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Abstract. Fourteen chemical transport models (CTMs) participate in the first topic of the Model Inter−Comparison Study for 

Asia (MICS–Asia) Phase III. These model results are compared with each other and an extensive set of measurements, 

aiming to evaluate the current CTMs’ ability in simulating aerosol concentrations, to document the similarities and 

differences among model performances, and to reveal the characteristics of aerosol components in large cities over East Asia. 35 

In general, these CTMs can well reproduce the spatial–temporal distributions of aerosols in East Asia during the year 2010. 

The multi–model ensemble mean (MMEM) shows better performance than most single–model predictions, with correlation 

coefficients (between MMEM and measurements) ranging from 0.65 (nitrate, NO3
−) to 0.83 (PM2.5). The concentrations of 

black carbon (BC), sulfate (SO4
2−), and PM10 are underestimated by MMEM, with normalized mean biases (NMBs) of 
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−17.0%, −19.1%, and −32.6%, respectively. Positive biases are simulated for NO3
− (NMB=4.9%), ammonium (NH4

+) 

(NMB=14.0%), and PM2.5 (NMB=4.4%). In comparison with the statistics calculated from MICS–Asia Phase II, frequent 

updates of chemical mechanisms in CTMs during recent years make the inter–model variability of simulated aerosol 

concentrations smaller, and better performance can be found in reproducing the temporal variations of observations. 

However, a large variation (about a factor of 2) in the ratios of SNA (sulfate, nitrate and ammonium) to PM2.5 is calculated 5 

among participant models. A more intense secondary formation of SO4
2− is simulated by CMAQ models, because of the 

higher SOR (sulfur oxidation ration) than other models (0.51 vs. 0.39). The NOR (nitric oxidation ratio) calculated by all 

CTMs has larger values (~0.20) than the observations, indicating that overmuch NO3
− is simulated by current models. 

NH3–limited condition (the mole ratio of ammonium to sulfate and nitrate is smaller than 1) can be successfully reproduced 

by all participant models, which indicates that a small reduction in ammonia may improve the air quality. A large coefficient 10 

of variation (CV>1.0) is calculated for simulated coarse particles, especially over arid and semi–arid regions, which means 

that current CTMs have difficulty in producing similar dust emissions by using different dust schemes. According to the 

simulation results of MMEM in six large Asian cities, different air–pollution control plans should be taken owing to their 

different major air pollutants in different seasons. MICS–Asia project gives an opportunity to discuss the similarities and 

differences of simulation results among CTMs in East Asia applications. In order to acquire a better understanding of aerosol 15 

properties and their impacts, more experiments should be designed to reduce the diversities among air quality models. 
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1 Introduction 

Urbanization and industrialization have stimulated economic growth and population expansion during the last several 

decades in East Asia (Spence et al., 2008; Yan et al., 2016; Chen et al., 2016), but also bring about noticeable degradation of 

ecological environment at the same time (Hall 2002; Han et al., 2014; Yue et al., 2017). Significant increase in atmospheric 

aerosol loading, especially from anthropogenic emissions, can exert adverse effects on weather (Cowan et al., 2013), climate 5 

(Wang et al., 2016a), air quality (Gao et al., 2016a), and human health (Carmichael et al., 2009). For example, aerosols can 

modify the thermodynamic structure of the atmospheric boundary layer by absorbing and scattering solar radiation (Ding et 

al., 2016; Petaja et al., 2016), alter cloud properties and precipitation by acting as cloud condensation nuclei and ice nuclei 

(Lohmann and Diehl, 2006; Wang, 2013a), deteriorate visibility and cause haze events (Singh and Dey, 2012; Li et al., 2014). 

In addition, fine particulate matter with aerodynamic diameters smaller than 2.5 μm (PM2.5) may enter into the alveoli and 10 

cause severe cardiovascular diseases, respiratory diseases, and even lung cancer (Pope and Dockery, 2006; Gao et al., 2015a). 

The impacts have attracted considerable attentions from the public and policy makers in East Asia, and therefore the research 

on aerosol has become a hot topic during recent years. 

In order to better understand the properties of atmospheric aerosols and their impacts, chemical transport models 

(CTMs) can be a critical tool, and they have been applied to study various air pollution issues all over the world. For 15 

example, a fully coupled online Weather Research and Forecasting/Chemistry (WRF/Chem) model was developed by Grell 

et al. (2005), and it has been widely used to study the aerosol–radiation–cloud feedbacks on meteorology and air quality 

(Gao et al., 2014; Zhang et al., 2015a; Qiu et al., 2017); a Models–3 Community Multi–scale Air Quality (CMAQ) modeling 

system was designed by the US Environmental Protection Agency (Byun and Ching, 1999), and it has been applied to 

address acid deposition, visibility and haze pollution issues (Zhang et al., 2006; Han et al., 2014; Fan et al., 2015); a nested 20 

air quality prediction model system (NAQPMS) was developed by the Institute of Atmospheric Physics, Chinese Academy 

of Science (IAP/CAS) (Wang et al., 2001) to reproduce the mechanism of transport and evolution of atmospheric pollutants 

in Asia (Li et al., 2012a; Wang et al., 2013c; Li et al., 2017a); a global three–dimensional chemical transport model 

(GEOS–Chem) was first presented by Bey et al. (2001), and researchers use the GEOS–Chem model to study the source 

sector contribution, long–range transport and the prediction of future change in ozone and aerosol concentrations (Liao et al., 25 

2006; Li et al., 2016b; Zhu et al., 2017). 

Although significant advantages can be found in CTMs, how to accurately reproduce or predict the concentrations and 

the distributions of atmospheric pollutants is still a challenge, with the problems of inaccurate emission inventories, poorly 

represented initial and boundary conditions, and imperfect physical, dynamical and chemical parameterizations (Carmichael 

et al., 2008). Meanwhile, most CTMs are designed to focus on the air quality over developed countries, such as Europe and 30 

America, rather than Asia. The assumptions or look–up tables used in CTMs may not be suitable for the simulations of the 

East Asian environment (Gao et al., 2018). Therefore, before providing meaningful results and answering “what–if” 

questions for policy makers, model performances must be carefully evaluated. Hayami et al. (2008) and Mann et al. (2014) 
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pointed out that different parameterizations used in CTMs can cause large variations in simulation results, and multi–model 

ensemble mean (MMEM) tends to show better performance than most single–model predictions when comparing with 

observations (Carmichael et al., 2002; Hayami et al., 2008; Wang et al., 2008; Holloway et al., 2008). In order to develop a 

better common understanding of the performance and uncertainties of CTMs in East Asia applications, and to acquire a more 

mature comprehension of the properties of atmospheric aerosols and their impacts, a model inter–comparison study should 5 

be initiated, and Model Inter–Comparison Study for Asia (MICS–Asia) gives an opportunity to investigate these questions. 

Meanwhile, model inter–comparison study in East Asia is very limited (Phadnis et al., 1998; Kiley et al., 2003; Han et al., 

2008), and far more efforts are needed in future. 

The MICS–Asia project was initiated in 1998. In the first phase of MICS–Asia (MICS–Asia Phase I), the primary target 

was to study the long–range transport and deposition of SO4
2− in East Asia by analyzing the submitted simulation results 10 

from eight CTMs. Source–receptor relationships, contributions from removal processes, and the influences of model 

structures and parameterizations on simulation results were also estimated. More details can be found in Carmichael et al. 

(2002). As an extension of Phase I, MICS–Asia Phase II included more chemical species of concern, such as sulfur, nitrogen 

and ozone. This broader collaborative study examined four different periods, encompassing two different years and three 

different seasons (March, July, and December in 2001, and March in 2002). Simulation results from nine different regional 15 

modeling groups were analyzed. Detailed information about this project can be found in the overview paper of Carmichael et 

al. (2008). In 2010, the MICS–Asia III project was launched. As a part of EANET additional research activity and a 

continuing research of MICS–Asia series, three topics were discussed, including comparison and evaluation of current 

multi–scale air quality models (Topic 1), development of reliable emission inventories for CTMs in Asia (Topic 2), and 

interactions between air quality and climate changes (Topic 3). 20 

This manuscript focuses on the first topic of the MICS–Asia Phase III, and intends to present and summarize the 

following three objectives, specializing in the topic of aerosols. Firstly, comprehensive evaluations of the strengths and 

weaknesses of current CTMs for simulating particulate matter (PM) are provided against extensive measurements from 

in–situ and satellites, aiming to show the capability of participant models. Secondly, diversities of simulated aerosol 

concentrations among participant models are analyzed, including possible reasons for the inconsistency. Thirdly, 25 

characteristics of aerosol compositions in six metropolitans in East Asia are analyzed, which may be helpful to take measures 

to prevent and control air pollutions in future. 

The description of model configurations, model inputs and observations are presented in Section 2. The evaluation for 

model performance and the inter–comparison between participant models are shown in Section 3. The conclusions and 

discussions are presented in Section 4. 30 

2 Inter–comparison framework 

Fourteen regional models (M1–M14) participated in MICS–Asia phase III Topic 1. All models were required to run for 
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the whole year of 2010, and provide gridded monthly simulation results of aerosols in the first model layer. These CTMs 

include the Weather Research and Forecasting model coupled with Community Multiscale Air Quality (WRF–CMAQ), the 

Weather Research and Forecasting Model coupled with Chemistry (WRF–Chem), the nested air quality prediction model 

system (NAQPMS), the non–hydrostatic mesoscale model coupled with chemistry transport model (NHM–Chem), the 

global three–dimensional chemical transport model (GEOS–Chem), and the Regional Atmospheric Modeling System 5 

coupled with Community Multiscale Air Quality (RAMS–CMAQ). Among these models, there are three different versions of 

WRF–CMAQ (v5.0.2 is used by M1 and M2, v5.0.1 is used by M3, and v4.7.1 is used by M4, M5 and M6), four different 

versions of WRF–Chem (v3.7.1 is used by M7, v3.6.1 is used by M8, v3.6 is used by M9, and v3.5.1 is used by M10), one 

version of NAQPMS (M11), NHM–Chem (M12), GEOS–Chem (v9.1.3 is used by M13) and RAMS–CMAQ (v4.6 is used 

by M14). Basic information about the configurations of each model is summarized in Table 1. 10 

2.1 Model configurations 

2.1.1 Simulation domain 

A unified simulation domain was designed by MICS–Asia organizers, which covers the region of (15.4°S–58.3°N, 

48.5°E–160.2°E) with 180×170 grid points at 45 km horizontal resolution, but participant models employed different 

modeling domains (Fig. 1) with different grid resolutions (e.g. 0.5° of latitude×0.667° of longitude in M13, 64 km×64 km in 15 

M14, others are 45 km×45 km). In order to minimize the influence from lateral boundary conditions and to cover most areas 

of interest in East Asia, an analyzed region was chosen in this manuscript (Fig. 1). For M13 and M14, missing values were 

used to fill the grids outside their simulation domains. Meanwhile, the analyzed region was divided into five different areas 

(Region_1 to Region_5). Region_1 contains Korean Peninsula and Japan. Region_2 only contains China. Region_3 contains 

Mongolia and parts of Russia. Region_4 covers most countries in Southeast Asia. Region_5 contains most countries in South 20 

Asia. Therefore, simulation results in each sub–region can be analyzed and compared to show the performance of current 

CTMs. 

