and there is a
clear difference in the model runs. Note also W&t
updated the model to use thermodynamics better
suited for 52% RH which greatly affects predictions
for the binary system. See the next comment for
more details

Comment [R8]: This comment prompted a hard
look at this issue. (1) We realized that the 1RFf
thermodynamics we had used poorly represents the
binary kinetics at 52 % RH. Thus a new set of
H2S04-H20 thermodynamics for 52 % RH was
developed using the methodology outlined in Panta
etal. 2012. A new section in the Supplement (S8)
contains a description of this process and lists th
new 52% RH and the (old) 16 % RH cluster free
energies

Comment [R9]: The binary (absence of
contaminant) model results are significantly lower
than the experimental work. We had pointed out in
the previous version that 5 ppgv of dimethylamine
gave the same Np as ~ 100 pptv ammonia, a finding
now shown in Fig. 8. This figure goes with a new
section in the papgB.3. Contaminants...; the
current 3.3 will be renamed 3.4) that presentsethes
comparisons in detail. This section will focus on
characterizing the type and amount of possible
contaminant in PhoFR.

Comment [R10]: Fig. 6(a) was also moved to the
Supplement and its caption was fixed. The Np
information from the distributions in Figs. 9 and 1
are plotted in Fig. 4a and one distribution is feldt

in Fig. 4b. Figs. 9 and 10 are included in the
supplement (S3.2).

Comment [R11]: This was a temporal minimum
as discussed above in R5.

Comment [R12]: We agree.

Comment [R13]: Itis also the type of
contaminant: added DMA at the top gives a
differently shaped distribution than added NH3h&t t
top. We have greatly expanded the S1.3 Model
results in the Supplement to show this. The new
section 3.3 in the paper, discussed in R9 abovk, wi
discuss these issues.
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Section 3.2.3, last paragraph: Is the DMA simulation (I assume it is simulation results)
shown somewhere? What is "experiment base"? Not sure | understant that sentence.
And maybe as a consequence, | am also not sure | understand the follow-up sentence
(page 10, line 1). In any case, | think the sudden introduction of amides and some
not-more-closely defined "strength" is confusing.

Section 3.2.6, DMA additions: It is stated that Np increases _linearly with [DMA].

Could be good to show, similarly to Fig. 82 (In the Supplement possibly.) Same for

D_le. Actually, there is reference to a Np-vs-[SA] figure in the Supplement, but again it

is very hard to find it.

Not sure how that would work out, but maybe there could be unified plots of N_p vs.

[X] (and of D_le vs. [X]), i.e. showing all X in one figure. In general, the various effects

of changing inputs on N_p and D_le are presented somewhat inconsistently. E.g., N_p

vs [NH3] is shown (Fig. 7), but N_p vs [DMA] is not, neither is D_le vs [NH3] (whereas

D_le vs [HONO] and D_le vs [RH] are shown). Another example is maybe Fig. S9

in the Supplement: It shows model results together with experimental data for some
C4

cases but not for others. | could imagine that the paper would benefit from a more

systematic presentation of the various results.

Page 13, line 27 vs. line 10 & Fig. 11: First (and Fig. 11), it says that the H2SO4-power
dependence here was close to those by Yu et al. and the findings from CLOUD. Then,
a H2SO4-power dependence from CLOUD of 2.6 is mentioned to be somewhat lower
than the one found here. Why this difference (apparent contradiction)?

Minor comments:

Page 2, paragraph starting at line 12: Instead of only listing the questions approached
by the community in recent years, | think it would be more instructive to also shortly
summarize the state-of-the-art in our ability to answer the listed questions.

Page 2, paragraph starting at line 18: Not clear, what levels of contaminant base compounds
were (a) determined or estimated to have been present in the cited past studies
vs. (b) suggested to have played a role in altering the outcome of the respective results.

Page 3, line 4: Though clarified later, | was confused here, if the results presented in
the paper were all obtained with that Teflon screen in place, or only some? Anyway
though, how was the "jetting" from the inlets manifest, so that it was decided to include
the screen? In other words, why was it decided to put the mesh there?

Page 7, line 18: | am unfamiliar with the meaning of “truncated" here.
Fig. 5: Caption mentions orange lines, but plots are B&W.

Page 9, line 31: Please indicate more precisely where in the Supplement the information
is. | couldn't actually find the place for certain.

Page 10, line 5: Don't see red squares in Fig. 7.

Page 10, line 8: Again, would prefer a more specific reference to where in the Supplement.
C5

Page 13 & Fig. 11: As the Sipila et al. (2010) results are discussed, it could be nice to

present them also in some way in Fig. 11.

Comment [R14]: The DMA simulations are now
presented in the new section 3.3 as well as the
supplment. The variation with SO2 and contaminant
as DMA was mostly speculative and the paragraph at
the end of 3.2.2 was removed. The word base in
‘experiment base’ was removed.

Comment [R15]: With the new organization of
the data, this section is now largely re-writtékie

do not emphasize any linearity in the exp. behavior
of Np with DMA level (only three data points). The
Supplement figure referred to here is now Fig. 8.

Comment [R16]: Figs. 4 and 6 have the data
consolidated in such a manner. The D_le for fge F
2a data is plotted in 2b just below the Np dathe T
consolidation within the paper and supplement we
believe has led to a more systematic line of
reasoning.

Comment [R17]: Line 10 was referring to the
binary system and line 27 referred to the added
ammonia cases. Yet this discussion was removed
because it added little.

Comment [R18]: We have significantly re-
worked this paragraph on p. 2, listing the statthef
art information and categorizing the uncertainiies
this paragraph as important but known and
somewhat quantifiabl

Comment [R19]: We reworded lines 20-30 on p.
2 to establish clarity.

Comment [R20]: Another reference to the date
Feb. 23 has been added. There is an indicatogin Fi
2a at this date.

Comment [R21]: We did flow visualization
experiments, as discussed in our much earlier work
in Ball et al. (sentence added on p. 6.)

Comment [R22]: This word was not used in the
revised text.

Comment [R23]: They were orange in a draft
version, which we overlooked upon editing. Caption
is fixed.

Comment [R24]: The 3 ppqv DMA data was
erroneously listed here; should have been notéd as
ppqv (Fig. S9). This text and figure (Fig. 8) are
included in the new section “3.3 Characteristica of
potential contaminant” p. 13.

Comment [R25]: They are black in the submitted
version (they were once red in a draft.) In the
revised figure (Fig. 5) they will be red again. dAn
the data at lower Q4 in Fig. 5 will be yellow.

Comment [R26]: This was Fig. S8 and it is now
Fig. S6 which is referred to on p 11 line 7.

Comment [R27]: Yes, now included in Fig. 9.
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Page 13, line 33 (and before/after): | can't quite follow these sentences, pitching the
Glasoe et al. data against various other datasets (including the present one). Please
clarify. To accompany the discussion of the effects of NH3, it may be illustrative to show
a figure similar to Fig. 11 (i.e. comparison to literature results) but showing J-vs-[NH3].

Fig. 9 has two sets of data for DMA = 0 pptv (one denoted as "0", the other as "0.0" in
the caption). Is there a difference or where these just repeats?

Fig. 11, including caption: Explanation of the dotted line and the marking "x"3.7" is
missing. It would also be good to be more precise with the citations in the legend.
(E.g., "Kurten, 292K" doesn’t assure me I'll be ending up with the correct work if |

decide to check it out.)

Fig. S5 misses a caption.

Fig. S9 as well.

