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Abstract. Semi-volatile and intermediate volatility organic compounds (S/IVOCs) are considered as 

critical precursors of secondary organic aerosol (SOA), which is an important component of fine 10 

particulate matter (PM2.5). However, the knowledge on the contributions of S/IVOCs to SOA is still 

poorly understood in the Pearl River Delta (PRD) region, southern China. Therefore, in this study, an 

emission inventory of S/IVOCs in the PRD region was developed for the first time for the year 2010. 

The S/IVOCs emission was calculated based on a parameterization method involving the emission 

factors of POA (primary organic aerosol), emission ratios of S/IVOCs to POA, and domestic activity 15 

data. The total emission of S/IVOCs was estimated to be 323.4 Gg, with major emissions from central 

cities in PRD, i.e., Guangzhou, Foshan, and Shenzhen. On-road mobile sources and industries were the 

two major contributors of S/IVOC emissions, with contributions of ~42% and ~35%, respectively. 

Furthermore, uncertainties of the emission inventory were evaluated through Monte Carlo simulation. 

The uncertainties ranged from -79% to 229%, which could be mainly attributed to mass fractions of OC 20 

(organic compound) to PM2.5 from on-road mobile emissions and emission ratios of IVOCs/POA. The 

developed S/IVOC emission inventory was further incorporated into the Weather Research and 

Forecasting with Chemistry (WRF-Chem) model with a volatility basis-set (VBS) approach to improve 

the performance of SOA simulation and to evaluate the influence of S/IVOCs on SOA formation at a 

receptor site (Wan Qing Sha (WQS) site) of PRD. The following results could be obtained: (1) The 25 

model could resolve about 34% on average of observed SOA concentrations at WQS after considering 

the emissions of S/IVOCs, and 18%–77% with the uncertainties of the S/IVOC emission inventory 
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considered. (2) The simulated SOA over the PRD region was increased by 161% with the input of 

S/IVOC emissions, and it could be decreased to 126% after the reaction coefficient of S/IVOCs with 

OH radical was improved. (3) Among all anthropogenic sources of S/IVOCs, industrial emission was 

the most significant contributor of S/IVOCs for SOA formation, followed by on-road mobile, dust, 

biomass burning, residential, and off-road mobile emissions. Overall, this study firstly quantified 5 

emissions of S/IVOCs and evaluated their roles in SOA formation over PRD, which contribute towards 

significantly improving SOA simulation and better understanding of SOA formation mechanisms in 

PRD and other regions in China. 
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1 Introduction 

As the key component, secondary organic aerosol (SOA) accounts for 20–80% of organic aerosol (OA), 

while OA accounts for 20%–90% of fine particulate matter (PM2.5) (Kanakidou et al., 2005; Carlton, 

Wiedinmyer and Kroll, 2009; Zhang et al., 2007, 2013). They not only affect atmospheric chemistry, 

climate change, radiation balance, visibility, and air quality (Kanakidou et al., 2005; Pope et al., 2002), 15 

but also endanger human and vegetation health (Gehring et al., 2013; Zhou et al., 2014). In recent years, 

although PM2.5 concentrations in major city clusters including the Pearl River Delta (PRD) region have 

shown a declining trend, the annual PM2.5 concentrations are still higher than the World Health 

Organization (WHO) air quality standards and Air Quality Guideline (Li et al., 2015; Lin et al., 2018). 

Moreover, the contribution of SOA to PM2.5 is increasing (Huang et al., 2015; Zheng et al., 2014), and it 20 

dominates the composition of PM2.5 during episodes of photochemical smog. Therefore, investigating 

the formation mechanism of SOA is a prerequisite for better control over its precursors and PM2.5, 

which is becoming increasingly more prominent as the concentrations of SOA precursors continue to 

increase over the years (Guo et al., 2017). 

Three-dimensional chemical transport models (CTM) have been widely used to investigate the 25 

formation and sources of SOA. Initially, organic compounds with similar properties or sources were 

clustered together in OA (organic aerosol) modules within gridded models due to the high complexity 
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of OA and large varieties of compounds incorporated in the detailed chemical schemes (Johnson et al., 

2006), where large uncertainties occurred in simulations of SOA formation. Then a two-product model 

(Odum et al., 1996) based on the absorptive partitioning theory of Pankow (1994) and fitting methods 

developed from chamber study data was widely used in the simulation of SOA formation. However, this 

empirical two-product model was reported to largely under-predict SOA yield because it could not 5 

account for the wide range of volatility of organic compounds. Recently, another scheme, i.e.., the 

volatility basis-set approach (VBS, typically one-dimensional VBS (1-D VBS)), was used to overcome 

the limitation of the two-product model (Donahue et al., 2006). In VBS, organic compounds are 

classified by their volatility, and it was developed on the basis of the absorptive partitioning theory. The 

VBS approach improves the modeling of further multigenerational oxidation processes and incorporates 10 

low-volatility precursors of SOA, which consequently reduces the discrepancy between observation and 

simulation results. Furthermore, to capture the fragmentation process and oxidation of OA more 

accurately, the two dimensional VBS (2-D VBS) was proposed; 2-D VBS features a more detailed 

classification of organic compounds in different ranges of volatility and oxidation state. However, 

despite its potential for accurately simulating the evolution of SOA, it has rarely been used in CTM 15 

because it involves much more complexity and computational expense compared to the widely used 1-

D VBS (Donahue et al., 2011, 2012; Zhao et al., 2016a). 

Although the scheme for SOA formation has been advanced significantly in recent years, large 

discrepancies have still been found between the observed and predicted abundance of SOA due to 

uncertainties in the formation mechanisms of SOA as well as the related parameterization (i.e., SOA 20 

yields of precursors of SOA) and the omittance of key precursors. For example, through recent chamber 

experiments, SOA yields of aromatics have been updated to be much higher than previous ones (Ng et 

al., 2007), while suggestions have also been made to consider wall losses of SOA in the SOA yields of 

each VOC precursor extracted from chamber experiments (Hildebrandt et al., 2009; Li et al., 2017a). In 

addition to the SOA yields, recent studies indicated that in-cloud aqueous-phase formation (Lim, 25 

Carlton and Turpin, 2005; Ervens, Turpin and Weber, 2011) and oxidation of VOCs (volatility organic 

compounds) that were previously not considered in models (i.e., isoprene, benzene and acetylene) could 
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be important pathways for SOA formation (Claeys et al., 2004; Martín-Reviejo and Wirtz, 2005; 

Volkamer et al., 2009).  

In addition to the traditional precursors (i.e., VOCs), recent laboratory and modeling studies have 

suggested that semi-volatile and intermediate volatility organic compounds (S/IVOCs), which have 

effective saturation concentrations in the range of 10-2–103µg/m3 and 104–106 µg/m3 at 298 K and 1 atm, 5 

respectively, are key factors affecting the underestimation of SOA in numerical simulations (Donahue 

et al., 2006; Robinson et al., 2007; Jiang et al., 2012). To date, S/IVOCs are found to mainly include 

straight chain and branched alkanes with carbon numbers > 12, alkylcyclohexanes, unsubstituted and 

substituted polycyclic aromatic hydrocarbons (PAHs), alkylbenzenes, cyclic and polycyclic aliphatic 

material (Zhao et al., 2015; Li et al., 2018; Drozd et al., 2019). However, a vast majority of S/IVOC 10 

mass still have not been speciated at the molecular level, which are defined as an unresolved complex 

mixture (UCM) (Jathar et al., 2012; Zhao et al., 2015; Drozd et al., 2019). Incomplete combustion, such 

as the combustion of fossil fuel, especially vehicle exhaust has been reported to be a large contributor to 

S/IVOC emissions in developed regions (May, Presto, et al., 2013a, 2013b; Ots et al., 2016; Khare and 

Gentner, 2018). Recent studies have also shown that consumer products and commercial or industrial 15 

products, processes, and materials are significant sources of unspeciated S/IVOCs (Czech et al., 2016; 

Khare and Gentner, 2018). On the other hand, biogenic S/IVOCs have recently been demonstrated to 

have a non-negligible impact on SOA formation, but very few measurements have been reported on 

their emissions (Palm et al., 2016, 2017). Therefore, to improve the performance of models simulating 

SOA formation, anthropogenic emissions and the chemical mechanisms of S/IVOCs have been 20 

incorporated into different models, including box, regional, and global models (Robinson et al., 2007; 

Shrivastava et al., 2008; Grieshop, Donahue and Robinson, 2009; Pye and Seinfeld, 2010; Tsimpidi et 

al., 2010; Shrivastava et al., 2011; Ahmadov et al., 2012; Shrivastava et al., 2015; Woody et al., 2015). 