2.1.2 Gas and aerosol modules 

Gas phase chemistry and aerosol chemistry are important parameterizations in CTMs. Luecken et al. (2008) and 

Balzarini et al. (2015) pointed out that different settings of chemical mechanisms could influence the simulation results 25 

significantly. 

2.1.2.1 Gas phase chemistry 

(1) The gas chemistry of SAPRC99 (Statewide Air Pollution Research Center 99) was used in M1, M2, M4, M5, M6, 

M12 and M14. It is a detailed mechanism for the gas–phase atmospheric reactions of VOCs and NOx in urban and regional 

atmosphere (Carter, 2000). The SAPRC99 mechanism has already been incorporated into CMAQ v4.6 with about 72 species 30 
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and 214 reactions. Meanwhile, another three heterogeneous chemistry reactions of N2O5, HO2 and NO2 are also considered 

in the SAPRC99 gas phase chemistry in M12 (Kajino et al., 2018). 

(2) The Carbon Bond mechanism (CB05) was used in M3. It describes tropospheric oxidant chemistry and provides a 

basis for computer modeling studies of ozone, particulate matter, visibility, acid deposition and air toxics issues, with 51 

species and 156 reactions (Yarwood et al., 2005). 5 

(3) The second generation Regional Acid Deposition Model (RADM2) gas phase chemical mechanism was used in M9 

and M10. The inorganic species considered in RADM2 include 14 stable species, 4 reactive intermediates and 3 abundant 

stable species. The organic chemistry is represented by 26 stable species and 16 peroxy radicals (Stockwell et al., 1990). This 

module can simulate the concentrations of PAN, HNO3 and H2O2 under different environmental conditions (Stockwell et al., 

1990).  10 

(4) Based on RADM2, the Regional Atmospheric Chemistry Mechanism (RACM) was developed with updated reaction 

rate constants and product yields according to more recent laboratory measurements. It is capable of simulating the 

troposphere from the Earth’s surface through the upper troposphere, and is valid for simulating remote to polluted urban 

conditions (Stockwell et al., 1997). M7 and M8 selected the RACM module. The rate coefficients were further updated in 

M7 (Kim et al., 2009). However, heterogeneous hydrolysis of N2O5 is not considered in M7 and M8. 15 

(5) The gas chemistry of Carbon–Bond Mechanism version Z (CBMZ) was used in M11. This lumped–structure 

mechanism extends the original framework of CBM–IV to function properly at larger spatial and longer timescales, with 

revised inorganic chemistry, isoprene chemistry, and many other related parameterizations (Zaveri and Peters, 1999).  

(6) In M13, the NOx–Ox–HC–Br tropospheric gas chemistry mechanism was used. It includes about 80 species and 300 

chemical reactions (Bey et al., 2001; Zhu et al., 2017). 20 

Jimenez et al. (2003), Luecken et al. (2008) and Yang et al. (2018) summarized that different gas–phase chemistry 

mechanisms could predict large variations in reactive species, such as HO2 and NO3, making the production of OH and H2O2 

different. In addition to the different number of species and reactions considered in each gas module, the reaction rates of the 

oxidation of SO2, NOx and some VOCs to condensable SO4
2−, NO3

− and organic species are also largely different (Pan and 

Zhang, 2008). All these would affect the simulated aerosol concentrations, especially under the urban condition.  25 

2.1.2.2 Aerosol chemistry 

(1) AERO with ISORROPIA: Aerosol modules (AERO5 and AERO6) with thermodynamic equilibrium models 

(ISORROPIA v1.7 and v2) were used in M1, M2, M3, M4, M5, M6, M11, M12 and M14. Aerosols in AERO were divided 

into three modes: Aitken, accumulation and coarse modes. Gas–liquid–solid equilibrium in inorganic aerosol was predicted 

by the ISORROPIA model. The AERO5 ISORROPIA (v1.7) was mainly used in CMAQ v4, and the updated AERO6 30 

ISORROPIA (v2) has been implemented since CMAQ v5. Nine new PM species (e.g. Ca2+, K+ and Mg2+) were added in 

the new aerosol module of AERO6. In order to support the additional crustal ion emissions introduced in AERO6, 

ISORROPIA (v1.7) was replaced by ISORROPIA (v2) (Nenes et al, 1998; Fountoukis and Nenes, 2007), and the 
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corresponding modifications could affect the gas–particle partitioning of NO3
− and NH4

+. The rate constants for the S (IV) 

to S (VI) conversion through in–cloud oxidation pathways were also modified, including the catalysis effects through 

aqueous chemistry from Fe and Mn (Appel et al., 2013). In order to solve the over–predictions of the unspeciated PM2.5 (also 

called PMother) in CMAQ v4, detailed speciation profiles derived from Reff et al. (2009) were adopted in CMAQ v5 to 

subdivide the emissions of PMother into primary NO4
+, Na+, Cl− and other selected trace elements. Comparing with CMAQ 5 

v4.6, a new parameterization of heterogeneous N2O5 hydrolysis was included in CMAQ v4.7 to improve the simulation 

results of NO3
−. Comparing with CMAQ v5.0.1, a mass balance correction of NO3

− aerosol under cold conditions was 

adopted in CMAQ v5.0.2. This adjustment would reduce the concentration of NO3 and HNO3 at the surface level. 

(2) MADE/SORGAM and MADE/VBS: Detailed treatments of inorganic aerosol effects in M7, M8 and M9 were 

simulated by Modal Aerosol Dynamics Model for Europe (MADE). Three log–normal modes (Aitken, accumulation and 10 

coarse modes) were used in this module to present the particle size distribution of submicrometer aerosol, such as SO4
2−, 

NO3
−, NH4

+, BC, OC and aerosol water (Ackermann et al., 1998). Aerosols were assumed to be internally mixed in the same 

mode but externally mixed among different modes (Zhao et al., 2010). The organic chemistry used in M7 and M9 was based 

on SORGAM (Secondary Organic Aerosol Model). This model was capable of simulating SOA formation including the 

production of low–volatility products and their subsequent gas–particle partitioning (Schell et al., 2001), but all activity 15 

coefficients were assumed to be 1 due to insufficient information. However, when it was coupled with MADE, the biogenic 

precursors and their resulting particle concentrations were set to be zero. The organic chemistry used in M8 was based on the 

Volatility Basis Set (VBS) approach (Ahmadov et al., 2012). This module used the volatility basis set framework to simulate 

primary organic aerosol partitioning between the gas and particulate phases and the gas–phase oxidation of the 

corresponding vapors (Murphy and Pandis, 2009). 20 

(3) GOCART: The Goddard Chemistry Aerosol Radiation and Transport (GOCART) model was used in M10 to 

simulate tropospheric aerosol components, such as SO4
2−, dust, BC, OC and sea–salt aerosols (NO3

− and NH4
+ are not 

considered), and all these aerosol species were assumed to be log–normal size distributions (Chin et al., 2000). SO4
2− was 

formed by the oxidation of SO2 in the atmosphere, but the impacts from in–cloud oxidation pathways were not included 

(Chin et al., 2002). The source emission of BC and OC was mainly from biomass burning. Dust emission was following 25 

Ginoux et al. (2001). Sea-salt emission was highly dependent on wind speed. More details about the simulations of dust and 

sea–salt aerosols in GOCART will be described in Section 2.1.3 and 2.1.4. 

Different chemical species are considered in numerous aerosol equilibrium models, resulting in different equilibrium 

partitioning and water uptake during the simulation processes, which can affect the predicted aerosol concentrations 

(Fountoukis and Nenes, 2007). As Moya et al. (2002) and Wang et al. (2012b) classified that the treatment of crustal material 30 

in aerosol chemistry could considerably improve model results in predicting the partitioning of NO3
− and NH4

+. Different 

heterogeneous reactions and their activity coefficients used in the thermodynamic equilibrium would also be a major source 

of uncertainty in simulated aerosol concentrations (Li et al., 2012a; Kim et al., 2011; Chen et al., 2016a). 
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2.1.3 Dust scheme 

Natural emissions of windblown dust have been explicitly parameterized since CMAQ v5 (Foroutan et al., 2017), but 

all the participated WRF–CMAQ models did not turn this option on, which means dust aerosols were not considered in 

M1–M6. Meanwhile, the dust scheme in M7 and M8 was also turned off. 

Dust particles in M10 and M13 were simulated by the GOCART model (Ginoux et al., 2001). This model includes eight 5 

size groups of mineral dust ranging from 0.1 to 10 µm. The emission flux for a size group can be expressed as follows: F =

C × S × 𝑠𝑝 × 𝑢10
2 × (𝑢10 − 𝑢𝑡), 𝑖𝑓 𝑢10 > 𝑢𝑡, where C is a constant with the value of 1 µg s2 m-5. S means the probability 

source function, representing the fraction of alluvium available for wind erosion. 𝑠𝑝 is the fraction of each size group within 

the soil. 𝑢10 and 𝑢𝑡 are the wind speed at 10 m and threshold velocity of wind erosion, respectively.  

A simplified dust emission parameterization proposed by Shao (2001) was used in M9 (Shao, 2004). Dust emission in 10 

Shao_2004 is proportional to streamwise saltation flux, and the proportionality depends on soil texture and soil plastic 

pressure. The size–resolved dust flux goes into four size bins, with diameters ranging from 1.95 to 20 µm (Kang et al., 2011). 

More detail about the dust emission rate and the total dust flux can be found in Shao (2004).  

A size–segregated dust deflation module proposed by Wang et al. (2000) was used in M11. It was developed based on 

three major predictors (friction velocity, surface humidity and dominant weather system), and has been successfully applied 15 

in many dust-related simulations (Wang et al., 2002; Yue et al., 2010). The dust flux F is calculated as follows: F = C ×

𝜌𝑎

𝑔
× E × 𝑢∗3 × (1 +

𝑢0
∗

𝑢∗) × (1 −
𝑢0

∗2

𝑢∗2) × (1 −
𝑅𝐻

𝑅𝐻0
) , where C equals to 10-5, 𝜌𝑎  means air density, 𝑔  is gravitational 

acceleration. E is the weighting factor, representing the uplifting capability of land surface. 𝑢0
∗  and 𝑢∗ are the fraction and 

threshold friction velocities, respectively. 𝑅𝐻 and 𝑅𝐻0 are relative humidity and threshold relative humidity, respectively. 

According to soil categories and vegetation coverage, the dust emission intensity was further modified by Luo and Wang 20 

(2006). Four size bins of dust particles ranging from 0.43 to 10 µm were considered in this emission module. Meanwhile, 

several heterogeneous reactions on dust particles were also considered (Li et al., 2012a).  