Interactive comment on Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1355,

2019. C6

Anonymous Referee #2

Received and published: 28 February 2019

The paper by Hanson et al. reports on measurements made with a photolytic flow reactor (PhoFR). The PhoFR is used
for nucleation studies where new particle formation is initiated from reactions involving mainly sulfuric acid and water.
Additional measurements were made by adding base molecules, i.e., either diluted ammonia or dimethylamine are
added to the flow reactor. The sulfuric acid is generated from the photolysis of HONO and further reactions involving
S02, 02 and H20. After a reaction time of approximately 30 s the particle size distribution is determined with a nano-
differential mobility analyzer and a condensation particle counter using diethylene glycol. The measured size range
covers diameters from approximately 2 nm to the largest sizes the particles can reach after the short reaction time, i.e.,
_10 nm. The particle number from integration of the size distribution is used to derive new particle formation rates. C1
With this information, the values from the present study are compared with other experiments and especially for the
binary experiments (sulfuric acid and water); the data from the present study agree well with other data from the
literature. For the ternary experiments involving ammonia, some discrepancy is reported. Further results are

presented that show the variation of the integrated particle number and the particle size with the concentration for
different gases. Results from a model involving various gas-phase reactions and the photolysis of HONO are shown for
a comparison. Hanson et al. are also suggesting that a reaction between HO2 and SO2 could be relevant for

forming sulfuric acid for the conditions of their flow tube experiment. | mainly agree with the conclusions drawn by the
authors and the experimental data are mostly carefully evaluated and discussed. However, there is one major concern |
am having regarding the experiments that involved ammonia (see below). After this point is addressed in a

revised manuscript, | recommend publication in ACP.

(1) The bases (either ammonia or dimethylamine) are added from a sidearm into the

flow reactor. The concern | am having is that this geometry does not ensure proper

mixing and homogeneous distribution of the base. This possibility should be discussed

and ideally, it should be evaluated in how far the mixing is homogeneous and if incomplete

mixing could have influenced the results. For example, the results shown in

Figure 7 suggest a relatively weak dependency of particle formation with the ammonia

mixing ratio that is not consistent with other studies cited by the authors. Could this

be related to the way the base is introduced into the flows? Another factor that can

have an influence on the ammonia concentration is the mesh that is present in the flow

reactor. It seems that the diluted NH3 needs to pass that mesh before it can contribute

to new particle formation. Almost certainly, some of the ammonia will be lost on the

surfaces of the mesh, especially since its surface is acidic (as it has been soaked in a

dilute sulfuric acid solution). More discussion related to these questions is required in

the revised manuscript.

Comment [R28]: We have greatly expanded the
discussion of this issue. We have also now incude
such a figure, Fig. 10 along with a new section13.

Comment [R29]: There were repeats: just before
and just after DMA was added. These plots are now
in the supplement (Fig. S3.2).

Comment [R30]: We have heavily re-worked
Fig. 11 and its caption; it is now Fig. 9.

Comment [R31]: Added. Now it is called Fig.
S31.2.

Comment [R32]: Captions are now added for
former figures S8 and S9 that are now Figures S6
and Fig. 8 in the main paper, resp.

Comment [R33]: We have added two sections in
the Supplement (S3 and S7.1) explaining the
findings from our previous publications on thisitop
and we present results from model simulations that
mimic inhomogeneous mixing (Figures S7.1)

Comment [R34]: Yes, data are not consistent
with calculations based on the thermodynamics
derived from some of our previous data. One of our
conclusions in this paper is that the Glasoe et al.
ammonia data may have been affected by small
amounts of amines that were carried in with the
ammonia. For the present experiments, base was
introduced in a similar manner as in Glasoe dtal.
we were careful to not expose the ammonia dilution
systemtubingto any othe base species.

Comment [R35]: We have clarified in the text
and in Fig. 1 that the mesh is upstream of the base
addition port.
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Further comments:

Cc2
P4, L4: Please use the correct spelling for some of the references (e.g., Sipila et al.
but also others). In addition, the references should be checked; for some of them, the
year is not correct in the list or has not been cited correctly in the text
P3, L8: ymol / mol ?
P3, L12: | think the word “additions” should be deleted
P4, L12: The year is missing here for the reference to Lovejoy et al.; this is the case
also for other references in the main text
P5, L4: Does the outcome of the model depend on the flow setting? What mode is the
“correct” one?

P5, L14: As can be seen from Fig. 1a the base is added from a sidearm at the end of
the conical glass piece. Based on the geometry and the rather low flow rates it seems
unlikely that the base is equally distributed over the whole cross section of the reactor.
Has the possibility of inhomogeneous mixing been examined?

P5, L27: “. . . data were binned . . .”; please check the whole manuscript and use plural
when using the word data

P6, L7: In the Sl a detailed definition for the leading edge is provided; it would be good
to provide a reference here to the Sl regarding this exact definition

P7; L23: A definition for Z is missing

P8, L10 to L11: The process described here (scavenging of H2SO4 on the patrticles)

is particle growth by condensation, which should be linear with the concentration of
the condensing vapor (see, e.g., Nieminen, T., et al., 2010 ACP). Therefore, | do not
understand this argument.

P9, L1: It would be good to include also curves from the model that do not include the
HO2 + SO2 reaction in order to see the difference.

C3
P9, L6: ppmv instead of pptv?
P9, L12 to L16: | might have missed this but how exactly is the nucleation of particles
modeled? The model needs to include evaporation rates for the smallest clusters. How
are they obtained?
P9, L28 to L30: In this context, it should be noted that the factor of a 100 refers to
the ratio of experiments with several hundred pptv and 4 pptv (which is the estimated
contaminant level at 292 K in the Kirten et al. (2016, JGRA) study). For lower baseline
(contaminant) NH3 the enhancement factor is very likely much larger.
P9, L32: Is the conclusion then that the contaminant ammonia level is _70 pptv for

5

Comment [R36]: We apologize for our poor
attention to detail in our reference list. Manyéa
been fixed and we discovered we had missed some
in the list.

Comment [R37]: Yes.
Comment [R38]: Correct.
Comment [R39]: Done.

Comment [R40]: Good questions and a new
section in the Supplement was added, S7.2. The
modeled Np depends only slightly on which radial
profile is selected. The distributions do change
significantly between plug and laminar shown in
S7.2. We also present evidence that the flow is
expected to be fully developed laminar.

Comment [R41]: This issue is important (also
brought up in R1) as it goes to how well the model
can be compared to experiment. Our previous CFD
work (Hanson et al. 2017) was a 3D model and thus
could explicitly take mixing into account. In that
work we also detailed the model used here (called
2D-LFR in that work) and presented an alternative
way that base could be introduced in the model that
would mimic - in part and maybe good enough - the
inhomogeniety of the mixing. This mimic was to
confine the base in the middle 1/4 of the mass flow
We add such simulations here and present them in
the supplement (S7.1) with a reference to this@ect
in the main text.

Comment [R42]: Thank you.
Comment [R43]: Will do.

Comment [R44]: We took out this text. It was
replaced by text describing a similar point.

Comment [R45]: We no longer discuss the
departure from linearity as it applies to only ab®u
data points. Yet we want to clarify: we were angyi
that as particle surface area grows, it begins to
become a significant loss process compared to wall
loss. So at large enough particle surface areas, n
longer would H2SO4 be linear with HONO.

Comment [R46]: Done.
Comment [R47]: Correct.

Comment [R48]: The thermodynamics of the
clusters largely determine their evaporation rates
they are included in the model. Please see Hagison
al. 2017. Note we also added a section in the
Supplement with cluster free energi

Comment [R49]: Lines 26 and 27 are very much
in line with this assertion. We have added this
suggestion as it is reasonable.



10

15

20

25

30

35

40

45

50

the set-up of the present study? This higher contaminant level (relative to the CLOUD
experiment) could possibly explain the differences between the present and the Kirkby
et al. (2011, Nature) study (Fig. 11).