In terms of chemical mechanisms, although 1-D VBS is still widely used in current models, one of the 

most important improvements is the adoption of the 2-D VBS scheme as mentioned above (Woody et 25 

al., 2015; Zhao et al., 2016a). For emission inventories, which is a prerequisite condition for improving 

model simulation of SOA formation and evaluating the roles of S/IVOCs in SOA production, previous 

studies typically estimated S/IVOC emissions from various sources based on the relationship of 



5 
 

S/IVOCs with POA, NMHCs (non-methane hydrocarbons) or naphthalene as well as emission profiles 

and source-specific volatility distribution factors for S/IVOC emissions extracted from various studies 

(Robinson et al., 2007; Pye et al., 2010; Shrivastava et al., 2011; May, Levin, et al., 2013; May, Presto, 

et al., 2013a, 2013b; Woody et al., 2015; Zhao et al., 2016a). However, very few studies have directly 

developed an emission inventory of S/IVOCs appropriate for CTM. For example, only Liu et al. (2017) 5 

reported an emission inventory of vehicular IVOCs for China, estimating total emissions of IVOCs 

from vehicles in different provinces based on emission factors obtained from measurements of vehicle 

exhaust in the United States. However, this emission inventory was flawed as it could not be applied to 

CTM because the total IVOC emissions had not been spatially allocated into grid cells, and it was not 

sufficiently localized as the emission factors of IVOCs from vehicle exhaust were completely based on 10 

measurements in the United States (Zhao et al., 2015, 2016b). As such, most modeling studies used the 

same parameterizations and volatility distributions of all emissions independent of source types to 

simulate SOA formation. However, S/IVOC emissions and characteristics of SOA and particles widely 

vary among different countries and regions. 

The significance of S/IVOCs have been demonstrated through lab and modeling studies in different 15 

environments, but the emissions of S/IVOCs and their roles in the formation of SOA in China is still 

poorly understood, especially in the PRD region, where photochemical smog and high oxidative 

capacity are frequently observed (Hofzumahaus et al., 2009; Xue et al., 2016). Therefore, in the present 

study, a gridded emission inventory of S/IVOCs for the PRD region was first developed and then 

incorporated into the WRF-Chem model (Weather Research and Forecasting model with Chemistry) 20 

with the 1-D VBS approach. The objectives of this study are as follows: (i) to examine the potential of 

considering S/IVOCs for improving the simulation of SOA formation; (ii) to evaluate the contributions 

of S/IVOC to SOA over the PRD region. This study is the first report focusing on the emissions of 

S/IVOCs and their contributions to SOA formation in the PRD region, which could advance the 

understanding of SOA formation mechanisms in PRD and could be extended to other regions in China. 25 

It should be noted that this study mainly focused on anthropogenic S/IVOCs and their roles in SOA 

formation in the PRD region as anthropogenic S/IVOCs were found to have much greater contributions 
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to SOA formation than biogenic S/IVOCs in developed regions (Palm et al., 2016, 2017; Khare and 

Gentner, 2018). 

2 Methodology  

2.1 Establishment of the S/IVOC emission inventory 

In this study, a gridded emission inventory of S/IVOCs was determined using Eq. (1).  5 

ES I⁄ VOCs,j=∑ Aj,kj,k ×EFS/IVOCs,j×(1-µ)×10-3                           (1) 

where j and k denote the specific sector and city, respectively; ES/IVOCs denotes the annual emissions of 

S/IVOCs; A, EF, and µ represent the activity level, mean emission factor, and removal efficiency, 

respectively. Emission factors of S/IVOCs were calculated on the basis of existing traditional POA 

emission factors using source-specific linear scaling factors because available emission factors of 10 

S/IVOCs are limited. Moreover, the traditional POA emission factors for different source categories 

(e.g., industry, on-road and off-road mobile sources, residential sources, dust, and biomass burning) 

were obtained from POC (primary organic carbon) emission factors using source-specific ratios of 

OM/OC (mass ratios of organic matter to organic carbon), while the POC emission factors were 

obtained from PM2.5 emission factors by applying the source-specific mass fractions of OC to PM2.5. 15 

Therefore, Eq. (1) was extended to Eq. (2). The related parameters of S/IVOCs, including the activity 

levels, removal efficiency and spatiotemporal allocations, were assumed to be the same as those of POA 

and POC for all source categories. S/IVOC emissions in the PRD region for the year 2010 was 

calculated using Eq. (3), among which the activity levels, removal efficiency, and emission factors were 

combined and expressed as PM2.5 emissions (EPM2.5,j in Eq. 3). Note that the PM2.5 emissions in this 20 

study was obtained from a highly resolved spatial anthropogenic PRD regional emission inventory for 

the year 2010 with a horizontal resolution of 3 km (Zheng et al., 2010b). 

ES I⁄ VOCs,j=∑ Aj,kj,k ×EFPM2.5,j×FOC,j×
OM
OC j
×(

ESVOCs,j

EPOA,j
+

EIVOCs,j

EPOA,j
)×(1-µ)×10-3    (2) 

ES I⁄ VOCs,j=EPM2.5 ,j×FOC,j×
OM
OC j
×(

ESVOCs,j

EPOA,j
+

EIVOCs,j

EPOA,j
)                                        (3) 
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The above parameters used in the development of the emission inventories of S/IVOCs of each source 

category were extracted from recent studies (Table 1). In order to calculate the oxygen fraction and 

ratios of the non-oxygen component to the carbon component of each species in all anthropogenic 

sources, which would be required in modeling (section 2.2.2), elemental ratios of O/C, H/C and N/C 

ratios were also estimated. 5 

Furthermore, uncertainties of the emission inventory of S/IVOCs, which can be attributed to 

uncertainties in all parameters, were evaluated and quantified using statistical methods and Monte Carlo 

simulation, as suggested by Zheng et al. (2010a). Sample correlation coefficients between total 

S/IVOCs emission and model input parameters or S/IVOCs emission of each specific source category 

have been calculated to identify the key sources of uncertainties in the estimation of S/IVOC emissions 10 

(NARSTO, 2005). Based on the different values of model input parameters from previous studies 

(Table 1), probabilistic distributions representing uncertainty ranges of different parameters, including 

FOC, ESVOCs/EPOA, EIVOCs/EPOA, OM/OC, O/C, H/C, and N/C, from different source categories are 

summarized in Table 2. Additionally, uniform distribution based on the results of uncertainty 

assessment in Zhong et al. (2018) was applied to all source categories of PM2.5 emission in the present 15 

study. 