An empirical dust emission mechanism based on the approach of Gillette and Passi (1988) was used in M12 and M14 

(Han et al., 2004). Dust flux can be calculated through the following formula: F = C × 𝑢∗
4 × (1 −

𝑢∗

𝑢
) × (1 − 𝑓 × 𝑅), 𝑖𝑓 𝑢 >

𝑢∗, where 𝑢 and 𝑢∗ are the friction and the threshold friction velocities, respectively. C is the correction coefficient (1.4 ×25 

10−15). 𝑓 and 𝑅 represent the fractional coverage of vegetation and the reduction factor in a model grid. Dust particles 

with diameters ranging from 0.43 to 42 µm were grouped into 11 bins, with the first eight bins below 11 µm for aerosol 

sampler, and the additional three bins above 11 µm for larger particles (Han et al., 2004).  

Different dust schemes will produce different dust emission fluxes over arid and semi-arid regions (Zhao et al., 2010; 

Su and Fung, 2015). Several factors, such as potential source regions, threshold friction velocity, size distribution, and other 30 

surface and soil–related parameters used in equations can be the primary causes for the inconsistency, and the differences in 

simulated dust emissions will affect the characteristics of spatial–temporal variations of atmospheric aerosol particles. 
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2.1.4 Sea–salt scheme 

As one of the major components of primary aerosols, sea–salt aerosols contributes to 20–40% of secondary inorganic 

aerosols (SIAs) over coastal regions (Liu et al., 2015; Yang et al., 2016). These particles can provide surface areas for 

condensation and reaction of nitrogen and sulfur, making the simulated concentrations of SIAs more accurate (Kelly et al., 

2010; Im, 2013). 5 

In M12, the method of Clarke et al. (2006) was used to simulate the sea–salt emissions as follows: 𝑆100 =

𝐶𝑠×𝑘×𝑉𝑤𝑖𝑛𝑑×ℎ

𝐴𝑎𝑣𝑔×𝐿+0.5×𝑤0
. The sea–salt source function (𝑆100) is defined as the number of sea–salt aerosols generated per unit area of 

ocean surface completely covered by bubbles (100% coverage) per unit time. 𝐶𝑠 is the differences of condensation nuclei 

concentrations collected at 5 m (impacted by breaking waves) and 20 m (background values). 𝑘 is the multiplier for tower 

𝐶𝑠 compared to mean profile. 𝑉𝑤𝑖𝑛𝑑 means surf zone wind speed. ℎ is the height of plume layer for beach profile. 𝐴𝑎𝑣𝑔 10 

represent mean bubble fractional coverage area between waves. 𝐿 is the distance wave travels to shore, and 𝑤0 is the 

initial width of breaking wave bubble front. 

In other participating models (sea–salt emission is not considered in M7 and M8), sea–salt emissions were simulated 

online by using the algorithm proposed by Gong et al. (2003). The density function 
𝑑𝐹

𝑑𝑟
 (m-2 s-2 μm-1) is calculated as follows: 

𝑑𝐹

𝑑𝑟
= 1.373 × 𝑢10𝑚

3.41 × 𝑟−𝐴 × (1 + 0.057 × 𝑟3.45) × 101.607𝑒−𝐵2

, where 𝑢10𝑚 is the 10 m wind speed, 𝑟 is the particle 15 

radius at RH=80%. A represents an adjustment parameter, which control the shape of submicron size distribution. B =

(0.433 − 𝑙𝑜𝑔10(𝑟))/0.433, meaning a parameter related to particle radius. In CMAQ model, the sea–salt scheme was 

updated by Kelly et al. (2010) to enhance the emission of sea–salt from coastal surf zone, and to allow dynamic transfer of 

HNO3, H2SO4, HCl, and NH3 between coarse particles and gas phase. In GEOS-Chem model, it was updated by Jaegle et al. 

(2011) to improve the simulation of sea–salt with dry radii smaller than 0.1 μm. 20 

2.2 Model inputs 

Based on the experience concluded from Phase I and Phase II, all the fourteen models in Phase III Topic 1, in principle, 

were required to use the “standard” meteorological fields, emission inventories and boundary conditions in order to reduce 

the potential diversities caused by model inputs. But different data were selected by participant models. In this section, some 

basic information about the model inputs are described. 25 

2.2.1 Meteorological fields 

The “standard” hourly meteorological fields were simulated by the Weather Research and Forecasting Model (WRF 

v3.4.1) with the initial and lateral boundary conditions taken from the National Center for Environmental Prediction (NCEP) 

Final Analysis (FNL) data. Four–dimensional data assimilation nudging toward the NCEP FNL data was also adopted to 

increase the accuracy of simulated meteorological variables. The reference meteorological fields were only used in M1–M6 30 
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and M11. For M7, M8 and M9, the standard meteorological simulation was run by the same model (WRF), but feedbacks 

between meteorological variables and pollutants were also considered in these WRF–Chem models. For M10, the Modern 

Era Retrospective–analysis for Research and Applications (MERRA) reanalysis were used to driven the WRF (v3.5.1) model. 

The outputs from the Japan Meteorological Agency (JMA) non–hydrostatic mesoscale model (NHM) were used to initialize 

M12 (Kajino et al., 2012). M13 was driven by assimilated meteorological data from the Goddard Earth Observing System 5 

(GEOS) of NASA’s Global Modeling and Assimilation Office (Chen et al., 2009; Li et al., 2016c). Although the 

meteorological initial and lateral boundary conditions were taken from the same NCEP FNL data, three dimensional 

meteorological fields used in M14 were simulated by Regional Atmospheric Modeling System (RAMS) (Zhang et al., 2002, 

2007; Han et al., 2009, 2013). Consequently, different meteorological fields used in the fourteen participant models will 

cause different atmospheric circulation characteristics, which can further influence the spatial–temporal variation of air 10 

pollutants (Gao et al., 2018ACP). 

2.2.2 Emission inventories 

All participant models utilized the “standard” emission inventory, including anthropogenic, biogenic, biomass burning, 

air and ship, and volcano emissions, which was prepared by the emission group in MICS–Asia phase III. The anthropogenic 

emission dataset over Asia, named MIX, was developed by harmonizing five regional and national emission inventories with 15 

a mosaic approach. These five inventories are REAS2 (REAS inventory version 2.1 for the whole of Asia, Kurokawa et al., 

2013), MEIC (the Multi-resolution Emission Inventory for China developed by Tsinghua University), PKU–NH3 (a 

high–resolution NH3 emission inventory by Peking University, Huang et al., 2012), ANL–India (an Indian emission 

inventory developed by Argonne National Laboratory, Lu et al., 2011), and CAPSS (the official Korean emission inventory 

form the Clean Air Policy Support System, Lee et al., 2011). The MIX inventory includes ten species (SO2, NOx, CO, CO2, 20 

NMVOC (non–methane volatile organic compounds), NH3 (ammonia), BC (black carbon), OC (organic carbon), PM2.5 and 

PM10) in each sector (power, industry, residential, transportation, and agriculture), and is developed for the year 2010 with 

monthly temporal resolution and 0.25 degree spatial resolution. More details can be found in Li et al. (2017b). Weekly and 

diurnal profiles of the anthropogenic emissions provided by the emission group were used in model simulations, including 

the emission factors for the first seven vertical levels (Fig. S1). Biogenic emissions were calculated by the Model of 25 

Emissions of Gases and Aerosols from Nature (MEGAN) version 2.04 (Guenther et al., 2006). In MEGAN v2.04, 

meteorological variables (e.g. solar radiation, air temperature, soil moisture) and land cover information (e.g. leaf area index 

and plant functional types) were necessary inputs, and these data were obtained from the WRF v3.4.1 simulation results and 

MODIS (Moderate Resolution Imaging Spectroradiometer) products, respectively. Biomass burning emissions were 

processed by re–gridding the Global Fire Emissions Database (GFED) version 3 (van der Werf et al., 2010), and the diurnal 30 

profile was also provided. The aircraft and shipping emissions were based on the 2010 HTAPv2 (Hemispheric Transport of 

Air Pollution) emission inventory (0.1 by 0.1 degree) (Janssens–Maenhout et al., 2015). Daily volcanic SO2 emissions were 

collected from the AEROCOM program (http://www-lscedods.cea.fr/aerocom/AEROCOM\HC/volc/, Diehl et al., 2012; 

http://www-lscedods.cea.fr/aerocom/AEROCOM/HC/volc/
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Stuefer et al., 2013). The spatial distribution of the merged emissions of SO2, NOx, NH3 and PM2.5 from anthropogenic, 

biogenic, biomass burning, air and ship, and volcano emissions are shown in Fig. S2. Similar spatial patterns can be found 

among the four species, with high values in eastern China and northern India. 

2.2.3 Boundary conditions 

Two sets of the chemical initial and boundary conditions (CHASER and GEOS–Chem) were provided by MICS–Asia 5 

phase III. The 3–hourly global CTM outputs of CHASER (prepared by Nagoya University, Sudo et al., 2002a; Sudo et at., 

2002b) was run with 2.8º×2.8º horizontal resolution and 32 vertical layers. The hourly outputs from GEOS–Chem (prepared 

by University of Tennessee, http://acmg.seas.harvard.edu/geos/) was run with 2.5º×2º horizontal resolution and 47 vertical 

layers. All participant models, except M2, M7 and M10, chose between them. For M2 and M7, the default chemical 

boundary condition provided by CMAQ and WRF–Chem were used, respectively. For M10, the global GOCART 10 

simulations were used for atmospheric aerosols. 

2.3 Coupled meteorology and chemistry modelling methods 

As is known to all that meteorological fields have significant influences on air quality. Meanwhile, atmospheric 

compositions can also affect weather and climate. As Gao et al. (2018ACP) pointed out that different coupling methods 

between aerosols and meteorological variables can cause different simulation results. 15 

In order to simulate the concentrations of air pollutants, meteorological models and chemistry transport models should 

be implemented either offline or online (Kong et al., 2015). Offline modeling implies that CTM is run after the 

meteorological simulation is completed, which means the chemical impacts on meteorology are not considered. Online 

modeling allows coupling and integration of some of the physical and chemical components (Baklanov et al., 2014). 

According to the extent of online coupling, there are two ways of coupling: (1) online integrated coupling (meteorology and 20 

chemistry are simulated simultaneously in the same grid) and (2) online access coupling (meteorology and chemistry are 

independent, but information can be exchanged between meteorology and chemistry) (Baklanov et al., 2014). Among these 

participating models, M4, M5, M6, M12, M13 and M14 are offline models. M1, M2, M3 and M11 are online access models. 

M7, M8, M9 and M10 are online integrated models.  

More details about the model configurations can be found in Table 1 and the other MICS–Asia Phase III companion 25 

papers (Kong et al., 2019; Li et al., 2019). 