P9, L33: Delete the word “base”
P10, L5: Replace “red squares” with “open squares”

P10, L10: The slope in Fig. 7 seems to be closer to 0.5 than to 1. How can this be
explained?
P11, L24: Delete the word “and”
P13, L33-L34: This is one possibility; however, further discussion regarding the uncertainties
of the present study is necessary. First, how would inhomogeneous mixing (of
NH3) influence the outcome of the present study? Second, is it possible that NH3 is
lost on the Teflon screen between the conical and the cylindrical glass pieces? It is
mentioned that the screen was soaked in a dilute H2S04 solution. Therefore, it could
be that a significant fraction of NH3 was lost on the mesh, which could lead to lower
Np in comparison to the previous studies (Glasoe et al., 2015 JGR and Hanson et al.,
2017 JPhysChemA).

C4
P22, Fig4, L4: Please include “the CPC” before “raw count rate”
P23, L4: “orange line”, please check

SI:

P6, S5.2: The PTrMS is mentioned here. In terms of checking the homogeneity of
NH3 in the flow through the reactor, this instrument could possibly be used to measure
ammonia at the outlet of the reactor when the lights are off.

P7, L3 to L4: References are missing here and the last sentence is incomplete.

P7, end of section S5.2: It should be explained why exactly this is consistent with
expectations.

P7, S6, end of first paragraph: It is mentioned here that Np increases with time for a
set NH3. If this is the case, how are the results with ammonia exactly obtained? Were
the data only evaluated after a long enough waiting time? How long was this period
and did the Np level off eventually for all measurements?

Comment [R50]: The contaminant is consistent
with 200 pptv NH3 (using new thermodynamics,
NH3_52). This seems a rather high level to not be
depleted by simple evaporation. And the simulation
with DMA at ~0.005 pptv shows that gas-phase
DMA gets depleted by clusters such that Np
variations with HONO don't match experiment. So
we consider other base species like methylamine (we
were mistaken to suggest an amide) that is of
intermediate strength in nucleation. We have agidin
a figure and discussion of the model simulationa in
new section (3.3) in the paper.

Comment [R51]: Thank you.

Comment [R52]: We now have red and yellow
open squares in the new figure.

Comment [R53]: The reviewer must have
thought this was a log-log plot? The data were
represented by a fitted line in that plot. Busthiot

is superseded by the new figure 5 which is a semi-
log plot and includes more data. The whole
discussion on the linearity of this data has chdngr

Comment [R54]: Replaced with a comma.

Comment [R55]: Loss on the mesh is not an
issue and inhomogenieties are now discussed in the
Supplement FigS3.1 and S7.1 (see also R33, R35
and R41 above.)

Comment [R56]: No longer applicable in this
plot but in the new Fig. S1 CPC was ac.

Comment [R57]: Done

Comment [R58]: Since ammonia is lost on the
wall, very little makes it to the end of the tubdis
was also the case for the Glasoe et al. experifnenta
work. The model assumes diffusion limited loss to
the wall and there is less than 1 % of the added
ammonia that exits the flow reactor. More
important, the model suggests that the diffusion-
limited-wall-loss radial profile for ammonia is
established after a length of about 15 cm.

Comment [R59]: These are fixed. Note: we re-
confirmed the analysis and present equations to
derive photolysis rates from the isoprene
photoxidation results. There is no substantive
change in the calculated photolysis rate.

Comment [R60]: True. This data is now shown
in a separate plot (Fig. S5.2 right) and it was
analyzed in the text as well.

Comment [R61]: An increase in Np with time
was noticed only when 2000 pptv was added and it
was particularly dramatic on the second consecutive
day as can be seen in the figure (S6). For all the
other base-added measurements, counts were
generally stable after an initial surge in Np (2@.

min) upon introduction of the base-addition tubte in
PhoFR. This initial surge can be seen in Fig.r51 i
the new S1.0 section with raw data plotted vs. time
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P8, Table 1: The model does not seem to include the photolysis of NO2. This can lead
to an increased NO concentration and in turn increase OH (from HO2 + NO). Photolysis
of H202 can further enhance the OH level. When these reactions are implemented, is
there still a need to include the HO2 + SO2 reaction? Furthermore, is the presence of
HNQO3 further considered? It could possibly also be taken up by the aerosols.

Interactive comment on Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1355,
2019.

C5

Comment [R62]: We agree that this chemistry
occurs but those reactions are negligible compred
the first-order photolysis of HONO and reaction of
HO2 with NO. NO2 photolysis would occur but less
than 10 % would be depleted over the course of the
reactor. We tested this photolysis in the simatati
and there was less than 1 % change in H2SO4. If we
added NO2 coming in as an impurity, it acted to
scavenge OH and decreased H2SO4. H202
photolysis at 350-380 nm would be extremely slow.
HNOS3 uptake is possible but would not explain any
S0O2 dependence for the total number of particles.
The reactions suggested in this comment would not
be affected by the level of SO2.
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H,SO, and particle production in a Photolytic Flow Reachr. | Sepetceromaon soromonean
’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’ - Precursor Species|

Chemical modeling, cluster thermodynamics and containation

issues
David R. iI—|ansojr) Hussein Abdullalj Seakh Menhe&r Joaquin Vencés Michael R. Alve$? and
Joan Kun

! Chemistry Department, Augsburg University, Minnelan MN 55454, USA
2 Chemistry and Biochemistry, University of Califtan San Diego, La Jolla, CA 92093, USA

Correspondenceto: D. R. Hanson (hansondr@augsburg.edu) Deleted: For standard reactant flows and
/“ conditions,
Abstract. Size distributions of particles formed from suifuacid (HSO,) and water vapor in a Photolytic Flow Reactor ///{ Deleted: , 52 J

1

/
(PhoFR) were measured with a nano-particle moksiiting system. Experiments with added ammoniacimetthylamine ///// calculated concentration obSO; peaked at

1.2x103° cm®, measured particle mean diameter w;

Deleted: , and a ~40 s residence time, the
S
~6 nm and total number density was “a¢0r°.

were also performed. 80, was synthesized from HONO, sulfur dioxide, andewatapor, initiating OH oxidation byf,f’/
/a

small sizes, less than or equal to 2 nm diametgr,

HONO photolysis Experiments were performed at296 K over a range of sulfuric acid production levels ad for 16 toj// /1 Deleted: were influenced by molecular cmsterﬁ;
were

diameterganged from 3 to 12 nm angvidths (Ino) were ~0.3, Particle formation conditions were stableromany . ‘[Deleted: dominated by

WY -
months. Addition of single-digit pmol/mol mixingtios of dimethylamine led to very large increaseparticle number ' \\\{ Deleted: particles

WY
density. Particles produced with ammonia, everat,2000 pmol/molshowed that NKlis a much less effectiverucleator \\\\t\\{ Deleted: are

777777777777777777777777777777777777777777777777777777777777777 \\\\\ Deleted: with
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phase photolytic production of H,SO, followed by kinetic formation of molecular clustersand their decomposition® ' -
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size depended on relative humidity, HONO
A concentration, illumination, and & level.

published dimethylamine-4$0, cluster thermodynamigand provide a phenomenological set cammonia-sulfuric acid:\“\ \\\:‘\‘ Deleted: Ammonic
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1 Introduction W
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N Deleted: scales with

Deleted: its level builds along the length of
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(
{ Deleted: at producing particles.
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Particle formation in the atmosphere has long t&tedied (McMurry et al. 2005; Kulmala et al. 20Q4)ascertain |

\ . i i
potential impacts on health (Nel 2005) and on déemarocesses(IPCC 2013). For example, nano-st{characterized as \\‘\‘ ;zﬁt: gg;:g\év‘;ﬁic,t_%N%fpiﬁ”arzsg:glmtﬁarggz_

predicted HSO, levels. Additional comparison
between experiment and model indicates that

. . . . . s . “\ '| reaction of HQwith SO could be a significant
(Kreyling et al. 2006). They also influence climaiy growing to sizes large enough to affect raddatorcing and the | source of :SCyin this experiment. Th

< 10 nm in diameter) can have special health effect their small size allows for efficient trangpioto lung tissue | ‘\

properties of clouds. Despite numerous and wideirgy studies devoted to understanding new partictenation, | ( Deleted: on particle formation rates near room

'| temperature are addressed and provide context i

mechanisms and nucleation rates applicable to megigns of the atmosphere remain uncertain. | comparisons with previous experiments.