2.2 Model description and settings 

2.2.1 Model settings 

To further evaluate the roles of S/IVOCs in SOA formation, the newly developed S/IVOC emission 

inventory was incorporated into the WRF-Chem model to simulate the formation of SOA and 20 

investigate its impact factors in the PRD region. The WRF-Chem model (https://ruc.noaa.gov/wrf/wrf-

chem/) is a fully coupled online meteorology–chemistry model that can be used to simulate physical and 

chemical processes simultaneously (Grell et al., 2005). This model has been widely used to simulate the 

formation of secondary products (i.e., SOA and O3), including their relationship with precursors, the 

influence of meteorological conditions, and contributions from anthropogenic and biogenic emissions 25 

from regional to cloud resolving scales (Fast et al., 2009, 2006; He et al., 2015; Jiang et al., 2012; Li et 

al., 2011; Liu, 2014; Sharma et al., 2017; Tie et al., 2013). 
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The model configuration is presented in Table S1 in the supplementary material, and the model domain 

is presented in Fig. 1. The simulation was conducted from 1200 UTC on November 17, 2008 to 0000 

UTC on November 26, 2008 because measured data of SOA were available from November 19 to 25, 

2008 at the receptor site of the PRD region, i.e., the Wan Qing Sha (WQS) site. During the simulation 

period, the first 24 h were consumed as the spin-up time for the simulation. The initial meteorological 5 

field and boundary meteorological conditions were provided by the ERA-Interim reanalysis dataset 

from the European Centre for Medium-Range Weather Forecasts (ECMWF) with the resolution of 0.5° 

× 0.5°, while the chemical boundary condition was obtained from the Model for Ozone and Related 

chemical Tracers (MOZART) global simulation of trace gases and aerosols (Emmons et al., 2010). The 

above initial field and boundary meteorological conditions have been confirmed to be appropriate for 10 

the reproduction of observed meteorological parameters in PRD (Situ et al., 2013). 

The gas-phase chemistry mechanism used in the simulation was SAPRC-99 (Statewide Air Pollution 

Research Center), including 235 reactions of 80 gases (Carter, 1999). It should be noted that the gas-

phase photochemical oxidation of gas-phase organic species for the formation of SOA, e.g., the gas-

phase chemistry of BVOCs (biogenic VOCs) such as isoprene, monoterpenes and sesquiterpenes, has 15 

been recently updated and incorporated in the mechanism (Situ et al., 2013). In addition, the Model For 

Simulating Aerosol Interaction and Chemistry (MOSAIC) aerosol chemistry mechanism coupled with 

2-species VBS treatment was used to represent aerosol processes (Zaveri et al., 2008). The MOSAIC 

scheme includes aerosol species, such as sulfates, nitrates, ammonium salts, sodium salts, chlorine salts, 

calcium salts and other inorganics (OIN), organic carbon (OC), elemental carbon (EC), and water, but 20 

does not consider the formation of SOA from organic vapors (Fast et al., 2009). Therefore, this 

mechanism was coupled with a simplified two-species 1D-VBS (section 2.2.2) developed by 

Shrivastava et al. (2011) to simulate the formation of OA. 

Anthropogenic emissions of PM10, PM2.5, VOCs, NOx, SO2, and CO in the PRD region were derived 

from a highly resolved spatial anthropogenic PRD regional emission inventory for the year 2010 with a 25 

horizontal resolution of 3 km, whereas emissions outside the PRD region were based on the Guangdong 

provincial emission inventory ( Zheng et al., 2010b). This emission inventory was developed using the 

best available domestic emission factors and activity data, including the sectors of industry, on-road and 
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off-road mobile sources, residential sources, dust, and biomass burning (Zheng et al., 2009). In our 

emission inventory, dust mainly includes road fugitive dust and building construction dust. Particles 

containing many toxic metals and organic contaminants such as PAHs and long-chain alkanes from 

various sources (e.g., weathered materials of street surfaces, automobile exhaust, lubricating oils, 

gasoline, diesel fuel, tire particles, construction materials and atmospherically deposited materials) can 5 

be deposited on roads and construction sites, which are known as road fugitive dust and building 

construction dust (Takada et al., 1990; Rogge et al., 1993; Chen et al., 2012). Furthermore, dust is a 

large source of POA at urban locations, and S/IVOCs are frequently co-emitted with POA (Zheng et al., 

2012; Shrivastava et al., 2013; van Drooge and Grimalt, 2015). Indeed, S/IVOCs, such as n-alkanes 

(C19–C39) and PAHs have been identified in dust samples, confirming that dust could be a source of 10 

S/IVOCs (Takada et al., 1990; Rogge et al., 1993; Schefuß et al., 2003; Dong and Lee, 2009). In 

addition, BVOC emissions were derived from the Model of Emissions of Gases and Aerosols from 

Nature (MEGAN, https://sites.google.com/uci.edu/bai) developed by Guenther et al. ( 2012).  

2.2.2 VBS approach 

With the configuration mentioned above, the WRF-Chem model used in this study provides a simplified 15 

and computationally efficient 2-species 1D-VBS scheme coupled with MOSAIC that includes V-SOA 

(SOA formed by the oxidation of VOCs-traditional SOA precursors emitted from varied anthropogenic 

and biogenic sources) and SI-SOA (SOA formed by the oxidation of S/IVOCs-untraditional SOA 

precursors emitted from anthropogenic sources). This scheme was simplified from the detailed 9-

species VBS, a scheme with more surrogate organic compounds categorized by different ranges of 20 

volatility (Shrivastava et al., 2011). The simplified 2-species scheme categorized S/IVOCs into two 

volatility species with effective saturation concentration C* equal to 0.01 and 105 µg/m3 at 298K and 1 

atm. C* is the inverse of the Pankow-type equilibrium partitioning coefficient, which describes the 

fraction of gas and particle components in SOA formation. Note that gas phase SVOCs and all IVOCs 

in this mechanism are represented by species with C* equal to 105 µg/m3, and IVOCs were considered 25 

to remain in the gas phase before photochemical oxidation in the atmosphere. POA and SI-SOA were 

assumed to be non-volatile in the model. POA is the remaining aerosol component after the evaporation 
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of gas phase SVOCs. In this mechanism, POA with SI-SOA are represented by species with C* equal to 

0.01 µg/m3. This simplified 2-species VBS has been confirmed to be more suitable for computationally 

extensive models (i.e., WRF-Chem) for running complex coupled cloud-aerosol-meteorology because 

of its similar predictions of total OA mass, individual OA components, and evolution of organic 

aerosols in addition to its reduction in computational cost by a factor of 2, as compared to the detailed 5 

9-species VBS (Shrivastava et al., 2011). 

In terms of the formation of SI-SOA in the 2-species VBS, the primary oxidation of S/IVOCs 

transformed the gas-phase high-volatility S/IVOCs (C*=105 µg/m3) into the extremely low-volatility SI-

SOAs (C*=0.01 µg/m3) with the OH reaction rate constant (kOH) of 0.57 × 10-11 cm3 molecule-1 s-1 and 

oxygen yield of 50%. In order to align the SOA predictions between 2-species and 9-species VBS 10 

schemes, kOH in the 2-species VBS had been reduced by a factor of 7 (i.e., 0.57 × 10-11 cm3 molecule-1 s-

1) from that of the 9-species VBS (4 × 10-11 cm3 molecule-1 s-1) because the orders of magnitude 

reduction in volatility through one generation of oxidation in the 2-species VBS was 7 times that in the 

9-species VBS. Note that the kOH of 4 × 10-11 cm3 molecule-1 s-1 in the 9-species VBS was assumed to be 

~50% higher than that of a typical large saturated n-alkane as suggested by previous studies (Atkinson 15 

and Arey, 2003; Robinson et al., 2007). The specific oxidation reaction equations are as follows (the 

detailed description of the parameters in the equations are provided in the supplementary material):  

S/IVOC(g)2,e,c + OH → SI-SOA(g)1,e,c + 0.5 SI-SOA(g)1,e,o                 (4) 

S/IVOC(g)2,e,o + OH → SI-SOA(g)1,e,o + OH	                                        (5) 

where (g) denotes gas phase; the subscript 1 denotes the low-volatility species (C* = 0.01 µg/m3 at 20 

298K and 1 atm), 2 denotes the high-volatility species (C* = 105 µg/m3 at 298K and 1 atm); e denotes 

the emission categories, including biomass burning and other anthropogenic emissions; c denotes the 

non-oxygen (C, H, N) component of the species; o represents the oxygen component. 