2.4 Observation data 

Monthly observations of SO4
2−, NO3

−, NH4
+, PM2.5 and PM10 collected from 39 stations of the Acid Deposition 

Monitoring Network in East Asia (EANET) were used to evaluate the simulations. Common quality assurance and quality 

control standards promoted by the ADORC (Acid Deposition and Oxidant Research Center) were adopted among these 30 

EANET stations to guarantee high quality dataset. More information about the EANET dataset can be found at 

http://acmg.seas.harvard.edu/geos/
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http://www.eanet.asia/index.html. In addition to the EANET data, monthly mean concentrations of air pollutants (e.g. SO2, 

NO2, PM2.5 and PM10) over the Beijing–Tianjin–Hebei (BTH) region (19 sites) and the Pearl River Delta (PRD) region (13 

sites) provided by the China National Environmental Monitoring Center (CNEMC) were also used to compare with the 

simulation results from participating models. 

As is known to all, China has been experiencing heavy air pollution with high concentrations of fine particles. Recent 5 

studies highlighted the importance of secondary aerosols in the formation of haze episodes (Liu et al., 2013; Sun et al., 2016a; 

Chen et al., 2018). However, observations (e.g. SO4
2−, NO3

− and NH4
+) in China were only available at one EANET site (the 

Hongwen site). In order to make the model evaluation more credible, observed monthly/seasonal/yearly concentrations of 

BC, SO4
2−, NO3

−, NH4
+ and PM2.5 in China were also collected from published literatures.  

Aerosol Robotic Network (AERONET), a ground–based remote–sensing aerosol network consisting of worldwide 10 

automatic sun– and sky–scanning spectral radiometers (Holben et al., 1998), provides the aerosol optical depth (AOD) 

products at 440 nm and 675 nm, which can be used to calculate the AOD at 550 nm according to the Angstrȍm exponent. 

The AERONET Level 2.0 monthly AOD data (cloud–screened and quality–assured data) at 33 sites were utilized in this 

study. Meanwhile, satellite–retrieved 550 nm AOD products from the Moderate Resolution Imaging Spectroradiometer 

(MODIS) were also used to compare with simulations. 15 

Figure 2 and Figure S3 show the geographical locations of all the observation sites. Most SO4
2−, NO3

− and NH4
+ 

monitoring sites are located in China, Japan and the Southeast Asia. Three PM10 sites are located in the Southeast Asia, 

whiles others are in China and Japan. Detailed information about these stations is listed in Table S1 and Table S2.  

In general, the wide variety of measurements from in–situ and satellites used in this manuscript can allow for a rigorous 

and comprehensive evaluation of model performance. 20 

3 Results 

3.1 Model evaluation 

According to the objective of MICS–Asia Phase III Topic 1, comparisons of aerosol concentrations between 

observations and simulations are presented to evaluate the performance of current multi–scale air quality models in East Asia, 

including analyzing the similarities and differences between participant models. Simulation results of BC, OC, SO4
2−, NO3

−, 25 

NH4
+, PM2.5, PM10 and AOD are requested to submit for the project, but no data can be acquired from M10, and extremely 

large values are predicted by M3. Therefore, only twelve models are actually considered in this manuscript. Among the 

twelve models, AOD is missing in M5, M6 and M8, PM10 is missing in M13, OC is missing in M7, BC and OC are missing 

in M9 (Table S3). 

http://www.eanet.asia/index.html
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3.1.1 Evaluation for aerosol compositions 

Figure 3 illustrates the observed and simulated ground level annual mean concentrations of BC, SO4
2−, NO3

−, NH4
+, 

PM2.5 and PM10. Multi–model ensemble mean (MMEM), defined as the average of all available participating models (except 

M3 and M10), is presented to exhibit a composite of model performance. Normalized mean biases (NMBs) between 

observations and MMEM in each defined sub–region (Region_1 to Region_5) and the whole analyzed region (Region_All) 5 

are also calculated. 

Analyzing Fig. 3(a), we can find that most models show good skills in simulating the BC concentrations and their 

spatial distribution characteristics, with relative high values over large emission areas (e.g. North China) (Li et al., 2016c). 

But the NMB for MMEM is −15.8%. This underestimation may be attributed to the large negative bias at the Gucheng site 

(site 24) (NMB for MMEM is −38.3%). This station locates in the industrial province of Hebei, where air pollution is serious 10 

and BC emission is large (Wang et al., 2016c). Due to the low reactivity of BC in the atmosphere, the high uncertainty of BC 

in current emission inputs (Hong et al., 2017; Li et al., 2017b) may cause this underestimation. 

For SO4
2−, observations are relative low in Region_1 (mean value is 3.8 μg m-3), Region_3 (mean value is 2.5 μg m-3) 

and Region_4 (mean value is 3.5 μg m-3), and most models (except M7, M9 and M14) perform well over these areas (NMBs 

range from −26.3% to 30.0%). In Region_2, all the observed concentrations of SO4
2− are larger than 10 μg m-3 (mean value 15 

is 16.9 μg m-3), but models fail to reproduce the high magnitude. As Zheng et al. (2015) and Shao et al. (2019) pointed out 

that missing sulfate formation mechanisms (e.g. heterogeneous sulfate chemistry) on aerosol in current air quality models 

may result in this underestimation, especially in China where significant increase of secondary aerosols (such as sulfate) can 

be observed during polluted periods (Liu et al. 2015). A large variance is also simulated among models, e.g. M14 

overpredicts the ground–level SO4
2−  concentrations, especially in Region_1 (NMB=118.6%). This significant 20 

overestimation in coastal stations may be caused by its high concentrations of sea salt aerosols (Fig. 10), which makes the 

sea−salt sulfate higher. Meanwhile, M7 and M9 obviously underpredict SO4
2− at nearly all sites (NMB=−73.5% and −71.7%, 

respectively.). Generally, MMEM can well reproduce the spatial variation of SO4
2−, but the predicted concentration is 

underestimated, especially in Region_2 (NMB=−43.5%) and Region_3 (NMB=−35.3%). 

For NO3
−, low concentrations are observed in Region_1 (1.5 μg m-3), Region_3 (0.6 μg m-3) and Region_4 (1.8 μg m-3), 25 

but high values are presented in Region_2 (13.4 μg m-3), showing the similar spatial distribution characteristics as the 

observed SO4
2−. In CTMs, there are two pathways about the nitrate formation. The dominant pathway is the homogeneous 

gas−phase reaction between HNO3 (NO2 oxidation by OH during the daytime) and NH3 under ammonia−rich conditions, and 

the second pathway is the heterogeneous hydrolysis of N2O5 on aerosol surface at night in ammonia−poor environment 

(Seinfeld and Pandis, 2006; Archer-Nicholls et al., 2014). As NH4NO3 is semi−volatile species, and the equilibrium surface 30 

concentration of H2SO4 is set to be zero in CTMs, so (NH4)2SO4 is the preferential species in the completion when H2SO4 

and HNO3 are both present. Only if NH3 is excess, then NH4NO3 will been formed. Analyzing the performance of each 

participant model, NO3
− concentration is overpredicted by most models, and the underestimation of SO4

2− can be used to 
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explain this overestimation (Chen et al., 2017). Meanwhile, the biases from model calculated gas−phase oxidation (e.g. 

𝑁𝑂2 + 𝑂𝐻 → 𝐻𝑁𝑂3) and/or gas−aerosol phase partitioning (e.g. 𝐻𝑁𝑂3(𝑔) + 𝑁𝐻3(𝑔) ↔ 𝑁𝐻4𝑁𝑂3(𝑠,   𝑎𝑞)) may also result in 

the overestimation (Brunner et al., 2014; Gao et al., 2014). However, M7 and M8 significantly underestimate the observed 

NO3
− concentrations (NMB~−93.4%). One reason for the extremely low values may result from the incorrect concentrations 

of NH3 simulated by M7 and M8 (Fig. S4). As Chen et al. (2016) pointed out that the amount of NH3 in the atmosphere is a 5 

key factor in determining the NO3
− concentration. Another reason for this underestimation is that M7 and M8 did not 

consider the impacts of N2O5 heterogeneous reaction (𝑁2𝑂5(𝑔) + 𝐻2𝑂(𝑎𝑞) → 2𝐻𝑁𝑂3(𝑎𝑞)). Su et al. (2017) pointed out that 

the hydrolysis of N2O5 can led up to 21.0% enhancement of NO3
−, especially over polluted regions. Although the NMB 

calculated in Region_All for MMEM is only −1.1%, MMEM systematically overpredicts observations in Region_1 

(NMB=45.2%) and Region_3 (NMB=38.2%), but underpredicts in Region_2 (NMB=−0.7%) and Region_4 10 

(NMB=−44.9%). 

Simulated NH4
+ concentrations are influenced by the partitioning between gaseous NH3 and aerosol NH4

+, and are also 

associated with the SO4
2− and NO3

− concentrations (Gao et al., 2018). Model predictions (except M7, M8 and M14) can 

reproduce the measurements relatively well in each defined sub−region. But significant overestimation is shown by M14, 

while significant underestimation is simulated by M7 and M8, especially in Region_2 with NMBs of 72.2% for M14, −94.9% 15 

for M7, and −81.0% for M8, respectively. For M14, overestimated SO4
2− and NO3

− make the concentrations of NH4
+ 

higher, since more ammonium is required to neutralize particle−phase acid. For M7 and M8, extremely low concentrations 

of NH3 are simulated, which means fewer gaseous NH3 can be converted to aerosol NH4
+. In general, the calculated NMB in 

Region_All by MMEM is 4.0%.  

On average, the observed PM2.5 concentration in Region_2 is larger than 50 μg m-3, but the mean value in Region_1 is 20 

only about 10 μg m-3. All participating models can generally capture this spatial distribution pattern. However, significant 

underestimation is simulated at the three remote stations (site 1, 2 and 7) in Region_1 with the NMB of −39.0% for MMEM. 

Similar negative bias can also be found in Ikeda et al. (2013), who compared CMAQ (v4.7.1) simulation results against 

observations from the same remote monitoring stations (Rishiri and Oki) in 2010. Ikeda et al. (2013) pointed that the 

underestimated cocentrations of organic aerosols may cause this bias. In Region_2, the NMB for MMEM is −10.0%. 25 

For PM10, the mean observed concentrations in each region are 26.6 μg m-3 (Region_1), 114.4 μg m-3 (Region_2) and 

38.1 μg m-3 (Region_4), respectively. But nearly all participant models (except M14) underestimate the PM10 concentrations. 

M14 predicts higher concentrations in Region_1, especially at coastal sites, such as site 1 (Rishiri), site 2 (Ochiishi), site 4 

(Sadoseki), site 7 (Oki) and site 14 (Cheju). The high−value anomalies in M14 at coastal stations can also be found in Fig. 10, 

and the positive bias may be caused by the emission and gravitational settling of sea salt. As Monahan and Muircheartaigh 30 

(1980) pointed out that sea salt emissions can be enhanced in the surf zone due to the increased number of wave breaking 

events, and the degree of the enhancement highly depends on the 10 m wind speed used in the whitecap coverage 

parameterization. According to the simulation results from published literatures, higher wind speed is simulated by M14 
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(RAMSCMAQ) when comparing with observations, especially at coastal stations (Han et al., 2013; Han et al., 2018). 

Meanwhile, a gravitational settling mechanism of coarse aerosols from upper to lower layers was added in M14, and the net 

effect of this update could make an increase in the concentrations of coarse particles, especially near coastal areas impacted 

by sea spray (Nolte et al., 2015). Generally, the NMB for MMEM in Region_All is −31.0%. 