{ Deleted: but do not support previously publishe(}
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2010) thus it is the starting point for many laliorg studies. Previous work on particle nucleatio the binary (water-
sulfuric acid) system (Kirkby et al. 2011; Ball &t 1999; Zollner et al. 2012; Ehrhart et al. 20Y6; et al. 2017) have
concluded that binary nucleation can be significantlow temperatures such as at high latitudes ianthe upper
troposphere. The sulfuric acid/water binary systelso serves as an important baseline diagnosticcdéonparing
experimental results. Finally, nanoparticle groveth sulfuric acid and water vapors is of interestveell as uptake of
oxidized organic compounds by acidic nanoparticléSood knowledge of the formation and stability mhary nano-
particles is needed to understand their subseguenth via other compounds.

Previous laboratory studies of nucleation in theaby system diverge widely, especially for restdtken at or near

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, — - { Deleted

tand

provided by a bulk oa photolytic sourge Does the type ophotolytic precurserOs, H,O,, H,O, etg-matter? (Sipilaetal. - { Deleted

<

: or from which

2010; Berndt et al. 2008; Laaksonen et al. 2008 CLOUD experimental results at 278 K and belowKirten et al. S ‘[ Deleted

2016; Ehrhart et al. 2015) has alleviated some ohése concerns yet room temperature results can prime more \\\{De'ete"

i . (Sipilae

{ Deleted

:? What are the

o U

stringent tests due to a greater sensitivity to thienodynamics. Other issues include (i)imitations imposed by particle

detector characteristics as well as cluster/partiviall losses (McMurry 1983; Kirten et 015; 2018) and Qi)//w Deleted: 2015) ? How well-determined are the

determining the concentration of HSO, (Sipila et al. 2010; Kurten et al. 2012; Young eal. 2008) which is typically

concentrations of }$0, (Sipilae et al. 2010; Jokine
etal. 2018) ?

uncertain to a factor of two (Eisele and Tanner, 193), although higher accuracies (+33%, Kirten et al2012) can be
achieved. These experimental challenges can sigoéntly influence results and their interpretation yet these largely
known issues can be addressed to some degree.

LContaminants are the biggest unknown factor in thes types of experiments and itis important to ascertain _ /—{Deleted

: A prime concern

- { Deleted:

contaminani

low abundance can be a point of concern.For example, Zollner et al. (2012) argued thatG&* mixing ratio of \\‘[Deleted:

abundances significant enougt

(2015)

A L U

apparatus as Zollner et al. and theycarried this argument further and estimated tbataminant dimethylamine mixing o ‘[ Deleted:

ratiosduring their binary system measurementswere less thanr equal to 10, If the contaminant is NHs, however, it

likely needs to reach the single-digit pmol/mol (piw) level or higher to significantly interfere with measurements in

the binary system at room temperature. Kirkby et al. (2011) and more recenfiijiirten et al. (2016) estimate ammonia_ - { Deleted: Kurten

contaminant levels of 4-to-10 pptv NHor their experiments performed at 292 - 298iKis not clear if this level of _ - {Deleted

ammonia had a significant effect on their results. Recently, Yu et al. (2017) reported upper linfits NH; and

dimethylamine of 23 and 0.5 pptvespectively for their putative base-free nucleation experirmets. Vet their -~ | Deleted: pmolimol

nucleation rates are not extreme outliers, suggesty that their dimethylamindevel was probably much lower than 0.5 ) \:7\%::::::: ) s

pptv. Nonetheless, uncertainty introduced by undeictable @tghe current state-of-the-art) levels of contaminarg ‘{Delete d: this level would very fikely overwhelm
underscores theeed for multiple approaches for studying sulfuricacid nucleation. binary system nucleation which

: importance of assessing potential

contaminants.

- ‘[ Deleted

)
)
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Here we describe an apparatus and results fromriexgrets on the formation of sulfuric acid nanopdes from

2011), little has been done to understand its pysitothat leads to sulfuric acid formation and neavticle formation. We

also studied the effects of adding ammonia or diylatmine; both are known to greatly enhance partxbduction rates

- - { Deleted: , McGraw, and Lee

experimental results where temporary contaminationof the apparatus was evident yet long-term results indide a R { Deleted: Finally,

relatively constant level of cleanliness in the expiment. The experimental results are compared to simulatidrthe
flow reactor that couple the flow with photo-chealikinetics and an acid-base particle formatioresoh. In addition to
providing H,SO, concentrations, the model results and their compason to experimental particle characteristics has
led to phenomenological cluster free energies foré ammonia-sulfuric acid system at 52 % relative hmidity.

Finally, we present a compendium of results from pbtolytic particle formation experiments near room emperature.

2 Methods

The Photolytic Flow Reactor (PhoFR) is a verticalligned cylindrical glass tube with an inner dideneof 5.0 cm, a
length of ~130 cm, a volume of approximately 2.arid topped with a 23 ciong conical glass piece with several flow
inlets (Fig. 1a). In the course of this work, €l@e screen was positioned between the cone anflavereactor to calm the

jetting from the inlets., A ~ 105 cpangth of PhoFR is jacketed and kept at a constant teatyey, typically 296 K, byi - { Deleted:

circulation of thermostated water. The main floilgas was nitrogen from a liquid nitrogen gas-pacH the total flow rate o { Deleted: portion

was 2.9 sLpm (standard L / min, 273 K and 1 atiff)e flow contained small amounts of S&hd HONO, typicallyl6and _ - {Deleted: afew

flow over a heated water reservoir and then thraugirermostated, vertically-aligned tube that reetb&xcess water vapor.
Total pressure was slightly above ambient, ~ 0198: gauge pressure was monitored continuously amehs$ typically
0.001 atm. The oxygen level from the liquid niteag stated to be 10 ppmv or less, was apparentficisat for the

flow. For all liquid nitrogen cylinder change-overs, the high pressure side of the regulator is flugld several times
before exposing the lines to the new supply of gas standard procedure used by Ball et al., Zollneet al. and Glasoe
et al. Also keeping in line with that past work, fiters have not been used on any gas-supply lines.

Entering gas flows were monitored and set by mimsg meters under computer control. Typical floves baseline
conditions in sLpm or sccm (standard *ohmin, 273 K, 1 atm) were dry gas at 1.4 sLpmlyfaumidified air at 1.5 sLpm,
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Deleted: additions upon adding several % ©©
the flow.
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thermo-regulated: (i) the conical top section(ii) the top 10 cm of the flow reactor where thebase-addition port
cone were gently heated (298-300 K) to eliminate mdensation when room temperature was less than 2%6

The SQ-in N, mixture (Minneapolis Oxygen) was reported (Ligdiechnologies Corporation, EPA Protocol) to contain
1500 ppmv S@+/- 10%. Water vapor was taken from a gently é&at500 mL volume of deionized water (Milliporepath
also contained a few grams of concentrated sulrid to suppress potential base contamination flranbulk water. This
humidified flow then passed through 80 cm of veiticaligned Teflon tubing (~6.2 mm ID) held at tteamperature of the
flow reactor.

Photolyte HONO was continuously produced (Febd.€t395) by flowing nitrogen laden with ~15 ppmv H@por into
a small (25 mL) round-bottom flask containing 1rams of powdered NaONO(s), held at 40-50°C (Fig. HHONO vapor
and co-product NaCl(s) are produced in a classibi#adisplacement reaction. The powder could by sowly mixed
with a small (1 cm long) stir bar and results gaflgrdid not depend on whether the powder wasestirrPeriodic gentle
shaking of the flask usually led to only temporelmanges in particle number densities.