In addition, V-SOA formed by the oxidation of anthropogenic and biogenic VOCs in this mechanism 

was considered using one-species treatment with the configuration of the saturation concentration C* of 25 

V-SOA as 1 µg/m3 at 298K and 1 atm. NOx dependent fixed 1-product yields for all VOCs precursors 

were proposed by Shrivastava et al. (2011).  
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Gas-particle partitioning between the gas and aerosol phases of both SI-SOA and V-SOA was 

calculated using the absorptive partitioning theory as described by Donahue et al. (2006):  

Ci,a= Ci,tot

1+Ci
*/M

                                              (6) 

where Ci,a denotes aerosol phase SOA mass concentration at a given volatility bin i (here, its bin 

boundaries are C* values of 0.01 and/or 105 µg/m3); Ci,tot denotes the total mass concentrations of gas- 5 

and aerosol-phase SOA for bin i; Ci
* denotes the saturation concentration for bin i; M denotes total mass 

concentrations of OA, which includes POA and SOA.  

To calculate the influence of temperature on C*, the Clausius-Clapeyron equation was used: 

Ci
*=Ci,0

* T0

T
exp'

∆Hi

R
(

1
T0

-
1
T
)*                                                             (7) 

where Ci
*  and Ci,0

*  denotes saturation concentration at T and T0 (reference temperature 298K), 10 

respectively, for bin i; R is the universal gas constant; ∆Hi denotes the enthalpy of vaporization for bin i. 

2.2.3 Model scenarios 

In order to evaluate the roles of S/IVOCs in the formation of SOA over the PRD region, thirteen 

simulations were performed from November 19 to 25, 2008, including one control BASE simulation 

and twelve sensitivity CASE simulations. Table 5 provides detailed descriptions on the base and 15 

sensitivity scenarios. For the base scenario, the simulation was conducted without the input of S/IVOC 

emissions. For CASE1, this simulation was conducted with the input of S/IVOCs from all 

anthropogenic emissions (section 3) in order to estimate the contributions of S/IVOCs to the formation 

of SOA.  

A large uncertainty of 0.57 × 10-11 cm3 molecule-1 s-1 was found for the kOH of S/IVOCs species in the 20 

2-species VBS used in current WRF-Chem model, which was calculated on the basis of the kOH of the 

9-species VBS that was assumed to be about 50% higher than that of a typical large saturated n-alkane 

(Atkinson and Arey, 2003; Robinson et al., 2007). In this study, the kOH of S/IVOCs species was 

updated according to the emission factors and kOH of 57 speciated IVOCs from the vehicular emission 
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measurements (Zhao et al., 2015, 2016b) using the molar weighting method by the following equation 

(Carter, 1999): 

      kOH =kOH,i× EFi
EFtot

																																									(8) 

where i denotes the specific S/IVOCs species; tot denotes all S/IVOCs species; EF denotes the emission 

factor; kOH denotes the OH reaction rate constant. The kOH of S/IVOCs was calculated to be 3 × 10-11 5 

cm3 molecule-1 s-1, which is smaller than the original kOH of 4 × 10-11 cm3 molecule-1 s-1 in the model. 

Then, the reaction rate with OH radicals was reduced to 0.42 × 10-11 cm3 molecule-1 s-1 by a factor of 7 

in order to ensure its applicability to the 2-species VBS scheme, as suggested in section 2.2.2. To 

evaluate the effect of the OH reactivity of S/IVOCs on the formation of SOA, CASE2 was conducted 

using the new updated kOH with the input of the same S/IVOC emission as in CASE1. 10 

For CASE3-6, the simulations were designed with varied amounts of S/IVOC emissions at the 50% and 

95% confidence intervals (section 3.2) using the new updated kOH of S/IVOCs in order to evaluate the 

sensitivity of the SOA simulation to the magnitude of S/IVOC emissions and quantify the uncertainty 

ranges in SOA prediction attributable to uncertainties of S/IVOC emissions. Note that CASE3 and 

CASE6 were conducted with the lower and upper limits of the uncertainty ranges of S/IVOC emissions 15 

estimated at the 95% confidence interval (which was 21% and 329% of the amounts in inventory as 

suggested in section 3.2) as presented in Table 4, whereas CASE4 and CASE5 were conducted with the 

edges of the uncertainty ranges of S/IVOC emissions estimated at the 50% confidence interval (45% 

and 127% of the amounts in the inventory as suggested in section 3.2). Furthermore, CASES7-12 were 

simulated using the new updated kOH of S/IVOCs with only the input of individual S/IVOC emissions, 20 

i.e., biomass burning, dust, industry, off-road mobile, on-road mobile and residential sources, to 

quantify the contributions of each S/IVOC emission to the formation of SOA. 

3 Emission inventory of S/IVOCs 

3.1 S/IVOC emissions 

Using the parameterization method described in Eq. (3), hourly gridded S/IVOC emissions in the PRD 25 

region for the year 2010 with a resolution of 3 km × 3 km were estimated with parameters given in 
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Table 2 and the high-resolution PM2.5 emission inventory (Zheng et al., 2010b). As shown in Table 3, 

the total S/IVOC emission in the PRD region is 323.4 Gg in 2010, of which on-road mobile sources 

contributes about 41.6% (134.4 Gg), industry about 35.4% (114.6 Gg), dust about 14.5% (46.8 Gg), 

biomass burning about 4.5% (14.4 Gg), residential sources about 2.6% (8.4 Gg), and off-road mobile 

sources about 1.5% (4.8 Gg). Regarding city-level contributions, Guangzhou was the largest contributor 5 

to S/IVOC emissions with a contribution of 23.9%, followed by Foshan (18.4%), Shenzhen (15.1%), 

Jiangmen (11.9%), and Dongguan (11.7%) as shown in Fig. 2. Notably, as expected, on-road mobile 

sources and industry, which involve large amounts of vehicles and industrial plants, were the top two 

contributors in all cities, except for Zhongshan, where the contribution of dust to total S/IVOC 

emissions was higher than industry because of the accelerating urbanization with frequent urban 10 

constructions but much less industrial plants than in Guangzhou, Foshan, Dongguan, and Shenzhen 

(Pan et al., 2015; Yin et al., 2015; GSY, 2010). It was also of interest to find that the magnitudes of 

S/IVOC emissions from dust and industry in Zhaoqing and Shenzhen were similar, but the contributions 

were different. Dust contributed about 21.1% (3.6 Gg) and 7.4% (3.6 Gg) to the S/IVOC emissions in 

Zhaoqing and Shenzhen, and industry contributed about 22.8% (3.9 Gg) and 8.8% (4.3 Gg), 15 

respectively. The contributions of dust and industry to S/IVOC emissions in Shenzhen were smaller 

than those in Zhaoqing, attributable to the dominance of on-road mobile S/IVOC emissions in Shenzhen 

(81.3%, 39.6 Gg) because of the dense traffic (Pan et al., 2015). As Shenzhen and Zhaoqing have much 

less industrial point sources than cities located in the southeastern PRD such as southern Guangzhou 

and Foshan (Pan et al., 2015), their corresponding industrial S/IVOC emissions were also less. There 20 

were relatively higher S/IVOC emissions from road fugitive dust and lower emissions from building 

construction dust in Zhaoqing than those in Shenzhen because of shorter road lengths and more 

developed construction industries in Shenzhen (GSY, 2011; Peng et al., 2013), resulting in similar 

magnitudes of S/IVOC emissions from dust in these two cities. 