Time series of the monthly observed and simulated aerosol compositions, including BC, SO4
2−, NO3

−, NH4
+, PM2.5 and 5 

PM10, are shown in Fig. 4 and Fig. 5. According to the pre−defined sub−regions as illustrated in Fig. 2, all simulations and 

observations are grouped into the five regions, with the modeling results sampled at the corresponding observation stations 

before averaging together.  

The measured BC concentrations in Region_2 exhibit an obvious seasonal variation, with the minimum (~ 3.5 μg m-3) 

in spring and summer, and the maximum (~ 8 μg m-3) during late autumn and winter. Participant models can capture this 10 

seasonality quite well, and nearly all simulation results are within the standard deviation of the observations, but a large 

inter–model variation is also simulated, especially in winter when BC concentration is high. Due to its low reactivity in the 

atmosphere, this variation may be caused by their simulated meteorological conditions, including the impacts of different 

coupling ways between meteorological and chemical modules (Gao et al., 2015b). As Briant et al. (2017) and Huang et al. 

(2018) concluded that the online integrated models can simulate higher BC concentrations than offline models, especially 15 

during polluted periods. The correlation coefficient in MMEM is 0.73. 

For PM2.5, the observed monthly concentrations in Region_2 are higher than those in Region_1. This is because the 

emissions in China are larger than that in Japan and Korean Peninsula (Fig. S2). But nearly all models tend to underpredict 

the concentrations of PM2.5 in Region_1, with NMBs ranging from −44.3% (in winter) to −22.7% (in summer) for MMEM. 

Comparing with the correlation coefficient (R=0.40) in Region_1, CTMs can better reproduce the seasonality of the 20 

observed PM2.5 in Region_2, with the R of 0.69 for MMEM. Generally, the R for MMEM in Region_All is 0.83 and the 

NMB ranges from −2.2% (in autumn) to 13.9% (in winter). 

Similar temporal–variation characteristics of PM10 concentrations are observed in Region_1, Region_2 and Region_4, 

with the maximum occurred in March and November, and the minimum occurred during summer. Most models fall within 

the standard deviation of the observations. The simulated PM10 concentrations in Region_2 show less diversity, but nearly all 25 

models peak 2 months later. A distinctive seasonality can be found in Region_4, with the highest value (nearly 80 μg m-3) 

observed in March, but most models cannot reproduce this characteristic. This is because the GFED substantially 

underestimate the biomass burning emissions over Southeast Asia (Fu et al., 2012), especially during March–April when 

most intense biomass burning occurred in Myanmar, Thailand and other Southeast Asian countries (Huang et al., 2012), and 

the emission bias is mainly due to the lack of agricultural fires (Nam et al., 2010). Finally, a weak seasonality in PM10 is 30 

simulated by MMEM with R of 0.58 in Region_4. In Region_all, although consistent underestimation is simulated during the 

whole period, with NMB ranging from –40.8% to –25.2% for MMEM, the seasonal cycle can be well reproduced by 

MMEM with R of 0.78. 

The seasonal variation characteristics of observed SO4
2−, NO3

− and NH4
+ in Region_1 are not obvious, with the annual 
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mean of ~ 4 μg m-3 for SO4
2−, 1.5 μg m-3 for NO3

− and 1.0 μg m-3 for NH4
+, respectively. A large inter–model spread of 

simulated SO4
2− is shown in Fig. 5(a1), with the maximum variation range in June. Most models significantly overpredict 

the observed NO3
− concentrations, especially in summer with the NMB of 164.3% for MMEN. Simulated monthly NH4

+ 

concentrations from most models are within the standard deviation of observations, and the R for MMEM is as high as 0.74. 

In Region_2, the observations are only available at one EANET site (the Hongwen site, located in the eastern coastal area of 5 

China), and the seasonality of observed SO4
2−, NO3

− and NH4
+ from this station is obvious with the maximum in spring and 

winter, and the minimum in later summer and early autumn. Nearly all models tend to underpredict these concentrations, but 

the MMEM captures the seasonal cycle relative well with Rs of 0.57 for SO4
2−, 0.85 for NO3

− and 0.86 for NH4
+, 

respectively. In Region_3, the observed maximum concentrations of SO4
2− and NH4

+ are in winter, but most models cannot 

reproduce the increasing tendency during the late autumn and the early winter, which means participant models fail to 10 

capture the seasonality (Rs of 0.20 for SO4
2−, 0.34 for NO3

− and 0.18 for NH4
+, respectively). This may due to the low 

emission of primary aerosols and their precursors in Region_3. Meanwhile, the Regional Emission Inventory in Asia (REAS 

v2.1) is used in Region_3, which is calculated based on the emissions from 2000 to 2008 (Li et al., 2017b), not extended to 

the simulation year of 2010. The updated emissions with localized data may increase the accuracy of simulation results. In 

Region_4, the simulated concentrations of SO4
2−, NO3

− and NH4
+ are fairly good when compared with the measurements. 15 

The Rs of MMEM are 0.73 for SO4
2−, 0.63 for NO3

− and 0.73 for NH4
+. Meanwhile, the model diversities are small. 

Generally, in Region_All, MMEM can well reproduce the magnitudes of observed SO4
2−, NO3

− and NH4
+ during the whole 

simulation period, as well as the seasonal variation characteristics. 

As mentioned above, the observed monthly mean concentrations of aerosol compositions in China are only available at 

one EANET station (site 17, the Hongwen station), with missing values in June and October. In order to make the evaluation 20 

more comprehensive, observed seasonal mean concentrations of SO4
2−, NO3

− and NH4
+ collected from published literatures 

are also used to compare with simulation results (Fig. S5). M2, M12 and M14 reasonably reproduce the SO4
2− 

concentrations in the four seasons, while others fail to simulate the high observed SO4
2− concentrations. The NMBs of SO4

2− 

range from −79.4% (M7) to 12.8% (M14). On the contrary, nearly all participant models overestimate the concentrations of 

NO3
− (except M4, M7 and M8), with NMBs ranging from 1.7% (M5) to 50.2% (M9). The underestimation of SO4

2− and the 25 

overestimation of NO3
− may be the general performance in current CTMs (Wang et al., 2013b; Gao et al., 2014; Huang et al., 

2014; Zheng et al., 2015), and some hypotheses should be deeply tested in future to reduce these deviations, such as (1) 

missing oxidation mechanisms of SO2 may lead to low concentrations of SO4
2−, which allows for excess NO3

− in the 

presence of ammonia, (2) there is an issue with NOx partitioning and/or missing NOx sink. Meanwhile, Seinfeld and Pandis 

(2006) pointed out that the chemical productions of SO4
2− and NO3

− are mainly from the gas−phase and/or liquid−phase 30 

oxidation of SO2 and NO2. Therefore, further comparisons of observed and simulated SO2 and NO2 are shown in Fig. S6 and 

Fig. S7. From Fig. S6, participant models can generally reproduce the seasonality of the two gases, with Rs of 0.61 for SO2 

and 0.65 for NO2, respectively. But overestimations (underestimations) of SO2 (NO2) are found during most simulation 



17 

periods, not only in China, but also in other defined sub−regions (Fig. S7). The overestimated (underestimated) 

concentrations of SO2 (NO2) can be used to explain the underestimation (overestimation) of simulated SO4
2− (NO3

−). 

However, significant underestimation of NO3
− is also simulated by M7 and M8. As mentioned above, the extremely low 

concentrations of NH3 in M7 and M8 may be the main reason for this negative bias. Analyzing the results from ensemble 

mean, MMEM shows better performance than participating models, with NMBs of −46.0% for SO4
2−, 1.9% for NO3

− and 5 

13.1% for NH4
+, respectively. 

3.1.2 Evaluation for aerosol optical depth 

Simulated aerosol optical depth (AOD) at 550 nm from the nine participant models (M1, M2, M4, M7, M9, M11, M12, 

M13 and M14) are compared with the measurements from AERONET. From Fig. 6 we can find that most models tend to 

overpredict AOD values during the whole simulation period in Region_1, Region_2 and Region_3 with NMBs of 74.0%, 10 

38.8% and 107.0% for MMEM, respectively. In Region_4, an obvious seasonality is observed with the maximum in spring 

and the minimum in summer. Models can capture this seasonality well, although underestimation is found in spring. The R 

for MMEM is 0.65 and the NMB is −8.7% in Region_4. Smaller NMB (–4.2%) is calculated in Region_5 by MMEM, but a 

quite weak seasonality is shown with underestimated AOD in spring and summer, and overestimated AOD in autumn and 

winter. Generally, simulated AOD values are within a standard deviation of the observations in Region_All with a slight 15 

overestimation in autumn and winter. The MMEM can reproduce the seasonal cycle with R of 0.68, and the NMB for 

MMEM is 18.7%. 

Figure 7 presents the spatial distributions of the observed and simulated AOD at 550 nm. MODIS AOD is collected 

from the Terra and Aqua satellites during the year 2010. The observed AOD from AERONET are also shown. In order to 

quantify the ability of each model in simulating the spatial distribution of aerosol particles, spatial correlation coefficients are 20 

also given in the bottom left corner of each panel. Analyzing the observations from MODIS, we can conclude that AOD 

values are higher in central and eastern China, including the Sichuan province, with the maximum over 1.0. High values can 

also be observed in the north India. Due to dust events happened in arid and semi–arid regions, AOD values over the 

Taklimakan are also large (~0.5). Comparing with MODIS AOD, most models can reproduce the spatial distribution 

characteristics, with high values in China and India, and low values in other countries. The Rs range from 0.78 (M12) to 0.86 25 

(M1, M11 and M13). But most models tend to underestimate the AOD in the eastern coastal regions of China and the north 

regions of India (Fig. S8), where anthropogenic emissions are large. Meanwhile and dust particles can be frequently 

observed. Generally, MMEM captures the AOD spatial variation better with R of 0.87, and the mean bias is −0.08. 

3.1.3 Statistics for aerosol particles and aerosol optical depth 

Table 2 shows the statistics of correlation coefficient (R), normalized mean bias (NMB) and root–mean squared error 30 

(RMSE) for BC, SO4
2−, NO3

−, NH4
+, PM2.5, PM10 and AOD. Simulation results from participant models and MMEM are 

compared with available observations. Best results are set to be bold with underline. 