The HONO level exiting the generator is likely te équal to the HCI level entering it. The HCl-gexter and a water
vapor pre-saturator were temperature-controlleymically 20 °C. A saturated (~6 m, molal) NaClaqus solution in the
pre-saturator yields a relative humidity of 76 %he flow: a stable amount of water vapor stabdlittee solution in the HCI-
generator, which contains a solution with a 2-tmdle ratio for NaCl to b50,. The HCI-generator solution was prepared
initially with concentrations of 3.5 m NaCl and 8./ H,SO, and calculations (Wexler and Clegg, 2002; Fries# Bbel,
2010) result in an HCI vapor pressure of 9.3%Hm. UV absorption measurements to determineHBBIO level in this
flow are described in the Supplemés6.1)and results indicate that the source has a HON@I tefvabout 1.5x18 atm.
This suggests that the HCI-generator’s HCI vapesgure is slightly larger than the calculated vaM#ile the water vapor
pre-saturator minimized loss of water from the H€herator, small temperature differences betweesetbwo vessels can
introduce variability and possibly a bias.

Four black lights that have a UVA spectral irradiarcentered at 360 nm illuminated about a 115 amgtheof the

experiments where production of methylvinylketone and meth&gsro from the oxidation of isopreneere monitored, o

~

yieldingtogether with the 15 ppmv HONO levgh thesource flow) aHONO photolysis rateoefficient of 8x10* s'l, >

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, —

H,SO, is formed via (i) OH produced via HONO photolygi§, OH addition to S@, (iii) H-atom abstraction by £and \:\j \{ oted
\\ | Deleted:

together and generate an additional OH radicaleM®Q is present at a few ppmv, the dominant loss fori©8H + SQ:
a pseudo-first-order loss rate coefficient is gibgMSOJ* konssoz= 4x10 cm® * 8.9x10™ cnPs™= 360 &' With this SQ
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reaction with HONO can be significant.

H,SO, levels build as the flow moves down the reactorming HSO, molecular clusters and these clusters grow into
stable particles. These particles accumulate énoagerial, primarily HSO, and HO, to grow to several nm in diameter.
Growth due to OH or Houptake followed by reaction with absorbed,Sfay also contribute to growth.

Particles were sampled on axis at the exit of e feactor, about 120 cm from the conical inleithva custom-built
mobility-sizing and counter system designed for amaeter-sized particles. Briefly, size-classifiedrtizles (Am-241
charger and a TSI 3085 nanoDMA) were detected withiethyleneglycol (DEG), sheathed condensatiotigbarcounter
(CPC) in tandem with a butanol-based CPC (Jiar.e2011). This system is denoted ‘DEG systenthis study. The
DEG CPC was operated with a saturator temperafus@°c, a condenser temperature of 20°C, 0.36 Lenimdenser flow
and 0.07 L/min capillary flow. The nanoDMA was oied with 2 L/min aerosol-in and monodispersedflmwts and a 13
L/min sheath flow, as in Glasoe et @015).

For a few experiments, ammonia or dimethylamindrase gases were added through a port at the tdpeoflow

reactor. A discussion of their mixing into the main flow ispresented in the Supplement (S7.1)Their sources were

dimethylamine was dedicated for use in the doubli¢idn system. Permeation rates were determirexibgically by re-

directing the base-laden flow through an acidieisoh and monitoring the change in pH over timee@ifour et al., 2014).

2.1 Model

The 2-dimensional model of the flow reactor incogimg the photochemical kinetics 06$0D, formation was built on a
previous model of acid-base molecular cluster faimnawhich was fully corroborated against a comri@rcomputational
fluid dynamics simulation (Hanson et al. 2017). eTtow profile can be set to either plug or fullgxeloped laminarthe
formation of clusterswith up to ten HSO, andten base molecules can be simulatéfiso desired, clusters larger than

ten H,SO, molecules can be simulated using a growth-only mieanism. Note that clusters without a base molecule

represent a weighted average of the binary $$0,-H,0 thermodynamics for a given relative humidity. The detailed _ - { Deleted: 2D model here incorporates t
photochemistry in our experimeficludes the production of OHits reactions with SQas well as with HQ NO, NO,, _ _ - { Deleted: , from

HONO, HNG;, H,O, etc. The rate coefficients and mechanisms are presentén the Supplement (S7, Table S1)The o { Deleted: through

acid and base species and all molecular clusterethgs OH are logb the walls limited only by diffusion. - [ Deleted: on

L L

The model reacts, convects and diffuses all reéctamd products and yields the abundance,8qland its molecular

clusters, the largest clusters are then correlatgtle abundance of experimentally determined gasti(Panta et al. 2012;

P { Deleted: is only crudel

)

777777777777777777777777777777777777777777777777 - { Deleted: but thes

)

the conditions of the present worlWater molecules are not explicitly tracked but_hydation is taken into when __ _ { peleted: Also, the largest clusters can be grown|to
very large sizes via uptake 0$$0; (and HO)

calculating the collisional rate coefficient and tle size of the clusters, assuming bulk properties.Increases in assuming no loss.
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computational times can be significant when largelasters are simulated using the growth-only mode,.g. a factor of
eight for adding clusters up to 250 HSO, molecules compared to stopping growth at the 10 &k 3 base cluster. Yet it
is desirable to simulate very large clusters via upke of H,SO, assuming no loss to compare results to measuredsesi
distributions. Further analysis of cluster growth and loss psees, including growth-only for clusters largemti® HSO,

molecules, is presented in the Supplepi&nit3). P { Deleted: .

Ammonia or dimethyl amine could be included ataér level with the flow entering the simulated teaevhereupon

commences

thus

: also

schemes

acid-base clustering apd particle formatmmmence(note that base s lost to the wall, limited byfifon). The model __ - { Deleted:
assumes rapid mixing of base into the main flow. ustification for this is presented in the Supplemen(S7.1). The \\\\\\‘[Deleted:
photochemistry is described in detail in the Sup@et(S7)and the acid-base clustering reactions are desthibdetail in {De'eted-
Hanson et al(2017 along with thermodynamic schemes for clusterefliases with sulfuric agidSchemeDMA _| jrgrp\/ - { Deleted:
that work was used here while a new cluster thermodynamicsfeeme for the ammonia-added experiments ‘LVQS\ R { anlc:ete "
developed for NH-H,SO;, clusters at 52 % relative humidity (see S8). S { Deleted:

)

)

)
(those used here are primarily the NH?J

)

)

)

3 Results and Discussion
3.1 Particle formation evaluation.

The stability of particle formation conditions oveeveral months is demonstrated by presenting timbar and the

average size of particles for baseline conditiolmsthe next section, the modeled photochemistrybfseline conditions is

: particle formation conditions

i . Here,

: also

: results

4

:was

e { Deleted:

20

ppmv. Shown in the Supplement (S1.2) arerepresentative particle size distributions - octed for size-dependen\t\\‘[Deleted:

10

< -

diffusion losses in CPC transport and inlet lind.was determined by summing the particle conceomativith O of ~2.4 \\\{ Deleted:

: Fig. 2a shows

Deleted:
777777777777777777777777777777777777777777777777777777777777 2b shows

N~

total particle number density,,Nand Fig.