Figure 3a-f show the spatial distributions of S/IVOCs emitted from different sectors for the year 2010. 25 

In general, the spatial characteristics of S/IVOC emissions in 2010 (Fig. 4) were consistent with the 

distribution of on-road mobile and industrial emissions (Fig. 3), the top two S/IVOC contributors in this 

region. Furthermore, the spatial distributions of total S/IVOC emissions agreed well with the road 
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network with the high S/IVOC emissions located in central cities including Guangzhou, Foshan, 

Dongguan, and Shenzhen. Large amounts of emissions from biomass burning were found in Zhaoqing, 

Jiangmen, and Huizhou, which are characterized by extensive combustion of household firewood and 

straw associated with the large rural populations (Fig. 3a), contributing nearly 43% to total rural 

populations in the PRD region in 2010 (GSY, 2011; Yuan et al., 2010). In contrast, high S/IVOC 5 

emissions from dust were mainly concentrated in Guangzhou, Foshan, Dongguan, Shenzhen, and 

Zhongshan, associated with the heavy traffic flows and frequent urban constructions because of the 

preparation of the 2010 Asian Games and the accelerating urbanization processes in recent years (Fig. 

3b). The high industrial emissions of S/IVOCs were mainly concentrated in Foshan, Dongguan, 

Zhongshan, and Guangzhou, where numerous industrial point sources and power plants exist (Fig. 3c). 10 

The spatial distributions of S/IVOCs emitted from on-road mobile sources were very consistent with the 

patterns of road networks in the PRD region. The emissions were concentrated in central economically 

developed cities with large numbers of vehicles (Fig. 3e). Compared with the abovementioned sectors, 

S/IVOC emissions from residential and off-road mobile sources in the PRD region were lower (Fig. 3d 

and f). Nevertheless, the total S/IVOC emission (323.4 Gg) was only a quarter of total VOC emission 15 

(1224.5 Gg) in the PRD region in 2010 (Fig. 5), but it was more than 6 times the total OC emission 

(52.9 Gg). Moreover, the contributions of different sectors varied in different emission inventories. For 

example, biogenic and solvent use sources totally contributed to the overall VOC emissions by 45% but 

did not contribute to emissions of S/IVOCs, PM2.5, and OC. The contribution of biomass burning (4%, 

14.4 Gg) to S/IVOCs was much smaller than that to OC (24%, 12.9 Gg) because the emission ratio of 20 

IVOCs to POA for biomass burning is much smaller than that of other sectors. Industrial sources 

contributed less to S/IVOC emissions than to PM2.5 with contributions of 35% and 52%, respectively, 

while on-road mobile contributed more to S/IVOC emissions (42%, 134.4 Gg) as the fraction of OC in 

PM2.5 (FOC) in on-road mobile emissions was higher than that in industrial emissions, when other 

parameters in the emission model for these two sectors were similar (Table 2). 25 
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3.2 Uncertainties in S/IVOC emissions 

An uncertainty assessment of the 2010 PRD regional S/IVOC emission inventory together with a 

sensitivity analysis based on the Monte Carlo simulation and sample correlation coefficient method 

(Zheng et al., 2010a), were performed to determine the ranges of uncertainties and identify the key 

sources of uncertainties in S/IVOC emission estimates. Table 4 lists estimated ranges of uncertainties 5 

and associated correlation coefficients with estimated total S/IVOC emissions for the different 

parameters used in calculating the total S/IVOC emissions in different source categories. As shown in 

Table 4, the uncertainty in the total S/IVOC emissions was very high with a relative error of -79–229% 

at the 95% confidence interval, which could be mainly attributed to uncertainties in the S/IVOC 

emissions of the on-road mobile sources because of the largest correlation coefficient of the on-road 10 

mobile S/IVOC emissions with total S/IVOC emissions among all the source categories. It is 

noteworthy that the uncertainty ranges of the emission inventories of S/IVOCs were wider than those of 

VOCs and PM2.5, which were only -6–99% and -6–77%, respectively (Zhong et al., 2018). For input 

parameters in the emission model, the correlation coefficients between total S/IVOC emissions and FOC 

for the on-road mobile sources or ratios of EIVOCs/EPOA for all source categories, except biomass burning, 15 

were very large, indicating that these parameters were the key sources of high uncertainties in the 

S/IVOC emission estimates. It should be noted that the actual uncertainties in S/IVOC emission 

estimates should be larger because the same ratios of EIVOCs/EPOA and ESVOCs/EPOA were used for all 

source categories, except biomass burning, which were only based on measurements of vehicular 

emission. These results indicated that more measurement of FOC from on-road mobile emission and 20 

source-specific measurements of EIVOCs/EPOA and ESVOCs/EPOA is key to reducing uncertainties in 

S/IVOC emission estimates. 

3.3 Comparison with other emission inventory 

To indicate the difference of S/IVOC emission inventory developed using different methods, the 

S/IVOC emission inventory developed in this study was further preliminarily compared to recently 25 

proposed global emissions of PAHs by Shen et al. (2013) (detailed data for the emission inventory are 

provided in Table S2 in the supplementary material) because PAHs are important components of 
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S/IVOCs. In this study, emissions of five PAHs including NAP (naphthalene), ACY (acenaphthylene), 

FLO (fluorene), PHE (phenanthrene), and PYR (pyrene) with high fractions in total PAH emissions 

were selected for comparison with corresponding PAH emissions of Shen et al. (2013) for the year 2010 

in the PRD region. Note that the emission of individual PAHs in all source categories in this study was 

extracted from the total IVOC emission using the ratio of specific individual PAH to total IVOCs from 5 

vehicular emission measurements (Zhao et al., 2015, 2016b). Large deviations were found for emissions 

of the abovementioned PAHs between the present and previous studies, especially for NAP (Fig. S1). 

For example, NAP emissions were larger with more distinct spatial characteristics in this study than in 

Shen’s inventory over most of the PRD region. The characteristic of road networks was also observed 

for the spatial distribution of NAP emission in the present study, which was not reflected in Shen’s 10 

inventory. Furthermore, the total emissions of the 5 selected PAHs over PRD in this study were about 

3.4 times those in Shen’s inventory, with multiples ranging from 1.2 to 13.4 in nine individual cities of 

PRD (Table S2). The discrepancies in PAH emissions in different studies can be mainly attributed to the 

following factors: 1) Differences in the resolution of emission inventories. For example, the spatial 

resolution of the emission inventory in this study was 3 km × 3 km, which is much higher than that of 15 

the previous study (0.1° × 0.1°). 2) Differences in the parameterization methods for developing different 

inventories. For example, emission factors of PAHs in the present study were calculated on the basis of 

those of IVOCs using the ratio of specific individual PAH to total IVOCs, wherein the emission factors 

of IVOCs were obtained from those of existing traditional POA using source-specific linear scaling 

factors. However, emission factors of PAHs in Shen’s study were directly obtained from actual 20 

measurements from various reports, which were further calculated to be time-specific based on the 

regression model and technology splitting approach. Nevertheless, by considering the uncertainties of 

different inventories (i.e., -55–27% and -34–62% at the 50% confidence interval for emission 

inventories of the present and previous studies, respectively), it is reasonable to conclude that the 

emissions of selected PAHs between the two studies are comparable. Moreover, further investigation 25 

revealed that the spatial variations of PAH emissions in this study may be more reasonable than those in 

Shen’s inventory. For example, high centers of PAH emissions in Shen’s inventory were located only in 

Guangzhou and Shenzhen. On the other hand, in this study, high PAH emissions were found in central 
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cities including Guangzhou, Foshan, Shenzhen, and Dongguan, which have dense traffic and population. 

This result is consistent with the result that traffic was frequently found to be one of the most important 

sources of PAH emissions (Riva et al., 2017). 