18 

It can be found that participant models are able to capture the variability of BC in China, with Rs ranging from 0.65 

(M5) to 0.80 (M8), but nearly all models tend to underestimate the BC concentration, except M1 and M2. The maximum 

negative deviation is simulated by M5 (NMB=−54.9%), while the maximum positive deviation is from M2 with NMB of 

12.7%. All the RMSEs are less than the observed mean concentration of BC (5.0 μg m-3). Comparing to the observed SO4
2−, 

most models fail to reproduce the high values, and the NMB for MMEM is –19.1%, meaning the underestimation of the 5 

simulated SO4
2− concentration is a general phenomenon in current CMTs. Implementing more detailed sulfate aerosol 

formation mechanisms (e.g. heterogeneous reaction and catalytic oxidation) into air quality models may improve the 

accuracy of simulation results (Huang et al., 2014, Zheng et al., 2015; Fu et al., 2016). But most models can capture the 

variation of SO4
2− with Rs ranging from 0.46 (M14) to 0.76 (M13). For NO3

−, Rs vary from 0.29 (M8) to as high as 0.65 

(MMEM). M5 shows the largest correlation (0.65) and the smallest NMB (–1.7%) among models. Although a high value of 10 

R (0.64) is calculated by M9, the NMB is the largest (125.7%). All RMSEs are larger than the measured NO3
− (1.7 μg m-3), 

meaning a relative poor performance for current CTMs to simulate the NO3
− concentrations in East Asia. For NH4

+, 

underestimation can be found in M4, M7 and M8, while the others tend to overestimate the NH4
+ concentration. Although 

all RMSEs are larger than the observed NH4
+ (mean value is 1.1 μg m-3), most models can capture the variability, with Rs 

ranging from 0.34 (M8) to 0.75 (M9). Generally, MMEM matches the observations with R of 0.71, NMB of 14.0% and 15 

RMSE of 1.11 μg m-3, respectively. Although significant underprediction is found in PM10 (NMBs range from –55.7% in M5 

to –16.9% in M9, except M14) and the inter–model spread is large in PM2.5 (NMBs range from –26.5% in M13 to 46.0% in 

M14), the variations of simulated PM2.5 and PM10 are well correlated with measurements (Rs > 0.60) and the RMSEs are all 

smaller than the averaged concentrations (51.4 μg m-3 for PM2.5, 80.7 μg m-3 for PM10). For AOD, large positive deviations 

are simulated by M2, M9, M11, M13 and M14, but these models can reproduce the spatial–temporal variation characteristics 20 

relative well with Rs larger than 0.5. M4 and M7 show the large negative deviation with NMBs of –28.5% and –21.8%, 

respectively. But their RMSEs are relative small (0.16 for M4 and 0.18 for M7). Generally, the R, NMB and RMSE for 

MMEM are 0.68, 18.7% and 0.14, respectively. 

3.2 Inter–comparison between MICS–Asia Phase II and Phase III 

The main purpose of MICS–Asia Phase III Topic 1 is to assess the ability of current multi–scale air quality models to 25 

reproduce the air pollutant concentrations in East Asia. In order to reveal the improvements of the simulation ability in 

current CTMs, statistics (e.g. RMSE and R) for observed and simulated SO4
2−, NO3

− and NH4
+ from MICS–Asia Phase II 

and Phase III are compared in Fig. 8.  

The statistics of MICS–Asia Phase II are taken from Hayami et al. (2008). The observed monthly mean concentrations 

are monitored with high completeness at the fourteen EANET stations in March, July and December 2001 and March 2002, 30 

and the model–predicted monthly surface concentrations are from eight regional CTMs. Notably, NO3
− and NH4

+ used in 

Hayami et al. (2008) are total NO3
− (= gaseous HNO3 + particulate NO3

−) and total NH4
+ (= gaseous NH3 + particulate 
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NH4
+), respectively. More detailed information can be found in Hayami et al. (2008).  

Analyzing the RMSEs in Fig. 8, we can conclude that the medians (the 25th percentile, the 75th percentile) for SO4
2−, 

NO3
− and NH4

+ are 3.60 μg m-3 (3.24 μg m-3, 4.01 μg m-3), 2.76 μg m-3 (2.49 μg m-3, 2.96 μg m-3) and 1.28 μg m-3 (1.21 μg 

m-3, 1.47 μg m-3) in Phase III, respectively. Although the medians (except NH4
+) are a little larger than that in Phase II, the 

interquartile ranges are quite smaller, indicating similar concentrations can be simulated by current CTMs. Meanwhile, the 5 

medians of the correlations of SO4
2−, NO3

−, and NH4
+ in Phase III, including the upper and lower quartiles, are all larger 

than that in Phase II, which means current CTMs show better performance in reproducing the spatial–temporal variations of 

observations.  

Although the participating models (8 verses 12 CTMs), observation sites (14 verses 31 EANET stations), and 

simulation periods (4 months verses 1 year) are different between Phase II and Phase III, more reasonable statistics are 10 

calculated by current CTMs, reflecting better performance in simulating the concentrations of aerosols and their 

spatial–temporal variations. 

3.3 Inter–comparison between participant models 

Figure 9 shows the spatial distributions of simulated PM2.5 concentrations from each participant model and the MMEM. 

The coefficient of variation (hereinafter, CV), defined as the standard deviation of the models divided by their mean, is also 15 

calculated. The larger the value of CV, the lower the consistency among the participating models (Han et al., 2008; Gao et al., 

2018). All simulation results can reproduce the high PM2.5 in the northern India and the eastern China, including the Sichuan 

province in China. The areas with high PM2.5 concentrations (> 40 μg m-3) are consistent with the regions where CV is low 

(< 0.3), indicating similar performance of the CTMs in simulating the air pollutants over haze–polluted areas. 

Previous studies have revealed that sulfate, nitrate and ammonium (denoted as SNA) are the predominant inorganic 20 

aerosols in PM, and SNA can contribute to nearly half of the total PM2.5 mass (about 20%–60%) (Wang et al., 2014c; Sun et 

al., 2016b; Lin et al., 2018). All these show the necessity to exactly simulate the concentrations of SNA. Analyzing the mean 

ratio of SNA to PM2.5 averaged over the five defined sub–regions (Fig. 9), large variations are simulated by participant 

models, with values ranging from 31.1% (M7) to 75.1% (M5). Different gas–phase and aerosol chemistry mechanisms used 

in these CTMs can explain this inconsistency. The calculated SOR (sulfur oxidation ratio, SOR = 𝑛𝑆𝑂4
2− (𝑛𝑆𝑂4

2− + 𝑛𝑆𝑂2)⁄ , 25 

n refers to the molar concentration), NOR (nitric oxidation ratio, NOR = 𝑛𝑁𝑂3
− (𝑛𝑁𝑂3

− + 𝑛𝑁𝑂2)⁄ ) and PNR (particle 

neutralization ratio, PNR = 𝑛𝑁𝐻4
+ (2 × 𝑛𝑆𝑂4

2− + 𝑛𝑁𝑂3
−)⁄ ) are also obviously different.  

SOR and NOR can be used to estimate the degree of secondary formation of SO4
2− and NO3

− (Sun et al., 2006; Zhao et 

al., 2013). When SOR and NOR are less than 0.1, SO4
2− and NO3

− mainly come from the primary source emissions; 

otherwise, high oxidation rates of SOR and NOR can result in large fractions of SO4
2− and NO3

− in PM2.5 (Fu et al., 2008b). 30 

Generally, CMAQ models (M1, M2, M4, M5, M6 and M14) produce 30.7% higher SOR than others (except M8), which 

means more intense secondary formation of SO4
2− is simulated by CMAQ. Similar NOR is predicted by participant models 
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(~0.24), except M7 and M8. The extremely low value of NOR (~0.02) from M7 and M8 is due to the unreasonable low NO3
− 

concentrations. Previous measurements show that the mean value of NOR is about 0.15 (Du et al., 2011; Zhang et al., 2018), 

which is lower than the predicted one from MMEM (0.20) in this study, indicating more NO3
− is produced by secondary 

formation in current CTMs. 

PNR is defined as the mole ratio of ammonium to sulfate and nitrate. When PNR is larger than unity, sufficient 5 

ammonia can be used to neutralize the acidic sulfate and nitrate; otherwise, there is an incomplete neutralization of acidic 

species. Analyzing the calculated PNRs from participant models, all values are smaller than 1, which means atmospheric 

conditions are considered to be ammonia deficient. But the mole ratios of 𝑛𝑁𝐻4
+ (2 × 𝑛𝑆𝑂4

2−)⁄  are all larger than 1 (~1.6, 

except M7 and M8). All these indicate that acidic sulfate is fully neutralized to form (NH4)2SO4 or NH4HSO4, and parts of 

acidic nitrate is changed to NH4NO3. Meanwhile, under NH3–limited conditions, small reductions in ammonia may cause 10 

significant reductions in particulate matter (Makar et al., 2009). 

However, large CV (> 1.0) is simulated over arid and semi–arid regions (Fig. 9), such as the Taklimakan Desert and the 

Gobi Desert, where dust events are often observed, which means current CTMs have difficulty in processing dust aerosols, 

especially in producing a similar amount of dust emissions and in identifying the same potential dust source regions, by 

using different dust schemes. Large CV are also shown in simulated coarse particles (subtract PM2.5 from PM10) in Fig. 10. 15 

High concentrations of coarse particles simulated by M9 over arid and semi–arid regions may be caused by the inaccurate 

physicochemical parameters (e.g. plastic pressure of the soil surface) used in the Shao dust scheme (Kang et al., 2011). Large 

values (> 20 μg m-3) over coastal regions from M14 may result from the inadequate simulation results of sea salt aerosols. 

From Table 3 we can conclude that the low consistency (or the large CV) of simulated coarse particles in each defined 

sub–region is mainly caused by the dust particles. Without the impacts of dust aerosols and sea salts (only simulation results 20 

from M7 and M8 are considered), the calculated CVs for Region_1 to Reiong_5 are 0.29, 0.30, 0.33, 0.19 and 0.10, 

respectively. Without the impacts of dust aerosols (only simulation results from M1, M2, M4, M5 and M6 are considered), 

similar spatial distributions are found in Fig. 10, and the CVs averaged over each sub–region are 0.37 (Region_1), 0.65 

(Region_2), 0.48 (Region_3), 0.59 (Region_4), and 0.65 (Region_5), respectively. But when the influences of dust aerosols 

and sea salts are both considered (simulation results from M9, M11, M12 and M14 are used), larger CVs are obtained with 25 

values of 0.97 for Region_1, 1.04 for Region_2, 1.27 for Region_3, 0.95 for Region_4, and 0.88 for Region_5. 

Aerosol chemical compositions simulated by each participant model and the MMEM in the six metropolitans (Beijing, 

Shanghai, Guangzhou, Delhi, Seoul and Tokyo) are shown in Fig. 11. PM2.5 is composed of SNA (SO4
2− + NO3

− + NH4
+) 

and OTHER1 (BC + OC + OTHER2). PM10 includes PM2.5 and PMcoarse (coarse particles). Notably, PMcoarse cannot be 

calculated by M13 because PM10 is missing in M13.  30 

High values of PM2.5 and PM10 in Beijing, Shanghai, Guangzhou and Delhi are simulated by nearly all models, and the 

annual mean concentrations of PM2.5 and PM10 from MMEM are all larger than the IT-1 (Interim target-1, 35 μg m-3 for 

PM2.5, 70 μg m-3 for PM10) proposed by WHO. But relative small concentrations are presented in Tokyo (15.5 and 21.3 μg 

m-3 for PM2.5 and PM10, respectively) and Seoul (21.7 and 27.6 μg m-3 for PM2.5 and PM10, respectively). For each city, a 
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large spread of concentrations of aerosol compositions can be found among participant models (a factor of ~10 for SNA, a 

factor of ~2 for PM2.5 and PM10). This is partly caused by the differences in gas–aerosol partitioning and dust emissions, 

including the removal processes (e.g. dry and wet depositions). 