Furthermore, these small diameter data carhave largerandom uncertainties due to large corrections appliedote | \\\‘[Deleted:

. The

count rates Discussed in the Supplement (S4) are possiblaistes of he scatter in the data. R {Deleted:

not included because they

Note the data presented as gold diamonds: these ag (low SO,) on the day of, and the day after, a gas supply \\\\\{ Deleted:

; furthermore, a mobility diamet

cylinder change-over. This event could be due torainment of dust particles into the supply lines. Nothing like this Deleted:

o = J L L ) W U

24nm

happened on the five other cylinder change-overs # occurred during this time interval. What is different about
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this cylinder exchange is not known. The effectsratemporary asa90 % decrease in Iy occurred in a few hours, an _ _ - { Deleted: local minimum ]

additional 70 % drop occurred overnight and a day ater N, is within the upper range of the scatterfor paseline _ _ /{Demed: most of the size distributior J

conditions.

The measured size distributions are governed byntieeplay between the spatial distribution oL8@,], whether base

is added, and the nature of potential contaminpatiss. For example, small- anud-sized particles probabljorm /{Demed: the
3

somewhat downstreanof thetop of the reactor whereas thdargest particlegt the leadingzdgeof the distributions are'. .~ ‘[Deleted: the middlc ]
V \ ~ .

Jormed near the top of the reactor. The largest particles must originate at the toive reactor, having the highest overall \ TDEleted: decrease considerably between Feb. 2}3rd
j\ [AREEN

******************************************************************** and May 15th (Fig. 2b) which is

exposure to kB0O,. These so-called leading-edge particles aredtwsfof our analysis. \\\\\\ {Deleted: due to a decrease in pamcle_enhancin%
The leading-edge particles are greatly enhancedhvbase was added, whether ammonia or dimethylaminghese ' ', | contaminants. Yet the concentrafi
cases, the leading-edge particles are prominetiteirdistributions and are described by log-nornisée the distributions ', 3ﬁ§txg;dfe comparable in these two data Setsz}m
VA .
presented below). The leading-edge volume-meametirs for the added-base experiments are simildrose of the no- \\{ Deleted: edges ]
added base distributions. So we propose thaetming-edge particles are indicative of the nuideatonditions at the top {Deleted: similar. ]
of PhoFR. In the Suppleme(f1.1)is more discussion of the leading-edge mode ofptirticle size distributiopsnd - {Deleted:, ]
supporting results from the simulation (S1.2;plots of modeled distributiopsith and without added NH;.) __ - | Deleted: and experimental leading-edge mode
diameters (le) over time

The high SQ data (Fig. 2a) exhibits anyNhat averages about 2;416m° since late February; also the leading edge of
the size distributions (Fig. 2b), fit to log-nornfahctions, indicate mode diameters of about 6 rith o values of ~0.35.

The large drop in Non the 23rd of February is due to a Teflon medinagonically cleaned and soaked overnight in atelil

glass joint without disturbing the Teflon-encapsuléed o-ring. The mesh was installed because flowsualization

experiments, similar to those described in Ball eal. (1999), revealed extensive back-streaming inthe cone. Back-

in place, a trend in jwith time cannot be discerned in Fig. 2aSimilarly, leading-edggmode diameters indicate that,D o ‘{ Deleted: in the cone. Ever since this big drop in
”””””””””””””””” N Np

Deleted: that is consistent with the changes witl
time of the size distributions in

s/ 2 )

is roughly constantver the time period Feb 24 to Jun 20 (Fig. 2b). k. \{

While the effects on N (Fig. 2a) due to the addition of the mesh are lagy the effects on mode diameter are IeSS\t:\\\

pronounced. On the other hand, there is a five wéeperiod beginning the middle of April 2018 that ha mode \\\l\\{ Moved down [1]: Fig.
\ \\\\ Deleted: can

\
\\\\{ Deleted: 2b. On the other hand,
\[ Deleted: (presented in the Supplement)

diameters about 1 nm larger than those during the geceding and following time periods. What was difrent about

this time period is not known however potential chages in flow patterns and variations in room tempeature are

potential explanations. { Deleted: from January to May.

Since changes in,Dare small or negligible, the growth conditionsHhoFR must be stable during tfisnonth time { Deleted: 4

period. The cumulative exposure of particles 18, as they travel down PhoFR is constant, indicatiteg the UV flux {Deleted: decrease

and reactant concentrations are also. dWeall stability in N, during this timealsoindicateghat the purity of the system g { Deleted: large particle numbers
NS

is stable. Variations in N, might have been influenced by changes in potentigbntaminants, yetthe HCI source for "\ ‘[ Deleted: likely

NN
the HONO generator is temperature-sensitive and fl patterns can be influenced by temperature variatins of the \{ Deleted: an increase in

Deleted: , for example a decrease in contamina
base levels entering

t
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simulation being strictly binary nucleation.
Sulfuric acid rises steadily and reaches 1.2%tén* by the end of the lighted section that extendsf@to 110 cm.

L
Jhe downstream sectionof the reactogith the highest sulfuric acigevel is where particles achieve most of their \\\\‘:\\\\\{ Deleted:

Wt
growth: over thebottom 2/3 of PhoFR, an axialdistanceof 40 to 125 cm, [#SQ,] averages about 8xi@ni®, We Y ““;\\\{ Deleted: ,

partition the reactojnto a top third and a bottom two thirds. Although somewhat arbitray\it provides a point of view*

\
for discussing the experimental results. Furtheenthis point of view is congruent with the expeental finding that &

large particle mode at the leading edge of the diggibutions is discernible, especially so whexsé was added. S

although clusters are formed and particles arecatietl along the length of the reactor, we seekpam only the largest of 1"

them.

accumulating HSO, and HO (assuming no evaporation) as they traverse th®rho2/3 of the flow reactor. Usin@ N

centerline values, an increase in particle diametet.8 nm is estimated as they travel from 4026 tm, using the bulk '

approximation to calculate the increase in diam@tferheggen and Mozurkewich, 2002; Wexler and Cl@§§2). This sz
in accord with the leading-edge mode diameters ini§. 2b of about 6 nm, considering that nascent paidles are

roughly 1.3 nm in diameter; using bulk properties br the 4 acid cluster assuming it is large enouglof evaporation to

be negligible. There is also a 0.3 nm differenceestween mobility and volume/mass diameters (Larribaet al. 2010).
Thus modeled HSO, on-axis concentrations and residence time along thithe assumption of bulk properties for the
small particles is an adequate starting point for éscussing growth in this experiment.

distribution of critical clusters, assumed to contin 4 H,SO, molecules, and those just larger reach a steadyasé by
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3.3 Characteristics of a potential contaminant
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cm, 4 s. This time is presumed to apply for thenimally clean conditions here. On the other hamiih base added
intentionally, significant nucleation may also ocauthe 0 to 20 cm region where base abundankigis Uncertainties in
J are probably on the order of a factor of 2. Utadety in H,SO, is about a factor of two, based on the calculatddes at
15 and 60 cm, which are -49 and +106 %, resp., ffl@80 cm value. The radial profile of$0, at 30 cm axial distance is
flat from the center out to a radius of 1.7 c8ee the Supplement for radial profiles of HSO, (Fig. S1.3.3).

The,experimental data in Fi§.were taken over a range of temperatures, 288Qd3@nd relative humidities, 2.3 to 75_ - { Deleted:

previous

% RH; conditions indicated in the legend. The en¢ésesults extrapolate to rates that are in fgie@ament with Benson et o ‘[ Deleted:

11

al. 2009 and much of the CLOUD data set (Kirkbylket2011Kirten et al. 2016) except for the 40 % RH at 298 K data.- { Deleted:

Kurten

The bulk-source k80, data reported by Zollner et al. is included fderence; it was corrected from 38% RH to 52 % RH,

increasing by about a factor of 5 using a’Rl¢pendency. The difference between the bulk-soantl present photolytic

: Kurten

: Kurter

but it is complicated by the wide range of relativemidities: 2.3 % RH up to 75 % RH.he data of Young et al. (2008)
suggests a very low contamination level however treare unresolved issues in measured P30O,] ( see the factor of
ten disparity in their Fig. 5). Lack of experimental water dependencies and assegsof base-levels makes drawing
conclusionsfrom these comparisonsfraught with difficulty. Nonetheless, it is inteteng that the dependencies of J on
sulfuric acid level are similar in many of thesediés. This suggests there is an underlying siityilan particle formation
conditions such as contaminant identity and leveti¢h seems unlikely) or the critical cluster'sS®,-content is not

particularly sensitive to the type or abundancthefcontaminant.