4 The simulation results of SOA formation 

4.1 Effects of S/IVOCs on SOA concentration  5 

In this study, daily measured concentrations of SOA at the WQS site in Guangzhou, a receptor site of 

the PRD region during autumn and winter seasons,  were used to evaluate the model performance on the 

simulation of SOA (Ding et al., 2012). The monitoring data of this site could represent the regional air 

pollution in the PRD because it is surrounded by large farmland and rare traffic with flat terrain (Ding et 

al., 2012). The time series of SOA for BASE, CASE1, CASE2, and observation during the study period 10 

is plotted in Fig. 6a. Both BASE and CASE simulations well reproduced the day-to-day variations of 

SOA, although the model could not capture the observed high concentrations of SOA. Another 

remarkable feature in Fig. 6a is that the predicted concentrations of SOA became much closer to the 

observed values after the S/IVOC emissions were considered, with the discrepancy between simulations 

and observations decreasing from -9.15 µg/m3 to -6.39 µg/m3 for CASE1 (30% decrease, p < 0.01). 15 

Moreover, the performance of SOA simulation was improved by 196% for CASE1 compared to BASE. 

The ratios of predicted SOA to observed SOA in CASE1-2 and BASE runs are presented in Fig. 6b. 

The model could resolve 39% of the observed SOA with an increase of 26% as compared to BASE 

when the S/IVOC emissions were included and the original kOH of S/IVOCs was used. Figure 7a shows 

the relative variations of SOA between CASE1 and BASE in the whole modeling domain. An obvious 20 

increase of 40–375% of SOA is found over the PRD region with an average regional increase of 161% 

when S/IVOC emissions were incorporated into the model. The most remarkable increase patterns are 

found in the cities of Foshan, Shenzhen, Dongguan, and Jiangmen, with the increment ranging from 240% 

to 375%. This is consistent with the spatial SI-SOA in Fig. 8 and can be probably attributed to the high 

anthropogenic S/IVOC emissions in these cities (Fig. 4). Furthermore, a substantial increase of SOA 25 

was found in the southwest downwind area of the PRD region with increments of 240–325% 
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attributable to the influences of both local pollutants and pollutants transported from the upwind area 

because the dominant wind direction over the PRD region was northeasterly during the pollution period 

(Fig. 8). Notably, high increasing ratios of SOA concentrations in Guangzhou only appeared in a small 

southwestern part of Guangzhou, probably because high S/IVOC emissions in Guangzhou mainly 

resulted in considerable SOA growth in downwind areas, especially Foshan, which lies to the southwest 5 

of Guangzhou. Nevertheless, the above results demonstrated that S/IVOCs are significant precursors for 

forming SOA, and the model performance on SOA formation could be improved significantly if 

S/IVOCs emissions were considered. Therefore, besides traditional VOCs, S/IVOC emissions should be 

included in CTM to achieve accurate modeling of the formation of SOA and regional air quality. 

In contrast, the predicted SOA in CASE2 decreased by 14% as compared to CASE1 after the kOH of 10 

S/IVOCs was improved. Moreover, the model could resolve 34% of the observed SOA at the WQS site, 

which is smaller than the resolved fraction of 39% in CASE1 (Fig. 6a-b). The average regional increase 

ratio of SOA decreased to 126% in CASE2 with the newly updated decreased kOH of S/IVOCs and the 

same S/IVOC emissions as in CASE1 (Fig. 7b). This suggests that the decreased OH reactivity 

coefficient indeed decreased the formation rate of SOA, and a more precise OH reactivity is required for 15 

the model to better simulate SOA. 

CASE3-6 were simulated with the input of varied amounts of S/IVOC emissions on the basis of the 

uncertainty ranges of the estimates of S/IVOC emissions (Table 5 and section 2.2.3). The uncertainty 

ranges of the ratios of predicted SOA concentrations to observed ones, attributable to uncertainties in 

S/IVOC emissions, are presented as an error bar in Fig. 6b. As expected, the ratios of temporal average 20 

simulated SOA to observed SOA at WQS site during the study period varied from 18% to 77% after 

taking the uncertainties of S/IVOC emissions into account. Figure 7c-d show minor increases of SOA 

with the input of lower S/IVOC emissions for CASE3 and CASE4, as compared to CASE1, with 

average regional increases of 27% and 57%, respectively. Figure 7e-f show larger increases of SOA 

with the input of higher S/IVOC emissions for CASE5 and CASE6, with average regional increase of 25 

158% and 395%, respectively. The results suggest that SOA is strongly sensitive to the amounts of 

S/IVOC emissions. Consequently, it is of great importance to reduce the uncertainties in the S/IVOC 

emission inventory to achieve accurate simulations of SOA. 
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4.2 Key anthropogenic S/IVOCs for SOA formation 

Six simulations including CASE7-12 were conducted with only the input of S/IVOC emissions from 

individual source categories in order to identify the key anthropogenic source of S/IVOCs to form SOA, 

as described in Table 5. The spatial distributions of the relative differences of predicted SOA 

concentrations between CASE simulations and BASE are presented in Fig. 9. The increasing ratio of 5 

SOA in CASE9 was found to vary in the range of 5–190% over the PRD region with an average 

increase of 52% when the industrial S/IVOC emission was incorporated into the model. The center of 

increasing SOA was located in Foshan, which is an industrially developed city (Fig. 9c). After including 

on-road mobile S/IVOC emissions into the model, the predicted SOA was increased by 5–180% with an 

average regional increase of 43% (Fig. 9e), and high amounts were detected over central cities including 10 

Shenzhen, Guangzhou, Foshan, and Zhongshan, which feature a high rate of vehicle ownership, 

contributing to 71% of total vehicle ownership in the PRD region (GSY, 2011). After considering 

S/IVOCs emitted from dust, the average regional increase ratio of SOA was 18% (Fig. 9b), and the 

centers were located in Guangzhou, Foshan, Zhongshan, Dongguan and Shenzhen. These cities have 

high traffic flows and frequent urban constructions, and their vehicle ownerships and floor space of 15 

buildings under construction contributed to ~86% and ~81% of those in the PRD region (Pan et al., 

2015; GSY, 2011). With the input of S/IVOC emissions from biomass burning, the average regional 

increasing ratio of SOA was up to 8% (Fig. 9a), and high values were mainly distributed in Zhaoqing. 

This city has expansive agricultural areas and large rural populations, accounting for ~31% and ~15%, 

respectively, of the total in the PRD (Yang et al., 2013; Pan et al., 2015; GSY, 2011). Nevertheless, the 20 

average regional SOA increased by only 2% and 4% with the input of S/IVOCs emitted from off-road 

mobile and residential sources, respectively (Fig. 9d and f). Notably, similar high centers of increasing 

SOA and S/IVOC emissions could be found in Fig. 9 and Fig. 3, respectively, for six specific sectors, 

indicating that the increment in SOA concentrations was highly correlated with the input of S/IVOC 

emissions. Overall, the industry and on-road mobile sources were the main anthropogenic sources of 25 

S/IVOCs contributing to the formation of SOA in the PRD region, followed by dust, biomass burning, 

residential, and off-road mobile sources. However, it was of interest to find that though the emission 

strength of on-road mobile S/IVOCs was stronger than that of industrial S/IVOCs in PRD, the 
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contributions of industry to SOA formation was higher than on-road mobile sources. This is related to 

different transport patterns in varied simulations with the input of S/IVOC emissions from different 

source categories. For example, high industrial S/IVOC emissions outside PRD would induce 

considerable SOA growth downwind inside PRD; however, high on-road mobile S/IVOC emissions in 

coastal cities such as Shenzhen would bring the SOA growth to the South China Sea, resulting in a loss 5 

of SOA inside PRD. 

5 Discussion and conclusions 

In this study, a highly resolved gridded emission inventory of S/IVOCs for the PRD region in 2010 was 

developed. The estimates showed that total S/IVOC emission in the PRD region for the year 2010 was 

323.4 Gg, 77% of which could be attributed to on-road mobile and industrial sources. Large 10 

uncertainties were still observed in S/IVOC emission estimates, with a relative error ranging from -79% 

to 229%. These uncertainties could be attributed to the FOC of the on-road mobile source and 

EIVOCs/EPOA ratio of all source categories, except biomass burning. Therefore, these parameters should 

be prioritized in further experimental studies in order to improve future S/IVOC emission inventories. 