Analyzing the ratios of aerosol compositions to PM2.5 in MMEM (Fig. 11(b1–b6)), the sums of the contributions of BC, 

OC, SO4
2−, NO3

− and NH4
+ in Beijing (63.8%), Shanghai (60.4%), Guangzhou (63.1%) and Delhi (65.1%) are all less than 5 

those in Tokyo (87.2%) and Seoul (75.2%). Among these components, NO3
− is the major species in Beijing (20.7%) and 

Delhi (23.6%), while SO4
2− is the major species in Guangzhou (22.2%). Similar contributions of SO4

2− and NO3
− can be 

found in Shanghai, Seoul and Tokyo. All these suggest that different air–pollution control plans should be taken in different 

metropolitans.  

For seasonal variations of PM2.5 concentrations (Fig. 11(c1–c6)), the highest values in Beijing (107.6 μg m-3), Shanghai 10 

(87.5 μg m-3), Guangzhou (59.9 μg m-3) and Delhi (108.7 μg m-3) are all simulated in winter. This can be explained by their 

high emissions during this season. However, in Tokyo, the highest PM2.5 concentration is in summer (21.8 μg m-3) and the 

lowest value is in winter (10.3 μg m-3). In Seoul, PM2.5 concentrations are comparable during the four seasons. 

4 Conclusion and Discussion 

This manuscript mainly focuses on the first topic of the MICS–Asia Phase III, and intends to analyze the following 15 

objectives: (1) provide a comprehensive evaluation of current air quality models against observations, (2) analyze the 

diversity of simulated aerosols among participant models, and (3) reveal the characteristics of aerosol components in large 

cities over East Asia. 

Comparisons against monthly observations from EANET and CNEMC demonstrate that all participant models can well 

reproduce the spatial–temporal distributions of aerosols. The multi–model ensemble mean (MMEM) shows better 20 

performance than most single–model predictions, with correlation coefficients (Rs, between MMEN and measurements) 

ranging from 0.65 (nitrate, NO3
−) to 0.83 (PM2.5). Differences between predictions and observations are also simulated, such 

as sulfate (SO4
2−) is underestimated by participant models (except M12 and M14), with NMBs ranging from −67.7% (M7) to 

−1.6% (M8). The concentrations of nitrate (NO3
−) and ammonium (NH4

+) are overestimated by most models, with NMBs of 

4.9% for NO3
−  and 14.0% for NH4

+  in MMEM. The absence of sulfate formation mechanisms (e.g. heterogeneous 25 

chemistry) in chemical transport models (CTMs) can be used to explain the underestimation of SO4
2− , and the 

underestimated SO4
2− will result in the overestimation of NO3

−. However, significant underestimations of NO3
− and NH4

+ 

are shown in M7 and M8. This is because extremely low values of NH3 are simulated by these models. The inter–model 

spread of simulated PM2.5 is large, with NMBs ranging from –26.5% (M13) to 46.0% (M14), and nearly all models 

underestimate the PM2.5 concentrations in Region_1. The underestimation may be the insufficient precursors and formation 30 

pathways of organic aerosols in current CTMs. Underestimations of PM10 are also simulated in each sub–region, and the 

NMB is −32.6% in MMEM. This may due to the inaccurate emission inventories (e.g. anthropogenic emissions, biomass 
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burning emissions, and natural emissions) considered in CMTs. 

In order to reveal the improvements of the simulation ability in current CTMs, statistics for observed and simulated 

SO4
2−, NO3

− and NH4
+ from MICS–Asia Phase II and Phase III are compared. Results obviously show that the spread of 

root–mean squared errors (RMSEs) for each species in Phase III is smaller, meaning similar concentrations can be simulated 

by current CTMs. Meanwhile, the medians of the correlations, including the upper and lower quartiles, are larger, which 5 

means current CTMs show better performance in reproducing the temporal variations of observations.  

Analyzing the ratio of SNA (sulfate, nitrate and ammonium) to PM2.5, large variations are simulated by participant 

models, with values ranging from 31.1% (M7) to 75.1% (M5). Different gas phase and aerosol schemes used in CTMs can 

explain this inconsistency. Higher SOR (sulfur oxidation ratio) is calculated by CMAQ models, indicating that CMAQ has a 

more intense secondary formation of SO4
2− than other participant models. Similar NOR (nitric oxidation ration) is predicted 10 

by CTMs, but the value (~0.20) is larger than the observed one (~0.15), which means overmuch NO3
− is simulated by 

current CTMs. According to the mole ratio of ammonium to sulfate and nitrate, NH3–limited condition can be successfully 

simulated by all participant models, which indicates that a small reduction in ammonia may improve the air quality 

significantly. 

The coefficient of variation (CV) can be used to quantify the inter–model deviation, and a large CV is shown in 15 

simulated coarse particles (subtract PM2.5 from PM10). The poor consistency, especially over the arid and semi–arid regions, 

is mainly caused by the dust aerosols, which means current CTMs have difficulty in reproducing similar dust emissions by 

using different dust schemes. But the simulated fine particles are in good agreement, especially over the haze–polluted areas. 

According to the MMEM simulation results, the highest PM2.5 concentrations in Beijing, Shanghai, Guangzhou and 

Delhi are shown in winter, mainly due to the high emissions and unfavorable weather conditions. But the highest value in 20 

Tokyo appears in summer. PM2.5 concentrations are comparable in the four seasons in Seoul. Analyzing the ratios of each 

composition to PM2.5, NO3
− is the major component in Beijing and Delhi, SO4

2− is the major one in Guangzhou, similar 

contributions of SO4
2− and NO3

− are calculated in Shanghai, Seoul and Tokyo. All these suggest that different air–pollution 

control plans should be taken in different cities. 

MICS–Asia project gives an opportunity to understand the performance of CTMs in East Asia applications, including 25 

the similarities and differences among air quality models. In order to quantify the impacts of different model inputs and 

model configurations, and to reduce the diversities among simulation results, more detailed sensitivity experiments should be 

discussed. For example, simulation results from M1 and M2 can be used to assess the impacts of boundary conditions (BCs), 

since the configurations in these two models are similar except the BCs. M1 adopts the downscale results from GEOS–Chem, 

while M2 uses the default values from CMAQ. From Fig. S9 we can find that positive biases are simulated 30 

((𝑀1 − 𝑀2) 𝑀2⁄ ∗ 100% > 0), especially around the edges of the simulation domain, and the maximum deviation can be 

over 100%. This is because the boundary conditions from GEOS-Chem consider the impacts of aerosols outside the domain. 

All these demonstrate that the impacts of BCs should not be neglected when analyzing the spatial distribution characteristic 

of simulated aerosols around the edge of the domain. But in most inland regions, differences between M1 and M2 are 
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smaller (< ±10%). Meanwhile, process analysis techniques (i.e. integrated process rate (IPR) analysis) should be developed 

and implemented in air quality models. This is because IPR can be used to calculate the contributions of each 

physical/chemical process to variations in aerosol concentrations (Chen et al., 2019), then it will be easier to draw 

conclusions about the fundamental problems that cause the differences between model predictions (Carmichael et al., 2008). 

Fully understanding of the source–receptor relationship in each process for a given aerosol species can also be helpful to 5 

revise parameterization schemes for better simulation capability. What’s more, extensive observations should be collected 

and used in the next MICS–Asia project. 
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Table 1. Basic configurations of participant models in MICS–Asia Phase III 

Model 

Index 

Model 

Version 

Vertical 

Layers 

(1st height) 

Horizontal 

advection 

Vertical 

diffusion 

Gas phase 

chemistry 

Aerosol 

chemistry 

Dry 

deposition 

Wet 

scavenging 

Dust 

scheme 

Sea-salt 

scheme 
Meteorology 

Boundary 

Condition 
Online/Offline References 

M1 WRFCMAQ5.0.2 
40 

(57 m) 
Yamo ACM2 SAPRC99 

Aero6 

ISORROPIA(v2) 
Wesely 

Henry's 

law 
NA 

Gong, 

Kelly 
Standarda GEOS-Chem 

Online 

access 

Fu et al., 

(2008a) 

M2 WRFCMAQ5.0.2 
40 

(57 m) 
Yamo ACM2 SAPRC99 

Aero6 

ISORROPIA(v2) 
Wesely 

Henry's 

law 
NA 

Gong, 

Kelly 
Standarda Default 

Online 

access 

Wang et al., 

(2014b) 

M3 WRFCMAQ5.0.1 
40 

(57 m) 
Yamo ACM2 CB05 

Aero6 

ISORROPIA(v2) 
Wesely 

Henry's 

law 
NA 

Gong, 

Kelly 
Standarda GEOS-Chem 

Online 

access 

Lam et al., 

(2011) 

M4 WRFCMAQ4.7.1 
40 

(57 m) 
Yamo ACM2 SAPRC99 

Aero5 

ISORROPIA(v1.7) 
Wesely 

Henry's 

law 
NA 

Gong, 

Kelly 
Standarda CHASER Offline 

Itahashi et al., 

(2014) 

M5 WRFCMAQ4.7.1 
40 

(57 m) 
Yamo ACM2 SAPRC99 

Aero5 

ISORROPIA(v1.7) 
M3DRY 

Henry's 

law 
NA 

Gong, 

Kelly 
Standarda CHASER Offline 

Yamaji et al., 

(2008) 

M6 WRFCMAQ4.7.1 
40 

(57 m) 
Yamo ACM2 SAPRC99 

Aero5 

ISORROPIA(v1.7) 
M3DRY 

Henry's 

law 
NA 

Gong, 

Kelly 
Standarda CHASER Offline 

Nagashima et al., 

(2017) 

M7 WRFChem3.7.1 
40 

(29 m) 

5th order 

Monotonic 
− 

RACM−ESRL 

with KPP 
MADE/SORGAM Wesely 

Henry's 

law 
NA NA WRF/NCEP Default 

Online 

integrated 

Park et al., 

(2018) 

M8 WRFChem3.6.1 
40 

(57 m) 

5th order 

Monotonic 
MYJ RACM with KPP MADE/VBS Wesely 

Henry's 

law 
NA NA WRF/NCEP CHASER 

Online 

integrated 

Lin et al., 

(2014) 

M9 WRFChem3.6 
40 

(16 m) 

5th order 

Monotonic 
YSU RADM2 MADE/SORGAM Wesely 

Henry's 

law 

Shao 

(2004) 
Gong WRF/NCEP CHASER 

Online 

integrated 

Chen et al., 

(2017) 

M10 
NU-WRF 

v7lis7-3.5.1-p3 

60 

(44 m) 

5th order 

Monotonic 
YSU RADM2 GOCART Wesely Grell GOCART Gong WRF/MERRA2 MOZART+GOCART 

Online 

integrated 

Tao et al., 

(2013) 

M11 NAQPMS 
20 

(50 m) 

Walcek and 

Aleksic 

(1998) 

K−theory CBMZ 
Aero5 

ISORROPIA(v1.7) 
Wesely 

Henry's 

law 

Wang 

(2000) 
Gong Standarda CHASER 

Online 

access 

Wang et al., 

(2008) 

M12 NHMChem 
40 

(54 m) 

Walcek and 

Aleksic (1998) 
FTCS SAPRC99 ISORROPIA(v2) Kajino Kajino 

Han 

(2004) 
Clarke JMA NHM CHASER Offline 

Kajino et al., 

(2012) 

M13 GEOS-Chem9.1.3 
47 

(60 m) 
ppm 

Lin and 

McElroy 

(2010) 

Nox-Ox- 

HC-Br 

mechanism 

ISORROPIA(v2) Wesely Liu GOCART 
Gong, 

Jaegle 
Geos-5 NA Offline 

Zhu et al., 

(2017) 

M14 RAMSCMAQ4.6 
15 

(100 m) 
Yamo ACM2 SAPRC99 

Aero5 

ISORROPIA(v1.7) 
Wesely 

Henry's 

law 

Han 

(2004) 
Gong RAMS/NCEP CHASER Offline 

Zhang et al., 

(2002) 

a‘Standard’ represents the reference meteorological field provided by MICS–Asia III project. 
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Table 2. Statistics of BC, 𝐒𝐎𝟒
𝟐−, 𝐍𝐎𝟑

−, 𝐍𝐇𝟒
+, PM2.5, PM10, and AOD. Best results are set to be bold with underline. Monthly mean observations and the number of stations (nstd) are listed with italic. 