3.4.1 Comparison of nucleation rates for added amnmia

Plotted in Fig. 10 are nucleation rates vs. ammoniabundance for measurements at low [580,], 5x10° and
1.5x1¢ cm, and temperatures between 288 and 293 K. Also pled are predictions according to the present data
using the box-model and methodology presented in kigon et al. (2017). The experimental data from th€LOUD
project for 292.5 K were taken from Dunne et al. (217) and were also presented by Kirten et al. (20L6The Benson
et al. (2009, 2011) work was performed at 288 K ansignificant extrapolation of nucleation rates wereapplied to get
comparable sulfuric acid concentrations (see the péion). The Berndt et al. (2011) work was performe at 293 K and
extrapolation was needed to get comparison ratesrfthe 1.5x16¢ cm® [H,SO,] conditions.

The model predictions using the NH3_52 thermodynaros developed here gives rates that are congruentttvithe
CLOUD data and with Berndt et al. (2011) while NH31 thermodynamics (calculated only for [H,SO,] = 1.5x1¢ cm®)
gives rates too high by two-to-three orders of magtude. NH3_l is a set of ammonia-sulfuric acid themodynamics

derived in Hanson et al. (2017) that skirted the Mer limit of the Glasoe et al. (2015) ammonia dataet. Benson et al.
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(2009, 2011) is quite disparate and a temperate gection would lessen the discrepancy for the set dfata at the low
H,S0O, but it would worsen it at the higher H,SO,.

With the box-model predictions using NH3_52 thermognamics serving as a bridge, the present ammonia-ddd
data agrees with both the CLOUD data (Kurten et al. 2016; Dunne et al. 2017) and the Berndt et al. @21) data.
Since the box-model rates using NH3_I thermodynamic(Hanson et al. 2017) are much too high, we cannmude
that the Glasoe et al. (2015) ammonia data set itas based on does not agree with the present measuents.
Recently, Kurten (2019) concluded that the NH3_II §tronger binding than NH3_I) thermodynamics of Hanen et al.

(2017) yields nucleation rates much higher than th€ELOUD measurements.

4 Summary

We presented a new experimental apparatus forisigigarticle formation involving photolytically-fared HSO, vapor
and results show the system is reproducible angorets to changes in water, HONO and,$0ncentrations largely as
expected. Modeled particle formation rates cowddntmde congruous with experimental observationstlyding either

dimethylamine at a level @10 mole fraction or Niat a level of 2x10°° mole fraction. Also, the dependence gfdd __ - { Deleted: 3xic
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term, the system developed here will be used itighaigrowth studies where nm-diameter particlesppred in the Glasoe
et al.(2015)apparatus are directed through PhoFR along witgetarganic compounds.
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Fig. 10. Ammonia-sulfuric acid nucleation rate vsammonia abundance. Sulfuric acid level is
5x10 cm* for the blue diamonds and 1.5x19cm?® for the red squares. CLOUD data is from
Dunne et al., 292.5 K, neutral conditions. Berndtet al. (2010), 293 K, has their squared
dependence on [HSO,] applied which results in a division by ~30 to exapolate to the 1.5x18 cm®
conditions; no corrections needed for the 5x¥0cm? data point. Benson et al. (2009) report a 4
power dependence on sulfuric acid and correction faors are 5 and divide by 16. Benson et al.
(2011) requires multiplicative factors of ~40 to exapolate to 5x10° cm® [H,SO,]. Box model
nucleation rates for the two different [H,SO,] are shown for the NH3_52 thermodynamics and J
for the 1.5x16 cm™ conditions was also predicted using NH3_| from Hason et al. (2017).
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Page 1: [1] Comment [R1] Reviewerl 6/11/2019 7:26:00 PM
We agree with this point and believe this reviewetailed this issue in their comment at the botwfinC4

regarding a more systematic presentation of thdteesindeed, we consolidated three size distidmstinto 1 figure
(moving the majority of the data in these 3 disttibn plots to the supplement) and we also conatdidl two data

sets into one figure where Np is plotted vs Q4.

Page 1: [2] Comment [R2] Reviewerl 6/11/2019 7:26:00 PM
We have a new title (see next comment) and rewotledbstract to better summarize the added vdlti®@s
work.
Page 1: [3] Comment [R3] Reviewer1l 6/11/2019 7:26:00 PM
New title: “H2SO4 and particle production in a Riigtic Flow Reactor. Chemical modeling, cluster
thermodynamics and contamination issues “
Page 1: [4] Comment [R4] Reviewer1l 6/11/2019 7:26:00 PM

We added a paragraph on uncertainties in Supple8#n The bottom line is that random uncertainties
small and scatter is likely due to (small ?) terapene fluctuations. This comment also promptetbusdd a section
(S1.0) to the Supplement showing raw data fronpacé} run and a table that shows the correctiotofac

Page 15: [5] Deleted Reviewerl 6/11/2019 4:19:00 PM I

NH; was introduced at the inlet at a level of 70 ppthich drops with axial distance due to wall losts i

concentration drops to ~20 % of the inlet valuetbycm.

Page 15: [6] Deleted Reviewerl 6/11/2019 4:19:00 PM I

effect of added base on particle formation is prilpat the top

Page 15: [7] Deleted Reviewerl 6/11/2019 4:19:00 PM I

despite the lowest sulfuric acid abundances th&he remaining 2/3 of the reactor has

|

Page 15: [8] Deleted Reviewerl 6/11/2019 4:19:00 PM I

This crude partitioning of

Page 15: [9] Deleted Reviewerl 6/11/2019 4:19:00 PM I

Modeled particles that contain up to 25856, molecules yield particle size distributions in egment with this

estimate from bulk properties (see the Supplement).

|

Page 15: [10] Deleted Reviewerl 6/11/2019 4:19:00 PM I

shown in Fig. 3 provides some justification

|

Page 15: [11] Deleted Reviewerl 6/11/2019 4:19:00 PM I

/3. The abundance of §H0;),NH; peaks at about 50 cm indicating that

Page 15: [12] Deleted Reviewerl 6/11/2019 4:19:00 PM I

involving base has reached its peak. The accuionlatuster (that was allowed to build up at 8 SAlecules but
no further and with no SA evaporation) tells a $amstory regarding this partitioning where its atlance levels off

in the lower section

|

Page 16: [13] Deleted Reviewerl 6/11/2019 4:19:00 PM I




4c and is probably affected by the inability of fiteng process (see Supplement) to yield leadidge log-normal
distributions at low values of [Jindeed about half failed for & 2.2 sccm) and scavenging o$$0, by particle

surface area at the largg that develops at high number densities and lamges svhen Qis 8 to 10 sccm.

Page 17: [14] Deleted Reviewerl 6/11/2019 4:19:00 PM |
2013) show that power dependencies gB®) are affected when a base is present. The presémceimpurity

base compound probably affected our experimengalliee It may be due to two sources: (i) contamirentering
with the flows and (ii) contaminant emanating framernal surfaces. The added base experiments hmawe
discussion on this topic but we note here thatsyatem is slowly cleaning up over time.

Particles grow due to uptake o§$0D, and HO: the estimate from the,BO, profile from the model simulation
discussed above suggests an increase in diameadroaf 4.8 nm for a LQof 4.0 sccm. The data in Fig. 4c show
that the volume mean diameter is about 6 nm atH@INO level, which is consistent with that estimat&he
agreement improves considering that nascent pastitiust attain a certain size to become stablghfgul.3 nm
diameter or larger (large enough such that evajpordiecomes negligible). There is also a 0.3 nfferdince
between mobility and volume/mass diameters. Ptedédn the Supplement are simulated particle sigtilbutions
for Q4= 2 sccm that peak at 3.7 nm in good agreementméhsurements.