Moreover, thirteen simulations using the WRF-Chem model were conducted to investigate the effects of 15 

S/IVOCs on SOA and identify the key anthropogenic source of S/IVOCs contributing to SOA 

formation over the PRD region. The analysis of the simulation results indicated that the performance of 

SOA simulation was greatly improved after considering the reaction pathway producing SI-SOA from 

S/IVOCs. S/IVOCs could result in considerable SOA growth, and the kOH of S/IVOCs had a non-

negligible effect on the production of SI-SOA. After considering the uncertainties of S/IVOC emissions, 20 

the model could resolve 18%–77% of observed SOA concentrations at WQS site. These indicate the 

need for more experimental data of kOH for S/IVOCs to reduce the uncertainties of this parameter within 

the model, and reduction of uncertainties of S/IVOC emissions to achieve more accurate simulation of 

SOA formation. In addition, the industrial and on-road mobile sources were the top two important 

anthropogenic sources of S/IVOCs contributing to SOA formation, followed by dust, biomass burning, 25 

residential, and off-road mobile sources. 
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Although the performance of the model in simulating SOA could be significantly improved, many 

issues still remain to be resolved. The observed SOA concentrations could not be accurately reproduced 

in the present study, especially for high SOA concentrations (Fig. 6a). We inferred that the incomplete 

and inaccurate formation mechanism of SOA, and large unresolved uncertainties in the S/IVOC 

emission inventory were the main reasons for the underestimation of SOA concentrations in the 5 

simulation. For example, large uncertainties still remained within source-specific and season-specific 

S/IVOC emissions, reaction rates of S/IVOCs, and SOA yields of VOCs and S/IVOCs. Furthermore, 

specific profiles of S/IVOCs were lacking. The approach including the distribution of S/IVOC 

emissions was based on inadequate data from domestic and foreign studies without sufficient 

localization in the PRD region, which further included large uncertainties. Furthermore, the assumption 10 

that SVOC emissions were included in POA emissions was not sufficiently constrained because of the 

limited observation data of HOA and BBOA. Therefore, much more local experimental work is needed 

to quantify all the abovementioned parameters in the future. In addition, the introduction of complete 

and complex physical and chemical processes of SOA formation, e.g., gas- and aqueous-phase 

oxidation, heterogeneous and accretion reactions, acid catalysis reactions of SOA from glyoxal, and 15 

chemical aging of SOA, may be useful in estimating SOA concentrations more accurately although it 

will increase experimentation costs and introduce larger uncertainties (Carlton et al., 2008; 

Denkenberger et al., 2007; George and Abbatt, 2010; Hallquist et al., 2009; Kroll and Seinfeld, 2008; 

Liggio et al., 2005; Pun and Seigneur, 2007; Washenfelder et al., 2011). For example, Dzepina et al. 

(2011) found that including chemical aging of V-SOA resulted in larger regional overprediction of SOA, 20 

whereas Ahmadov et al. (2012) reported a good agreement with observations after considering it. 

Shrivastava et al. (2011) pointed out that aging parameterization based on smog chamber measurements 

involves large uncertainties because the time-scales of photochemical ages are longer than the one 

accessible in chambers. Shrivastava et al. (2015) also pointed out that neglecting fragmentation 

reactions in aging parameterizations leads to large model overpredictions of SOA concentrations at all 25 

surface sites. Therefore, we plan to test more chemical processes that have not yet been considered in 

the WRF-Chem model and introduce the parameters required for establishing the S/IVOC emission 

inventory and model parameterization with less uncertainties based on more local experimental work in 
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the future. Furthermore, we plan to build the S/IVOC emission inventory based on ample local directly 

measured S/IVOC emission factors and volatility distribution factors of POA in the future work instead 

of scaling POA emission factors. 
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Table 1: Datasets of all input parameters used in the emission inventory model 

source FOC OM/OC O/C H/C N/C ESVOCs/EPOA EIVOCs/EPOA 

industrym 0.03a 1.77d 0.19d 1.26d 0.008d - - 

 0.3a 1.91e 0.56e 1.61e 0.02e - - 

 … … … … … … … 

residential sourcesn 0.1a 1.39e 0.17e 1.8e 0.004e - - 

 0.3a 1.44f 0.19f 1.78f 0.036f - - 

 … … … … … … … 

on-road mobile 

sources 
0.58a 1.4f 0.15f 1.77f 0.045f 0.67h 8k 

 0.37b 1.46g 0.19g 1.78g 0.05g 0.49i 30j 

 … … … … … … … 

off-road mobile 

sourceso 
0.33a - - - - - - 

 0.32b - - - - - - 

 … … … … … … … 

dustp 0.1a - - - - - - 

 0.05a - - - - - - 

 … … … … … … … 

biomass burning 0.58c 1.55d 0.26d 1.62d 0.06d 0.65i 0.75l 

 0.6a 1.62c 0.32c 1.47c 0.06c 0.8j 1.5j 

 … … … … … … … 

a. (Li et al., 2017b); b. (Zhao et al., 2011); c. (He et al., 2011); d. (Huang et al., 2011); e. (Hu et al., 2016); f. (Xu et al., 2015); g. (Ye et al., 

2017); h. (May, Presto, et al., 2013a); i. (Louvaris et al., 2017); j. (Zhao et al., 2016a); k. (Zhao et al., 2015); l. (Shrivastava et al., 2008), 

etc. m. data of ratios of S/IVOCs to POA for industry are the same as those for on-road mobile sources; n. data of ratios of S/IVOCs to 

POA for residential sources are the same as those for on-road mobile sources; o. data of ratios of S/IVOCs to POA, O/C, H/C, N/C, and 5 
OM/OC for off-road mobile sources are the same as those for on-road mobile sources; p. data of ratios of S/IVOCs to POA for dust are the 

same as those for on-road mobile sources; data of ratios of O/C, H/C, N/C, and OM/OC for dust are the same as those for industry. 
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Table 2: Probabilistic distributions with uncertainty range at the 95% confidence interval in model input parameters 

input 

parameters 
source distribution type para1 para2 mean value 

uncertainty range 

(95% confidence level) 

FOC 

industry weibull 0.09  1.07  0.08  (0.005, 0.28) 

residential sources normal 0.46  0.17  0.45  (0.17, 0.70) 

on-road mobile sources weibull 0.39  2.02  0.33  (0.07, 0.70) 

off-road mobile sources normal 0.26  0.11  0.25  (0.06, 0.70) 

dust weibull 0.08  5.26  0.08  (0.05, 0.10) 

biomass burning lognormal -1.01  0.34  0.38  (0.19, 0.68) 

OM/OC 

industry gamma 111.46  0.02  1.69  (1.43, 1.94) 

residential sources lognormal 0.28  0.05  1.33  (1.26, 1.43) 

on-road mobile sources lognormal 0.34  0.05  1.39  (1.31, 1.46) 

off-road mobile sources lognormal 0.34  0.05  1.39  (1.31, 1.46) 

dust gamma 111.46  0.02  1.69  (1.43, 1.94) 

biomass burning lognormal 0.43  0.09  1.51  (1.40, 1.61) 

ESVOCs/EPOA 

industry lognormal -0.32  0.23  0.70  (0.51, 0.97) 

residential sources lognormal -0.32  0.23  0.70  (0.51, 0.97) 

on-road mobile sources lognormal -0.32  0.23  0.70  (0.51, 0.97) 

off-road mobile sources lognormal -0.32  0.23  0.70  (0.51, 0.97) 

dust lognormal -0.32  0.23  0.70  (0.51, 0.97) 

biomass burning normal 0.76  0.14  0.80  (0.58, 0.97) 