In this table, monthly measurements except BC are taken from EANET, CNEMC, and AERONET. Monthly BC concentrations are collected from published literatures. 

Species Statistics M1 M2 M4 M5 M6 M7 M8 M9 M11 M12 M13 M14 EM 

BC 

(5.0 μg m-3) 

(nstd=5) 

R 0.70 0.73 0.71 0.65 0.70 0.73 0.80 − 0.69 0.68 0.75 0.72 0.73 

NMB(%) 1.0 12.7 −24.7 −54.9 −17.8 −11.7 −34.2 − −17.5 −2.2 −26.8 −11.6 −17.0 

RMSE 4.10 4.30 2.95 4.06 2.99 2.69 2.84 − 2.91 3.52 2.80 2.64 2.77 

𝐒𝐎𝟒
𝟐− 

(3.8 μg m-3) 

(nstd=31) 

R 0.69 0.71 0.64 0.58 0.66 0.48 0.53 0.65 0.55 0.50 0.76 0.46 0.69 

NMB(%) −23.1 −13.0 −31.0 −26.4 −26.9 −67.7 −1.6 −67.0 −34.5 23.2 −31.9 69.3 −19.1 

RMSE 3.21 3.00 3.46 3.57 3.35 4.64 3.62 4.45 3.78 4.01 3.24 5.51 3.22 

𝐍𝐎𝟑
−  

(1.7 μg m-3) 

(nstd=31) 

R 0.55 0.51 0.62 0.65 0.58 0.45 0.29 0.64 0.59 0.60 0.43 0.58 0.65 

NMB(%) 9.0 −7.2 −42.7 −1.7 −11.8 −81.2 −80.6 125.7 46.5 54.0 22.7 35.4 4.9 

RMSE 2.70 2.71 2.48 2.29 2.46 3.37 3.18 4.37 2.89 2.80 2.96 2.62 2.27 

𝐍𝐇𝟒
+ 

(1.1 μg m-3) 

(nstd=31) 

R 0.67 0.64 0.68 0.66 0.69 0.55 0.34 0.75 0.66 0.62 0.64 0.68 0.71 

NMB(%) 23.2 33.7 −10.6 7.4 14.6 −93.5 −34.2 45.3 35.0 49.9 34.9 56.3 14.0 

RMSE 1.24 1.42 1.15 1.21 1.16 1.83 1.53 1.26 1.27 1.54 1.29 1.47 1.11 

PM2.5 

(51.4μg m-3) 

(nstd=14) 

R 0.80 0.78 0.80 0.71 0.80 0.80 0.77 0.82 0.80 0.78 0.75 0.81 0.83 

NMB(%) 10.0 13.6 −1.3 −25.3 −5.8 −5.7 −15.3 26.2 5.2 31.4 −26.5 46.0 4.4 

RMSE 27.56 34.88 23.03 28.00 21.80 23.54 24.83 28.52 22.06 34.87 27.10 35.85 21.23 

PM10 

(80.7μg m-3) 

(nstd=51) 

R 0.75 0.74 0.74 0.65 0.75 0.70 0.70 0.66 0.78 0.82 − 0.63 0.78 

NMB(%) −40.7 −38.7 −35.7 −55.7 −46.6 −43.7 −43.4 −16.9 −25.4 −18.8 − 7.1 −32.6 

RMSE 51.31 50.88 49.10 64.55 55.31 55.07 55.11 50.67 42.91 37.28 − 47.26 45.81 

AOD 

(0.2) 

(nstd=38) 

R 0.64 0.55 0.56 − − 0.54 − 0.60 0.69 0.66 0.71 0.57 0.68 

NMB(%) −2.0 63.7 −28.5 − − −21.8 − 11.1 73.1 −6.2 47.1 36.7 18.7 

RMSE 0.15 0.22 0.16 − − 0.18 − 0.19 0.22 0.13 0.25 0.22 0.14 
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Table 3. The coefficient of variation (CV, standard deviation divided by the mean) of simulated coarse particles (subtract PM2.5 from 

PM10) in each defined sub-region. 

 

CV Normala Without_SS_Dustb Without_Dustc With_SS_Dustd 

Region_1 1.3 0.29 0.37 0.97 

Region_2 1.39 0.3 0.65 1.04 

Region_3 1.43 0.33 0.48 1.27 

Region_4 1.21 0.19 0.59 0.95 

Region_5 0.85 0.09 0.65 0.88 

 
a“Normal” means that simulation results from all participant models are considered.  5 
b“Without_SS_Dust” means that the impacts of sea salt and dust aerosols are not considered, i.e., only simulation results from M7 and M8 

are used to calculate the CV. 
c“Without_Dust” means that the impacts of dust aerosols are not considered, i.e., only simulation results from M1, M2, M4, M5 and M6 are 

used to calculate the CV. 
d“With_SS_Dust” means that both the impacts of sea salt and dust aerosols are considered, i.e., simulation results from M9, M11, M12 and 10 
M14 are used to calculate the CV. 
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Figure 1. Simulation domain for each participant model. The final analyzed region is also shown. 
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Figure 2. The geographical locations of observation stations: EANET (shown in black circles, the number of stations is 39), CNEMC 

(shown in red triangles, the number of stations is 32), Others (observations collected from published literatures, shown in purple 

stars, the number of stations is 32), and AERONET (shown in black boxs, the number of stations is 33). Five defined sub-regions 5 

(Region_1 to Region_5) are also shown. 
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Figure 3. Comparison of observed and simulated concentrations of (a) BC, (b) 𝐒𝐎𝟒
𝟐−, (c) 𝐍𝐎𝟑

−, (d) 𝐍𝐇𝟒
+, (e) PM2.5, and (f) PM10. In 

each panel, the grey bars represent observations, the colored dots represent simulations, and the black solid lines represent the 

MMEM (multi–model ensemble mean). The x axis presents the monitoring sites (the information of these sites is listed in Table S1). 5 

Normalized mean biases (NMBs) between observations and MMEM in each defined sub-region (shown in black) and the entire 

analyzed region (shown in red) are also shown. In this figure, the annual mean observations are taken from EANET, CNEMC, and 

published literatures. 
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Figure 4. Time series of the monthly observed and simulated aerosol compositions: (a1) BC, (b1)-(b3) PM2.5, (c1)-(c4) PM10. The thin 

grey lines represent simulation results, and the grey shaded areas indicate the spread. The thick black lines are the ensemble mean. 

The red solid lines mean the observations, and the dashed red lines represent one standard deviation. Correlation coefficients (Rs, 5 

shown in black) for the whole year and normalized mean biases (NMBs, shown in blue) for each season between observations and 

MMEM are shown in each panel. The number of monitoring sites used to calculate the statistics in each sub-region is also listed 

above each panel. In this figure, the monthly observations except BC are taken from EANET and CNEMC; the monthly BC 

concentrations are collected from published literatures. 
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Figure 5. The same as Fig. 4, but for (a1-a5) 𝐒𝐎𝟒
𝟐−, (b1-b5) 𝐍𝐎𝟑

−, and (c1-c5) 𝐍𝐇𝟒
+. In this figure, the monthly measurements are 

taken from EANET. 
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Figure 6. Similar as Fig, 4, but for seasonal cycles of aerosol optical depth (AOD) at 550 nm. In this figure, the monthly 

measurements are taken from AERONET.  
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Figure 7. Spatial distributions of observed and simulated aerosol optical depth (AOD) at 550 nm. The observed AOD values are 

retrieved from MODIS. Spatial correlation coefficients are given in the bottom left corner of each panel. Observed AOD from 

AERONET are also shown in circles. 5 
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Figure 8. Inter-comparison of model performance between MICS-Asia Phase II (blue) and Phase III (red) for 𝐒𝐎𝟒
𝟐−, 𝐍𝐎𝟑

−, and 𝐍𝐇𝟒
+. 

Detailed information about the observations and simulations used in Phase II can be obtained from Hayami et al. (2008). Each 

boxplot exhibits the full range, the interquartile, and the median for (a) RMSE and (b) correlation coefficient. Detailed values of the 5 

median (the 25th percentile, the 75th percentile) are also listed above each panel. 
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Figure 9. Spatial distributions of simulated PM2.5 concentrations from each participant model and the MMEM. The calculated 

coefficient of variation (CV, standard deviation divided by the mean) is also shown. The values listed in the bottom right corner of 

the figure represent the averaged CV (the minimum CV, the maximum CV) in each defined sub-region. The ratio of SNA (sulfate, 5 

nitrate, and ammonium) to PM2.5, the SOR (sulfur oxidation ratio), the NOR (nitric oxidation ratio), and the PNR (particle 

neutralization ratio) are also given at the bottom of each panel. 
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Figure 10. The same as Fig. 9, but for PMcoarse (coarse particles, subtract PM2.5 from PM10). 
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Figure 11. (a) The spatial distributions of PM10 concentrations for MMEM. (a1-a6) Simulated aerosol chemical compositions for 

participant models and the MMEM in the six metropolitans (Beijing, Tokyo, Seoul, Shanghai, Guangzhou, and Delhi). (b1-b6) The 

ratios of each composition to PM2.5 for MMEM. (c1-c6) The seasonal PM2.5 concentrations for MMEM. It is noted that 5 

PM10=SNA+OTHER1+PMcoarse, SNA=𝐒𝐎𝟒
𝟐−+𝐍𝐎𝟑

−+𝐍𝐇𝟒
+, and OTHER1=BC+OC+OTHER2. 

 