3.2.2

| Page 17: [15] Deleted Reviewer1 6/11/2019 4:19:00 PM |
Figs. 5 (a) and (b) are plots of Bnd 0. (volume mean diameter of the leading-edge mode) vs

’ Page 17: [16] Moved to page 20 (Move #8) Reviewerl 6/11/2019 4:19:00 PM I
the flow rate of the SOmixture, Q. HONO source flow rate Qvas 4.2 sccm for this data. Despite its scattber,

data show the SQevel affects both the number of large particled their size, B.

| Page 17: [17] Deleted Reviewerl 6/11/2019 4:19:00 PM |
: both increase with [SDand begin to level-off at high [S{ This behavior is expected as the,@MDundance

must be high enough to ensure it scavenges dileoOiH and beyond that there should not be muclteffe

However, a set of simulations that includes a ieadietween H@and SQ are shown as the lines in Figs. 5. Note
that a level of 70 pptv of NHentering the flow reactor was included. The sated size is given by the growth
estimate from the simulated,80, profile plus an initial size of 1 nm and the mdjidiameter to mass-diameter

offset of 0.3 nm (de La Mora et al.)

’ Page 17: [18] Moved to page 20 (Move #9) Reviewerl 6/11/2019 4:19:00 PM I
The experimental results show increases witht8&t are roughly in line with the model simulaton

| Page 17: [19] Deleted Reviewer1 6/11/2019 4:19:00 PM |
Without a reaction between H@nd SQ, the model shows small increases n(#0 % vs. 250 % with the reaction)

and size (10% vs. 20 % with the reaction) as ®@s increased from 2 to 16 pptv.

’ Page 17: [20] Moved to page 20 (Move #10) Reviewerl 6/11/2019 4:19:00 PM I




The simulation assumed a value of 3x10 cm®/s for kuoz+sop-

Page 17: [21] Moved to page 21 (Move #11) Reviewerl 6/11/2019 4:19:00 PM I

whether HO, reacts with SQ as well as potential end products (Chen et al. 201 Kurten et al. 2011); we
assumed HSO, and OH.

Page 17: [22] Moved to page 21 (Move #12) Reviewerl 6/11/2019 4:19:00 PM I
values for this rate coefficient range from uppetimits of 1x10"® cm’/s (Graham et al. 1979) and 2xI8 cm®/s
(Burrows et al. 1979), to a value of 8xIt cm®s (Payne et al. 1973). A heterogeneous reactioecarring in
the particles involving SQ would help explain the dependence of R, on SO, abundance

Page 17: [23] Deleted Reviewerl 6/11/2019 4:19:00 PM I
while leaving N undisturbed.

The dependencies upon S®ere much smaller when minute amounts of dimethiyl@ were included in the
model. Low levels of (0.003 pptv) dimethylaminevgaimulated Nin the 1d cm® range but at this level its ability
to influence the change in,\With H,SO, was limited due to being scavenged by clustetss Was also observed in
simulations where HONO was varied in the preserfc8.@05 pptv dimethylamine (see the Supplementhis T

suggests that a potential contaminant in our sysarmt a strong nucleator like dimethylamine.

3.2.3 Added ammonia.
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6 is the number of large particles vs. HONO floveraken with and without Ndaddition. The level of
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3.2.6 Variations of dimethylamine and HONO.

Shown in Fig. 9 are measured size distribution wiérying levels of added dimethylamine. The dffat the
number of particles is large and even the smaflasticles (mobility diameter of 1.7 nm) increaseddbout 3
orders of magnitude. The zero-added base dataebatthese runs might be affected by dimethylamwiddver
but this appears to be small: thg &e within a factor of two of the £2.2 sccm data in Fig. 4a. It is clear that
more dimethylamine leads to more particles, with iNcreasing approximately linearly with dimethylami
abundance. Note that the leading edge of theilalisions is clearly the dominant mode for theseditions. The
D does not change significantly with the amount dded dimethyl amine (see the legend for values pfbd
o).

Depicted in Fig. 10 are results from an experimehere HONO, Q was varied (and thus,B0Q,) in the
presence of 2 pptv (+100/-50%) dimethylamine. riggéngly, the number of particles is not particlyl@ensitive to
H,SO, above Q = 2.7 sccm while their size is linearly dependamtQ,. The model indicates a leveling off in the
calculated Iy as Q increases (see the Supplement) which appearsdaéé scavenging of the amine by particles.
Another contributing factor to an insensitivity pfrticle number concentrations t0,30, is particle-particle
collisions. A rough estimate of these effectspasiag a coagulation rate coefficient of 252L6nt/s, for an N of
4x10 cmi® is 2x10%*(4x10°? = 3x1d cm® s* ; multiplying by a 30 s residence time and roughtg@ cni® would
coagulate. This rough estimate suggests the effemtld be properly evaluated, particularly for ttata presented
in Fig. 9. Note also that these are small setdatd and for Fig. 10 base was added at a levektiaienges the
lower range of the dynamic dilution system.

Model

Page 24: [28] Deleted Reviewerl 6/11/2019 4:19:00 PM I
3 (Kurten et al., 2017), albeit at lowes$0s. At constant NB, we found power dependencies o588, for N, of

about 3.5 which is close to

| Page 24: [29] Deleted Reviewer1 6/11/2019 4:19:00 PM |
found by Glasoe et al. (2015) and somewhat larigen the CLOUD data (1$0,-power dependency of 2.6.) A

linear dependence on

\ Page 24: [30] Deleted Reviewerl 6/11/2019 4:19:00 PM I
nucleation initiated by sulfamic acid, as outlinedLovejoy and Hanson (1996).
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exceeded experiment for a large set of conditions.
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., but now, since the Glasoe et al. data are hittzar the latter two as well as for much of

| Page 24: [33] Deleted Reviewerl 6/11/2019 4:19:00 PM |
, we conclude that the Glasoe et al.Nkkults are biased high. Finally, the putativeeament between Glasoe

et al. and the 292 K 4 pptv NHlata from CLOUD (demonstrated in Fig. 4 of Kurtgral. 2016) should not be a

validation of these two sets of N#1,SO, nucleation rates.

| Page 24: [34] Deleted Reviewer1 6/11/2019 4:19:00 PM |
would be most vulnerable to the presence of smmadlumts of holdover amines.
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investigated with a proper coagulation simulation
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investigation. Furthermore, we conclude that the
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likely overestimates nucleation in the ammoniasudfacid system.
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to better determine 430, and amine dependencies.
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(a) Number of large particles and (b) volume meadiameter of the leading edge mode plotted vs.

| Page 35: [42] Moved to page 36 (Move #25) Reviewerl 6/11/2019 4:19:00 PM |

, was 4.2 sccm which results in roughly 5xtbcm® [HONO] in PhoFR. For reference, an S@mixture flow rate of
32 sccm results in an [Sg) of 4x10* cm® in PhoFR (about 16 pptv).
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The orange lines are model values for Nand size with 70 pptv NH
entering the flow reactor and a k3x5 (HQ + SO,) rate coefficient of
3x10%Y cm¥s. The simulated size has 1.3 nm (to take int@eount
initial cluster size of ~ 1 nm and the mobility tomass size difference
of 0.3 nm. de La Mora et al.) added to the growth e to H,SO,
exposure as discussed above.
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Fig. 6 (a)
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Q, (i.e., HONO) and (b) particle size distributions vith NH 3 present.
In (b), the log-normal parameters are listed in thelegend and were
obtained from a fitting procedure except for the Q = 1.61 sccm data.
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