EIVOCs/EPOA 

industry lognormal 1.86  0.88  8.00  (1.79, 25.45) 

residential sources lognormal 1.86  0.88  8.00  (1.79, 25.45) 

on-road mobile sources lognormal 1.86  0.88  8.00  (1.79, 25.45) 

off-road mobile sources lognormal 1.86  0.88  8.00  (1.79, 25.45) 

dust lognormal 1.86  0.88  8.00  (1.79, 25.45) 

biomass burning gamma 0.66  0.82  0.40  (0.002, 1.33) 

O/C 

industry weibull 0.49  2.70  0.44  (0.19, 0.73) 

residential sources normal 0.13  0.05  0.13  (0.08, 0.19) 

on-road mobile sources lognormal -1.84  0.26  0.16  (0.11, 0.21) 

off-road mobile sources lognormal -1.84  0.26  0.16  (0.11, 0.21) 

dust weibull 0.49  2.70  0.44  (0.19, 0.73) 

biomass burning lognormal -1.29  0.35  0.30  (0.19, 0.47) 

H/C industry gamma 71.81  0.02  1.59  (1.30, 1.90) 
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residential sources weibull 1.76  32.93  1.72  (1.60, 1.80) 

on-road mobile sources weibull 1.77  90.92  1.75  (1.71, 1.78) 

off-road mobile sources weibull 1.77  90.92  1.75  (1.71, 1.78) 

dust gamma 71.81  0.02  1.59  (1.30, 1.90) 

biomass burning lognormal 0.45  0.05  1.55  (1.48, 1.62) 

N/C 

industry lognormal -4.02  0.76  0.02  (0.01, 0.07) 

residential sources lognormal -4.45  1.01  0.02  (0.00, 0.05) 

on-road mobile sources normal 0.03  0.02  0.03  (0.01, 0.05) 

off-road mobile sources normal 0.03  0.02  0.03  (0.01, 0.05) 

dust lognormal -4.02  0.76  0.02  (0.01, 0.07) 

biomass burning lognormal -3.62  0.81  0.03  (0.01, 0.06) 

para1: the mean for normal, the mean of lnx for lognormal, the scale parameter for gamma and weibull distributions. 

para2: the standard deviation for normal, the standard deviation of lnx for lognormal, the shape parameter for gamma and weibull 

distributions. 
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Table 3: S/IVOCs emission inventory in the PRD region for the year 2010 

source S/IVOC emission (Gg/year) contribution (%) 

industry 114.6 35.4  

residential sources 8.4 2.6  

on-road mobile sources 134.4 41.6  

off-road mobile sources 4.8 1.5  

dust 46.8 14.5  

biomass burning 14.4 4.5  

total 323.4 100.0  

 
Table 4: Uncertainty assessment of the S/IVOCs emission inventory for the year 2010 

source 

Correlation coefficients between model inputs and outputs  

(Uncertainty range at 95% confidence interval) 

ESVOCs EIVOCs ES/IVOCs FOC OM/OC EPM2.5 ESVOCs/EPOA EIVOCs/EPOA 

industry 
0.108 

(-95%, 283%) 

0.510 

(-97%, 404%) 

0.496 

(-97%, 386%) 

0.098 

(-94%, 233%) 

0.006 

(-16%, 15%) 

0.018 

(-54%, 55%) 

0.019 

(-29%, 34%) 

0.782 

(-79%, 201%) 

residential 
0.060 

(-78%, 132%) 

0.631 

(-89%, 281%) 

0.618 

(-88%, 264%) 

0.035 

(-63%, 56%) 

0.005  

(-6%, 7%) 

0.032 

(-66%, 66%) 

on-road 

mobile 

0.477 

 (-87%, 183%) 

0.961 

(-93%, 321%) 

0.956  

(-92%, 302%) 

0.345 

(-79%, 103%) 

0.020 

(-6%, 5%) 

0.204 

(-73%, 73%) 

off-road 

mobile 

0.023 

 (-83%, 137%) 

0.589  

(-91%, 284%) 

0.575 

(-90%, 266%) 

0.012 

(-78%, 70%) 

0.001 

(-6%, 5%) 

0.011 

(-59%, 59%) 

dust 
0.078 

(-68%, 103%) 

0.692 

(-86%, 252%) 

0.682 

(-84%, 235%) 

0.033 

(-35%, 28%) 

0.015 

(-16%, 15%) 

0.041 

(-61%, 61%) 

biomass 

burning 

0.027  

(-70%, 127%) 

0.026 

(-100%, 336%) 

0.032 

(-75%, 163%) 

0.016 

(-50%, 79%) 

0.001  

(-7%, 7%) 

0.092 

(-58%, 58%) 

0.012 

(-25%, 26%) 

0.013 

(-99%, 247%) 

total  (-55%, 90%)  
(-85%, 

250%) 
 (-79%, 229%)          
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Table 5: Overview of simulations 

Test Name S/IVOCs emission inventory 
kOH of S/IVOCs 

(cm3 molecule-1 s-1) 
Notes 

BASE No S/IVOC emissions   

CASE1 All anthropogenic S/IVOC emissions 0.57 × 10-11  

CASE2 All anthropogenic S/IVOC emissions 0.42 × 10-11 

To evaluate the effect of 

kOH on the formation of 

SOA. 

CASE3 21% of the S/IVOC emissions in CASE2 0.42 × 10-11 

To evaluate the sensitivity 

of SOA simulation to 

S/IVOCs emission. 

CASE4 45% of the S/IVOC emissions in CASE2 0.42 × 10-11 

CASE5 1.27 times the S/IVOC emissions in CASE2 0.42 × 10-11 

CASE6 3.29 times the S/IVOC emissions in CASE2 0.42 × 10-11 

CASE7 Only S/IVOC emissions from biomass burning 0.42 × 10-11 
To quantify the 

contributions of S/IVOCs 

emitted from different 

source categories to the 

formation of SOA. 

CASE8 Only S/IVOC emissions from dust 0.42 × 10-11 

CASE9 Only industrial S/IVOC emissions 0.42 × 10-11 

CASE10 Only off-road mobile S/IVOC emissions 0.42 × 10-11 

CASE11 Only on-road mobile S/IVOC emissions 0.42 × 10-11 

CASE12 Only residential S/IVOC emissions 0.42 × 10-11 
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Figure 1: Modeling domain and locations of Wan Qing Sha air quality monitoring sites. 
 

 

Figure 2: Source specific emissions in each city for the year 2010. 5 
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Figure 3: Spatial distribution of S/IVOC emissions from different source categories for the year 2010: (a) biomass burning (b) dust 

(c) industry (d) off-road mobile sources (e) on-road mobile sources (f) residential sources.  
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Figure 4: Spatial distribution of total S/IVOC emissions for the year 2010. 
 

 

 5 
Figure 5: Comparisons with emissions of other pollutants in the PRD region for the year 2010. 
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Figure 6: Comparisons of SOA between simulations and observations at WQS monitoring site: (a) time series; (b) ratios of 

temporal average SOA concentration to observed SOA concentration during the study period (the box represents the uncertainty 5 
range in SOA prediction, the central line is the ratio in CASE2, the edges of the box are the ratios in CASE4 and CASE5, the edges 

of the whisker are the ratios in CASE3 and CASE6). 
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Figure 7: Relative difference of SOA between CASE runs and BASE: (a) CASE1, (b) CASE2, (c) CASE3, (d) CASE4, (e) CASE5, 

(f) CASE6. 
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Figure 8: Spatial distribution of temporal average (a) SOA and (b) SI-SOA during the study period over the modeling domain in 

CASE2 run. 
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Figure 9: Relative difference of SOA between CASE runs and BASE: (a) CASE7, (b) CASE8, (c) CASE9, (d) CASE10, (e) CASE11, 

(f) CASE12. 
 


